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ABSTRACT

We consider large sensor networks where the cost of collecting
data from the network nodes to the data gathering sink is crit-
ical. We propose several algorithms that use limited local com-
munication and distributed signal processing to make communi-
cation more efficient in terms of transmission cost. We consider a
model that uses distributed wavelets-based signal processing. We
first propose an algorithm that performs processing at nodes as data
is forwarded to the sink. Then, we analyze algorithms that perform
network division into groups of adaptive size and for which signal
processing is applied separately to each group. We show by nu-
merical simulations that such multiresolution approaches result in
significant improvements for data gathering in terms of total com-
munication costs.

1. INTRODUCTION

Consider a network of sensors that measure certain data and have
to transmit all obtained information to a common central node, or
sink, for processing or storage. Each sensor is equipped with a lim-
ited autonomous battery that provides energy for the signal trans-
mission. Usually, in sensor networks, the cost of communication is
substantially higher than the cost of local processing [5]. Since the
sensors are strongly constrained in terms of battery power [5], a
meaningful task in such settings is to design algorithms for data
transmission that minimize the total cost of gathering the mea-
sured data [1, 4, 6]. The simplest possible strategy consists of di-
rect transmission of the information from all sensors to the sink,
and we refer to this as raw data gathering. However, it is clear that
even for moderately sized networks this approach results in very
inefficient use of resources.

Several features can be exploited to decrease the total cost of
communication. The measured phenomenon is typically a spatially
dependent continuous process, and the data obtained by the sen-
sors represent its space-sampled version. Consequently, physically
close nodes measure correlated data, and this similarity can be ex-
ploited to decrease the amount of information needed by the sink
for the data reconstruction. Distributed signal processing in inter-
mediate nodes may take advantage of this property by performing
signal decorrelation between the sensors, thus reducing the total
cost of transmission. Further improvements can be obtained by us-
ing multi-hop communication, having sensors far from the sink
relay their data via neighboring nodes rather than sending directly
to the sink.

The related problem where the measured data are random vari-
ables and conditional entropy coding is employed is studied in

[1]. In this work, we focus on a specific class of deterministic sig-
nals for which wavelet processing is appropriate, namely piece-
wise defined signals, such as for instance piecewise constant sig-
nals, which can be often found in practice after some threshold
detection process. For deterministic piecewise continuous signals,
the amount of correlation present in the signal is essentially deter-
mined by the number of discontinuities. We will analyze how the
number of discontinuities affects the total transmission cost when
signal decorrelating is employed for data gathering, in comparison
to raw data gathering. A joint consideration of wavelet coding and
energy efficient transmission is exploited in [2], where wavelet lift-
ing is used. However, the signal model they consider is different.

We analyze several wavelet-based algorithms for the task of
efficient data gathering. First, we consider a distributed algorithm
applied on the whole network globally: the measured process is
approximated successively with different resolutions as data is sent
to the sink, by calculating low-pass (LP) and high-pass (HP) Haar
transform coefficients in certain network nodes. Next, we propose
an algorithm that involves network segmentation into groups of
equal size. Distributed processing and local data gathering are per-
formed inside each group separately, then the full set of coeffi-
cients from each group is transmitted to the sink. Finally, we pro-
pose an algorithm in which the network division into groups adapts
to the characteristics of the specific measured signal. We show by
numerical simulations that our algorithms significantly improve
data gathering in terms of cost over raw data gathering. Also, the
adaptive algorithm provides a further improvement of 20% over
the fixed size group segmentation, for large networks. Moreover,
we show how the improvements in terms of cost increase with the
decrease of the number of discontinuities present in the signal.

In Section 2, we describe our sensor network scenario and as-
sumed signal models. In Section 3 we introduce an algorithm for
multiresolution data gathering using the Haar transform. In Sec-
tion 4, we study the improvements of this algorithm when local
group data gathering is employed. Finally, in Section 5 we present
simulation results that compare the described algorithms. We con-
clude with Section 6.

2. PROBLEM STATEMENT
2.1. Network and Signal Model

For the sake of simplicity, we consider a one-dimensional® net-
work model. The sensors, denoted as 1, 2, ..., V, and the network
sink IV + 1 are placed equidistantly on a line (see Fig. 1). Without

1We are currently studying the extension to two-dimensional networks.



Fig. 1. A one-dimensiona network model. The sink, denoted N + 1, is
placed at the right extremity.

loss of generality, assume that the network size is N = 2M where
M is a positive integer.

