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Abstract

In this paper we study signal representation using over-
sampled steerable transforms.While in general it may not
be efficient to use an oversampled representation for ap-
plications like compression, our work investigates efficient
techniques for representing the oversampled data, given
that after oversampling there exists substantial redundancy.
We discuss different strategies which take advantage of this
oversampling by establishing some consistency constraints
on the representation that reduce uncertainty in the quan-
tization. This results in a coding gain as we increase the
oversampling in the steerable transform (number of orien-
tations). Thus, while in general it will not be possible to
achieve as good compression performance as with a crit-
ically sampled transform, having a compressed steerable
representation will be useful for applications where feature
is needed (many significant image features can be extracted
from an orientation analysis), and where for performance
reasons it is preferable not to have to decompress and an-
alyze each image (as may be necessary if standard non-
steerable transforms are used for compression.)

1. Introduction and Motivation

There are many different features that can be extracted
from an orientation analysis in an image. This has been
proved to be very useful in many different vision and im-
age processing tasks, such as segmentation or texture anal-
ysis [3, 6]. The steerable transform allows us to analyze
an image in any arbitrary orientation with a certain angu-
lar bandwidth resolution, but its main drawback is that its
powerful multipurpose representation comes together with
a high redundancy, which makes steerable transforms infe-
rior to regular wavelets in terms of compression efficiency.
The images in a data base are normally compressed using

either a DCT or wavelet based algorithm, because of their
critical sampling as opposed to overcomplete decomposi-
tions. However, orthogonal and biorthogonal wavelet trans-
forms, like all of the linear transforms commonly used in
image compression, have significant drawbacks in the rep-
resentations they produce, such as lack of shift and rotation
invariance and no selectivity of orientation. This lack of
selectivity in orientation in these critically sampled trans-
forms, limits the characterizations of an image that can be
obtained from their coefficients. Steerable transforms over-
come all these disadvantages while keeping all the proper-
ties of traditional subband transforms, except critical sam-
pling. Therefore, in the context of feature extraction over
many different compressed images, we would have to first
decompress each image and then apply a steerable trans-
form to the decompressed image. Using directly a steerable
transform to code the images, we can extract all these many
different features directly in the transformed domain.

In this paper, we study angular oversampling in the con-
text of steerable transforms (which were not considered by
prior research in this area) and explore techniques to rep-
resent efficiently this oversampled data.The angular over-
sampling or oversteering is also motivated because it al-
lows us to establish some “consistency” constraints [1, 4, 5]
on the coefficients of a steerable representation with many
orientations (oversteered representation), which reduces the
amount of information lost in the quantization process and
thus increases the accuracy and resolution of the corre-
sponding coefficients.

We first give a brief overview of multiscale steerable
transforms and then we analyze the relevant properties of
steerable transforms that will be used to define formally the
consistency constraints. Next, we explain different ways to
represent the oversampled data placing an emphasis on the
advantages of coding when we increase the number of ori-
entations in the steerable transform (oversteering). We also
explain how to represent efficiently the oversampled data



when we have oversteering and how the consistency con-
straints can be used to reduce uncertainty in the quantization
process. Finally, we provide some preliminary experimen-
tal results that support our approach.

2. Overview of Steerable Transforms

A filter (or function)
���������
	

is called steerable if trans-
formed versions of this filter can be expressed using linear
combinations of a fixed set of basis filters. If the transforma-
tion is a translation, then the filter is said to be shiftable or
steerable in position; if the transformation is a rotation, then
the filter is said to be steerable in orientation or commonly
steerable and the basis filters are normally called steerable
basis filters. Given a set of steerable basis filters, we can ap-
ply them to an image and since convolution is linear, we can
interpolate exactly, from the basic responses of the basis fil-
ters, the output of a filter tuned to any orientation we desire,
without explicitly designing and applying explicitly differ-
ent filters for each one of the desired orientations. Follow-
ing the analytical approach to steerability developed mainly
by Freeman and Adelson [3] and later extended by Sim-
moncelli [2], one can design filters, with certain restricted
analytical forms, which are polar separable in the Fourier
domain and where the steerable basis filters are steered ver-
sions of the steerable filter itself. Thus, if a filter � ����
������	
is polar separable in the Fourier domain, then � ���  ��� � 	��
� ����	�������	

