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Abstract

In this paper, we study the construction of structured regular quantizers for
overcomplete expansions in RY. Our goal is to design structured quantizers al-
lowing simple reconstruction algorithms with low (memory and computational)
complexity and having good performance in terms of accuracy. Most related
work to date in quantized redundant expansions has assumed that uniform
scalar quantization with the same stepsize was used on the redundant expansion
and then has dealt with more complex methods to improve the reconstruction.
Instead, we consider the design of scalar quantizers with different stepsizes for
each coefficient of an overcomplete expansion in such a way as to produce an
equivalent vector quantizer with periodic structure. The periodicity makes it
possible to achieve good accuracy using simple reconstruction algorithms from
the quantized coefficients of the overcomplete expansion.

1 Introduction and Motivation

Quantized redundant expansions are useful in different applications such as over-
sampled A/D conversion of band-limited signals [1, 2, 7, 4] and multiple description
quantization [9]. An equivalent vector quantizer can be defined given a quantized
redundant expansion, where the quantized vector is given by the reconstruction ob-
tained from the quantized coefficients of the redundant expansion.

The accuracy that can be attained with quantized overcomplete expansions de-
pends on two things: the reconstruction algorithm and the quantization scheme.
Simple reconstructions (e.g. linear) are normally prefered for practical reasons. Alter-
native reconstruction algorithms have been proposed that improve the accuracy over
linear reconstruction [7, 4, 2]. Although these reconstruction algorithms can achieve
very good accuracy for high enough redundancies r, their computational complexity
is too high for some practical applications. One of the reasons that improvements can
be obtained is that linear reconstruction may not be optimal in some cases because
a coded signal may not be reproduced by the nearest among all the possible output
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signals. In quantization terms this means that the equivalent vector quantizer that
has been designed is not regular. In the quantization of overcomplete representations
literature this is described as inconsistency.

Unlike previous work, which assumes a known quantization of the expansion co-
efficients and focuses on improving the reconstruction, in our work we assume that
a simple reconstruction will be used (e.g. linear or look-up table). Our approach
has focused on providing the tools to design the overcomplete expansions and the
corresponding quantization system so that the equivalent vector quantizer is regular
under simple reconstruction algorithms. We restrict ourselves to using scalar quan-
tizers for each of the components of the expansion, but allow the stepsizes to be
different in each component. Thus, the complexity of our encoder is similar to that
of standard systems, while simple reconstruction algorithms can be used without a
loss in accuracy with respect to more sophisticated reconstruction techniques.

This paper is organized as follows. First in section 2 we describe the equivalence
between a quantized overcomplete expansion and a VQ system. Then, based on this
equivalence, in section 3, we introduce the concept of periodic quantizer, show how to
construct periodic quantizers, and in section 3.2 we explain the advantages that are
provided by this periodic structure. Finally, several examples of periodic quantizer
designs and some numerical results are shown in section 4.

2 Linear Reconstruction, Consistency and Equiv-
alent VQ

Let £ € RY and let ® = {p;}X, be a tight frame in RY with ||p,]| = 1V i =
1,---, M. Then, for all z, the expansion with respect to the frame ® = {¢p,},
whose coefficients have the minimum possible norm is given by the minimal dual

frame ® = {@i},, where @; = 2, i=1,--- , M [8]:

M M

T = Z(wa Pi)p; = %Z(w, Pi)Pi (1)
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where y; = (x, ;) is the i-th coefficient of the expansion. Although there is an infinite
number of possible dual frames, when discussing linear reconstruction in this paper,
we assume that the minimal dual frame is always used. We provide in section 3.2 a
necessary condition to achieve consistency using linear reconstruction in tight frames
in RY with integer redundancy r and which are composed by a set of orthogonal bases.
We restrict most of our attention in this paper to tight frames that are composed by
a set of orthogonal bases because the geometric analysis is much simpler. With
this restriction, we can group the vectors {¢,;}}, that compose the tight frame as
{H{@l} =1, where {¢]}}Y, is the j-th basis. For the sake of simplicity, we restrict
most of the equations, without any loss of generality, to R? and explain later the
extension to R". For N = 2, we define each orthogonal matrix F? as F? = [¢]p3]"
and we call y/ = [y],93]" the 2-dimensional vector of coefficients associated with the
j-th basis, which is given by y’ = F'x. '

