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Abstract

We study capacity and routing in lattice networks. Such networks are used in regular settings like grid computing
and can be seen as an approximation to dense sensor networks. Thus, limits on capacity, optimal routing policies,
and performance with finite queues are key issues and are addressed in this paper. In particular, we study the
routing algorithms that achieve the maximum rate per node for infinite and finite buffers in the nodes and different
communication models, namely uniform communications, central data gathering and border data gathering. In the
case of nodes with infinite buffers, we determine the capacity of the network and we characterize the set of optimal
routing algorithms that achieve capacity. In the case of nodes with finite buffers, we approximate the queue network
problem and obtain the distribution on the queue size at the nodes. This distribution allows us to study the effect
of routing into the queue distribution and derive the algorithms that achieve the maximum rate.

Index Terms

Lattice networks, square grid, torus, routing, queueing theory, network capacity, uniform communication, data
gathering, border data gathering.

I. INTRODUCTION

LATTICE networks are widely used, for example, in distributed parallel computation [2], distributed
control [3] and wired circuits such as CMOS circuits and CCD-based devices [4]. Lattice networks

are also known as grid [5] or mesh [6] networks. Moreover, the development of micro and nano-
technologies [7] has also enabled the deployment of sensor networks for measuring and monitoring
purposes [8]. The usual deployment of devices into the sensed area frequently consists of a regular
structure that results into a lattice sensor network, or a perturbation of it.

Lattice networks can also be considered as an approximation for networks whose nodes are randomly
located. Even though a particular realization of such random network does not correspond to a regular
lattice structure, an average realization of this network can be usually approximated by a regular structure.

We consider lattice networks, namely the square lattice and torus lattice based networks. We choose
these simple structures because they allow for a theoretical analysis while still being useful enough, as
shown in this paper, to incorporate all the important elements, such as connectivity, scalability with respect
to the size of the network and finite storage capacity.

In practice, common devices used in sensor networks have little storage (e.g. Berkeley motes have 512
KB [9]), and a similar lack of storage is typical in optical networks [10]. In this paper, we focus on the
analysis and design of routing algorithms that maximize the throughput per node for networks with both
infinite and finite buffer at the nodes. In the case of infinite buffers, we establish the fundamental limits
of transmission capacity in lattice networks. We also characterize and provide optimal routing algorithms
for which the rate per node is equal to the network capacity. These optimal routing algorithms satisfy the
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property of being space-invariant, i.e. the routing algorithm that is used to route the packets between any
two nodes depends only on the relative position between them, not their absolute positions.

In the case of finite buffers, the analysis requires solving the queueing problem associated to the
network. However, no analytical exact solutions are known for even the simplest queueing networks [11]
and queueing approximations are used to model the network. We propose more accurate approximation
models to the usual Jackson’s Theorem that allow us to analyze and design new routing algorithms for
finite buffer networks.

Depending on the structure and goal of the network (monitoring, data collection, actuation), nodes
exhibit different communication patterns. In this work, we consider three different communication models
that represent different network tasks: uniform communication, data gathering and border data gathering.
In uniform communication, the probability of any node communicating to any other node in the network
is the same for all pairs of nodes. It models a distributed control network where every node needs the
information generated by all nodes in the network [12]. In data gathering, nodes only need to send their
data to one common fixed node and corresponds to the case where one node (sink) collects the information
generated by all the nodes in the network [13]. In border data gathering, the information generated by all
nodes in the network is collected by the nodes located at the border of the square lattice. This network
configuration models a situation that arises frequently in integrated devices. Nodes located on the borders
can be easily connected to high-capacity transmission lines, while nodes inside the device are difficult to
connect and can only communicate to neighbor nodes.

We assume that either the considered network is wired (e.g. a CMOS circuit) or if it is wireless, we
assume contention is solved by the MAC layer. Thus, we abstract the wireless case as a graph with
point-to-point links and transform the problem into a graph with nearest neighbor connectivity.

The rest of the paper is structured as follows. In Section II, we introduce the network model and
our assumptions. In Section III, we study the uniform communication model under the infinite buffer
assumption. We analyze capacity limits and provide optimal routing algorithms for both torus and square
lattices. Then, in Section IV, we consider finite buffers and describe simple approximate models to analyze
the corresponding queueing network. Using these models, we study the performance of routing algorithms
under finite queues. In Section V, we carry out a similar analysis for the data gathering model and in
Section VI we analyze the border data gathering problem. For both models, we characterize the optimal
routing algorithms for both, infinite and finite buffers. Finally, conclusions are presented in Section VII.

A. Related Work
Regarding capacity, Gupta and Kumar studied the transport capacity in wireless networks [14] and

concluded that, when specialized to lattices, the total end-to-end capacity per node is roughly O (1/
√

n)
where n is the number of nodes.

Routing in lattice networks has been thoroughly studied in the context of distributed parallel computation
[15], [2], where the system performance strongly depends on the routing algorithm. Various routing
schemes have been studied through simulation by Maxemchuk [16].

Previous works that consider finite buffers are based on Jackson’s theorem [11]. Harchol-Balter and
Black [17] considered the problem of determining the distribution on the queue sizes induced by the
greedy routing algorithm in torus and square lattice networks. They assumed that the time it takes for a
packet to move through an edge is exponentially distributed. This hypothesis allows to reduce the problem
into a product-form Jackson queue network and analyze it using standard queueing theory techniques.
Although the exponential service time hypothesis is not realistic, they conjectured that it can be considered
as an upper-bound for constant service time networks. This was confirmed by Mitzenmacher [18], who
approximated the system by an equivalent Jackson network with constant service time queues. He provided
bounds on the average delay and the average number of packets for square lattices for constant service
times. Unfortunately, the separation of the upper and lower bound, in the general case, grows as the square
root of the total number of nodes in the network. For an overview of packet routing in lattice networks,
the reader is referred to [12].



SUBMITTED TO IEEE/ACM TRANSACTIONS ON NETWORKING 3

di

dj

di,d j) δ (x

di,dj) δ (y

SPR

N

N

(a)

di,dj) δ (y

di,d j) δ (x
N

di

dj

SPR

N

(b)

Fig. 1. Network model. (a) 5 × 5 square lattice and least displacement of {di, dj}. (b) 5 × 5 wrapped square or torus lattice and least
displacement of {di, dj}. The shortest path region SPR(di, dj) between nodes di and dj is delimited in both cases by the dashed square.

Leighton [19] analyzed the performance of several routing algorithms for torus and square lattices. Based
on probabilistic arguments, he provided bounds on the tail of the delay and queue size distributions.

Neely, Rohrs and Modiano’s [20], [21] presented equivalent models for multi-stage tree networks of
deterministic service time queues that reduces the analysis of tree network to the analysis of a much
simpler two-stage equivalent model.

II. MODEL AND DEFINITIONS

We consider graphs of size N × N nodes (or vertices) that are either a square or torus lattice. The
subscripts “s” and “t” denote the square and the torus lattices respectively. The square lattice (Fig. 1(a)) is
described by the graph Gs(V, Es) and the wrapped square or torus lattice (Fig. 1(b)) by the graph Gt(V, Et).
A torus lattice network is obtained from a square lattice network by adding some supplementary links
between opposite nodes located at the border of the lattice. Fig. 1 shows a N × N square and a torus
lattices for N = 5.

Given a set S, let |S| denote the cardinality of the set S. The N ×N square lattice Gs(V, Es) contains
|V | = N2 nodes (or vertices) and |Es| = 2N(N − 1) links (or arcs). The N × N torus lattice Gt(V, Et)
contains |V | = N 2 nodes and |Et| = 2N2 links.

Every node in the network can potentially be the source or the destination of a communication, as well
as a relay for communications between any other pair of nodes. We assume that nodes generate constant
size packets and equal for all nodes following a stationary Bernoulli distribution with a constant average
rate of R packets per time slot. We denote by T (di, dj) the probability of node di communicating to node
dj.