, and then steerability of � ���  ��� � 	
is equivalent

to shiftability of
����� 	

. Given
������	

, one can find a set of !
angles

�#"$�%�'&(�*)+)+)*�%� ,.-'&
and a set of ! interpolation func-

tions /(0 "1����	2� 0 &1����	3�*)+)*)+� 0 ,4-5&���� 	36 such that the following
is satisfied:
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Also, we can impose a recursive pyramidal structure on
the radial part,

� ����	
, so that we can construct a multi-

scale, self-inverting and overcomplete pyramid decompo-
sition (tight frame), where we have the possibility to inter-
polate exactly, at every scale independently, any subband
steered to any desired orientation. The resulting transform
is overcomplete by a factor of approximately B

,C , where !
is the number of basis steerable filters.

3. Relevant Properties of Oversampled Steer-
able Transforms

In a steerable transform with ! basic orienta-
tions, we have potentially an infinite dictionary at ev-
ery scale or level, since given the ! coefficients/ED ���F"(	3� D ���'&*	3�+)*)+)*� D ���#,.-5&+	36 , any coefficient (orientation)

(for the same spatial location) will be given as in (1), that
is:

D ��� 	G�
,.-'&<
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����	 D ��� = 	A@5�
(2)

and we can determine the curve of the values of all the co-
efficients for the interval of angles H IKJ�L . This implies that
if we are given 4 quantization intervals at the 4 basic ori-
entations (angles), there is a certain deterministic region of
uncertainty at any other angle. We will discuss later how to
calculate it. Since only ! basic orientations are enough to
interpolate exactly any other orientation, if we have MONP!
quantization intervals, the steerability constraint induces a
“consistency” constraint on these intervals which will help
to reduce uncertainty in some of the quantization intervals.
In this paper, we use a steerable transform with ! �RQ
basic orientations, which corresponds to an angular Fourier
response

������	�� D2S�T C ����	 [2]. Given a chosen number ! of
basic orientations, depending on the basic orientations that
are used, the interpolations functions are obtained to satisfy
the steerability property [2]. As we will see later this has
implications in the quantization process. Since we are in-
terested in the oversteering case (i.e., having many orienta-
tions), we will generate, from the ! �UQ

basic orientations,
a certain number MVN Q

of subbands corresponding to M
orientations.

4. Techniques to represent efficiently the over-
sampled data

All the discussion that follows concentrates on the prob-
lem of coding all the subbands (orientations) in only one
level. This is the key problem in these types of oversampled
data due to the large number of orientations that are present,
and more specifically it focuses only on the problem of re-
moving redundancies between different subbands. This par-
ticular coding problem can be solved efficiently by using
consistency constraints and it makes a difference between
a steerable transform and any other regular wavelet trans-
form. On top of this, we could use any zero-tree based algo-
rithm, to remove statistical dependencies across the scales,
and also any context-based coding algorithm to remove re-
dundancy inside each individual subband, all of them al-
ready developed in the context of wavelet transforms. It is
clear that it is not useful at all to code each subband inde-
pendently because of the large correlation among different
subbands. There are basically two different ways to repre-
sent the oversampled data making explicit use of the cor-
relation among different subbands. We explain these two
approaches in the following subsections.



4.1. Selection of maximums

An important fact we have observed which is related
to the steerable representation is that angular oversampling
permits to localize most of the image energy in a few coef-
ficients (energy compaction in angle). We have generated,
in a 1 level pyramid, from the

Q
basic orientations,

� I and� I1I equally spaced (in angle) different orientations from 0
to J . Then, for each number of orientations, we have se-
lected at every spatial location, the maximum coefficient in
magnitude out of all the orientations and set to 0 the rest of
coefficients (corresponding to the other orientations), and
then, we have performed a simple thresholding in magni-
tude over the previously selected maximums. Finally, we
reconstruct the original image (“Lena”) from the resulting
coefficients. In the figure 1 , we see that we localize energy
more efficiently when we increase the number of orienta-
tions, so there is a substantial gain in energy compaction.
This energy compaction in angle motivates the following
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Figure 1. Energy compaction in angle

method to represent the data:

1. For every spatial location, depending on the coding ac-
curacy we want to achieve, we select the � (

��� � �Q
) coefficients (angles) with maximum magnitude and

quantize their value according to some scalar quantizer
whose stepsize will depend also on the coding resolu-
tion we want to have.

