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ABSTRACT

Sensor networks are usually dense networks where the network
diversity can be exploited in order to overcome failures. In this
paper, we study the use of multiple description techniques in the
context of sensor networks where the cause of failures is due to
the usual practical constraint of having finite buffers in the sen-
sors, instead of the more traditional case of link failures consid-
ered in previous research. Although from a theoretical point of
view we observe that the use of more descriptions provides usu-
ally better performance, we show experimentally that this is not
the case in practice, when real constraints are introduced, such as
finite buffers and the presence of header information, necessary
for any real application. Our main result is that the optimal num-
ber of descriptions, in terms of average distortion, decreases as the
fraction of header information increases for a given buffer size.

1. INTRODUCTION

Sensor networks are usually composed of a large number of in-
dividually-unreliable nodes with many connecting paths between
them. Transmissions over these networks are subject to failures
such as buffer overflow and node breakdowns resulting in packet
losses. This scenario motivates the use of specific coding tech-
niques capable of exploiting network diversity in order to face
node unreliability. In this paper, we focus our attention on losses
caused by the finite buffer capacity of nodes. Common devices
used in sensor networks presents a limited and generally small
amount of memory [1] that translates into a limited capacity for
the temporary storage of packets. This causes dropping when the
rate of packets injected is sufficiently high. In some scenarios,
retransmission is not possible due to time constraints or expen-
sive feedback and so coding schemes that make all of the received
packets useful can be of great benefit. Multiple Description (MD)
coding applies precisely to this situation. As opposed to Single
Description (SD) coding, an MD source encoder partitions infor-
mation intodescriptions and then sends them over the available
paths to the receiver. Depending on the subset of packets that is re-
ceived, a side decoder computes an estimate of the original source.
The quality of the estimate depends on the number of descriptions
received but, in contrast to the single-description case, the loss of
packets does not lead to a failure. A generic MD coding schema is
shown in Fig. 1 for the case of three descriptions.

Several MD coding techniques has been proposed, based on
Unequal Error Protection (UEP) [2, 3] and on scalar quantizers
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Fig. 1. A MD system with three descriptions. Central decoderDC
receives all the descriptions and can reconstruct the finest repre-
sentation of the source. The other decoders receive only a subset
of the transmitted data.

(MDSQ) [4]. However, in all this previous work, only the two-
description case is addressed and the interaction between the net-
work conditions and the different practical aspects of building MD
codes has not been studied. In this paper, we start by studying the
dependence between the number of descriptions and the end-to-
end distortion for a point-to-point link and a given fixed proba-
bility of failure, using both UEP and MDSQ based techniques.
Then, we analyze the application of these coding techniques in
a sensor network performing a data-gathering task (simultaneous
transmissions case) with finite buffers. We analyze the optimal
transmission strategy as a function of practical parameters such as
packet sizes and transmission rates in addition to the number of
descriptions. Although from a theoretical point of view, the use
of more descriptions usually provides a better performance, this
is not in general the case when we introduce practical constraints
(finite buffers and packets containing both header information and
payload). Since the presence of the header information (source,
destination, sequence numbers, etc. . . ) in each packet containing
a description increases the traffic generated for the network, it is
shown experimentally that there exists an optimal number of de-
scriptions that depends on the fraction of header information for
each value of probability of packet loss.

The rest of the paper is organized as follows: in Section 2,
after introducing the model and assumptions, we introduce UEP
and MDSQ in a point-to-point channel and in Section 3 we study
MD coding in a data-gathering sensor network.

2. MDC IN A POINT-TO-POINT CHANNEL

For the analytical study of a MD coding system, we first consider
an information source that emits an iid Gaussian signal with zero
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Fig. 2. Experimental results for a MD-UEP system with a source
bitstream ofL = 48 bits and no header information.

mean and varianceσ2 through a multi-hop point-to-point channel
to the destination node. The channel is characterized by a proba-
bility p of losing a packet as it moves from the source to the des-
tination. This parameter depends both on buffer overload in relay
nodes and on timeout timers at receivers as we are dealing with a
real-time environment. Furthermore, we assume that if the packet
reaches the destination, it does not contain bit errors, and, thus, it
can be correctly decoded and we also assume thatp does not de-
pend on the length of the packet. We generalize the well-known
schemes to deal with an arbitrary number of descriptions both for
UEP and MDSQ, denoting withM their number and withR their
rate.