An arc or link l ∈ E{s,t} represents a communication channel between two nodes. In this work, we
consider two cases for these communication channels, namely, the half-duplex and the full-duplex case,
depending upon whether both nodes may simultaneously transmit, or whether one must wait for the other
to finish before starting transmission. In the case of half-duplex links, if two neighbor nodes want to use
the same link, we assume that both have the same probability of capturing the link for a transmission.

We denote the bandwidth of link l between di and dj by u(di, dj). We assume that time is slotted and
a one-hop transmission consumes one time slot1, that is, u(di, dj) = 1 for all l ∈ E{s,t}. Moreover, we
denote by ϕ(di) the set of links connected to the node di.

The length of a path is defined as the number of links in that path. Moreover, we denote by s(di, dj) the
length of the shortest path between nodes di and dj. We define the shortest path region SPR(di, dj) of a
pair of nodes {di, dj} as the set of nodes that belong to any shortest path between di and dj. For instance,
SPR(di, dj) in the square lattice is a rectangle with limiting corner vertices being di and dj (Fig. 1(a)).

1For the sake of clarity we keep the subscripts di, dj in our subsequent proofs.
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For any pair of nodes {di, dj}, we can view the lattice as an Euclidean plane map and consider dj

to be displaced from di along the X-Y Cartesian coordinates, where δx(di, dj) and δy(di, dj) are the
relative displacements (Fig. 1(a)). We define the least displacement for these two nodes as δ(di, dj) =
[δx(di, dj), δy(di, dj)]. Because of the particular existing symmetry in the torus lattice, given two nodes
{di, dj}, there are several possible values for δ(di, dj). We consider δ(di, dj) to be the one with the smallest
norm (Fig. 1(b)).

We assume that nodes are equipped with buffer capabilities for the temporary storage of Q packets.
When packets arrive at a particular node or are generated by the node itself, they are placed into a queue
until the node has the opportunity to transmit them through the required link. Therefore, equivalently, we
can consider that there are 4 queues per node, each one associated to one 4 output link.

Definition 1: The network capacity C{s,t}(N) is the maximum average number of information packets
that can be transmitted reliably per node and per time slot in a network of size N ×N with infinite buffer
nodes.

A routing algorithm Π defines how traffic flows between any source destination pair {di, dj}. Shortest
path routing algorithms are those where packets transmitted between any two nodes di, dj can only be
routed inside SPR(di, dj). We assume that routing algorithms are time invariant, that is, Π does not change
over time. We further assume that nodes are not aware of their absolute positions in the network.

Definition 2: We say that a routing algorithm Π is space invariant if routing between any pair of nodes
depend only on the relative position of the two corresponding nodes. That is, Π is space invariant if:

If δ(di, dj) = δ(dk, dl) then Π(di, dj) = Π(dk, dl).
We denote by RΠ

max(N, Q) the maximum average rate that can be transmitted reliably per node and
per time slot in a N × N lattice network with buffer size Q for a given routing algorithm Π. Obviously,
RΠ

max(N, Q) ≤ C(N).
In the next sections, we study network capacity and routing algorithms that achieve the maximum

RΠ
max(N, Q) for different communication models.

III. UNIFORM COMMUNICATION MODEL WITH INFINITE BUFFERS

In the uniform communication model, the probability of any node communicating to any other node in
the network is the same for all pairs of nodes, that is:

T (di, dj) =

{

1
N2−1

di 6= dj,

0 di = dj.
(1)

First, we study the network capacity and optimal routing with infinite buffers to obtain an absolute upper
bound. Then, we analyze the effect of finite buffers in the network by proposing approximation models
that allow us to simplify considerably the queueing network analysis.

A. Network Capacity
Under the infinite buffer hypothesis, the network capacity analysis is based only on stability issues.

When the arrival rate is higher than the departure rate, queues become unstable and the expected delay
is unbounded:

Lemma 1: The network capacity Cu
{s,t}(N) for the uniform communication model is upper bounded as

follows:

Cu
s (N) =

{

2β
N

(

1 − 1
N2

)

, if N is even,
2β
N

, if N is odd,
(2)

Cu
t (N) =

{

4β
N

(

1 − 1
N2

)

, if N is even,
4β
N

, if N is odd,
(3)
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Fig. 2. Bisections for a N × N square lattice network. (a) N even. (b) N odd.

where β is equal to 1 for half-duplex links and 2 for full-duplex links.
Proof: This result follows directly from [19], where Leighton derived an upper bound for the square

lattice based on bisection arguments. We can apply the same arguments to both torus and square lattices
with the bisections shown in Fig. 2. Note that the capacity of the torus lattice is increased by a factor of
2 with respect to the square lattice network. This stems clearly from the fact that the number of links is
increased while the traffic that flows across the bisection remains equal.

Note from (2) and (3) that, in both cases, the network capacity decreases with the square root of the
total number of nodes, that is, with N . This decreasing behavior is also present in other kind of networks
such as those presented in [14]. As we will see in next section, these upper bounds are actually tight and
can be achieved under the infinite buffer assumption by certain routing algorithms.

B. Optimal Routing Algorithms
Network capacity (2,3) can indeed be achieved in both torus and square lattices by using the appropriate

routing algorithms. In other words, max
Π

{

RΠ
max

(

N,∞)} = Cu
{s,t}(N).

Let FΠ(di, dj, dk) be the traffic generated at node di with destination node dj that flows through node
dk according to a particular routing algorithm Π. Similarly, we denote by λΠ

dk
the traffic arrival rate to

node dk according to a routing algorithm Π. Therefore:

λΠ
dk

=
∑

di∈V

N2
∑

dj∈V

T (di, dj)F
Π(di, dj, dk). (4)

The next proposition characterizes the class of shortest path routing algorithms that are optimal for
torus lattice networks.

Theorem 1: A shortest path routing algorithm Π achieves network capacity for the torus lattice network
if Π is space invariant. That is:

if Π ∈ {shortest path space invariant} then RΠ
max(N,∞) = Cu

t (N).

Proof: Given the structural periodicity of the torus, if Π is space invariant, for every source-destination
pair {di1, dj1} that generates traffic flowing across any particular node dk1, there always exists another
source-destination pair {di2, dj2} with the same least displacement as {di1, dj1} that generates exactly the
same traffic flowing across some other node dk2 in the network (Fig. 3). That is:

∀ dk2 ∈ V, ∃{di2, dj2} : {δ(di2, dj2) = δ(di1, dj1) and F Π(di2, dj2, dk2) = FΠ(di1, dj1, dk1)}.
Consequently, the arrival rate to any node in the network is constant. That is,

if Π ∈ { space invariant }, λΠ
dk

= λ for all dk ∈ V. (5)
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Fig. 3. The source-destination pair {di1 , dj1} generates traffic that flows across node dk1
according to Π. If Π is space invariant, for any

other node dk2
, we can find another source-destination pair {di2 , dj2} with the same least displacement as {di1 , dj1} that generates exactly

the same traffic across dk2
as {di1 , dj1} across dk1

.

Let L(N) be the average distance between a source and a destination for a given communication model
described by T (di, dj). Then,

L(N) =
1

N2

∑

di∈V

∑

dj∈V

T (di, dj)s(di, dj). (6)

Particularly, for the uniform communication model, the average distance is given by:

L(N) =
1

N2 − 1

∑

dj∈V

∑

dj∈V \di

s(di, dj). (7)

In the uniform communication model, all nodes generate packets at a constant rate R. These packets
take, on average, L(N) hops before reaching their destination. Therefore, the total traffic per unit of time
generated in the network is given by N 2RL(N). If Π is space invariant, according to (5), all nodes have
the same average rate and the total traffic is therefore uniformly distributed among all nodes. That is, the
arrival rate λ at any node is given by:

λ =
N2RL(N)

N2
= RL(N). (8)

The average distance between any source node and any destination node in a N ×N torus lattice under
uniform traffic distribution is given by [22]:

L(N) =

{

N3

2(N2−1)
if N is even

1
2
N if N is odd.

