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Abstract—in this paper, we study construction of structured reg-  low-resolution quantization. Some other systems have been pro-
ular quantizers for overcomplete expansions iR Our goalisto  posed in the context of pattern recognition for images, where
design structured quantizers which allow simple reconstruction al- overcomplete transforms are used to emulate the human visual

gorithms with low complexity and which have good performance in . . S . .
terms of accuracy. Most related work to date in quantized redun- system, which has a high degree of oversampling in orientation

dant expansions has assumed that the same uniform scalar quan-and scale [8], [9]. Moreover, an increase in resolution due to an-
tizer was used on all the expansion coefficients. Several approachesgular oversampling in the frequency domain has been observed

have been proposed to improve the reconstruction accuracy, with experimentally for quantized (two-dimensional (2-D)) steerable
some of these methods having significant complexity. Instead, we transforms [10], so that increasing the number of orientations

consider the joint design of the overcomplete expansion and the . Id S i 11 tized
scalar quantizers (allowing different step sizes) in such a way as to yields a gain in energy compaction [11]. Quantized overcom-

produce an equivalent vector quantizer (EVQ) with periodic struc-  Plete expansions also arise in the context of joint source—channel
ture. The construction of a periodic quantizer is based on lattices coding for erasure channels [6], [7], [36], [37].

in R™N and the concept of geometrically scaled-similar sublattices.  There are two major factors that determine the accuracy that
The periodicity makes it possible to achieve good accuracy using .5, pe attained using quantized overcomplete expansions: the
simple reconstruction algorithms (e.g., linear reconstruction or a . . L
small lookup table). reconstruction a!gorlthm and the Ql.JantlzatIO.n spheme. There
has been extensive research work aiming at finding reconstruc-
tion algorithms that are optimal or near optimal in terms of
asymptotic (large redundancy values) accuracy. However, the
guantization scheme has been always assumed to be a uniform
I. INTRODUCTION AND MOTIVATION scalar quantization with the same step size for all expansion co-

Q UANTIZED redundant expansions are useful in differen‘?ﬁ'C'entS' In this paper, we explore efficient quantization de-

Index Terms—Consistency, intersection lattice, overcomplete ex-
pansions, periodic quantizers, tight frames.

applications such as oversampled analog-to-digital (A/55j9"S O overgomplete 'expansions. . .
cgr?version of band-limited sigpnals [1]_[59] and ?nulti(plel-ﬁj Reconstruction algorithms have been studied following two

description quantization [6], [7], [36], [37]. In the first Caser_nain approaches. The first one is based on modeling the quan-

the purpose of using redundant expansions is to attain accu%@t'on noise as an additive white noise uncorrelated with the

digital signal representations under scenarios where the Cos§'glnal that is quantized. These models are sometimes conve-

using high-rate quantization is much higher than that of havi jent for analysis and lead to u;eful re;ults i.n some scgnarios
a high oversampling or redundancy. The most important cas 'g]' [13]. It can be shown_tha_t ifa v_vh|te-n0|se mo_dt_al IS as-
the A/D conversion of band-limited signals, where in order t umed for the scalar quantization noise of the coefficients and

use high-rate quantization to discretize the amplitude it is nde Same step size is used to quantize all the coefficients, the op-

essary to use expensive high-precision analog circuitry. Instef@lal riconsl_tructlon IS gnJ:en tb y the US.U?I Il?iartrecqns;rucilﬁ n
accuracy is attained by performing oversampling and exploiti ], where linear reconstruction consists of first projecting the

this redundancy to reduce the loss of information caused ) nal into a set of vectors (with cardinal larger than the dimen-
sion), obtaining a set of coefficients, and then reconstructing by