2.1. MDC based on Unequal Error Protection

The information generated by the source is quantized by the MD
encoder that generates a progressive bitstream of lengthL = M ·R
bits and then marks it atM different positions, each one corre-
sponding to the attainment of a distortion levelDsk (1 ≤ k ≤ M ).

Denoting withk the number of descriptions out ofM correctly
received, we evaluate performance using the mean end-to-end dis-
tortion:

D =

MX
k=1

 
M

k

!
· Dsk · (1 − p)k · pM−k + σ2 · pM (1)

Our goal is to find theM values ofDsk that minimizes (1) for a
givenp.

The technique we used to generate an arbitrary number of de-
scriptions is based on [2] and it optimally tunes the redundancy
in each description with linear complexity using a Lagrange mul-
tiplier. Its output is then rounded to the nearest integer and the
theoretical rate allocation is guaranteed over a long sequence of
samples.

For a source bitstream ofL = 48 bits, results are shown in
Fig. 2. The end-to-end distortion is plotted as function of the
probability of packet lossp. In this range of values ofp, a 6-
description scheme outperforms systems that rely on a smaller

number of packets. The gain is very significant and, for exam-
ple, forp = 0.05, the6-description scheme gains approximatively
15 dB over the configuration with four descriptions.

2.2. MDC based on index assignment

Together with UEP, another well-known MD coding technique is
called Multiple Description Scalar Quantization (MDSQ) and it
consists in creating multiple descriptions usingM different quan-
tizers that sample the source of information. In [4] only the two-
description case is addressed. Here, we deal with its generaliza-
tion. A M -description MDSQ system can be seen as a central
quantizer and anindex assignment in M dimensions. In fact, the
encoder produces, for each source scalar input,M quantization in-
dices, each one sent over a channel. These indices can be seen as
indices of row and column of aM -dimensionalindex assignment
hyper-cube in which each dimension have sizeN = 2R cells. Our
goal is to fill this hyper-cube with no more than2MR numbers
according to the parameterp, minimizing the difference in all the
hyper-planes. Doing so, if only a subset of indices are received,
the decoder can reconstruct the best coarse version of the origi-
nal signal and quality will increase with the number of received
descriptions.

We apply the method proposed in [5] to completely fill the
hyper-cube. As explained in [5], the problem of completely fill-
ing it out to minimize the difference in eachhyper-plane is NP-
complete and arrangements of less than2MR numbers are not ad-
dressed. In practice, since we need to fill out only partially the
hyper-cube in order to achieve trade-offs between central and side
distortions, and there does not exist an efficient optimization al-
gorithm, the only possibility is to try all possible ways to fill the
hyper-cube with less than2MR numbers, which has a very high
computational complexity.

The complexity of dynamically adapt the coder to different op-
erating points discourages a real-time implementation of the index
assignment method of [4] for more than two descriptions and so
we consider in Section 3, for MDSQ, onlyM = 2. Anyway, it’s
worth noticing that, from an analytical point of view, MDSQ, at
least for two descriptions, guarantees better performance in terms
of mean end-to-end distortion, as proved in [6].

3. MDC IN A SENSOR NETWORK

The network model we assumed in the previous section was char-
acterized by the constant probabilityp of losing a packet, which is
independent of the number of descriptions. Under these assump-
tions, we showed that the more descriptions we generate, the lower
distortion we achieve. However, in many real applications, these
assumptions are not valid and a higher number of descriptions does
not necessarily lead to a lower distortion.

Suppose we want to measure a Gaussian random fieldX on a
square area. We assumeX to be uncorrelated in space and time.
We uniformly placen sensor devices that sample the field and send
all the information to a single device (sink), which gathers all the
information generated by the network (Fig. 3(a)).