(9)

The stability condition in the nodes is given by:

ρ =
λ

µ
< 1, (10)

where µ is the average number of packets transmitted per unit of time. In the limit, as ρ → 1, µ = 4 for
full-duplex communication channels and µ = 2 for half-duplex.

Therefore, combining (8) and (10), the maximum rate per node RΠ
max(N) achieved under any space

invariant routing algorithm Π is given by:

RΠ
max(N) =

2β

L(N)
. (11)

Combining (9) and (11), RΠ
max(N) is equal to the upper bound given in (3).

As a consequence of Theorem 1, we have the following achievability result:
Corollary 1: The network capacity Cu

t (N) of a torus lattice network is equal to the upper bound given
by (3).
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Theorem 1 says that, given the structural periodicity of the torus, the use of space invariant routing
algorithms induces a uniform traffic distribution in the network that guarantees the maximum rate per
node.

This uniform traffic distribution is not possible in the case of a square lattice network. Given the topology
of a square lattice, as a node is located closer to the geographic center of the lattice, it belongs to the
SPR of an increasing number of source-destination pairs. In the case of shortest path routing algorithms,
this implies a higher traffic load. For the sake of simplicity, we restrict our analysis to the case of odd N .
The analysis for even N is similar but more cumbersome, while essentially the same results hold. Notice
also that since we are interested in large networks (large N ), this is not a limiting restriction.

Theorem 2: For the square lattice network and the uniform communication model, the total average
traffic λΠ

dc
that flows through the center node dc for any space invariant routing algorithm Π, is lower

bounded by:
λΠ

dc
≥ RN. (12)

Proof:
The prove is constructive: we show that this lower bound is actually tight and design a routing algorithm

Π that achieves this lower bound. In this proof we make use of the concept of least displacement and the
property of space invariant routing algorithms.

Let ΓΠ(δx, δy, dc) denote the traffic generated by all pair of nodes with a least displacement given by
[δx, δy] that flows through node dc, that is,

ΓΠ(δx, δy, dc) =
∑

di∈V

∑

dj∈V :

δ(di,dj)=[δx,δy ]

T (di, dj)F
Π(di, dj, dc).

Given the symmetry of dc, ΓΠ(δx, δy, dc) has the following properties:

ΓΠ(δx, δy, dc) = ΓΠ(δy, δx, dc). (13)

ΓΠ(δx, δy, dc) = ΓΠ(|δy|, |δx|, dc). (14)

The traffic arrival rate to dc can be obtained by summing over all possible least displacements in the
network:

λΠ
dc

=

N−1
∑

δx=−(N−1)

N−1
∑

δy=−(N−1)

ΓΠ(δx, δy, dc). (15)

Using properties (13) and (14), we reduce the analysis of ΓΠ(δx, δx, dc) in (15) to the case δx ≥ δy. That
is,

λΠ
dc

= 4

N−1
∑

δx=0

ΓΠ(δx, δx, dc) + 4

N−1
∑

δx=0

ΓΠ(δx, 0, dc) + 8

N−1
∑

δx=2

δx−1
∑

δy=1

ΓΠ(δx, δy, dc). (16)

To derive now an lower bound for λΠ
dc

, we can equivalently compute an lower bound for ΓΠ(δx, δy, dc)
and apply (16). To compute ΓΠ(δx, δy, dc) we add the traffic contribution F Π(di, dj, dc) of all source-
destination pairs {di, dj} such that δ(di, dj) = [δx, δy]. Instead of keeping dc fixed and compute the traffic
that goes through dc for all {di, dj} such that δ(di, dj) = [δx, δy], we can equivalently consider a fixed
rectangle Rc(δx, δy) of size [δx, δy] and locate dc in several positions. In other words, we determine the
set S of relative positions of dc in Rc(δx, δy) with respect to all source destination pairs {di, dj} such that
δ(di, dj) = (δx, δy). Then, the traffic that flows through dc for any shortest path routing algorithm Π can
be computed as the total traffic generated by Π in S. Fig. 4 shows an example for [δx, δy] = [3, 2].

Once we obtain S, we construct the routing policy Π that minimizes the total average traffic flowing
through the set S or, equivalently, that minimizes ΓΠ(δx, δx, dc).

First note that if δy ≥ N−1
2

, the set S has a vertical size smaller than δy and consequently, S does not
fill completely any column of Rc(δx, δy). We can therefore design a routing policy that uses only nodes in



SUBMITTED TO IEEE/ACM TRANSACTIONS ON NETWORKING 8

δx

δx

δy

δy
dc

Rc )yδ(  δx,  

S

destination

source

Fig. 4. For all source-destination pairs {di, dj} such that δ(di, dj) = [3, 2], we obtain the set S of relative positions of dc in Rc(δx, δy)

the set Rc(δx, δy) \S and that generates no traffic in S. The only routing policy that fulfills this condition
for all δy ≥ N−1

2
consists on using only the two most external paths of SPR(di, dj) (Fig. 5(a)). Fig. 5(a)

illustrates this case in a 5× 5 square lattice where δ(di, dj) = [4, 3]. Therefore, in general, for any routing
policy Π,

If δy >
N − 1

2
, ΓΠ(δx, δy, dc) ≥ 0, for all δx.

If δy > N−1
2

we distinguish between two cases. If δx > (N − 1)/2, S fills completely N − δx columns
of Rc(δx, δy). Therefore, all routes between the source and the destination go through at least one node
belonging to each of these N − δx columns. Given that T (di, dj) = 1/(N2−1) for all di, dj ∈ V, dj 6= di,
the total traffic that goes through S is lower bounded by:

If δx >
N − 1

2
, δy <

N − 1

2
, ΓΠ(δx, δy, dc) ≥

R
N2 − 1

(N − δx) .

Fig. 5(b) illustrates this case in a 5× 5 square lattice where δ(di, dj) = [3, 2]. In this case, there are many
routing policies that achieve this lower bound. For instance, a routing algorithm that uses only the two
most external paths achieves the lower bound.

If δy ≤ N−1
2

, S fills all the δx columns of Rc(δx, δy) and any route between the source and the destination
crosses at least δx + δy nodes belonging to S. Note that we only consider the locations of dc as a source
of a transmission and not as a destination. Obviously, the packets that reach dc and have dc as final
destination do not interfere with the traffic going through dc, while the traffic generated at dc itself does.
Fig. 5(c) illustrates this case in a 5 × 5 square lattice where δ(i, j) = (2, 2). Therefore:

If δx ≤ N − 1

2
, δy <

N − 1

2
, ΓΠ(δx, δy, dc) =

R
N2 − 1

(δx + δy)).

Putting all three cases together, we have that ΓΠ(δx, δy, dc) is lower bounded as follows:

ΓΠ(δx, δy, dc) ≥











R
N2−1

(δx + δy) δx ≤ N−1
2

, δy ≤ N−1
2

,
R

N2−1
(N − δx) δx > N−1

2
, δy ≤ N−1

2
,

0 otherwise,
(17)

and routing algorithm Π that achieves minimization in the three cases consists in flowing data only
through the most external paths.

Using (17) into (16), we bound the total traffic that flows through dc as:

λΠ
dc

≥
( R

N2 − 1

)







4

(N−1)/2
∑

δx=0

2δx + 4

(N−1)/2
∑

δx=0

δx + 4
N−1
∑

δx=(N+1)/2

(N − δx)

+8

(N−1)/2
∑

δx=2

δx−1
∑

δy=1

(δx + δy) + 8

N−1
∑

δx=(N+1)/2

(N−1)/2
∑

δy=1

(N − δx)







.
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Fig. 5. Rc(δx, δx) for three possible cases in a 5 × 5 lattice network: (a) δ(i, j) = (4, 3); since δy ≥ N−1
2

, the set of relative positions of
dc does not fill completely any column of SPR(di, dj). (b) δ(i, j) = (3, 2); since δy ≤ N−1

2
, the set of relative positions of dc fills N − δx

columns completely. (c) δ(i, j) = (2, 2); The set of relative positions fills all the δx columns and any route between the source and the
destination has to cross δx + δy relative positions. The arrows indicates two of the possible routing policies that generates the least possible
traffic in S .

and evaluating summations yields to:

λΠ
dc

≥ RN.