taking a simple weighted average of these coefficients. Thus, in
practice, linear reconstruction is always used when the assump-
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same step size is used and the step size is small enough sodbastruction algorithms (e.g., linear or of similar complexity)
the white-noise model approximately applies. One of the reand more sophisticated reconstruction methods? Although all
sons for linear reconstruction not to be optimal in some casi® improved reconstruction algorithms that have been proposed
is that the reconstructed signal may not be consistent with the far can achieve very good accuracy, the computational com-
original signal in the sense that the output obtained from requanexity of these methods (although different in each case), for a
tizing the reconstructed signal is different than the output objiven redundancy is higher than that of linear reconstruction [5],
tained when quantizing the original signal, implying a larger r¢4]. Since simple reconstructions (e.g., linear or lookup table)
construction error on average. On the other hand, it has not bee@ normally preferable in practical scenarios, in our work we
studied whether using a more intelligent quantization systeamssume that a simple reconstruction will be used and the main
allowing in general different step sizes to quantize the coeffecus is to explore whether better quantization designs, e.g.,
cients can lead to improvements in the rate-distortion perfarsing different step sizes, may have the advantage of achieving
mance when reconstructing with a linear reconstruction algaperformance which is superior with respect to simple quanti-
rithm. This is one of the issues that is addressed in this papetation methods, e.g., using the same step size. In other words,
The second approach is completely based on a determinigtic goal is to provide the tools to design the overcomplete ex-
analysis of the quantization noise. This deterministic approaphnsions and the corresponding quantization system so that the
was introduced by Thao and Vetterli [4] and later extended overall system behaves like a regular quantizer and achieves
[1], [3], [5]. This deterministic analysis based on hard boundhe best possible performance using simple reconstruction al-
of the quantization noise led to two nonlinear reconstructiagorithms. Designing the quantization system with a structure
algorithms for frames iR", one based on projection on convexhat forces consistency, using the usual linear reconstruction,
sets (POCS) theory [15], [4], [17], [18] and the other one baseaay result in worse performance, in terms of rate distortion,
on linear programming (LP) [5]. The main result is that theshan adifferentsystem whose structure results in inconsistency.
reconstruction algorithms ensure that the reconstruction vecktowever, we will show that because of the periodic structure of
falls always inside the same cell as the input vector. Theee quantization system, very simple reconstruction techniques
reconstructions are callembnsistenind in quantization terms (e.g., those based on a lookup table) can be designed which sig-
this means that the equivalent quantizer is regular. It wasicantly outperform linear reconstruction.
observed experimentally that for high enough redundanciesThe fundamental idea that we use in order to achieve this goal
r and for uniform quantization of all the frame coefficientss to design jointly the overcomplete expansion together with
consistent reconstruction algorithms have an asymptotic M8te quantization system by choosing carefully the step sizes of
behavior of O(1/r?). Moreover, Thao and Vetterli provedthe scalar quantizers so that the whole system is equivalent to
(under some mild conditions) that consistency guarantegs/ector quantizer ilRN with a periodic structure. First, we
this asymptotic behavior for high enough redundancies define an equivalent vector quantizer (EVQ) given a quantiza-
for the case of oversampled A/D conversion ‘Bfperiodic tion scheme and a reconstruction algorithm. Then, based on this
band-limited continuous-time signals, which can be vieweshuivalence, we introduce the concept of periodic quantizers
as a frame expansion RY with respect to a certain discreteand show how to construct and design periodic quantizers. This
Fourier transform (DFT)-like frame. Later, Cvetkd\it], [2] periodic structure can be conveniently characterized and param-
proved this fact under some mild restrictions for overcompletterized in terms of lattices and sublattices. Next, we explain
expansions ifR" in general. Cvetkoviproposed a more effi- the advantages that are provided by this periodic structure and
cient reconstruction algorithm callegmilinear reconstruction show how the periodic structure in the EVQ is a hecessary con-
algorithm which also attains asymptotically an accuracy ddition to achieve consistency under the usual linear reconstruc-
O(1/r%) without satisfying consistency. This algorithm igion. Once a periodic structure is present, the number of different
based on the positions of the threshold crossings and idetls of this vector quantizer becomes finite and although a suffi-
fying a good linear system to solve. Moreover, Cvetkaunzl cient condition cannot be expressed formally, itis very simple to
Daubechies extended this idea to be used in the contextcbieck whether consistency is satisfied or not. For a given family
single-bit oversampled A/D conversion where a deterministaf vectors and a set of different step sizes which yield a periodic
dither is used in order to force threshold-crossing locationector quantizer irRY, it is possible to reconstruct by using
with certain properties which allow exponential accuracy in thee small lookup table, where the reconstruction vectors can be
bit rate [16]. Recently, Rangan and Goyal [19] have proposetosen to be the centroids of the cells with respect to a uniform
a recursive algorithm using subtractive dithered quantizatidistribution. Moreover, it is also possible to design systems such
which also attains asymptotically an accuracy @f1/r2), thatthe EVQ has some additional symmetry which allows to use
again, without ensuring consistency. a very simple improved linear reconstruction. Our system pro-
The crucial observation that motivates our work is that imides excellent performance while having the same complexity
all the previous work a very simple quantization scheme has linear reconstruction, but is more suitable to be usBd'ifor
been assumed which requires sophisticated reconstructionlalv to moderate values of the dimensidhand for low values
gorithms [15], [4], [17]-[19], [1], [2] in order to improve its ac- of redundancy [20], [21]. Although we present examples and
curacy with respect to the classic approach [14] (simple quantesults for small redundancies, it is clearly shown that the basic
zation and linear reconstruction). Instead, in this paper, we pdbeoretical idea of periodicity can be extended to higher redun-
the following question: are there quantization schemes wheatencies and that the problem of finding good quantizers with
there is no difference in performance between using simple hégher redundancies consists of searching for good lattices and