2. For every spatial location, using these � quantized
maximums and other

Q.7 � angles which are assumed
to have value 0, we can estimate the steerable curve
and therefore we can predict the values of the coeffi-
cients that correspond to the other M 7 Q

angles or
orientations.

3. Using the predicted values, we quantize the prediction
error of the other M 7 Q

coefficients.

This method, however, has the disadvantage that the coding
resolution is only based on the increase in the energy local-
ization as we increase the number of orientations, but it is
not taking full advantage of the properties of smoothness of
the steerable curve.

4.2. Use of Consistency Constraints

In this case, we establish two constraints, one due to the
smoothness (steerability) constraints on the steerable curve
linking all the angular coefficients of all the subbands (for
every spatial location) and another one due to the quantiza-
tion itself. As we increase the oversampling, we will have a
reduction in the reconstruction errors (improving coding ac-
curacy) which will try to compensate the increase in the bit
rate. We explain this technique, which is our fundamental
approach, in the following section.

5. Consistency and Quantization

There are two ways to take advantage of the consistency
constraints originated from the steerability property.

The first strategy is supported by POCS theory [7]. Since
the steerable curve belongs to the space spanned by the in-
terpolation functions /�0 "1��� 	2� 0 &1����	2� 0�� ����	3� 0 C ����	 6 , and we
also know the quantization interval each coefficient belongs
to, we can iterate projections on the following 2 sets: the set
of all functions spanned by the interpolation functions, and
the hypercube defined by the M quantization intervals. It is
straightforward to see that both sets are convex and POCS
theory tells us that each time we iterate we get a reconstruc-
tion value for each coeficient which is closer to the intersec-
tion of both sets (which will correspond to the original non
quantized coefficient). After a sufficient number of itera-
tions, we then perform differential entropy coding, that is,
we do entropy coding on the quantized differences (indexes)
between coefficients of adjoining angles. The total number
of bits can be estimated by multiplying these entropies by
the corresponding number of coefficients. This differential
entropy coding is motivated from the fact that the steerable
curve is always a smooth curve because of the smoothness
of the interpolation functions. This approach, however, may
not be practical because of its very high computational com-
plexity, since the projection on the set of interpolation func-
tions is carried out through a least squares fitting which is
prohibitive in any coding algorithm.

In the second strategy, using
Q

quantization intervals atQ
basic angles, we make use of steerability to constrain the

region where all the M 7 Q
coefficients should fall in (region

of uncertainty). We can use any
Q

angles, and each group ofQ
angles will give rise to a different region of uncertainty.

The intersection of all these regions of uncertainty will de-
termine another region of uncertainty that will tend to be



smaller due to the correlation among the different orienta-
tion subbands. We begin first quantizing the first

Q
basic

coefficients and then we can repeat this process each time
we add a new orientation, by considering new different sets
of
Q

angles. Actually, this can be seen as being equivalent
conceptually to the least squares fitting. The fitting with
the interpolation functions tells us approximately where the
original non quantized coefficients of the different angles
should be. This same information can be obtained by per-
forming the intersections of all the different regions of un-
certainty that come from the different groups of

Q
angles

that we have as we keep adding more quantization intervals
at more angles, up until we have M quantization intervals
and we have performed all the possible intersections, which
means that we cannot reduce more the uncertainty of the
quantization intervals. Then, the reconstruction values will
be taken as the middle points of the final quantization inter-
vals. Notice that given a chosen number M of total orien-
tations, we can precalculate easily the values of all the M
sampled values of each of the interpolation functions that
we need by using the linear equations described in [2] for
general groups of

Q
angles. Once we have these interpola-

tion values, the complexity of calculating the intersections
is very small as compared to a least squares fitting, because
it only requires a few comparisons. In the following section,
we solve the key problem of finding regions of uncertainty.