As a consequence of Theorem 2, we have the following corollaries:
Corollary 2: A shortest path space invariant routing algorithm achieves capacity in the uniform com-

munication model only if the total average traffic λΠ
dc

that flows through the center node dc is greater or
equal to the total average traffic flowing through any other node dx, that is:

λΠ
dc

≥ λΠ
dx

, for all dx ∈ V/dc.
Proof: The proof follows by contradiction. Suppose a network capacity achieving routing algorithm

Π that generates a traffic distribution where there exists a node dx such that λΠ
dx

> λΠ
dc

. By Theorem 2,

λΠ
dx

> RN.

Imposing stability conditions for dx, ρ =
λdx

µ
< 1, in both the full-duplex and the half-duplex case, we

obtain that the maximum rate RΠ
max(N,∞) achieved by Π is:

RΠ
max(N,∞) < Cu

s (N),

and therefore, Π does not reach capacity.
Corollary 2 says that the factor that really limits the maximum achievable rate in the network is the

amount of traffic routed through the center node dc. Intuitively, to maximize the maximum achievable
rate per node RΠ

max(N,∞), a routing algorithm has to avoid routing packets through the lattice center
and promote as much as possible the distribution of traffic towards the borders of the lattice. In this way,
we compensate the higher number of paths passing through the center of the lattice by enforcing a lower
average traffic for these paths.

In the proof of Theorem 2 we have already characterized the set of routing policies that generates the
minimum traffic in dc. One of these policies consists on flowing data only along the two most external
paths of the source and the destination SPR. In other words, nodes always route packets along the row (or
column) in which they are located towards the destination node until they reach the destination’s column
(or row). Then, packets are sent along the destination’s column (row) until they reach the destination node
(see Fig. 6). We denote this routing by row-first (column-first)[19]. Note that both algorithms (row-first
and column-first) are equivalent because of the lattice symmetry.
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Fig. 6. Row-first (solid lines) and column-first (dashed lines) routing algorithm. Nodes route packets using the most external paths.

Corollary 3: For the square lattice network and the uniform communication model, the maximum
average rate per node Rr-f

max(N,∞) achieved by the row-first routing algorithm is the maximum possible
rate, that is, Rr-f

max(N,∞) = Cu
s (N).

Proof: From Theorem 2, we know that:

λr-f
dc

= RN.

It is easy to verify that for the row-first routing, the network traffic distribution is such that:

λr-f
dc

> λr-f
dx

∀ dx ∈ V/dc.

Imposing stability conditions for dc, ρ =
λr-f

dc

µ
< 1, in both the full-duplex and the half-duplex case, we

obtain that the maximum rate Rr-f
max(N,∞) achieved by row-first routing is:

λr-f
max(N,∞) = Cu

s (N).

As a consequence, we have the following achievability result:
Corollary 4: The network capacity Cu

s (N) of a square lattice network is actually equal to the upper
bound given by (2).

IV. UNIFORM COMMUNICATION WITH FINITE BUFFERS

Notice that with finite buffers, the maximum rate per node is clearly reduced due to buffer overflow.
Overflow losses will first appear in the most loaded node or nodes, and consequently, these are the nodes
that determine the maximum achievable rate RΠ

max(N,∞).
In a square lattice, the node located in the center of the network is clearly the most loaded node

(Lemma 2). In a torus, if the routing algorithm is space invariant, all nodes support exactly the same
traffic on average (Theorem 1) and, furthermore, all nodes in the network are indistinguishable due to the
torus symmetry. Therefore, we can consider that the most loaded node is any node in the network. For
both torus and square lattices, we denote the most loaded node as dm.

We can restrict our analysis to the routing algorithm that achieves capacity with infinite buffers in both
torus and square lattices, namely, row-first routing. Moreover, we show latter in this section that row-first
routing is also optimal for finite queues.

Computing the network capacity for different buffer sizes Q requires analyzing a queueing network
and computing the distribution on the queue size at dm. However, the analysis of queueing networks is
complex and usually no analytical exact solutions are known [11]. In the following, we introduce some
approximations that simplify this analysis. First, we approximate the network by a tree of deterministic
service time queues that can be reduced to a simple two-stage network. The analysis of this approximated
two-stage network provides meaningful theoretical results that, as shown later, are close to the results
obtained by simulation

We can decompose dm into four identically distributed and independent FIFO queues associated to its
four output links. The input packets to dm whose final destination is not dm are sent through one of
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Fig. 8. The number of packets in the head node of the tree network (a) is the same as in the two-stage equivalent model (b).

the four output links depending on their destinations. In view of the symmetry of dm for both torus and
square lattices, the arrival distributions to these four links are equal. Moreover, due to the independence of
packet generation, we assume that these arrival distributions are also independent. Then, we approximate
the distribution on the queue size at dm as the addition of these four iid distributions and compute it as
the convolution of each individual queue. Therefore, we reduce the problem to computing the distribution
on the size of only one of these iid queues qm at dm associated to one of the output links lm.

Next, we propose different approximations for full-duplex and half-duplex links (whether lm is half-
duplex or full-duplex) and compare them with experimental results.

1) Full-Duplex communication channels: For full-duplex channels, qm has a dedicated link and, since
all packets have the same size, it can be modeled as a deterministic service time queue.

In the approximation model, we use some results by Neely, Rohrs and Modiano’s [20], [21] on equivalent
models for multi-stage tree networks of deterministic service time queues. We begin by reviewing the
main results in [20], [21], and then we show how these results can be applied to our problem.

Theorem 3: ([20]) The total number of packets in a two-queue system is the same as in a system where
the first stage queue has been replaced by a pure delay of T time slots.

Theorem 4: ([21]) The analysis of the queue distribution in the head node of a multi-stage tree system
can be reduced to the analysis of a much simpler two-stage equivalent model, which is formed by
considering only nodes located one stage away from the head node and preserving the exogenous inputs.

Fig. 7 shows the equivalence provided by Theorem 3. Fig. 8(a) shows a tree system and Fig. 8(b) its two-
stage equivalent model. Importantly, these equivalences do not require any assumption about the nature of
the input traffic. The only necessary condition is that all queues of the tree network have a deterministic
service time T , and the input traffic is stationary and independent among sources.

We use these results to obtain the distribution on the size of qm. First, we identify qm as the head node
of a tree network composed by all nodes sending traffic through lm (Fig. 9(a)). Applying Theorem 4, the
distribution on the size of qm can be approximated by the distribution at the head node of the two-stage
model (Fig. 9(b)), where we only consider the three neighbors located one hop away from dm and preserve
the traffic generated by the entire network that flows through lm.

Note that the tree network associated to qm (Fig. 9(a)) does not correspond exactly to the tree network
of Theorem 4 (Fig. 8(a)). The reason is that, in addition to the exogenous inputs generated at each node,
we also have some traffic leaving the network corresponding to the traffic that reached its destination.
Under the uniform communication model, the average traffic leaving the network at any node is equal
to R. However, as the network size increases, the departing traffic at each node decreases as O(1/N)
and consequently it is low compared to the traffic that flows through them. Hence, the two-stage model
provides an approximated network.
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Fig. 9. Tree network and equivalent two-stage model. (a) Tree network associated to one output link lm of dm. (b) Two-stage model of
the tree network.

The arrivals to the nodes of the first stage in the two-stage model correspond to the addition of
all exogenous inputs routed through lm. Since packets are generated in sources following independent
Bernoulli distributions, this arrival process converges, as the number of nodes increases, to a Poisson
distribution.