BEFERULL-LOZANO AND ORTEGA: EFFICIENT QUANTIZATION FOR OVERCOMPLETE EXPANSIONS IR™Y 131

sublattices with certain properties. Extensions to higher dimeand the redundancy of the tight frame is equal to the frame
sions have been analyzed by Sloane and Beferull-Lozano beunds, that isy = A = B.

cently and can be found in [22]. On the other hand, although we2) Vz € RY, the expansion with respect to the frade=
believe that multiple description coding is also a potential apple, }£, whose coefficients have the minimum possible norm
cation of our framework, we have not explored this applicatiogfmost economical expansion) is given by

in this paper.

This paper is organized as follows. In Section Il, we define the
EVQ and the property of consistency. Section Il describes the
construction and design of periodic quantizers in terms of lat- ) ] ] ) ] )
tices. In Section IV, it is first shown that the periodic structure in !N this section, we restrict the discussion to the case of tight
the EVQ is a necessary condition to achieve consistency und@mes thatare composed by a set of 1 different orthogonal
the usual linear reconstruction, and then, low-complexity reco@ses: This is done without loss of generality for purposes of
struction schemes in periodic quantizers are analyzed. Finafliftrity because the geometric analysis is much simpler. Exten-
numerical results for some specific designgare shown in SIONS to generic frames are simple and can be obtained by using
Section V as well as a simple direct application of our desigH%the reconstruction the corresponding dual frames, which will
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in R? to oversampled A/D conversion of sinusoid signals.

Il. LINEAR RECONSTRUCTION EQUIVALENT VECTOR
QUANTIZER, AND CONSISTENCY

In this section, we first review the basic concept of a tig

frame inR™, and express a linear reconstruction in terms of
EVQ, which can be parameterized in terms of lattices.

A. Linear Reconstruction in Tight Frames Without
Quantization

be different in each case. With this restriction, we can group the
vectors{yp;, };7, that compose the tight frame &&0; } ¥, }/_;,
where{p!}¥ | is thejth basis.

Remark on Notation:In this paper, we make an extensive
iiise of superscripts and subscripts. For instance, in a tight frame
é:r%)mposed of orthogonal bases, the superscript Z. indi-
cates thejth basis and the subscriptindicates theith vector
of the jth basis. Also, in order to avoid confusion with the su-
perscripts, to represent a numberaised to the power of (e
being any real number), we will ugé)®, and we will usé-* for

indexation éth element), withe € 7.

For the sake of clarity, we review briefly the definitions and For the sake of simplicity, we restrict most of the equations

main properties of tight frames.

Definition 1: Let ® = {p,}}, c RY where|lp,|| = 1,
Vi=1,..., M. ®is called a frame if there exist > 0, and
A < B < oo such that

M
Allzl* < (2, @) < Bllz|l?,

i=1

vz e RY.

1)

and expressions of this section, without any loss of generality,
to the case oR?. For N = 2, the frame containd/ = 2r
unitary vectors that form orthogonal bases and the frame op-
erator can be written aB' = [pip30i¢3 - - @ips]T. If we
define each orthogonal matrik’ asF’ = [p]¢}]”, then we
cally’ = [yf, y2]” the 2-D vector of coefficients associated
with the jth basis, which is given by’ = F’z. The M-di-
mensional vector of coefficientg = Fz will be expressed as
y=1[vi, 5 97 v3, -, v, w5l

A andB are called lower and upper frame bounds. Giveng EVQ for Linear Reconstruction

frame®, the associated frame operaforRY — RM is given
by anM x N matrix defined as

F = (g5 ‘PM)T
T

y, =(Fz)i = (z, ¢;) = ¢; Vo eRY.

)

z,

Definition 2: The minimal dual frame ob is defined a® =
{112, where

2= (F'F) g, @

Definition 3: A frame @ is called a tight frame ifA = B,
that is, if the lower and upper bounds are equal.

The following properties are satisfied for a tight frame.
1) The minimal dual frame of a tight frame® is given by

. 1
Y, = — P
r

. . M
Vz—l./..../MWIthT—W 4)

Assume that scalar quantization is applied to the frame coef-
ficients. LetSQ; be a uniform scalar quantizer with step size
A? and decision point§mA?’},,cz. This is a particular choice
without any loss of generality, that is, what follows is also valid
for scalar quantizers with decision poinfém + 3)A?},,.cz
where0 is a reconstruction point.

Then, we defin&s Q1 x SQL x - - x SQ x SQ} as anM -di-
mensional product scalar quantizer (PSQ) applied ta\ihdi-
mensional vector of coefficients i.e., each of the components
of the vectory are quantized by a corresponding scalar quan-
tizer (see Fig. 1).