Let SQ] be a uniform scalar quantizer with stepsize A} and decision points
{mA!}ez. Let SQ1 x SQ3 x -+ x SQF x SQY be an M-dimensional product scalar
quantizer (PSQ) applied to the M-dimensional vector of coefficients y. Given a frame
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Figure 1: a) Definition of a quantizer @ in R? based on the linear reconstruction
of a tight frame, b) Reconstructions for the quantizers @', Q% and @ when linear
reconstruction is used. The partial reconstructions &’, 7 = 1,2 are represented by
's" and the final reconstruction & is represented by ‘o’. The final reconstructions are
obtained by taking the halfway point between &' and &2, that is, & = %(aﬁl + &%).

® and a PSQ, an equivalent vector quantizer @ : R? — R? can be defined such
that Q(z) = & = %Z;Zl &’ (see Fig. 1(a)) is the average taken over the r partial
reconstructions Q7 (x) = @’ j = 1,---,r, where @ is a quantizer with rectangular
Voronoi cells and associated with the j-th orthogonal basis, as illustrated in Fig. 1(b).

The scalar uniform quantizers {SQ?, SQ}} induce rectangular Voronoi cells {V;%’}
for each quantizer ()7, whose sides are parallel to the axes of a rotated coordinate
system and the vertices of these cells are the points defined by a real lattice A
with generator matrix M ,; = (AJ]|Asp3)T. The final partition defined by Q is
induced by the application of the PSQ on the coefficients and the Voronoi cells {VZQ}
are determined by the intersection of the rectangular Voronoi cells of the quantizers
{Q 7—1- Thus, the form of these intersections depend totally on the lattices A
j=1,---,r, which depend on the stepsizes and vectors of the frame that are chosen.
Notice that the same happens for any dimension V.

Given a generic (not necessarily linear) reconstruction algorithm, a Voronoi cell ViQ
is said to be consistent iff V& € V;% the reconstructed vector & is consistent, i.e. & €

V;Q. For the particular case of linear reconstruction, we say that the cell V;-Q is linearly
consistent. This property is desirable because a consistent reconstruction gives a lower
MSFE than an inconsistent reconstruction, for the same Voronoi cells. A quantizer @)
is a consistent quantizer iff all its cells {V;Q} are consistent. The consistency property
in a quantizer () is actually equivalent to the property of regularity in a general
vector quantizer. Fig. 2 shows an example of a quantizer () for r = 2 that is linearly
consistent. On the contrary, Fig. 1(b) shows an example of a cell (lower cell) that is
not consistent linearly.

A consistent reconstruction could in principle be implemented using a look-up
table, but in practice this is not feasible for moderate to high rates, as the table
would be prohibitively large. As explained in the next section, by choosing lattices
AN j = 1,--- r with certain properties it is possible a) to reconstruct consistently
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Figure 2: a)Example of a linearly consistent quantizer (). The reconstructions &,
j = 1,2 are represented by '+’ and the final reconstruction & is represented by ’o’.

Parameters: A} = Al, A2 = A? = ?A%, tan(f) = %, b) Zoom.
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under linear reconstruction and b) to reconstruct consistently using a small look-up
table.

3 Quantizers with Periodic Structure

A periodic structure in the partition of the quantizer () can be induced by choosing
certain lattices, and this property of periodicity is necessary to solve efficiently the
problem of reconstructing consistently.

3.1 Definition and Construction

A “periodic quantizer” () is a quantizer where there is only a finite number of distinct
Voronoi cells {V,?} that are repeated periodically (see how the pattern in Fig. 2(a) is
periodic). Let us first assume to facilitate the understanding that () is a quantizer in
R2. In order to impose a periodic structure in @, it is necessary to have a sublattice
structure [6]. A sublattice SA C A of a given lattice A is a subset of the elements of A
that is itself a lattice. Given a real lattice A with generator matrix M ,, a sublattice’
SA is completely specified by an integer matrix Bg, that maps a basis of A into a
basis of SA, that is, Mgy = BgaM 4.