We assume that sensors generate samples ofB bits following
a Bernoulli distribution with meanθ samples per unit time. Note
that θ represents also the average information rate generated per
device in samples per unit time. To increase the communication
efficiency, sensors groupS samples in one single data packet, and



SINK

(a)

Sink

(b)

Fig. 3. Network Model: a) Uniform placement of devices that
measure a random field and transmit the data to the sink located
in the center of the network. b) Routing algorithm: packets are
routed using all available paths between the source and the sink
with equal probability.

send it to the sink. We assume thatS is determined by the applica-
tion requirements. In practice, in addition to the samples (payload
of the packet), data packets contain also a header that includes in-
formation such as the device location, sampling times or sequence
numbers. We denote byH the size of the header in bits.

The sensors encode the samples and produceM descriptions
per sample. In order to make the comparison fair among different
coding schemes, we assume that the total number of bits per sam-
ple is fixed. That is, we generateM descriptions ofB/M bits each
so that the information rate transmitted by the network is constant
regardless of the number of descriptions.

As S descriptions are included in the same packet, the total
packet sizeK in bits is given byK = H + S B

M
.

In terms of communication capability, we assume that the de-
vices can only communicate to their four adjacent neighbors (see
Fig. 3(a)). Therefore, to send data to the sink, devices act also as
relays for other communications. Packets are routed to the sink
using a random routing algorithm that uses all available paths be-
tween the source and the sink with equal probability [7]. Note
that this routing algorithm allows to exploit the network diversity
present in the network, making the use of multiple description cod-
ing very convenient (see Fig. 3(b)).

Devices found in real sensor networks generally have a small
buffer (queue) for the temporary storage of the packets. We as-
sume that if a node receives a packet and its buffer is full, this
packet is lost and no retransmission is attempted. We also assume
that transmission time is proportional to the packet size and model
the system as a queueing network where each sensor is represented
by a queue with a given arrival rate and average service time pro-
portional to the packet size. We further assume that packet losses
occurs only due to buffer overflow at the devices. Therefore, the
probabilityp of losing a packet for a given source is not constant
but depends on the network parameters such as the transmission
rateθ, the packet sizeK, and the number of descriptionsM .

With all the information generated by the nodes, we reconstruct
the random fieldX at the sink. We measure the distortioñD
betweenX and the reconstructed field̂X as the average mean-
square-error (MSE) per device and unit time. That is:

D̃ =

Pn
i=1(X(i) − X̂(i))2

nθ
. (2)

We investigate the optimal transmission strategy that achieves the
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Fig. 4. D̃ as a function of the transmission rateθ with B = 8 bits
for 1,2, and 4 descriptions.

lowestD̃, that is,min{θ,M,K} D̃.
First, note that for fixed values ofM andK, there exists an

optimal transmission rateθopt(M) that minimizesD̃. As we in-
creaseθ, the devices generate more information packets andD̃
decreases. However, if we continue to increaseθ, the network be-
comes congested and devices start losing packets. Fig. 4 showsD̃
for values ofθ aroundθopt(M) and different number of descrip-
tionsM . These graphs where obtained by simulating a25 × 25
network withB = 8 bits per sample,H = 36 bits, andS = 20.

We examine howD̃ is affected by the number of descriptions
M . First, note that because of the practical constraints in a real
application, every information packet needs to include a header,
and therefore, the traffic transmitted through the network increases
with the number of descriptions. Moreover, the characteristics of
the input traffic of the queues also changes. In MD coding, devices
generate several packets at the same time and the traffic becomes
more bursty. These two factors contribute to increase the overflow
probability and consequently, to increaseD̃.

On the other hand, when we generate several descriptions, the
sizeK of each packet is reduced. This packet size reduction de-
creases network congestion and, equivalently, decreasesD̃. This
can be illustrated with the following example.