Given a tight framed and a PSQ, we define the following
quantizer.

Definition 4: A quantizerQ?, 1 < j < r consists of the
following.

1) A setC’ of rectangular quantization cells induced by
the scalar uniform quantizef$Q7, SQ3} which are ap-
plied to the frame coefficients associated with tih
basis.
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) {¢?, ¥}}. In this way, the outputs of quantiz&)’ can be ex-
F r pressed directly in terms of the generator mafefy ;. Notice
2 that the cells associated with the quanti@érare convex poly-
- topes whose vertices are all in the lattité
F 50 Given a setof quantizer@’, j = 1, ..., r, defined as above,
x 2 we now introduce the concept of EVQ as follows.
7 Definition 6: An EVQ consists of the following.
: 50, 1) A set of quantization cells formed by the intersection of
'r , the rectangular cellsC” }_, of the quantizer$Q’ }7_,.
d . - . 2) A mappingR? — R? from the set of cells to a set of
: reconstructions given by
Fig. 1. Definition of the EVQ inR? for a tight frame based on the linear 1
reconstruction given by the minimal dual frame. A similar definition for the A+ ~j i i
EVQ can be given for any general linear reconstruction algorithm. T = r Z x5, wherez’ = @ (z) (8)
j=1

2) A mappingZ? — R? from the set of cell€7 to a set of

reconstructions (output§)? such that  satisfying Thus, the linear reconstruction, as represented in Fig. 1 and

shown in Fig. 2(b), consists of taking the geometrical average
m; Al < SQJf((x. (‘01) < (my + 1)Nf7 i=1,2 point among the different reconstructiais j =1, ..., 7.
oo T ! The PSQ inRM leads to an EVQ irR? and the output of
the reconstruction vector is given by the EVQ can be written as a linear combination of the outputs
from each 2-D quantize®? where it can be seen that the set

5 of outputs (reconstructions) of quantizg¢ forms a coset of

u i i i j ' the latticeA’. Fig. 2(a) illustrates the partition generated by the
i — Qi(x) = J AP
¥ =Q@)= Z1 50 (<m, <pz>)<pz EVQ for an example where = 2, and the tight frame and
- 5 . associated step sizes are
soi=(|2] + o C
! 0 1
2 N .o F=
— &= Y (mi+ 5) 0l © cos (7) sin (%)
i=1 —sin (%) cos (%)
The step size associated with the scalar quanfzgris de- Al = g Al A= 13 A} A= 9 Af. 9)
noted byA?. The vertices of the cell§” form what is called a ° 10 8
real 2-D lattice. Fig. 2(b) illustrates how the final reconstruction veciois

obtained. Notice that since the cell$ generated by the quan-
tizer Q7 are convex polytopes, the celEVQ = ¢A' n...n
A" corresponding to the EVQ are intersections of convex poly-
topes, and therefore are also convex polytopeR?init is im-
portant to notice that in general the EVQ is not necessarily a
\Voronoi or nearest neighborector quantizer, and although its
cells are convex polytopes, they are not in general (minimum
distance) Voronoi cells. For a cell to be a Voronoi cell, it would
be required that any point contained in that cell be closer to the
The set of vectorga;}\, are the generator (basis) vectorgentroid of that cell than to the centroid of any other cell. This is
of the lattice and the matri?df, = (a1|as|- - -|lan)” is called not satisfied in general because these cells are obtained as the in-
the generator matrjx of the lattice. Thus, the vertices of the ceflsrsection of cells of the (nearest neighbor) quantiiéa—g};le
C7 form a latticeA’ having generator matrix used in each of the basis, rather than as the nearest neighbor
regions for each reconstruction vector. In other words, the in-
tersection of nearest neighbor quantizers does not result in gen-

eral in a nearest neighbor quantizer. Therefore, we will refer to

Because of the orthogonality, the basis vectors of the Iatt'&?/Q cells instead of Voronoi cells. In general, for a given redun-

point in the same directions as the unitary vectors that compope . : . )

i . . o ancyr,  is obtained by averaging over thdéinear reconstruc-
F’, but in general, it is clear that this is not the case when ”ﬁ%ns:&j P r given by the corresponding quantizey
tight frame is not composed by a set of orthogonal bases, as J= T’ g y P 99

we will see in Section lll. There are an infinite number of pos’- o
sible (minimal) bases that can be used for this lattice. We will Remark: The concept of EVQ can be actually defined for
always use, as a basis for the latticg thejth orthogonal basis any reconstruction algorithm, not necessarily only for the linear