We consider a particular class of signals, namely continuous
piecewise constant signals with a finite number of (uniformly dis-
tributed) discontinuities. This type of signals appears in many prac-
tical problems, for instance in thresholding/alert scenarios. Be-
tween each two discontinuities, the signal takes a value in the inter-
val [a, b], with a, b real numbers. The whole set of measurements
at the network nodes is a vector Y = (Y31,Y>,...,Yn) where
Y; corresponds to the sample obtained by sensor 4. Thus, the vec-
tor Y represents the space-sampled version of the original signal
with sampling step d along the line (note that both space sampling
and quantization introduce distortion into the reconstructed signal
[3]). In this work, we assume that there is no entropy coding by the
sensors, that is, for a given quantization step size A, the coefficient

values obtained by the sensors are coded using ¢ = log |42
bits. The same quantization step size A is used for all transform
coefficients.

2.2. Haar Transform and Signal Approximation

Without loss of generality, we consider the M -level Haar wavelet
transform, known to provide an efficient data representation for
piecewise constant processes (this can be easily generalized to
the case of piecewise polynomial signals by using the appropri-
ate higher-order wavelet processing). For each level k = 1... M
of the transform, LP and HP coefficients are computed in the usual
manner as sum and differences of previous lower level coefficients.
The set of transform coefficients is sufficient for signal recon-
struction in the network sink (the signal reconstruction is only ap-
proximate). Notice that for the intervals where the signal is con-
stant, all HP coefficients are zero. We assume that the power re-
quired to transmit zero-valued coefficients is negligible.? There-
fore, the only information that needs to be transmitted are the LP
coefficients. If the process has a single discontinuity then there is at
most one non-zero HP coefficient in each multiresolution level &,
which results in at most M non-zero HP coefficients for the whole
representation. Generally, for a signal with P discontinuities, an
upperbound for the number of non-zero HP coefficients (i.e. coef-
ficients that have to be transmitted) is given by min(P - M, N).

2.3. Cost Function and Reference Algorithm

We assume a linear dependence of the cost on the square of the
distance [5]. Denote the bit-rate for coding data £ as R(¢) and the
distance between transmitter X and receiver Y as d(X,Y"). Then,
the cost function for sending the data between X and Y':

cost(X =% Y) = R(¢) - d*(X,Y) )

2This assumption is approximately valid for a coding scheme that uses
avery small number of bits for coding zero-valued, compared to the num-
ber of bits used for coding the other coeffi cients. For instance, in [7] we
use a simple prefi x-coding approach with one bit sent for each zero HP
coeffi cient.
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Fig. 2. Haar transform multiresolution processing.

The total cost of a data gathering algorithm is the summation
of (1) over all transmitter-receiver pairs in all the steps of the al-
gorithm. Note that when multihop transmissions are considered,
the total cost depends only on the number of hops, and not on the
power of the distance.

We compare our algorithms with a simple raw data gathering
scenario used as a reference model, in which each sensor sends the
measured signal directly to the sink. In this case also, all signals
are quantized before transmission and ¢ bits are used for coding
each of them. For this reference model, the total cost for a network
with IV sensors is cost(ref) = ¢+ 42, For the evaluation of
the performance of an algorithm A, we compute the relative cost:

__ cost(A)

"~ cost(ref)’

3. MULTIRESOLUTION DATA GATHERING USING A
DISTRIBUTED HAAR TRANSFORM

The first algorithm that we propose, called NetHaar, uses a sim-
ple multiresolution processing based on the multiresolution Haar
transform (see Fig. 2).

Denote Y;* = Ya2;_1,i = 1...N/2. In the first step of the
algorithm, sensors with odd indices send their data to the sensors
with even indices. The transmitted signals are Y' = (Y, Y5, ...
---aY1\11/2)- Next, sensors 2,4, ..., N compute the Haar LP co-
efficients Y2 = (Yf,Yf,...,Yé) and HP coefficients D? =
(D}, D3, ..., DZ%) by using the set of received measurements and

their own measurements. Since sensors with even indices have all
information necessary for an approximate reconstruction of the
measured signal, we can ignore sensors with odd indices in fur-
ther analysis. The next algorithm steps implement a similar pro-
cedure. Namely, in the k** step, k = 1...M, nodes 2*~' . 1,
2k=1.3 ..., N —2%~1 send their LP coefficients to nodes 281 . 2,
2k=1 .4, .., N, and simultaneously their respective HP coeffi-
cients to the sink (see Fig. 2). Then, coefficients Y,*** and D+
are computed as:

Y )+ Y3
V2
fork=1,2,..,Mandi=1,2,.., .
Finally, in the M + 1-th step, node N sends both coefficients
calculated in the previous step, Y1 and DM, to the sink. At
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the termination of this algorithm the sink has all data necessary for
reconstructing an approximation of the signal.

