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ABSTRACT
We consider the rate-distortion problem for sensing the con-
tinuous space-time physical temperature in a circular ring
on which a heat source is applied over space and time, and
which is also allowed to cool by radiation or convection to
its surrounding medium. The heat source is modelled as a
continuous space-time stochastic process which is bandlim-
ited over space and time. The temperature field is the result
of a circular convolution over space and a continuous-time
causal filtering over time of the heat source with the Green’s
function corresponding to the heat equation, which is space
and time invariant. The temperature field is sampled at
uniform spatial locations by a set of sensors and it has to
be reconstructed at a base station. The goal is to mini-
mize the mean-square-error per second, for a given number
of nats per second, assuming ideal communication channels
between sensors and base station. We find a) the centralized
Rc(D) function of the temperature field, where all the space-
time samples can be observed and encoded jointly. Then, we
obtain b) the Rs-i(D) function, where each sensor, indepen-
dently, encodes its samples optimally over time and c) the
Rst-i(D) function, where each sensor is constrained to encode
also independently over time. We also study two distributed
prediction-based approaches: a) with perfect feedback from
the base station, where temporal prediction is performed at
the base station and each sensor performs differential en-
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coding, and b) without feedback, where each sensor locally
performs temporal prediction.

Categories and Subject Descriptors
B.4.1 [Input/Output and Data Communications]: Data
Communication Devices—receivers,transmitters; C.2.4 [Com
puter-Communication Networks]: Distributed Systems;
E.4 [Coding and Information Theory]: Data compaction
and compression, Formal models of communication.

General Terms
Theory, Design, Performance.

Keywords
Sensor networks, distributed sampling, heat equation, tem-
perature field, Green’s function, spatio-temporal correlation,
rate-distortion, centralized coding, local coding, distributed
coding, prediction, feedback.

1. INTRODUCTION
In sensor networks, some continuous space-time physical

phenomenon is sampled by a set of remote sensors [1], which
are limited in power, and an estimate of this physical phe-
nomenon has to be obtained at a base station. Due to the
restricted processing and communication power in the sen-
sors, it is usually not allowed to have communication be-
tween sensors and at the same time, it is very important to
reduce as much as possible the rate at which the informa-
tion is encoded. There has been important recent research
work going in this direction [2, 5]. However, in all this pre-
vious work, the physics that describes the phenomenon, has
not been taken into account. As an example, it is usually
assumed in the literature that the process that is sampled
is i.i.d. over time, while for real physical processes, such as
the temperature field in a heat conducting medium, there
is a very particular structure over time which is described
completely by physical laws. In this paper, we incorporate
the physics into a sensor network rate-distortion problem.
There are two main reasons why this is important: first, in
practice, sensor networks sample actually in space and time
real physical phenomena (e.g. temperature), which have a



Base Station

Sensor

0

2L

x

δ
2L

2M+1

T (xn, tj)
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very particular spatio-temporal structure, and second, this
particular structure described by the physics, can be very
useful in terms of coding efficiency if it is exploited prop-
erly.

We consider the rate-distortion problem for sensing the
continuous space-time physical temperature on a closed cir-
cular ring on which a heat source (e.g. electric heating) is
applied over space and time, and which is also allowed to
cool by electromagnetic radiation or forced convection to
its surrounding medium (see Fig. 1). The heat source is al-
lowed to both produce (additive source) and withdraw (sink)
heat and is modelled by a continuous Gaussian space-time
stochastic process which is periodic and bandlimited over
space (finite set of harmonics), and bandlimited over time.
Using Green’s Theorem for the heat equation, the tempera-
ture field over the ring is the result of a certain continuous-
space circular convolution and a certain continuous-time
causal filtering of the heat source with the corresponding
Green’s function of the system, which turns out to be space
and time invariant. The temperature field is sampled at uni-
form spatial locations by a set of sensors and it has to be
reconstructed at a base station. The goal is to minimize the
distortion measured in mean-square-error per second, for a
given number of nats per second, assuming that there are
ideal communication channels between the sensors and the
base station.