Definition 5: An N-dimensional lattice\ is a discrete sub-
group of RV which is defined as the set of points obtained b
taking integral linear combinations @¥ linearly independent
vectors

A={z:z=ua; +usas +---+unay,
u, €2, i=1,...,N}. (7)

M,; = (Ap]|ALpl)T.
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Fig. 2. (a) Example of the convex polytop€€V? in R?, (b) (Zoom) Example of outputs for the quantizé&}$, 2, and the EVQ when linear reconstruction is
used. The partial reconstructio®s, j = 1, 2 are represented by" and the final reconstructioa is represented byo"” The final reconstructions are obtained

by taking the halfway point betweeit anda?, that is,z = %(ﬁ:l + #2). Two reconstructions are shown, each reconstruction corresponding to the case where
the original vector is in each of the two EVQ cells indicated with the bold ligels a consistent reconstruction a#tlis an inconsistent reconstruction.
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reconstruct ion algorithm using the minimal dual frame as de- Definition 8 (Linearly Consistent Cell):Let CfVQ be acell
scribed above. However, for clarity, we have restricted in thesf an EVQ.O,LEVQ is said to be linearly consistent if it is consis-
section the definition and concepts to this particular case. Rent under linear reconstruction, where the linear reproduction
any other reconstruction algorithm, Definitions 4 and 6 shoulbctor is given by = 2 25:1 7.

be modified so that the set of reconstruction vectors are the one

given by the particular reconstruction algorithm that is used. l?iemark: As before, the definition of linear consistency can

be extended to any general linear reconstruction algorithm, not
Another concept that will be used in some of the next sejust the linear reconstruction given by the minimal dual frame.
tions is the concept of fundamental polytope. The fundamentaIA

polytopeCii associated with the latticé is defined by n EVQ is said to be consistent if and only if all its cells

CEVQ are consistent. Similarly, a general reconstruction algo-

rithm that gives rise to a consistent quantizer is called a consis-

tent reconstruction algorithm. In particular, a quantizer which

satisfies consistency under linear reconstruction is said to be lin-
(10)  early consistent.

Given an EVQ, the optimal reconstruction for any cell is ob-
which is the parallelopiped formed by the basis vectors of thgously inside that cell, that is, the optimal reconstruction is al-
lattice A7. The area of this fundamental polytope is equal t@ays a consistent reconstructipisince an inconsistent recon-
|det(M ys)l. structionz is outside the cell corresponding to the original signal

z, as opposed to a consistent reconstruction, consistent recon-
C. Property of Consistency for a Generic Reconstruction  structions will yield smaller squared distortion (MSE) than in-
Algorithm consistent reconstructions on average for a given EVQ. In our
ork, the goal is to find a set of EVQs for which it is possible
ﬁ’.) have consistent reconstructions with simple reconstruction
aFgorithms.
usingr > 1 orthogonal bases, it is desirable to design an EVQeFig' 2(b) S_hOW_S examples of bo'gh consistent and incon_siste_nt
cells assuming linear reconstruction. One of our goals in this

such that ifz is the original vector ané is the reconstructed . . o )

vector, bothr andz fall in the same EVQ cell. The reconstrucPaPer 1S t.o design qu_annzauqn techniques such.that aII.EVQ
tion vectorsz satisfying this property are called consistent reqells.are_l!nearly conS|stent..F|g. 3(a) and (b). provides a §|mple
constructions of. and intuitive example that illustrates how linearly consistent

Given a frame operatdF and a generic PSQ, the concepts l[EVQ cells can be achievdaly choosing scalar quantizers with

of. : :
consistency and linear consistency for an EVQ CéﬂVQ’ are d|_fferent step sizes for each of the= 2 baseslt can be seenin
defined as follows. Fig. 3(b) how the intersection between cells(f and cells of

Q? is the same across all the partition of the EVQ. As will be
Definition 7 (Consistent Cell):Let CI"V? be a cell in an explained later, the crucial idea on how to achieve consistency
EVQ, andz its reproduction vectorCiE  is said to be con- with low-complexity reconstruction algorithms is to enforce a
sistent ifz € C;EVQ. periodicstructure on the partition defined by the EVQ, as in the
I§I:é<ample of Fig. 3. Intuitively, the step sizes selected will depend

Ci :{m: 2= Al faAlgl 0<ar<1,i=1, 2}

Although the concept of consistency was introduced in [4
for the sake of clarity and because it is a central concept for t
paper, we review it here. Given a tight franke constructed by