Two types of transmissions occur, namely sensor-to-sensor and
sensor-to-sink transmission. Thus, the total cost is:

cost = cost, + COStyq

where cost; is the total sensor-to-sensor communication cost, and
cost,q IS the total sensor-to-sink cost:
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cost, =
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since every transmitter in the k%" step sends its LP coefficient over
2%=1 hops and its HP coefficient over N — 2¥~14 + 1 hops.

By substituting the bit rates for coding transform coefficients,
given in sections 2.1 and 2.2, into the expression for the cost func-
tion, we obtain the scaling laws for several illustrative examples
(for the proof, see [7]). Namelly, for a signal with one or no discon-

e . 2 .
tinuities, we have n ~ O % , therefore, the relative cost

1n — 0when N — oo. On the other hand, for a signal with all non-
zero HP coefficients we have n — 1 + % for N — oo. Thus, for a
sufficiently small number of non-zero HP coefficients (i.e. signal
discontinuities) the NetHaar algorithm provides a gain, but when
the number of such coefficients increases, its performance is lim-
ited. However, by limiting the number of discontinuities present in
each set of signal samples, additional decreasing of the total cost
can be obtained. This idea is further exploited in the algorithms
described in the next section.

4. DISTRIBUTED ALGORITHMSWITH NETWORK
SEGMENTATION AND HAAR TRANSFORM

In this section, we introduce a set of algorithms based on mul-
tiresolution distributed processing which additionally adapts to the
measured signal, while not necessarily requiring local processing
at all nodes. The main idea behind these algorithms is to reduce
sensor-to-sink communication by introducing an initial step of lo-
cal communication between sensors, at the level of groups whose
size will depend on the distribution of discontinuities. For instance,
in the case of piecewise-constant signals, a large percentage of the
HP coefficients are zero. Since the power for sending zero-valued
coefficients is negligible, it is preferable to send these HP coef-
ficients directly to the sink and to send LP coefficients between
sensors, over shorter distances. A set of sensors is called a group if
one of the sensors, the leader-node, collects all necessary local in-
formation to represent the signal data measured by all the sensors
in the spatial region covered by the group.

For the sake of clarity in the presentation of the algorithms,
consider the M + 1 level binary tree representation of the dis-
tributed network (see Fig. 3). Each tree leaf corresponds to single-
sensor groups, while the tree root contains the whole network. Each
in-tree node represents a group of sensors.

The possible ways of communication between groups proposed
in our algorithms are shown with arrows in Fig. 3. For instance,
after the transmissions in the first step of the NetHaar algorithm,
2-sensor groups (2¢ — 1,24),s =1,2,... % are created. After the
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Fig. 3. Tree representation of the algorithms.

second step of the algorithm, 4-sensor groups are created: (47 —
3,4i —2,4i —1,40)5=1,2,..., ¥ 7 andsoon.

The NetHaar algorithm fully spans the tree from bottom to
top, without checking for optimality of this operation in terms of
cost. Moreover, it requires that all sensor nodes have signal pro-
cessing abilities (to perform the Haar transform). The algorithms
proposed in this section are based on the idea that an early stop-
ping of the algorithm, at some tree level, to go upper in the tree
(see Fig. 3), may decrease the total data gathering cost, the re-
quired number of processing sensors, or both.

4.1. Network Segmentation into Groups of Equal Size

The second proposed algorithm, called GroupNetHaar, combines
the data gathering scenario of NetHaar with network segmenta-
tion, with the restriction that all groups contain the same number
of sensors. This provides insight into whether a spatially adaptive
multiresolution approach results in total cost improvements.

Local data gathering can be performed by either (a) gathering
raw data from the groups nodes to the leader-node, if only the latter
has processing capabilities, or (b) with the NetHaar scenario, if the
assumption that all nodes have processing capabilities is realistic
(in other words, we consider each group as a separate sub-network
and collect both LP and HP coefficients in the sensor closest to
the sink). Then, the leader-node sends all transform coefficients to
the network sink. Note that NetHaar is a special case of Group-
NetHaar, with a network division into only one group.