We first obtain the exact closed-form expression for the
centralized Rc(D) function of the temperature field, which
corresponds to the idealized case where all the spatio-tempor
al (unquantized) samples together can be observed simulta-
neously and encoded jointly. Then, we obtain the Rs-i(D)
function, where each sensor, independently from the other
sensors, encodes optimally its samples over time, thus taking
full advantage of the correlation over time, and the Rst-i(D)
function, where each sensor individually encodes also inde-
pendently over time. We also study two distributed ap-
proaches: a) a prediction based system with a perfect feed-
back channel from the base station to the sensors, where
temporal prediction is performed at the base station and

each sensor performs differential encoding; thus, this scheme
is equivalent to a closed-loop DPCM system where the en-
coders are the sensors, the decoder is the base station and,
most importantly, the prediction operation at the base sta-
tion makes use of the heat equation and the heat conductiv-
ity properties of the heat conductor ring, and b) each sensor
independently performs temporal prediction without using
feedback information from the base station. We compare the
different approaches. Finally, we also explain briefly how to
use nested code based constructions [9] for our problem1.

This paper is structured as follows. In Section 2, we intro-
duce the heat problem by explaining the physics governing
the temperature field in a ring, and the fundamental con-
cept of the Green’s function of the system. In Section 3, we
explain the rate-distortion problem. In Section 4, we obtain
the centralized Rc(D) function, and in Section 5, we find
the Rs-i(D) and Rst-i(D) functions. Finally, in Section 6, we
study the two distributed prediction-based approaches and
compare the different approaches.

2. TEMPERATURE PROBLEM IN THE RING
The sensed physical field that we consider in this work

is the continuous space-time temperature field T (x, t) in a
closed circular (heat conductor) ring of length 2L, where
x ∈ [0, 2L[ indicates the spatial position in the ring (see
Fig. 1), and t ∈ R. It is assumed that the ring has a very
small cross-section, so that the temperature at all points of
the cross-section may be taken to be the same. A space-
time varying heat source (e.g. electric heating), which we
denote by g(x, t) and which is measured in (Watts/meter3),
is applied on the ring. Moreover, the ring is also allowed to
cool by electromagnetic radiation or forced convection to its
surrounding medium.

2.1 Heat Source and Thermal Properties
The heat source g(x, t) is allowed to both produce (addi-

tive source) and withdraw (sink) heat2, and we model it by
a continuous space-time Gaussian stochastic process, which
is periodic and bandlimited over space, and which is ban-
dlimited over time. That is, g(x, t) is given by:

g(x, t) =
g0(t)√

2
+

M∑

m=1

(gm(t) cos(λmx) + gm+M (t) sin(λmx))

(1)

where M +1 is the number of harmonics (spatial bandwidth
of 2M + 1), λm = mπ

L
, m ≥ 0 (thus the fundamental spatial

period is 2L, which is equal to the length of the ring), and
{gm(t)}2M

m=0 is a set of 2M + 1 continuous-time real wide-
sense stationary (WSS) Gaussian stochastic processes with
zero mean and which are assumed to be independent, that is,
the cross-correlation Rgm1

gm2
(γ) = E[gm1

(t+γ)gm2
(t)] = 0

for m1 6= m2, ∀γ ∈ R. Moreover, each continuous-time
process gm(t), m = 0, . . . , 2M , is assumed to be bandlimited
to [−π, π] and to have a constant gain Gm > 0, that is,
each process has a power spectral density (PSD) given by
Sgm (Ω) = Gm 1[−π,π](Ω), where Ω denotes the continuous-
time angular frequency. We also assume that Gm = Gm+M ,
for m = 1, · · · , M , that is, for a given harmonic m, the
even and odd terms have the same power. It can be easily

1This is part of our current research work.
2It can be shown that this is physically realizable [4].
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Figure 2: (a) Green’s function h(x − 0.15, t), which represents the temperature caused by a heat source
g(x, t) = δ(x− 0.15)δ(t). The material of the ring is Silver, with properties: α = 17.004 10−5, µ = 100 and L = 0.1.
Each curve corresponds to a different value of time t, more specifically, t1 = 2, t2 = 2.5, t3 = 3, t4 = 3.5 and
t5 = 4 sec., (b) same Green’s function in 3D.

shown that this condition is necessary to make the resulting
temperature process T (x, t) stationary over space.