For the particular case of using a linear reconstruction, t
definition of linearly consistent cell is as follows. IThis statement holds because the EVQ cells are convex.
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Fig. 3. Example forr = 2 showing how the consistency problem can be solved by choosing carefully a certain frame and a set of different step sizes: (a) using
the same step sizes gives rise to inconsistent cells, one of them is indicated with a circle; (b) choosing different step sizes in each basisigeds B\WQn
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Fig. 4. (a) Example of a linearly consistent quantizer EVQ, (b) (Zoom) four celig'ofThe reconstructions’, j = 1, 2 are represented by" and the final
reconstructior® is represented byo"”

on the angle between each of the bases. Fig. 4 shows a secdn®efinition and Construction of Periodic EVQs f&?
example where consistency is achieved by creating a periodiGy, oger to facilitate the understanding, we first provide a de-

structure. tailed derivation of how to impose a periodic structure in EVQs
in R? for the case of redundanaey= 2. Then, we extend the
idea to higher redundancies alsdiif, and, finally, we explain
ll. CONSTRUCTION AND DESIGN OF QUANTIZERS WITH how to obtain periodic structures in higher dimensions.

PERIODIC STRUCTURE In designing an EVQ with a periodic structure, we will use

We call the type of quantizers shown in Fig. 3 “periodic quar%he concept of sublattice.

tizers” because the partition they generate has a periodic strucbefinition 9 [23]: A sublatticeA, € A of a given lattice
ture. We derive in detail how to design such quantizers in this is a subset of the elements daf that is itself a lattice. A
section. The construction that we give in order to achieve paublatticeA, is completely specified by an invertible integer
riodicity is completely general. However, we provide designmatrix B, that maps a basis of into a basis ofA,, that is,
only for redundant families (frames) of vectors with a certaiM ,, = B, M ,, whereM , and M, are the generator ma-
constrained structure. More specifically, we give designs mosthjces of A, and A, respectively.
for the case of having orthogonal bases iR?. Some designs

. 9 > .
extensmn_s foR“ are given !n Scho_n I-E \_/vhere_several examWedconsider only full-rank sublattices,, that is rank (M, ) —
ples are given, and extensions to higher dimensions are analyze

in Section IlI-D. 2A is said to be a full-rank lattice if its generator matif,_is full rank.

Given a real full rank lattice A with generator matrixM ,,
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Fig. 5. Example 1: (a) Sublattice structure @)’ Q cellsC*V®?,

rank (M, ). Another important concept is that of the index otase of having:; = ¢», SA would be a geometrically similar
a sublattice\ ; contained in a latticéd which is given by (or equivalent) sublattice o, as defined by Conwagt al.[24],
[23]. We restrictR to be a pure rotation so that we can associate
each rotation with a basis of a frame, as we explain next. Fig.
5(a) shows an example for a redundamcy: 2 of a geometri-
cally scaled-similar sublattice of a rectangular lattice.
The index of a sublattice is the ratio of the volumes of the funda- Without loss of genera"ty, in the fo"owing we will construct
mental polytope associated with the sublatticeand the one geometrically scaled-similar sublattices of a canonical lattice
associated with\. This is also equal to the number of latticey! \whereA® has generator matrix
points of A contained in each cell defined by;. Notice that
in the particular case of having an integer mafix_ such that Mo — (A% 0 > (13)
|det(By,)| = 1, A andA, are the same lattice. This particular A 0 A}
type of integer matrices satisfying this property are called ) ]
modularmatrices and by taking different unimodular matricefhat is, the generator vectors af are scaled versions of the
one can obtain different generator matrices for the same latti€@nonical basis vectos; = [1, 07, @3 = [0, 1]T_(F =

We introduce the concept of geometrically scaled-simildrex2)- We define the quan-tlzéil as the quantizer with rectan-
sublattices from which we build periodic tesselations. gular cellsC*" whose vertices are given by the lattite.

Definition 10: Given a real lattice\ in R2 with generator ~ Notational Remark:In order to distinguish between the cells
matrix M ,, a lattice/’ is geometrically scaled-similar to iff ~ @ssociated with a lattica’ or a quantizer)’ and the cells as-
sociated with a sublattic€A’ C A7, we will use the following
notation: a)C"” will denote the set of cells associated with
and@’, where we use no@*’ instead ofC” in order to empha-
size that these cells are associated with the lattigen) 54
whereR is a2 x 2 orthogonal matrix, that is, a rotation and/omill denote the set of cells associated winA7. The subscript
a reflection inR2, U is a2 x 2 unimodular integer matrix, and will indicate in both cases a particular cell.