Definition 1 Given a real lattice A in R? with generator matriz M », a lattice A’ is
geometrically scaled-similar to A iff:

cg O
My = ( 00 )UMAR @)

where R is a 2 x 2 orthogonal matriz, that is, a rotation and/or a reflection in R?,
U is a 2 X 2 unimodular matriz, that is, a matriz with integer components satisfying

'We assume that both A and SA are full rank lattices, that is, the matrices My and Mg are
full rank



that |det(U)| = 1, and ¢1,c0 € Ry. If N = SA C A, then SA is a geometrically
scaled-similar sublattice of A and c1, co and R are constrained.

It can be seen in (2) that a scaled-similar sublattice SA is obtained by simply rotating
and/or reflecting the lattice A and then scaling each of the new rotated axes by a
certain factor, which is allowed to be different in each of the axes. Notice that in
the particular case of having ¢; = ¢y, SA is a geometrically similar (or equivalent)
sublattice of A, as defined by Conway et al. [5][6]. Fig. 3(a) shows an example

(a) (b)
Figure 3: Example 1: a) Sublattice structure b) Voronoi cells {VZQ} Parameters:
B=1/3, Ab=pALL A7 = Lo AL A2 = Lo BAL tan(0) = V.

ZCos 3cos
of sublattice for r = 2, where the cell indicated with bold line is the fundamental
polytope of SA, which we denote by V5.

Let Al bea rectangular lattice with MAI = diag[Al, A}], which defines a quantizer
Q. If there are r sublattices of A!, we will denote them by SA', SA2, ..., SA", and for
notational convenience, we take SA! = AL, We will always take U = I in (2) so that
the basis vectors of the j-th geometrically scaled-similar sublattice are orthogonal and
can be associated with the j-th orthogonal basis of a tight frame.

In R? it is easy to parameterize all the geometrically scaled-similar sublattices of
the rectangular lattices A' where M 1 = diag[A], Al], but in general in RY, it is
much simpler to restrict ourselves to finding geometrically scaled-similar sublattices
of the hypercubic lattice A' where M1 = I'Al] that is, if the dimension is N, then
Al = Al = ... = A} In this case, we can construct matrices Bgy;, which give rise

to scaled-similar sublattices of A* in RY, in the following way:

ap 0 0

0 d 0 i . .
BSAj: . : HSAja Ay, CLNGZ HSA]HSAJ_k]Iﬂ kJGZ—F

0 0 al

where Hgy; has integer entries. The problem of finding matrices H gy satisfying
the above property has been studied extensively [10]. In order to design periodic
quantizers @ in RY with good properties it is however necessary to search for good
solutions.



Periodicity Property: Since SA is a sublattice of A!, SA is a subgroup of the
additive group A!, and it follows by group theory that the partition defined by {V;-A1 N
{V:5A} has a periodic structure (tesselation) with the basic unit cell being {VA' }nVSA
(see Fig. 3(a)). Since the subgroup structure is the same for any dimension N, the
periodicity property is true for any dimension N.

In order to construct a general periodic quantizer @) for a redundancy r, we have
to construct r — 1 quantizers {Q’}" ’—9, which will be defined by lattices A > SA?
(SAJ being a geometrically scaled-similar sublattice of A') with generator matrices of
the form My, = diag[1/d},1/d}]M s,;, where d?, d} € Z,. The important property
is that when all the lattices {SA}7_, are sublattlces of Al, the intersection of all the
lattices A7, j = 1,---,r is not empty, and therefore, by group theory, is a lattice.

The division by the integers {d?, d}} ensures that the Voronoi cells {V;*} will keep
a periodic structure, which is still determined by V5% (see Fig. 3(b)).

Definition 2 Given a set of lattices A7 j = 1,--- v (as defined in (4)), we define
the coincidence site lattice (CSL) A“ST as

AP = AN AN ---N AT (3)
and thus, it is the finest common sublattice of all the lattices NV, j=1,--- 7.

The generator matrix M yosr can be calculated making use of the concept of dual
lattices [3].
The importance of calculating the coincidence site lattice A“*L comes from the

fact that its fundamental polytope VOACSL is the smallest unit cell that is repeated in
the periodic structure of the resulting quantizer (), as stated in the following Lemma.
The Lemma follows directly from group theory because A®*’ is the finest common
sublattice (subgroup) of all the lattices AJ, j =1,--- ,r

Lemma 1 Givenr quantizers Q’, j = 1,--- ,r, defined by the lattices NV j =1,-+- |7
(as given in (4)), the partition of Voronoi cells {VQ} of the final quantizer Q has a

periodic structure, with the unit cell that is repeated periodically being VA , the
fundamental polytope of the coincidence site lattice A©ST.