In the uniform communication model, packets travel O(N) hops on average before reaching their
destination. Using row-first routing, packets travel most of the time along the same row or column,
turning only once. Consequently, the traffic entering a node by a row or a column link continues with
high probability along the same row or column. Let pc denote the probability of a packet to continue
along the same row or column, and pt the probability of turning. These probabilities are easy to calculate
for dm:

pc =

{

N−1
N+1

, for the square lattice,
N/2−1
N/2+1

, for the torus.
(18)

pt =

{

N−1
2N(N+1)

, for the square lattice,
N/2−1

N(N/2+1)
, for the torus.

(19)

Note that pc goes asymptotically to one as the number of nodes increases while pt goes to zero. It
follows that qm receives most of the traffic from the node located in the same row or column.

Apart from the traffic that arrives from its neighbors, dm generates also new traffic that is injected to the
network at a rate R. Considering again the symmetry of dm, the fraction of this traffic that goes through
lm is R/4. The average arrival rate λqm

to qm can be computed as the addition of the traffic generated in
dm and the traffic arriving from its neighbors:

λqm
= R/4 + λ1 (pc + 2pt) , (20)

where λ1 is the total arrival rate to the neighbors of dm (Fig. 9(b)).
For row-first routing and the uniform communication model, λ1 is equal to:

λ1 =

{

RN
4

, for the square lattice,
RN
8

, for the torus.
(21)

We can express R as a fraction of the network capacity C(N), that is, R = αC(N), and denote α as
relative capacity. Then, λ1 = α for both torus and square lattices. Putting everything together, the resulting
approximation model is shown in Fig. 11(a).

Regardless of the number of nodes in the network, we reduce the analysis of the distribution on the
size of qm to a four queue network. This approximation holds for any input traffic distribution as long as
it is stationary and independent among the different sources.
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Fig. 10. Two-stage equivalent networks. (a) If we replace the queues of the first stage by pure delays of T time slots, the total number of
packets in the approximated model remains constant. (b) In terms of number of packets, this is equivalent to injecting all the arrivals to a
single pure delay.

Theorem 5: The buffer size required to achieve a certain relative capacity α decreases with the network
size N . Furthermore, the required buffer size goes asymptotically to zero.

Proof: By Theorem 3, the total number of packets in the approximated model (Fig. 11(a)) is the
same as a system where the queues of the first stage have been replaced by pure delays of T time slots
(Fig. 10(a)). We can decompose the total number of packets S(t) in the system as the number of packets
in the first stage S1(t) plus the number of packets in the head node Sh(t), that is, S(t) = S1(t) + Sh(t).

The total average arrival rate λS1 to the first stage is

λS1 = α(pc + 2pt) = α(N − 1)/(N + 1). (22)

In terms of number of packets this is equivalent to injecting all the arrivals to a single pure delay
(Fig. 10(b)). Consequently, for a fixed α, since λS1 is almost constant for large N , S(t) is also almost
constant.

Moreover, as N increases, pc goes asymptotically to one and most of the traffic is served by the same
first stage queue. Consequently, for a fixed α, S1(t) increases with N . Equivalently, Sh(t) decreases.

In the limit, we can approximate the model by just two constant service time queues as shown in
Fig. 11(b), where no buffer is needed in the head node.

Lemma 2: Row-first routing is also optimal among the shortest path space invariant routing algorithms
for finite buffer networks.

Proof: First, to minimize overflow losses, it is necessary to minimize λqm
. From Theorems 1 and 2,

row-first routing generates the minimum λqm
for both torus and square lattices. Moreover, we have seen

in Theorem 5 that packets are stored in the buffer mainly due to turning traffic (pt) and by reducing this
traffic, the number of packets in qm is also reduced. Note that for any source-destination pair, row-first
routes packets turning the minimum number of times. That is, among all the routing algorithms that
generates the minimum λqm

, row-first generates the minimum turning traffic (pt). Consequently, row-first
generates the minimum number of packets in qm.

We can simplify our model even further while still keeping the important properties that determine the
queue size distribution. Since pt is O(1/N), we can reduce the model for large networks by assuming
that the number of packets turning at dm is negligible. That is, the packets arrive at qm only from the
neighbor located in the same row or column as lm. Similarly, the exogenous input traffic generated at dm,
goes asymptotically to zero (O(1/N)) compared with the incoming traffic α and can also be neglected.

Consequently, we approximate the queue network by a two-queue model where qm is a deterministic
service time queue that receives traffic from another deterministic service time queue with the same service
time and average input traffic equal to α (Fig. 11(b)). It follows that the number of packets in qm is (at
most) one with probability α and zero with probability 1 − α.

Finally, the distribution Pm(k) on the total queue size k at dm, is given by the addition of four
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Fig. 12. Distribution on the queue size at dm for different values of α in a 121 × 121 square lattice network with full-duplex links.

independent and identically distributed queues associate to the four outgoing links from dm:

Pm(k) =

{

(

4
k

)

(1 − α)(4−k)αk, for 0 ≤ k ≤ 4,

0, otherwise.
(23)

Fig. 12 shows the distribution on the size of qm for different values of α in a 121× 121 square lattice
network. This figure compares the different distributions obtained by simulation, the two-stage model
(Fig. 11(a)), the two-queue model (Fig. 11(b)) and the usual M/D/1 approximation.

For the M/D/1 approximation, we simply apply Jackson’s Theorem and consider that each queue in
the network is M/D/1 and independent of other queues [18]. Therefore, we approximate qm by a M/D/1
queue with a Poisson arrival with rate α.

Both the two-stage model and two-queue model closely approximate the experimental distribution for
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Fig. 13. Half-duplex approximation model. (a) Network with half-duplex links. (b) Approximated model for the queue associated to lm.

low to moderate rates. Experimentally, we have found that a good approximation is obtained for α < 0.8.
Beyond this traffic intensity, some of the assumptions we make are not totally valid and the approximation
quality degrades. We neglected the traffic leaving the network at each node to apply Theorem 4. Since
the average leaving traffic per node is equal to R, this approximation is less accurate as we increase the
rate per node.

Furthermore, both models become closer to the experimental distribution as the size of the network N
increases. Note that our two approximation models become asymptotically exact.

Fig. 16(a) shows the distribution on the queue size at dm for a constant relative capacity α = 0.75 and
different network sizes N . This plot confirms that, as N increases, the packet distribution converges to the
two tandem queues model (Fig. 11(b)). Consequently, as stated in Theorem 5, the probability of having
more than four packets in dm (one for each output link lm) goes to zero as we increase the network size.

2) Half-Duplex communication channels: For half-duplex channels, we cannot apply the same tech-
niques as in the full-duplex case since the arrival and service times in dm are no longer independent. If
dm receives k packets from its neighbors, not only its queue is increased by k packets, but also it can
transmit, at most, 4 − k packets using the remaining links.

We assume as before that dm is composed of four independent and identically distributed queues
associated to the four output links and we analyze distribution on the size of one of these queues qm

associated to the output link lm.
To capture the dependence between arrivals and departures, we propose the following approximation

model. Every time dm wants to send a packet through lm, it has to compete for lm with one of its
neighbors, dn (Fig. 13(a)). If dm takes lm first, it can transmit a packet and the size of qm is reduced by
one. However, if dn takes the link first and sends a packet, not only dm is unable to transmit, but also
the size of qm is increased by one if the final destination of the packet is not dm.

Note that, in practice, packets sent by dn never go through lm (packets do not go backwards) although
they stay in dm. However, by putting these packets into lm we simulate packets arriving from the other
neighbors of dm and prevent packet transmissions. This approximation is represented in Fig. 13.