5.1. Calculating Regions of Uncertainty

We will call
��� ����	

and
��� ����	

the upper and lower lim-
its of the region of uncertainty. These upper and lower lim-
its are defined for every angle

�
, so they will be curves

themselves, which will bound a certain region of uncer-
tainty that we will call

� ����	
.This problem can be stated

as a linear programming problem for every angle
�

, in
the following way: given any

Q
quantization intervals/�� ���#"E	2� � ���'&+	2� � ��� � 	3� � ��� C 	 6 we have to find the values/ED ���F"(	3� D ���'&*	3� D ��� � 	2� D ��� C 	36 which are the solution of the

following two following linear programming problems:

��� ����	 � �	��
 =�> C<
=�> " D

��� = 	 0 = ����	

� �;����	 � ���� =1> C<
=1> " D

��� = 	 0 = ����	

such that for � � � ���
���F��Q
we have that � = � D ��� = 	 �� = and � = � � = 7 � = are the stepsizes; the width

of the region of uncertainty � ����	
is just � ����	O���� ��� 	 7 ��� ����	

. We notice that these linear program-
ming problems have bounded solutions (constrained set
is bounded) and that the solutions will be given for val-
ues of /ED ���#"E	2� D ���'&+	2� D ��� � 	3� D ��� C 	 6 which will correspond

to borders (upper or lower) of the quantization intervals/�� ���#"E	2� � ���'&E	3� � ��� � 	3� � ��� C 	36 . The solution of this problem
is easily found to be the following:

��� ����	 � =1> C<
=1> "

� ��� = 	 0 = ����	 � ��� = 	 ��� � = if 0 = ��� 	 N I� = if 0 = ��� 	�� I
� ������	 � =1> C<

=1> " � ��� = 	 0 = ����	 � ��� = 	�� � � = if 0 = ����	 NPI� = if 0 = ����	!� I

The figures 2 and 3 show the region of uncertainty and the
width of this region for a particular case where the basic
quantization intervals have an stepsize of " and the basic
angles are I , # B , # � and

C #B . It can be seen in these figures that
the width of uncertainty increases as we move away from
the basic angles which is completely logical.
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The solutions of these linear programming problems
have the following interesting properties:

1. The width of the uncertainty region does not depend on
the relative position of the quantization interval centers
but it only depends on the

Q
basic angles that are used

and the widths of the quantization intervals.

2. The central curve of the resulting region of uncertainty
satisfies steerability, that is,

�D ����	���� C=�> " �D ��� = 	 0 = ����	
where

�D ��� = 	 is the middle point of the quantization
interval � ��� = 	 .

3. These 2 properties imply immediately that the linear
programming problem can be normalized to the one
with all the intervals centered at 0, where the upper
and lower bounds are symmetric.

This allows us to precompute, for different groups of
Q

an-
gles, the widths of the uncertainty regions as functions that
depend only on the stepsizes and these functions will be
valid independently of the quantization values.

5.2. Experimental Results

We have performed some experimental results with the
“Lena” image and in particular we have studied the cod-
ing performance of our algorithms on the 3rd level of the
steerable pyramid which is supposed to have important in-
formation because of its low frequency contents. As we
mentioned before we have used a steerable transform withQ

basic orientations and we have oversteered the represen-
tation to � , ��� and

� �
orientations. We have compared the

coding performance between the non oversteered case, that
is, only

Q
basic orientations (with direct quantization) cho-

sen equally spaced as I , # B , # � and
C #B , and the

�
other cases

with oversteering. The comparison has been made in terms
of the total number of bits which is measured as explained
in section 5 and the MSE is averaged over all the orienta-
tions that we have in each case and thus, it is measured on
the transformed domain. In order to get a range of values
for the MSE, we have changed the value of the stepsize for
the scalar quantizer which is applied initially at every angle.
Figure 4 shows how the MSE is reduced as we increase the
oversampling. From

Q
orientations to � and

���
orientations,

the improvements are
� ) " dB and

�
dB approximately, re-

spectively. We also notice that for
� �

orientations, the MSE
is almost not reduced with respect to

���
orientations. The

interpretation of this is that the smoothness of the steerable
curve makes useless to use more constraints. In figure 5,
we can see that there is a gain for low rates in the case of
using

���
and

� �
orientations with respect to using only theQ

basic orientations.This is because for these low rates, the
reduction in MSE as we increase the number of orientations
is faster than the corresponding increase in the number of
bits, which results in a coding gain.
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