The thermal properties of the ring play also an important
role in the rate-distortion properties that we analyze in Sec-
tions 4, 5 and 6. The thermal parameters of the ring are:
a) its thermal conductivity κ in (Watts/(meter Kelvin)), b)
its thermal diffusivity α = κ

ρCp
in (meter2/second), where ρ

is the density in (kg/meter3) and Cp is the specific heat
in (Joules/(kg Kelvin)), and c) its dissipation parameter
µ = 2h

κδ
in (meter−2), where h, given in (Watts/(meter2

Kelvin)), is the heat transfer coefficient, and δ is the thick-
ness of the ring, which is assumed to be very small. The
dissipation parameter µ is related to the loss of heat energy
from the ring to its surrounding medium either by electro-
magnetic radiation or by forced convection through contact
with a fluid flow [4].

2.2 Heat Differential Equation for the Ring
Given a source g(x, t) and the different thermal parame-

ters of the ring, the differential equation describing the re-
sulting temperature T (x, t) in the ring, is given by:

∂2T (x,t)

∂x2 + g(x,t)
κ

− µT (x, t) = 1
α

∂T (x,t)
∂t

T (0, t) = T (2L, t)

∂T (x,t)
∂x

∣∣∣
x=0

= ∂T (x,t)
∂x

∣∣∣
x=2L





(periodic boundary conditions)

T (x,−∞) = 0 (initial condition)

(2)

where it can be seen that the periodic boundary conditions
enforce continuity of both the temperature value and its

spatial derivative at the point3 0 (see Fig. 1).
Using Green’s Theorem [3], it can be shown that the so-

lution to this differential equation is given by:

T (x, t) =
α

κ

∫ τ=t

τ=−∞

∫ ξ=2L

ξ=0

g(ξ, τ )h(x− ξ, t− τ ) dξ dτ (3)

where h(x, t; ξ, τ ) = h(x − ξ, t − τ ) is the Green’s function
of the system described by (2), which turns out to be time-
invariant and space-invariant4. This means that the op-
erator corresponding to the differential equations in (2) is
equivalent to a linear time-invariant space-invariant system
described by an impulse response h(x, t). This impulse re-
sponse can be shown to be [3]:

h(x, t) = u(t)

(
1

2L
e−µαt +

1

L

∞∑

m=1

e−(λ2

m+µ)αt cos(λmx)

)

where u(t) is the step function, that is, u(t) = 1 for t ≥ 0
and u(t) = 0 for t < 0. Thus, the impulse response is causal
over time, which is intuitively expected because a physical
system cannot respond before an input has been applied to
it. Moreover, it is periodic over space with a period of 2L.
This implies that the filtering over space in (3) consists of a
continuous-space circular convolution, which in the Fourier
domain, corresponds to the product of the corresponding
Fourier coefficients. After performing the circular convolu-
tion over space, the final temperature process T (x, t) can be
3It can be shown that this condition actually implies also
continuity of the temperature and its spatial derivative at
any position x, 0 < x < 2L.
4In general, the Green’s function h(x, t; ξ, τ ) of a system is
not space-invariant [3] and represents the response of the
system to a Dirac δ(x− ξ)δ(t− τ ) applied at position ξ and
time τ that is observed at position x and time t.
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Figure 3: Space-time convolution in the frequency domain.

written as:

T (x, t) = β0(t)√
2

+
∑M

m=1 (βm(t) cos(λmx) + βm+M (t) sin(λmx))

βm(t) = gm(t) ∗ hm(t), hm(t) = u(t)
(

α
κ
e−(λ2

m+µ)αt
)

(4)

where λm = λm+M for m = 1, · · · , M , and the 2M + 1
independent Gaussian processes {βm(t)}2M

m=0 are still ban-
dlimited to [−π, π], but their spectral densities are given
by:

Sβm(Ω) = |F(hm(t))|2 Gm 1[−π,π](Ω) =
Amc2m
Ω2+c2m

, |Ω| ≤ π,

Am = Gm

κ2(λ2
m+µ)2

, cm = (λ2
m + µ)α

(5)

where F(·) denotes the continuous-time Fourier transform.
Fig. 3 illustrates, in the frequency domain, the space-time
convolution performed by Green’s Theorem. It is observed,
as expected, that the temperature process T (x, t) is periodic
(with period 2L) and bandlimited over space with a spatial
bandwidth of 2M + 1.