3.2 Consistent Reconstruction in Periodic Quantizers

Let ® = {{¢!}¥ L1}j=1 be a tight frame of redundancy r which is composed of r
orthogonal bases. It turns out that a necessary condition to have consistency under
linear reconstruction for this tight frame is that the quantizer ) has to be periodic.
This result follows from the fact that when there is no periodicity in the partition
defined by a quantizer @, the vertices of any two lattices A’ and A% (j; # jp) can
have arbitrary relative positions, at least in one of the components, which makes
always possible to find linearly inconsistent cells. On the contrary, when there is
periodicity, there is only a finite number of relative positions (see Fig. 4(a)) and
linearly consistency may be held. A formal proof is not given here for reasons of
space, but can be found in [3].

Theorem 1 If Q is a non-periodic quantizer in RY, then it is always possible to
find a linearly inconsistent cell, and hence, Q) is a quantizer which is not consistent
linearly. Therefore, periodicity in a quantizer ) is a necessary condition to achieve
consistency under linear reconstruction.
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Figure 4: a) Example of linear consistency for r = 3; b) Efficient reconstruction based
on look-up table: o’ represents reconstruction vectors, '+’ represents the values of the
quantized coefficients which define the equivalent cell in the unit cell P,, 'x’ represents
the input vector. All the information is first translated to the unit cell P,, then the
reconstruction vector of the equivalent cell is read, and finally it is translated back to
the proper cell.

Notice that since in a quantizer ) which is periodic there are only a finite number
of distinct Voronoi cells {ViQ}, to check if consistency is satisfied linearly, we only
need to check on the Voronoi cells contained inside the fundamental polytope of the
coincidence site lattice A“SF. An example of linear consistency for 7 = 2 has been
already shown in Fig. 2. An example for » = 3 is given in Fig. 4(a).

Given a periodic quantizer (), it is also possible to reconstruct efficiently and ac-
curately by using a look-up table scheme of small size, which also ensures consistency.
Assume, for simplicity in the discussion, that N = 2 and let P, be the smallest rect-
angular polytope, which is a basic unit cell for the partition defined by (). There are
several choices for P, (Fig. 4(b) indicates a possible P, with bold lines). The basic

idea is that given any Voronoi cell VZ-Q it is possible to find very fast (floor operation)
the equivalent cell VZOQ which is inside P,. Given an input signal &, a reconstruction
vector &, € VZOQ is read from a look-up table and finally this reconstruction vector is

translated back into the proper cell V;Q. The fundamental advantage provided by the
periodicity is that if the periodic quantizer () is well designed, the size of the look-up
table can be made small, and does not increase with the rate of the quantizer Q).

4 Design examples and numerical results in R?

Let A! be a rectangular lattice in R? whose generator matrix is diagonal, all the geo-
metrically scaled-similar sublattices SA C A’ (with the matrix R in (2) constrained



to be a rotation), have generator matrices of the form:
- ClA% 0 COS(O) SZTZ(Q) o kll klg 1 0 1
MSA - ( 0 CQﬂA% ) < —szn(ﬁ) 008(0) B —ko1 koo 0 ﬂ AI

_ Al k11k21 — kiska1 _ kio _ _kn koo
where 5= Al TV kazkae? tan(f) = kitkos k_nﬂ’ 1= Cos(0)> @27 cos(6)
ki1, k12, ko1, kop € Z,,, 0<0 <3

where the integer matrix with entries {k;,} is denoted by Bgs. Notice that only
those angles 0, whose tangent is the square root of two integers lead to a geometrically
scaled-similar sublattice. The lattice A7 and corresponding stepsizes are given by:

Ky i AL My gy I
-+ =2 A = PR YA (k1 k3o + Kisks)
M _ djl d‘?l AI 1 22 4
N —k3, Kby 1 j Al ki 'Y J 1 ( )
7 7 — 1 21
dy  dj Ay = ERVR (Ki1k2s + Kioks)