e, 2 € Ry Definition 11 (Periodicity Property):An EVQ is said to be
If A’ is geometrically scaled-similar t& and is also a sub- periodic if the partition of the space given by its quantizing cells
lattice of A, then we denote it b A. Note that this can only be satisfies the following two properties.
true for specific values of;, ¢, andR. 1) There exists a minimal periodic urGt®V? which is the
Thus, a geometrically scaled-similar sublatti€a of a lat- union of a finite set of cell§Py, ..., P}
tice A is obtained by simply rotating and/or reflecting the lat-
tice A and then scaling each of the new axes. The médfri-
lows us to choose different basis vectors for the sublafite
If det(R) = +1, thenR is a pure rotation, and the scaling pa-
rameterse; ande, allow to control the magnitudes in each of
the two vectors that define its basis.dét(R) = —1, thenR Fig. 5(b) shows the unit cell=V< with bold lines for a par-
contains or is a reflection. The possible orientations and valugsular EVQ with redundancy = 2. The periodicity structure
for ¢; andc, that determine a geometrically scaled-similar sulis achieved by finding lattices whose intersection is not empty,
lattice will be given in Section IlI-B. Notice that in the particularwhich involves the concept of sublattice.

det(My,) Vol (C)+)
det(M,) — Vol (C2)

[A/As| = = |det(Ba,)

. 11)

My = <Cl 0 ) UM\R, (12)
0 C2

2) There exists a latticd which determines this period-
icity such that all the cells of the EVQ are given by
{P1, ..., P} + A, that is, copies of the minimal unit
CEVQ translated by the points df.
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Fact1: If A, isasublattice oA!, the partition defined by the positive integers, that the cells given 69‘1 NC have a peri-
intersection of the cell§*" with the cells determined hy. has odic structure, which is still determined by#*’ (see Fig. 5(b)).
a periodic structure (tesselation) with the minimal periodic unitherefore, fon- = 2, it is clear that periodicity holds.
given by CA" nCA«, whereC2: is the fundamental polytope Next, we show that the construction &f , ..., A™ given
associated with the sublattice, and the whole tesselation isabove ensures that these lattices have a nonempty intersection,
obtained by translating the cet]?s’\lﬂcg\s with the pointsofA,. which actually implies a periodic structdren the resulting
Proof: See Appendix I. EVQ.

This fact can be observed in Fig. 5(a) where in this case, theLemma 1: Given a set of lattice$ A’ 5, such that\’ >
sublattice is a geometrically scaled-similar sublattice. In thigA7 andSA7 is a sublattice oi\! j = 2, ..., r, then the CSL
work, we use Fact 1 for the particular case where the sublatntains as a sublattice, a lattite that is an integer scaling of
tices are geometrically scaled-similar. Al thatis,M . = DM 1, whereD € Z.

Proof: See Appendix Il. The importance of calculating the
CSL A“SL comes from the fact that its fundamental agffS™
is the unit cell that is repeated in the periodic structure of the

Definition 12: Given a set of latticed’, j = 1, ..., r, the
coincidence site lattice (CSI)“5" is the intersection lattice:

ACSE — ATAAZA ... AT (14) resulting EVQ, as shown in the following lemma.
which is the finest common sublattice of all the lattice’s j = Lemma 2: Givenr quantizers)/, j = 1, ..., r, associated
L., with the latticesA?, j = 1, ..., r, the partition of EVQ cells

) o ] has a periodic structure, with the unit cell that is repeated period-
In order to achieve periodicity, our goal is to construct a S?&ally beingCSSL, the fundamental polytope of the CRICSE
o 1 .

of.Iatf[igesAl,_ /_\2, ...,.A” whose intersectiqn is not empty. Eor Proof: See Appendix I,

this, it is sufficient to find a set of geometrically scaled-similar . _ _ _
sublatticesSA!, SAZ2, ..., SA" ofthe firstlatticeA!. For nota- Notice that any other lattice that is also a sublattice (although
tional convenience, we tak&\! = A! and we will always take coarser than the CSL) of all the latticas, j = 1, ..., r de-

U = I in (12) so that the basis vectors of tjthh geometrically termines also a unit cell that is repeated periodically but this
scaled-similar sublattice are orthogonal (because of the rotatiiit cell will be larger thar’s"". For instance, the fundamental
matrix) and can be associated with g orthogonal basis of a Polytope of the rectangular lattice” described in Lel(’:nsTa 1,
tight frame. Each rectangular célf’*’ defined by each sublat- Will be also repeated periodically bl (A?) > Vol (A~>%).
tice SA7 has sides with lengthg A! andcAl. Since we have ~ Next, we show how simple it is to calculate the generator ma-
thatel, ¢} > 1V, Vol (SAJ) = cichVol (A') > Vol (Al). trix of the CSLAS™ for any dimensionV. For this, it is nec-
Moreover, since the index of a sublattice is always an integ€8sary to first review the following concept fdf-dimensional
we have that? x ¢} € 7 V. lattices.