4.2. Adaptive Network Segmentation

With GroupNetHaar, the network segmentation is not automati-
cally adapted to each specific measured signal, as the total cost
corresponding to a certain group size, and thus the optimal group
size, cannot be computed a-priori without global information about
the measured signal. Thus, we propose an algorithm, called Adapt-
NetHaar, which provides an optimized network division according
to the signal characteristics. This algorithm is fully decentralized
and adapts its behavior to each individual measured signal.

The algorithm starts from the bottom of the binary tree in
Fig. 3. As in NetHaar, the odd index sensors send their data to
the even index sensors (arrows in Fig. 3). Each receiving sensor
makes a decision about whether creating a 2-sensor group or keep-
ing the present 1-sensor group state, by comparing the costs of
data gathering for the new group with the sum of costs corre-
sponding to the existing 1-sensor groups. After this operation,
sensors 2,4, ..., N have information about their neighbors with
odd index. In the second step, they can transmit data further to the
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Fig. 4. Relative cost versus number of groups ng = 2¢ in the network
segmentation for GroupHaar with raw data gathering (left) and local pro-
cessing inside the group (right).

leader-nodes of 4-sensor groups (see Fig. 3). A new set of coeffi-
cients is computed at the leader-nodes (precisely, two new coeffi-
cients) and the new computed cost is compared to the cost of the
previous step. The decision about collapsing the groups into one
larger group is essentially determined by the values of the com-
puted HP coefficients. The algorithm proceeds similarly for the
other tree levels. For k = 3,..., M + 1 there are 5+ groups

of size 2¥~. For each group the total cost of data gathering is
compared with the gathering cost for that group corresponding to
the previous algorithm steps. Further grouping is accepted only if
it decreases the cost. The algorithm stops once all data reach the
network sink. Note that inter-group communication in the steps of
this algorithm does not incur any additional cost with respect to
NetHaar, as communication is always done from the extremity of
the network to the sink.

5. EXPERIMENTAL RESULTS

In this section we show numerical simulations for the proposed al-
gorithms. As test signals we use piecewise constant signals with
amplitude values uniformly distributed in [—1, 1]. The number of
signal discontinuities varies with the network size, and it is given

as [pﬁ], with p a small real number p € [0.1, 5]. Note that

such signals result on average in a small number of non-zero HP
coefficients compared to the total number of coefficients. For each
number of discontinuities that we considered, the performance in-
dex was obtained by averaging over 1000 simulations.

Fig.4 shows the optimal fixed group size of the network seg-
mentation with GroupNetHaar. Note that there is an optimal group
size that minimizes the total cost. Fig.5 presents some examples of
network division with AdaptNetHaar for a particular signals. We
consider a signal with a single discontinuity that is successively
placed in four different positions: at the extremity of the network,
two intermediate positions, and close to the sink. The signal dis-
continuity position essentially determines the network segmenta-
tion: intuitively this algorithm tends to create small groups around
discontinuities and larger groups of sensors on the constant pieces
of signal as the measuring sensors get far from the sink.

In Fig.6, we plot the relative performance of our algorithms as
a function of network size and number of discontinuities. Note that
in both NetHaar and AdaptNetHaar, the decrease in relative costs
increases with the network size. Also, as the number of disconti-
nuities increases, the adaptive procedure of AdaptNetHaar results
in significant gains over NetHaar. Note also that when the number
of discontinuities is reduced (the level of uncertainty in the signal
decreases), the gains over raw data gathering are increased. \We see
how the adaptive algorithm outperforms the fixed group size ver-
sion for strongly varying signals (large p), since adaptation to the
local signal characteristic is crucial when the number of disconti-
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tinuities.

nuities is large.

6. CONCLUSIONSAND FURTHER WORK

We studied a set of algorithms that use multiresolution wavelet
methods to improve the cost of total transmission for data gather-
ing in sensor networks that measure piecewise constant signals. \We
showed how important improvements can be obtained by employ-
ing local group data processing before transmission to the sink, and
how even larger gains can be obtained by the use of an algorithm
that adapts to the local characteristics of the signal. Our current
work is focused on the study of two-dimensional scenarios.
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