3. DISTRIBUTED SAMPLING AND RATE-
DISTORTION PROBLEM

The temperature process given in (4) is sampled uniformly
in space and time at the corresponding spatial and temporal
Nyquist sampling frequencies, respectively. This means that
the sampling period in space is Ts = 2L

2M+1
meters and the

sampling period in time is Tt = 1 seconds. The sensing task
is performed by 2M +1 sensors which are located uniformly
at xn = 2L

2M+1
n, n = 0, . . . , 2M . Thus, each sensor samples

the temperature process every second (temporal Nyquist
sampling rate), that is, the n-th sensor takes the samples
{T (xn,−∞), . . . , T (xn, tj), T (xn, tj+1), . . . , T (xn,∞)}, whe
re tj+1 − tj = 1.

The continuous space-time temperature process T (x, t)
has to be reconstructed at a base station (BS), as illus-
trated in Fig. 4. Given a reconstructed temperature process

T̂ (x, t), the distortion, which we denote by D, is measured

BS

0
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Figure 4: Rate-Distortion problem in the ring.

in mean-square-error (MSE) per second, and is defined by:

D =
1

2L

∫ 2L

0

lim
T→∞

1

2T

∫
T

−T
E[(T (x, t)− T̂ (x, t))2] dt dx

(6)

The goal is to minimize the distortion at the BS, for a given
number of nats per second, denoted by R. Regarding the
communication model, it is assumed throughout this work
that:

1. From the sensors to the BS, there are ideal channels,
that is, if the n-th sensor has to deliver Rn nats per
second to the BS, the sensor will spend the necessary
power to transmit them without error5.

2. Sensors communicate using some orthogonal commu-
nication method (e.g. TDMA, FDMA) so that there
is no interference.

5The consideration of the channel in the heat problem,
which involves analyzing the behavior of distortion as a func-
tion of the power is a subject of our current investigation.



3. From the BS to the sensors there is a perfect channel
where the BS can spend a large amount of power and
hence, it can be assumed that the BS can transmit at
an infinite rate to the sensors. Thus, we assume that
if feedback from the BS to the sensors is used, it is
perfect.

Our objective in this paper is to study the rate-distortion
problem under these communication channel idealizations.

As explained in the following sections, the number of nats
per second R required to achieve a given distortion D de-
pends on how the coding is performed.

4. RC(D) FOR CENTRALIZED CODING
In this section, we obtain the Rate-Distortion function for

the most idealized (genie-aided) case where the exact (un-
quantized) space-time temperature samples can be observed
simultaneously by the sensors, that is, all the space-time
samples {T (xn,−∞), . . . , T (xn, tj), T (xn, tj+1), . . . , T (xn,
∞)}2M

n=0 can be encoded jointly before being sent to the BS.
We denote this function by Rc(D).

In order to find the Rc(D) function for this idealized sce-
nario, we first express the distortion D, as defined in (6), as
a function of the distortions corresponding to the processes
{βm(t)}2M

m=0, which completely determine the temperature
process T (x, t). Let F be the (2M + 1) × (2M + 1) matrix
with m-th row (F )m = [ 1√

2
, cos( 2πm

2M+1
), · · · , cos( 2πmM

2M+1
),

sin( 2πm
2M+1

), · · · , sin( 2πmM
2M+1

)], β(t) = [β0(t), . . . , β2M (t)]T

and T (t) = [T (0, t), . . . , T (2M 2L
2M+1

, t)]T , which is the spa-

tial vector of temperature samples. Then, since F−1 =
2

2M+1
F T , the BS can find β(t) from T (t) and viceversa by:

T (t) = Fβ(t) ⇐⇒ β(t) =
2

2M + 1
F

T
T (t) (7)

Thus, to provide a set of reconstructed processes {β̂m(t)}2M
m=0

is equivalent to providing a reconstruction T̂ (x, t). Because
of the orthogonality property of the Fourier series over space,
and the fact that {βm(t)}2M

m=0 are independent random pro-
cesses, it can be easily shown that

D =
1

2

2M∑

m=0

Dm, R =
2M∑

m=0

Rm (8)

where Dm is the MSE per second associated to the temporal
process βm(t), which is given by:

Dm = lim
T→∞

1

2T

∫
T

−T
E[(βm(t)− β̂m(t))2] dt (9)

and Rm is the corresponding number of nats per second.
These additivity properties allow us to use the well-known
waterfilling (equal-slope) technique [8] over the set of pro-
cesses {βm(t)}2M

m=0, or equivalently, over the set of spatial
harmonics. In order to do this, we first need to calculate
the rate-distortion functions {Rm(Dm)}2M

m=0. Notice that
since each process βm(t) is bandlimited, each Rm(Dm) can
be calculated by considering the discrete-time sampled pro-
cess βm(tj) and performing waterfilling over time [8], that
is, Rm(Dm) is given in parametric form by [8]:

Dm(θm) = 1
2π

∫ π

−π
min[θm, Sβm(ω)] dω

Rm(θm) = 1
4π

∫ π

−π
max

[
0, log

(
Sβm

(ω)

θm

)]
dω

(10)
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where 0 ≤ θm ≤ Sβm(0) is the waterfilling parameter, and
ω denotes the discrete-time angular frequency. Performing
this calculation, we get the following parameterized expres-
sion for Rm(Dm):

Dm(φm) = Amcm

π

(
arctan

(
π

cm

)
+ φm

1+φ2
m
− arctan(φm)

)

Rm(φm) = cm

π
(φm − arctan(φm))

for 0 ≤ φm ≤ π
cm

Dm(φm) = Am

1+φ2
m

Rm(φm) = 1
2

log
(

(1+φ2

m)c2m
c2m+π2

)
+ 1− cm

π
arctan

(
π

cm

)

for φm ≥ π
cm

where φm =
√

Am−θm

θm
, and the parameters Am and cm are

as defined in (5).
Using these results, we can show the following Theorem:

Theorem 1. The Rc(D) function is given by the follow-
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ing parametric expression:

Dc(η) =
1

2

2M∑

m=0

Dm(fm(η)), Rc(η) =

2M∑

m=0

Rm(fm(η))

where fm(η) =
√

2Amη − 1 and η ≥ min{0≤m≤2M}
1

2Am
.

Proof: The proof follows easily by performing waterfill-
ing (see Fig. 5) over the set of Rate-Distortion functions
{Rm(Dm)}m=2M

m=0 . This is done by solving the Lagrangian
optimization problem with functional J = R + ηD =∑2M

m=0 Rm + η

2

∑2M

m=0 Dm, and finding for each value of η

the operating points in each of the curves {Rm(Dm)}m=2M
m=0

.
Notice that Rc(D) provides a lower bound for any poten-

tial distributed lossy coding6 approach for correlated data
[5]. This is because, as shown in Section 5, the vector T (t)
is spatially correlated, so clearly, any distributed coding ap-
proach, as considered in Section 6, can only be worse than
the centralized coding approach considered in this section.

Fig. 6 shows the Rc(D) functions corresponding to three
different heat conductor materials for the ring, namely, Sil-
ver, Aluminium and Iron. It can be seen that there is a
clearly different rate-distortion curve for each of the mate-
rials, which shows the fact that the conductivity properties
of the heat conductor have a very important impact on the
rate-distortion performance. Interestingly, the lowest dis-
tortion is achieved for the Silver material, which is a better
heat conductor than Aluminium and Iron.