We denote by ρm the utilization factor of qm. That is,

ρm =
λqm

µqm

=
α

µqm

,

where λqm
is the arrival rate to qm, and µqm

is the service rate. Note that λqm
is identical in both half-duplex

and full-duplex models.
Similarly, we denote by ρn the utilization factor of the queue qn in dn associated to lm. We assume that

the probability that dm captures the link before dn is equal to 1/2. Therefore, if qm has a packet waiting
to be transmitted, the probability ps of sending it this time slot is simply equal to the probability of dm

being the first to capture the link plus the probability of dn having nothing to transmit through lm:

ps =
1

2
+

1

2
(1 − ρn) = 1 − ρn/2; (24)
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Fig. 15. Distribution on the queue size at dm for different values of α in a 121 × 121 square lattice network with half-duplex links.

We model qm service time as a geometric distribution with parameter ps. That is, if dm does not capture
lm in this time slot, we assume that it tries to capture it in the next time slot with the same probability.

As in the full-duplex case, we approximate arrivals to dn as a Poisson distribution with parameter α.
Accordingly, interarrival times are independent and exponentially distributed with the same parameter.

In addition to arrivals from dn, new packets are also produced at dm following a Bernoulli distribution
with rate R. Considering again the symmetry of dm, the fraction of this traffic that goes through lm is
R/4.

Note that both distributions, arrivals and service time, are memoryless. This memoryless condition
allows to use a Markov chain analysis, that is, if we denote by Xm(t) the number of packets in the queue
qm at time t, {Xm(t) | t > 0} can be approximated using a Markov chain.

As the network size increases, the difference between both utilization factors ρm and ρn becomes
negligible, and we can assume that ρm = ρn = ρ. Moreover, the new traffic generated at dm becomes
negligible (O(1/N)) compared to the traffic that arrives from dn.

Applying these simplifications, the transition probability matrix Pm(j, k) associated to {Xm(t) | t > 0}
can be approximated by:

Pm(0, k) =

{

1 − ρ, k = 0,

ρ, k = 1,
(25)

Pm(j, k) =

{

1 − ρ/2, k = j − 1,

ρ/2, k = j + 1,
(26)

whose transition graph is shown in Fig. 14.
Fig. 15 shows the distribution on the queue size at dm for different values of α in a 121× 121 square

lattice network with half-duplex links. This figure compares the packet distribution obtained by simulation
with the Markov chain approximation.

This model closely approximates the experimental distribution for low to moderate rate per node (α <
0.8). As in the case of full-duplex links, beyond this traffic intensity, some assumptions are no more valid
and the approximation quality degrades.
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Fig. 16. Distribution on the queue size at dm for a constant relative capacity α = 0.75 and different network sizes with (a) full-duplex
and (b) half-duplex links.

Fig. 16(b) shows the distribution on the queue size at dm for a constant relative capacity α = 0.75 and
different network sizes in the case of half-duplex links.

A key difference with the case of full-duplex links is that, as the network size increases, the buffer
requirements do not go asymptotically to zero. The intuitive reason is that, in the case of half-duplex
links, lm is shared between dm and dn and, even if the input rate λlm is less than the link capacity, there
is a non-zero probability that dm compete for the link with dn, in which case one of them has to store
the packet for a further transmission. In other words, the stationary probability distribution νm(k) of the
Markov chain that approximates the number of packets k in qm, has positive values for k > 1 for any
value of N .

V. DATA GATHERING MODEL

In this section, using a similar methodology as before, we analyze the data gathering model. In data
gathering, every node transmits information to a particular and previously designated node dBS denoted
base station that can be located anywhere in the network. The communication matrix T is given by:

T (dm, dj) =

{

1, if dj = dBS,

0, otherwise.

In data gathering, routing in a torus is a particular case of routing in a square lattice. The reason is that
for any base station location in a torus, the shortest path graph consists of a square lattice with the base
station located in the center node. Therefore, in this section we only consider the square lattice network.

We apply the same type of analysis as in the uniform communication model. First, we bound the
network capacity Cdg

s (N) and analyze optimal routing algorithms that achieve this capacity under the
infinite buffer assumption. Second, we analyze the effect of finite buffers.

A. Network Capacity
The following Lemma establishes an upper bound for the network capacity under the data gathering

model:
Lemma 3: The network capacity Cdg

s (N) for the data-gathering communication model in a square
lattice is upper bounded as follows:

Cdg
s (N) ≤ |ϕ(dBS)|

N2 − 1
. (27)
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Proof: Since all the traffic from the network must reach dBS using one of the links in the set ϕ(dBS),
the bottleneck of the network is clearly located in these links. Applying a bisection argument [19] to these
links yields the result.

Note that, in the links that limit the capacity, the information flows only in one direction: from the
inner nodes to dBS . Therefore, the network capacity is equivalent for half-duplex and full-duplex links.

B. Optimal Routing Algorithms for Infinite Buffers
We define λΠ

l as the average arrival rate to link l according to a routing algorithm Π. Capacity achieving
routing algorithms, under the infinite buffer hypothesis, are characterized by the following Lemma:

Lemma 4: A shortest path routing algorithm Π achieves capacity for a location of the base station dBS

if and only if the total arrival traffic to dBS is uniformly distributed among the links in ϕ(dBS). That is:

λΠ
l =

R(N2 − 1)

|ϕ(dBS)| , for all l ∈ ϕ(dBS). (28)

Proof: Since all the arriving traffic to dBS has to use one of the links in the set ϕ(dBS),
∑

l∈ϕ(dBS)

λΠ
l = R(N2 − 1). (29)

For data gathering model, the most loaded link in the network obviously belongs to ϕ(dBS). Therefore:

max
l∈ϕ(dBS)

λΠ
l > λΠ

lx for all lx ∈ Es \ ϕ(dBS).

The stability condition in the links is given by ρ = λl

µl
< 1. As we consider unitary capacity links,

max
l∈ϕ(dBS)

λΠ(l) < 1 for all l ∈ ϕ(dBS). (30)

Combining (29) and (30), the result follows.
As a consequence of Lemma 4, we have the following achievability result:
Corollary 5: The network capacity Cdg

s (N) of a square lattice network for data gathering model is
equal to the upper bound given by (27).

C. Routing with Finite Queues
Lemma 4 establishes that the only necessary and sufficient condition for a routing algorithm to achieve

capacity under the infinite buffer assumption is to uniformly distribute the traffic among the four links
of dBS . Although there is a wide class of routing algorithms that satisfy this condition, we show in this
section that their performance is quite different when the buffers are constrained to be finite.

For the sake of simplicity, we restrict our analysis to a particular location of dBS: the square lattice
center. Note that the analysis of this location is equivalent to solving the problem for any location in the
torus network. Nevertheless, a similar analysis can be carried out for any location.

Note that, for the central node, row-first routing does not satisfy the optimality condition: by always
forwarding packets along the same row until they reach the column of dBS , most of the traffic reach
dBS through the upper and lower links while the rest of the links are underused. However, there are
many routing algorithms that achieve capacity under the infinite buffer assumption. For instance, a simple
routing algorithm that satisfies the capacity condition is the random greedy algorithm [19]. In this case,
nodes use row-first or column-first as routing algorithm with equal probability.

To analyze the network capacity for a given routing algorithm under finite buffers, we proceed as in
the uniform communication model. First, we identify the most loaded node dm and associate the network
to a tree. Then, we reduce it to its two-stage model and obtain the packet distribution in dm by analyzing
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Fig. 17. Two-stage equivalent model. (a) Tree network where lm is the head node and (b) its two-stage model.

the packet distribution in the head node of the two-stage model. We perform this analysis for any shortest
path routing algorithm Π that achieves capacity under the infinite buffer assumption.

The bottleneck of the network is clearly located in the four neighbors of dBS . Moreover, according to
Lemma 4, the total arrival traffic to dBS is uniformly distributed among the links in ϕ(dBS). Due to the
independence of packet generation, the distributions on the queue size in these four nodes are independent
and identically distributed. Consequently, we reduce the problem to computing the queue distribution for
one of these neighbors dm. We denote by lm the link between dm and dBS and by qm the queue in dm

associated to lm (Fig. 17(a)).
We consider now only those nodes that generate traffic through lm. These nodes form a tree with qm as

head, with exogenous inputs at each node, and with no traffic leaving the network. Applying Theorem 4,
the packet distribution in qm is the same as in its two-stage model (Fig. 17(b)). Note that in this case the
two-stage model is not an approximation (as in the uniform communication model) but an exact model
for any rate.