In practice, the integers d{ and d% are constrained to some intervals in order to get

a final quantizer ) with Voronoi cells {V;Q} having similar sizes, which obviously is
useful in achieving good coding performance.
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Figure 5: a) Example for 7 = 3: Structure of the quantizer () and unit cell of the
structure; b) Example for r = 4: Structure of the quantizer ) and unit cell.
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Example 1 An example for r = 3 is shown in Fig. 5(a), which is composed by:

1 0
0 1 B= T, Ay = BAI = A
Pl Sl wy | A=i(mt) b si=i (et () o
x s 3_1(_1 1 A3 _1(_1 1 1
cos(—% sin(%) A} =3 (COS(%)) A, A =3 (COS(%)) (—3) Aj
—singg) cos(3)
1 1 10
(3 1) (0 )5



Example 2 An example for r = 4 is shown in Fig. 5(b), which is composed by:

10

0 1| p=1  Al=pal=al

i A=A A3 =PA] 5 5 )71
G | A=Al Al=94

Vi | AT=2AL Aj=2A
\ 7

Our work focuses on absolute values of the M SFE for a given redundancy r, instead
of looking at the asymptotic function M SE = O(f(r)) for high enough redundancies,
as has been done in [1, 7, 4]. The reconstruction algorithms used in all the previous
work consist of either a POCS (projection on convex sets) or linear programming
based algorithm, and their performance is much better than linear reconstruction only
asymptotically, that is, for large values of the redundancy. Besides, the complexity
of the algorithms is much higher than the simple linear reconstruction algorithm.
On the other hand, our designs are more suitable to be used for small redundancies
and have a complexity similar to the linear reconstruction. At high redundancies,
it is always possible to find designs but they may not be very efficients in terms of
coding due to the number of constraints that have to be met. However, for some very
important applications such as those involving very high-bandwidth analog signals,
it is not feasible to use redundancies higher than r = 3 or r = 4.

We have compared linear reconstruction (with equal stepsizes) and reconstruction
based on periodic quantizers (with different stepsizes) using the look-up table scheme,
in terms of accuracy (M SFE), with an input source being a 2-dimensional Gaussian
distribution N'(0,02I) with ¢ = 0.3. Although we could have also compared linear
reconstruction using both a periodic quantizer and a non-periodic quantizer, we have
used a look-up table scheme for 2 reasons: a) the complexity is the same as for
the linear reconstruction and b) for the specific designs that have been used, it is
possible to reconstruct linearly with the centroids (as in the look-up table) by using
to calculate the reconstruction a frame different from the minimal. The comparison
has been made by fixing the total rate, which is calculated assuming that all the
coefficients are encoded independently with a fixed-length encoding. Actually, this
can be seen as being equivalent to making the comparison when the density of points
in the space is the same. Let S = {A]} be the set of stepsizes used by a periodic
quantizer @) and A the stepsize used (to quantize all the coefficients of the expansion)

by another non-periodic quantizer )'. Notice that each stepsize Ag of () can be
expressed as AJ = o/ Al for some o/ € R. The (fixed-length) rate corresponding
to each stepsize A7 can be measured (associated with the density implied by A7) as
log,(1/ Ag ). In order to have the same total rate in both quantizers @ and @', we
need the following condition:

1

r N TN
1 1 1

E E log, <—) = rNlog, (—) = Al = ( ) A
j=1 i=1 A A Hi,j o

In this way, we can perform a comparison at each value of the stepsize A. For each
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Figure 6: Comparison between Linear reconstruction with equal stepsizes and Recon-
struction based on look-up table for a Periodic Quantizer. The values of M SE are
given in dB and relative to r = 1.

value of A, the set S = {Al} is calculated and the MSFE is measured. Fig. 6
represents 2 comparisons, for r = 2 and r = 3. The periodic quantizer for r = 3
corresponds to the quantizer shown in Fig. 4(b)). For this quantizer in order to
illustrate how the equivalent set of stepsizes is calculated, as an example, for A = 1, we
have that Al = 1.316, Al = 0.759, A2 = 0.759, A2 = 1.316, A® = 1.316, A3 = 0.750.
The periodic quantizer that has been used for r = 2 corresponds to § =1, tan(f) = 1

and A? = A2 = \/2Al. Tt can be seen that there is a gain for both quantizers.
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