5. RATE DISTORTION FOR LOCAL
CODING

In this section, we consider the scenario in which the
source coding is performed independently by each sensor.
We obtain the rate distortion function for the case where

6Notice that although there exist binning techniques [5] that
can be used, the solution to the general problem of dis-
tributed lossy coding for correlated data has not been solved
yet [6].

each sensor, independently, exploits optimally the data cor-
relation over time, as well as for the case where each sensor
is additionally constrained to encode each time sample sep-
arately, disregarding the correlation over time.

5.1 Rs-i(D) Function for Spatially Independent
Coding

First, we consider the case where each sensor at its po-
sition xn = 2nL/(2M + 1) observes the process T (xn, t),
encodes it independently from the other sensors, and trans-
mits the encoded process to the BS. The original tempera-
ture T (x, t) is completely determined by the spatial samples
according to :

T (x, t) =
2M∑

n=0

T (xn, t)fn(x) , (11)

where

fn(x) =
2

2M + 1

[
1

2
+

M∑

m=1

(
cos

(
mn

2π

2M + 1

)
cos(λmx)

+ sin

(
mn

2π

2M + 1

)
sin(λmx)

)]
. (12)

The interpolation function fn(x) is illustrated in Fig. 7. Re-
ceiving the quantized spatial samples of the temperature

process, the BS reconstructs an estimate T̂ (x, t) of the orig-
inal temperature process T (x, t). We call Rs-i(D) the rate
distortion function corresponding to this scenario. Because
of the orthogonality of the family {fn(x)}2M

n=0, and because
of the constraint of the source coding to be performed lo-
cally, it can be easily shown that:

Ds-i =
1

2M + 1

2M∑

n=0

Dn , Rs-i =

2M∑

n=0

Rn , (13)

where Dn is the MSE per second associated to the temporal
process T (xn, t) and Rn is the rate used by the encoder of
the sensor located at position xn. It is important to notice
that since Gm = Gm+M , the power spectral density of each
locally observed process T (xn, t) does not depend on the
location xn. Let S(ω) denote this power spectral density.
Because of the whole symmetry, it is clear that an equal
rate allocation among the sensors is optimal, assuming that
each sensor is coding independently. The rate distortion
function Rs-i(D) is then given by the following Theorem:

Theorem 2. The Rs-i(D) function for the scenario of
spatially independent coding is given in the following param-
eterized form:

Ds-i(θ) =
1

2π

∫ π

−π

min (θ, S(ω)) dω ,

Rs-i(θ) =
2M + 1

4π

∫ π

−π

max

(
0, log

(
S(ω)

θ

))
dω ,

where

S(ω) =
1

2

A0c
2
0

ω2 + c2
0

+

M∑

m=1

Amc2
m

ω2 + c2
m

, |ω| ≤ π (14)

and 0 ≤ θ ≤ S(0) is the waterfilling parameter [8].

Proof: The proof follows immediately by performing wa-
terfilling over time and from the optimality of the equal rate
allocation over space due to the circular symmetry.
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5.2 Rst-i(D) for Spatially and Temporally
Independent Coding

In addition to the constraint of local processing, we now
also require that each sensor encodes the observed time sam-
ples separately, disregarding the correlation over time. We
call Rst-i(D) the rate distortion function associated to this
scenario. Notice that in this case we are constrained to
perform quantization only on one temporal sample at a
time, and thus, for any optimal entropy-constrained one-
dimensional quantizer, there is a quantization shaping loss
[8]. The following Theorem directly follows:

Theorem 3. For the scenario of spatially and temporally
independent coding, the achievable Rst-i(D) function is char-
acterized by:

(2M+1)RG(D) ≤ Rst-i(D) ≤ (2M+1)

(
RG(D) +

1

2
log
(πe

6

))

where RG(D) = 1
2

max
[
0, log

(
σ2

D

)]
, σ2 = 1

π

∫ π

0
S(ω) dω is

the variance of each sample, and S(ω) is as given in Theo-
rem 2.