The arrivals to the three nodes of the first stage are the sum of all the traffic generated by the network
that goes through lm. If Π achieves capacity for infinite buffers, by Lemma 4, the total average traffic that
flows through lm is equal to:

λlm =
R(N2 − 1)

4
. (31)

We denote by λ1, λ2 and λ3 the average arrival rates to the three first stage nodes of the two-stage model
(Fig. 17(b)). These three nodes have to route all the traffic that goes through lm except the traffic generated
by dm itself. That is,

λ1 + λ2 + λ3 =
R(N2 − 1)

4
−R. (32)

We obtain the distribution on the size of qm by analyzing the distribution at the head node of the two-stage
model. This distribution obviously depends on the values of λ1, λ2 and λ3.

We are interested in finding the routing algorithm Π that achieves the maximum rate per node RΠ
max(N, Q).

Maximizing RΠ
max(N, Q) is equivalent to minimizing the number of packets in dm, that is, in qm.

Different routing algorithms generate different values for λ1, λ2 and λ3, and consequently, different
distributions on the size of qm. First, we analyze the values of λ1, λ2, and λ3 that generate the minimum
number of packets in qm and then, we analyze the routing algorithm that induces such values.

Lemma 5: In a two-stage network where the total average arrival rate is fixed, i.e., λ1 + λ2 + λ3 = λt,
the values of λi that minimize the number of packets in the head node for any arrival distribution are
such that all traffic arrives only through one node of the first stage. That is:

λi =

{

λt, for i=1,2 or 3,

0, otherwise.
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Fig. 18. Two-stage equivalent model. (a) Two-stage model where the first stage queues has been replaced by pure delays of T time slots,
(b) equivalent to injecting all the arrivals to a single pure delay.

Proof: By Theorem 3, the total number of packets in the two-stage model (Fig. 17(b)) is the same
as a system where the first stage queues has been replaced by pure delays of T time slots (Fig. 18(a)).
In terms of number of packets in the system, this is equivalent to injecting all the arrivals to a single
pure delay (Fig. 18(b)). Consequently, the total number of packets in the system is equivalent for any
combination of λi values.

We can decompose the number of packets in the two-stage model as the packets in the first stage plus
packets in the head node. Minimizing the number of packets in the head node is therefore equivalent to
maximizing the packets in the first stage.

Since the first stage is composed of three G/D/1 queues with equal service time, the number of packets
in the first stage is maximized when all the traffic goes through only one queue. Equivalently, the number
of packets in the head node is minimized.

As a consequence of Lemma 5, the routing algorithm that achieves the maximum RΠ
max(N, Q) is such

that the input traffic to dm arrives only from one of its neighbors.
However, the congestion problem is now translated to this neighbor of dm. Furthermore, as the network

size increases, the difference between the traffic that flows through dm and its neighbor goes asymptotically
to zero. Therefore, we have to apply Lemma 5 recursively. That is, the optimal routing algorithm is such
that nodes receive most of their traffic from only one neighbor.

The shortest path routing algorithm that implements this principle is shown in Fig. 19(a) and it is as
follows. In the N ×N square lattice, there are 2(N − 1) nodes that only have one possible shortest path
toward dBS. We denote this set of nodes by SD(dBS). For any other node, the optimal routing algorithm
consists of forwarding packets to the closest node in SD(dBS). Note that there is only one closest node
in SD(dBS) for all the nodes except for those nodes located in the two diagonals of the square lattice.
Diagonal nodes forward packets only towards one of the two closest nodes in SD(dBS) in such a way
that each of the four diagonal nodes at the same distance from dBS chooses a different node. We denote
this routing algorithm as cross routing.

Among all shortest path routing algorithms, cross routing generates the optimal node arrival distribution
according to Lemma 5. Although the nodes that support more traffic receive packets from more than one
neighbor, most of the traffic arrives mainly from one. The average arrival rates generated by cross routing
in dm are λ1 = R(N2−9)/4, λ2 = R, and λ3 = 0. It follows that cross routing is asymptotically optimal.

According to Lemma 5, the optimal routing consists on making nodes receive all traffic exclusively
from one neighbor. This condition can only be fully satisfied by a non-shortest path routing. Applying
again this condition recursively, the optimal routing algorithm consists on making traffic flow toward dBS

following a spiral as shown in Fig. 19(b). We denote this routing algorithm as snail routing. Snail routing
generates the optimal arrival distribution in all nodes.

Although the snail routing achieves the maximum RΠ
max(N, Q), the delay incurred by the packets may

be unacceptable. Notice that a packet generated by the furthest node must travel across (N 2 − 1)/4 nodes
before reaching dBS , while for a shortest path routing, the furthest node is N − 1 hops away. Moreover,
the average path length Lsnail for snail routing is O(N 2) while for any shortest path routing, Ls−p is



SUBMITTED TO IEEE/ACM TRANSACTIONS ON NETWORKING 21

(a) Cross routing (b) Snail routing

Fig. 19. Routing algorithms for finite buffers. (a) Cross routing, the optimal shortest path routing and (b) Snail routing, the optimal
non-shortest path data gathering routing.
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Fig. 20. Routing for data gathering: maximum rate RΠ
max(N, Q) achieved by different routing algorithms in a 21 × 21 square lattice for

different buffer sizes Q with the 95% confidence intervals.

O(N). Snail routing represents an extreme case of the existing trade-off between RΠ
max(N, Q) and delay:

achieving the optimal rate per node drastically increases the delay.
Fig. 20 shows the RΠ

max(N, Q) achieved by different routing algorithms in a 21 × 21 square lattice
network as a function of the buffer size Q with the 95% confidence intervals. We compare experimentally
the performance of random greedy routing, cross routing and snail routing.

Notice that although all routing algorithms asymptotically achieve capacity as the buffer size increases,
the maximum achievable rate per node RΠ

max(N, Q) under small buffers differs strongly among different
routing algorithms. As expected, the maximum RΠ

max(N, Q) corresponds to snail routing, while cross
routing performs best among shortest path routing algorithms.

Fig. 21 shows the maximum rate achieved by different routing algorithms relative to the maximum rate
achieved by the snail routing for a fixed buffer size Q = 5 as a function of the network size N with
the 95% confidence intervals. Since all routing algorithms analyzed are asymptotically optimal with the
network size, the performance gap between snail routing and these algorithms decreases as the network
size increases for a fixed value of Q. The reason is that, as the network size increases, the most loaded
nodes receive most of the traffic mainly from only one neighbor.

D. The broadcast model
We can easily apply the analysis shown in this section to the analogous broadcast communication model.

Suppose now that the central node is the only source in the network and generates different information
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Fig. 22. Routing algorithm for broadcast communication model.

packets for each node of the network. Using the same reasoning as before, the optimal routing algorithm is
such that the output traffic from the central node is uniformly distributed among its four output links, and
all the nodes receive traffic from only one of its neighbors, which is optimal in the sense of finite queues.
It is important to note that in this case, since the most loaded nodes (nodes closer to the central node)
always receive traffic from only one of its neighbors (the central node), the differences in performance
between routing algorithms is not as significant as in the data gathering model. Many different routing
algorithms can be provided with similar performance, for instance, the routing algorithms illustrated in
Fig 22.

VI. BORDER DATA GATHERING MODEL

In this section we apply similar tools to analyze routing in a substantially different communication
model, namely, border data gathering. In border data gathering, all nodes located in the four edges of the
square lattice act as base stations and inner nodes act as sources generating information that needs to be
transmitted to any of these base stations without any specific mapping between source nodes and base
stations (Fig. 23(a)). Therefore, several communication matrices are allowed. Obviously, this model can
be considered only for the square lattice.