Consider just a singleM/M/1/Q queue with a buffer size
of Q packets, average arrival rateλ, and average service timeµ.
Applying M/M/1/Q formulas, the utilization factor is given by
ρ = λ/µ, and the probability of packet overflowpo by:

po =
1 − ρ

1 − ρQ+1
ρQ. (3)

Suppose now that we generateM times more packets of1/M
the size. Given that the service time is proportional to the packet
size, this is equivalent to considerλ′ = Mλ andµ′ = Mµ and
Q′ = MQ. Obviously, the utilization factor does not change, that
is, ρ′ = ρ. However, the new probability of packet overflowp′

o is
clearly reduced:

p′
o = ρ(M−1)Q 1 − ρQ+1

1 − ρMQ+1
po < po. (4)

Note also that as the average waiting time in the queue is pro-
portional to1/µ, packet delay is also reduced. Consequently,
to reduce the probability of losing packet due to buffer overflow,
smaller packets are preferable.



0 0.1 0.2 0.3 0.4 0.5
−5

−4

−3

−2

−1

0

1

2

3

H/K

A
ve

ra
ge

 D
is

to
rti

on
 G

ap
 [d

B
]

M=1
MDSQ M=2
UEP M=2
UEP M=4

Fig. 5. SimulatedD̃ achieved with MD and SD coding for differ-
ent header-payload ratios and 8 bits per sample.
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Fig. 6. SimulatedD̃ achieved with MD and SD coding for differ-
ent header-payload ratios and 12 bits per sample.

This suggests that there exists an optimal number of descrip-
tions that depends on the packet sizeK, more particularly on the
ratioH/K.

We compare now thẽD achieved by transmitting atθopt(M) for
different values ofM as a function of the ratioH/K. Fig. 5 shows
the gain inD̃ achieved by usingM descriptions with respect to SD
coding as a function ofH/K in a 25 × 25 network withS = 20
andB = 8 bits per sample forM = 1, 2, 4. Similarly, Fig. 6
shows the same gain forB = 12 bits andM = 1, 2, 3, 4 and 6.

In the case ofB = 8 bits, the optimal strategy forH/K < 0.5
consists in generating 2 descriptions using MDSQ. However, the
benefit of using 2 descriptions decreases as the rateH/K increases
due to the extra traffic generated, and whenH/K > 0.5, the low-
estD̃ is achieved by SD coding. Note that due to its exponential
complexity, we considered MDSQ only for 2 descriptions.

For B = 12 bits, we considered only UEP coding to gener-
ate several descriptions. As we discussed in the previous section,
the complexity of MDSQ is exponential not only withM , but also
with B. Even for the simplest case ofM = 2, each device would
have to generate a2B/2×2B/2 matrix where2B/2+1−1 diagonals
can be filled. For smallH/K values, the lowest̃D is achieved by
generating three descriptions, for which a gain of almost2.5 dB is
achieved with respect to SD coding. To generate more than three
descriptions does not decrease the distortion: first, we have the

practical constraints of creating descriptions with very few bits,
and second, there is the penalty due to the extra traffic generated.
As the header size increases, the performance of MD degrades due
to this extra traffic. Note that the more descriptions we generate,
the more rapidly it degrades. Therefore, the optimal number of de-
scriptions decreases when the ratioH/K increases. For instance,
whenB = 12, we have that for values ofH/K between 0 and
0.15, the optimal strategy consists in generating 3 descriptions.
WhenH/K is between 0.15 and 0.35, the optimal isM = 2.
Finally, whenH/K > 0.35 we use SD coding.

4. CONCLUSIONS

MD coding is a powerful approach to combat packet losses in net-
works where retransmission is not always possible and it’s, thus,
suitable for real-time applications. MD coding can be applied over
large diversity networks where packets can flow from the source to
the destination through many different paths and the probability of
losing packets over these paths is not negligible. In this paper, we
have studied from an analytical point of view the generalization of
two well-known MD techniques to handle many descriptions and
we have seen that there exists an optimal number of descriptions to
use according to network conditions. Then, we have analyzed the
effect of the header size of each description and we have verified
that also the header-payload ratio should be carefully taken into
account when setting up a Multiple Description Coding system.
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