Fig. 8 shows the comparison between the centralized rate
distortion function and the rate distortion functions result-
ing from spatially independent as well as from spatially and
temporally independent coding. In addition to the obvi-
ous suboptimality of the latter strategy, it is important to
note that spatially independent coding is also suboptimal
because the spatial vector of temperature samples T (t) has
a nondiagonal correlation matrix. This can be easily seen
as follows. Since the vector T (t) is related to the vector
β(t) by the equation T (t) = Fβ(t), then, if ΣT denotes the
auto-correlation matrix of T (t) and Σβ denotes the auto-

correlation matrix of β(t), the following holds:

ΣT = FΣβF
T . (15)
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Figure 9: Spatial correlation.

Since the components of β(t), although mutually indepen-
dent, do not have the same variance, the matrix ΣT is not
diagonal and the entries of T (t) are correlated. This is il-
lustrated in Fig. 9. Therefore, Rs-i(D) > Rc(D).

6. DISTRIBUTED PREDICTION-BASED
CODING

In this section, we consider two prediction based systems.
In the first system, we assume that there is a perfect feed-
back channel from the BS to the sensors (see Fig. 12), that
is, the BS can transmit at an infinite rate, while in the sec-
ond system, no feedback is available.

6.1 Prediction with Feedback from Base
Station

In this case, the idea is to perform prediction over time at
the BS, and to send the prediction to the sensors, which then
perform differential coding, that is, the sensors encode the
prediction error. Over time, the system works by sampling
at the temporal Nyquist rate, which under our assumptions
is 1. The overall processing is illustrated in Fig. 10 and is
performed as follows. Given an estimate (reconstruction) of

the temperature vector T̂ (tj) = [T̂ (x0, tj), . . . , T̂ (x2M , tj)]
T

at time tj , the BS performs a temporal prediction for the
temperature field T (x, tj+1) at time tj+1. We call this pre-

diction T̃ (x, tj+1). Notice that since β̃(t) = 2
2M+1

F T T̃ (t),

we only really need to get the prediction β̃(tj+1), that is,

we just need to get independently each prediction β̃m(tj+1),
m = 0, . . . , 2M . In order to perform this prediction, we
make use of the Green’s Theorem for the heat equation

[3], which, applied to our system, establishes that if β̂(tj)
were the actual vector at time tj , then the temperature field

T (x, tj+1) for the next time slot tj+1 is given by T̃ (tj+1) =

F β̃(tj+1), where each component is given by:

β̃m(tj+1) = β̂m(tj)e
−cm +

α

κ
e−cm

∫ 1

0

gm(tj + τ )ecmτ dτ

(16)
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We observe that there are two terms in (16), the first one

consisting of a diffusion of the current state β̂m(tj) and the
other one corresponding to an innovation term, which in-
volves each source process gm(t) affecting the system during
the interval [tj , tj+1]. Our approach is to base our predic-

tion only on the first term, that is, our predicted β̃m(tj+1),
is given by:

β̃m(tj+1) = β̂m(tj)e
−cm , m = 0, . . . , 2M (17)

Once this prediction is performed, the BS obtains the pre-

diction for the temperature vector T̃ (tj+1) = F β̃(tj+1), and
sends to the n-th sensor the corresponding predicted value

T̃ (xn, tj+1). The prediction steps are illustrated in Fig. 11.
Then, at time tj+1, the n-th sensor reads the real temper-
ature value T (xn, tj+1) and quantizes the prediction error

E(xn, tj+1) = T (xn, tj+1) − T̃ (xn, tj+1), getting the quan-

tized output Ê(xn, tj+1), with an scalar quantizer Q. Next,
all the sensors send their quantized prediction errors to the
BS, which obtains a reconstruction for each temperature

value T̂ (tj+1) by adding these quantized prediction errors
to the previously predicted values, that is,

T̂ (xn, tj+1) = T̃ (xn, tj+1) + Ê(xn, tj+1), n = 0, . . . , 2M
(18)

Then, the BS starts performing the prediction operation
again and the whole process is repeated. Therefore, the sys-
tem is very similar to that of a closed-loop DPCM where
the encoders are the sensors and the decoder is the BS, and
importantly, the prediction operation makes use of the heat
equation and the conductivity properties of the heat con-
ductor ring.