We proceed as in previous sections: first, we compute the network capacity with infinite buffer queues
based only on flow arguments. Then, we present the set of routing algorithms that achieve capacity under
the infinite buffer assumption. Finally, we consider finite buffers and analyze the routing policies that
maximize the achievable rate per node for a given buffer size Q.

A. Network Capacity
The following Lemma establishes an upper bound for the network capacity under the border data

gathering communication model:
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Fig. 23. Border data gathering model. (a) Inner nodes generate packets to be transmitted to any of the base stations located in the square
lattice edges. (b) Bisection that determines the network capacity.

Lemma 6: The network capacity Cbg
s (N) for the border data gathering communication model in a

square lattice is upper bounded as follows:

Cbg
s (N) ≤ 4

N − 2
. (33)

Proof: To determine the network capacity Cbg
s (N), we apply again the bisection argument. The

bottleneck of the network is clearly determined by the links connecting inner nodes to base stations.
Therefore, the bisection that determines the network capacity is the one that separates the edge nodes
from inner nodes (Figure 23(b)). Noticing that there are (N − 2)2 nodes and 4(N − 2) links through the
cut, the result follows.

Note also that, in the links that limit the capacity, the information flows only in one direction: from
the inner nodes to the edge nodes. Therefore, the network capacity is equivalent for half-duplex and
full-duplex links.

B. Optimal Routing Algorithms for Infinite Buffers
Let SBS denote the set of base stations in the network and ϕ(SBS) the set of links that connect any

base station with an inner node. Lemma 6 establishes that the maximum rate that nodes can transmit
to SBS is determined by the number of links in ϕ(SBS). As a consequence, capacity achieving routing
algorithms under the infinite buffer hypothesis, are characterized by the following Lemma:

Lemma 7: A routing algorithm Π achieves capacity only if the total arrival traffic to SBS is uniformly
distributed among the links in ϕ(SBS). That is:

λΠ
l =

R(N − 2)

4
, for all l ∈ ϕ(SBS). (34)

Since the proof of this lemma is similar to the proof of Lemma 4, we omit the proof here.
First of all, notice that no shortest path routing algorithms satisfies exactly this optimality condition.

The best shortest path routing algorithm consists on distributing the traffic as uniformly as possible among
the links in ϕ(SBS). Consequently, when a node has more than one possible shortest path toward a base
station, it distributes the load uniformly among these paths. This optimal shortest path routing is shown
in Fig. 24(a). The maximum rate Rs-p

max(N,∞) achieved by the optimal shortest path routing is limited by
the most loaded links, that is, the links located in the middle of the four edges (Fig. 24(a)):

Rs-p
max(N,∞) =

4

2N − 5
< Cbg

s (N),

which is roughly one half of the network capacity C bg
s (N).
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Fig. 24. Routing algorithms for border data gathering. (a) Optimal shortest path routing. (b) Uniform data gathering.

On the other hand, it can be shown that there exist multiple non-shortest path routing algorithms that
achieve capacity. For instance, a simple strategy that achieves capacity consists on the following: packets
are always routed along the same row or column until they reach a base station, that is, packets do not
turn. New packets generated in a node are routed with equal probability to the two closest base stations
located in the same row or column as the node. If there are more than one base stations at the same
distance, it chooses any of them with equal probability. We denote this routing algorithm as uniform data
gathering and it is depicted in Fig. 24(b). Uniform data gathering satisfies the capacity condition (34) and
therefore,

Runiform
max (N,∞) = Cbg

s (N).

Note that since in both routing algorithms, shortest path and uniform data gathering, packets flow only
in one direction, the routing algorithms are equivalent for half-duplex and full-duplex links.

C. Routing with Finite Buffers
To derive the routing algorithm that achieves the maximum RΠ

max(N, Q) for finite queues, we apply the
condition we derived in section V-B. That is, the optimal routing policy is such that nodes receive most
of their traffic from only one of its neighbors.

Note that the optimal shortest path routing algorithm for infinite buffers is also optimal for finite buffers
since all nodes receive traffic from only one neighbor. However, this routing policy does not achieve
capacity with infinite buffers. On the other hand, although uniform data gathering achieves capacity for
infinite buffers, most nodes receive traffic from many of its neighbors, and therefore, it does not satisfy
the optimality condition for finite buffers.

Actually, as we shown in the next Lemma, in border data gathering no routing algorithm reaches
capacity and behaves optimally under finite buffers.

Lemma 8: In border data gathering, the optimal queue condition for finite buffers that minimizes the
number of packets in the queues, and the capacity condition (34) cannot be both satisfied.

Proof: Let Π be a routing algorithm that achieves capacity under the infinite buffer assumption.
Consider a node da located in the diagonal close to the edges, as illustrated in Fig. 25(a). Notice that it is
enough to focus ourselves on the traffic that goes through a certain node. By Lemma 7, da has to carry
the traffic of at least two links in ϕ(SBS), that is, λda

≥ 2R(N−2)
4

. Consequently, da receives traffic from
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Fig. 25. Maximum rate trade-off in border data gathering: (a) the nodes located in the diagonal close to the edges carry the traffic of at
least two bottleneck links. (b) Adaptive routing.
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Fig. 26. Adaptive routing: maximum relative capacity achieved by adaptive routing with different shortest-path limit values as a function
of the buffer size in a 41 × 41 square lattice.

more than one neighbor. Otherwise, there would be a link l such that λl > R(N−2)
4

, and Π would not
achieve capacity. On the other hand, if da receives traffic from only one neighbor, λda

is upper bounded
as λda

≤ R(N−2)
4

, and (34) is not satisfied.
Lemma 8 implies that the design of the optimal routing algorithm for a given queue size Q, should

trade-off both the conditions related to approaching capacity and the conditions related to operate optimally
in the case of finite queues. Therefore, we propose an adaptive routing algorithm that depends on the
buffer size Q. As in previous sections, the most critical nodes are those located close to the base stations,
that is, the most loaded nodes. Therefore, it is in those nodes where it is more important to apply the
optimal queue condition.

Consequently, we define the following routing algorithm: nodes located at a distance less than a fixed
value spl (shortest path limit) from any base station, route packets according to shortest path routing.
Nodes further than spl route packets according to the uniform data gathering. We denote this routing
algorithms as adaptive routing and it is depicted in Figure 25(b). Note that when spl is equal to zero,
adaptive routing is equivalent to uniform data gathering, that is, the more loaded node (nodes close to the
border) receives traffic from more than one neighbor. As we increase the value of spl, these nodes start
receiving packets from only one neighbor (shortest path routing). Finally, when spl is equal to (N −1)/2,
all nodes receive packets from only one neighbor and adaptive routing is equivalent to shortest path
routing.

Fig. VI-C shows the values of RΠ
max(N, Q) achieved by adaptive routing algorithm with different values

of spl in a 41 × 41 square lattice network, as a function of the buffer size Q. First, note the trade-off
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between the rate RΠ
max(N, Q) achieved for big and small buffer sizes: no routing strategy can achieve high

rates for both extremes. For high buffer values, the optimal routing strategy consists on choosing spl=0,
which results in uniform routing. As the buffer size decreases, the optimal values for spl decrease and,
when the buffer goes to zero, the optimal value for spl is the maximum, which results in shortest path
routing.

VII. CONCLUSIONS

In this paper, we studied the problem of routing in lattice networks with infinite and finite buffers under
three different communication models, the uniform model, the data gathering model, and the border data
gathering model. We presented alternative approximation models to the usual Jackson’s Theorem that
allowed us to obtain a more accurate distribution on the queue size at the most loaded node, that is, the
rate-limiting node.

Using these approximation models, we have proposed a simple rule to design routing algorithms that
achieve the highest maximum rate per node in the case where nodes have a finite buffer. This rule consist
on making nodes receive most of their traffic from only one of its neighbors. We have applied this rule to
different communication models, namely data gathering and border data gathering, to design the optimal
shortest path and non-shortest path routing algorithms for nodes with a finite buffer.
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