The following remarks are in order:

1. Notice that although the sensors and the BS are phys-
ically separated, we have a closed-loop DPCM system
because of the existence of a perfect feedback channel
from the BS to the sensors.
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2. It can be shown that, if instead of using the predic-
tion equation (17) inspired from Green’s Theorem, one
tries to obtain the optimal (infinite-length) discrete-
time causal LMMSE predictor filter for the discrete-
time sampled m-th process βm(tj), which theoretically
exists because the PSD Sβm(ω) satisfies the Paley-
Wiener criterion [12] (regular discrete-time process),
the problem is that, in z-tranform domain, Sβm(z) is
a non-rational function in z, which results ultimately
in a very complicated discrete-time filter to be built in
terms of adders and delays [10].

3. The prediction given by (17) is actually the optimal
continuous-time causal LMMSE predictor for a conti
nuous-time (non-bandlimited) Gauss-Markov source hav-
ing a PSD with the same shape as the PSD of βm(t),
but without the bandlimitedness. Thus, the predic-
tion given by the Green’s Theorem makes use only of
the immediate previous sample as in a Gauss-Markov
process. Numerical results show that the performance
obtained with the one-tap predictors is actually very
close to the performance of the optimal predictors.
This is because each PSD Sβm(ω) is actually very close
to the PSD of a first-order discrete-time autoregressive
source.

4. As it happens in classical DPCM [10], at high rates,
the closed-loop system becomes basically equivalent
to the open-loop system, where the prediction is per-
formed from the true past samples. In this case, the
distortion only comes from the quantization of the in-
novation process given in (17) and it is possible to
calculate exactly its PSD and the associated theoreti-
cal Rate-Distortion curve for the temperature process
when encoding is performed with DPCM, using similar
methods to the ones used in Section 5.

6.2 Local Prediction at the Sensors
In the second system, feedback from BS is not allowed

and the n-th sensor, independently, performs a closed-loop
DPCM system by predicting over time and where the cor-
responding observed sampled process T (xn, tj) has a PSD
S(ω) which is given as in Theorem 2, ∀ n = 0, . . . , 2M .
Again, it can also be shown [9] that the optimal one-tap
prediction filter provides a prediction gain very close to that
of the (infinite-length) optimal prediction filter. Once again,
the reason stems from the fact that the PSD S(ω) is very
similar to the PSD of a a first-order discrete-time autore-
gressive source.

Fig. 13 shows the different analytical rate-distortion curves
at high rates (see [9] for details), and Fig. 14 shows the per-
formance obtained by simulation for both prediction-based
systems and where the quantization has been performed
with a simple uniform quantizer. For comparison, we also
show Rc(D), Rs-i(D) and Rst-i(D) in Fig. 13-14, where in
Fig. 14, the curve corresponding to Rst-i(D) has been also
obtained by simulation with the same uniform scalar quan-
tizer used for the DPCM systems. As expected, the local
DPCM system provides better performance than Rst-i(D).
On the other hand, the DPCM system with centralized pre-
diction, since it makes use of temporal information from all
the sensors, or equivalently, it makes use of the spatial corre-
lation among sensors, is superior to the local DPCM system.
However, the DPCM system with centralized prediction is

still inferior to Rs-i(D) which involves infinite complexity
(although the difference is less than the quantization sphere
shaping gain). Obviously, as expected, the best performance
is given by Rc(D).

6.3 Remark: Nested codes with Side Informa-
tion based on Prediction

In [9], it is shown that it is possible to design an appro-
priate (Wyner-Ziv) nested code by using as side informa-
tion the (spatial-temporal) physics-based predictions made
at the BS, so that each sensor only needs to transmit coset
(binning) indices. Notice that each T (xn, tj) is correlated

with the predicted vector T̃ (tj). Thus, this is a Wyner-
Ziv problem with multiple side-information (2M +1 predic-
tions). This scheme avoids the need of feedback from BS.
For details, see [9]. Part of our future work includes also
computing (inner and outer) bounds on the performance of
distributed source coding for the heat problem, without the
use of feedback.
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