Suppose we design jointly a lattice’ = SA" with gener-  pefinition 13: Given » N-dimensional lattices\?, j =
ator matrixM y: = diag [A1, As] (choosing certain values fory r in RV satisfying the property that an N -dimensional

Af, A3), andr — 1 different geometrically scaled-similar subyattice AF for which A7 C AF, i =1,...,r we define the
lattices ofA! denoted bySAZ, SA3, ..., SA”. Given a sublat- (N-dimensional) sum lattica™ Z A 4 A24... A" asfollows
tice SA’7, we define a finer lattice\? > SA’ with generator [26]
matrix given by

AZ:{yGRN:y:zA,zeZTN}7

L0
MAj:((S L)MSAJ' MA1
(1',7; MAz
) whereA = . (16)
Moo _po (AL 0 :
SAT — P SAI 0 A% MAr
Ber — R ko (15) Remark: The latticeA™ is the lattice generated by all the
o —k3y kb, basis vectors of all the lattices’, j = 1, ..., r in RV (not

o simply the union of the lattice points). The matuk defined
whereds, d, ki1, kis, k31, k3o € Z4, thatis, are any positive above can be reduced to obtain the acfidélx N) generator
integers. matrix M ,» using the so-called Hermite normal form (HNF)

As we show in Lemma 1 later, if we associatejuantizers reduction algorithm [26].
{Q7}"_,, respectively, with the lattice\’ }"._, , this construc-

=1 j=1 .. . . % . . N
tion given above is sufficient in order to ensure that the inter- Definition 14: The d.ual latticeA” of a lattice A in R™ is
section of all the lattices’, j = 1, ..., r is not empty, and defined as follows [23]:
therefore, by group theory, the intersection is a lattice. Notice A* = {v ERY: (v, w)eZ Ywe A} _ (17)

that if we consider only one lattic®’ together with the canon-

ical latticeA®. both constructed as described in (15) and we de_3N0tice that a periodic tesselation may be obtained also using other methods
’ ! which are not based on intersecting lattices, that is, forcing the intersection of the

fine co_rrespond!ng quantize€” andQ’, reSpeCt'V,ely associ- latticesA®, ..., A" is just one (purely geometrical) way to obtain a periodic
ated with them, it follows from Fact 1 and becaygg, d3} are tesselation, but one could also build a periodic tesselation in other ways.
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The generator matrix of* is given byM 5. = (M ,)~H7, The generator matrix of latticd’, as given in (15), and
and we have also than*)* = A [23]. step sizes{A{, AJ} associated with the scalar quantizers
It is important to note that the sum of two latticdd and {SQ?’, SQJ} can be parameterized by
A? is not necessarily a lattice; for instance, takibg= Z and

= /22, then their sum is not a lattice because the sum is % Ifjﬁ g
not a discrete subgroup &: It can be shown [30], [31] that if My, = 1:2 kjl Af
A' andA? are contained in a certain full-rank lattig”, then —t
A' + AZ is a full-rank lattice. ’ ’

Based on the previous definitions, the following important A Al k{l W 4k k
theorem from lattice theory allows us to calculate the intersec- 1\ (k11kas + ki 21)
tion lattice A“SL of a set of lattices\!, ..., A" [27], [28]. P

Theorem 1: Givenr latticesA?, j = 1, ..., r, the following Al = Al kél (k.J’ [y S % ) (20)
holds: 2= d] PH 11722 12721)-

. 12
(Al)*+ 3 _|_(A'r)* _ (Alﬂ X ﬂA1)* A feW comments are |n Order.

X " 1) Only those angle¢ such thattan(6) = +/mq/mao,
= ((AY) 4+ (A)*) =A'N---NA"=ASE. (18) 1y, ms € Z, lead to geometrically scaled-similar sublattices.
+
2) For a given fixed anglé there is more than one solution
Notice that using Lemma 1 the construction of the Iattlcégr f, c1, ande.
AL, ..., A" we have presented here ensures ffat" aways  3) 1N€ produceic; = |A/SA| € Z., as it should be, be-
exist and is a full-rank lattice, implying a periodic structure iff3US€

the EVQ. The necessary and sufficient conditionfémn A? to B 1 B 5
exist and be a full-rank lattice is that the mat(ix/,: ) ="' M» c1c2 = ki1kaz cos(8) ) ~ kiikaz (1 + (tan(6))?)
be a matrix of rational numbers. This condition is implicitly used = k11 koo + kiaks = det(Bgy) € Z,. (21)

in order to prove Lemma 1. In the same way, our construction

also ensures that\')* + (A?)* always exists and is a full-rank ~ 4) If we consider the particular case of having= c; = ¢
lattice. The lattice\' N A? is the finest lattice which is a sublat-and = 1, that is, geometrically similar sublattices of the cubic
tice of A' andA?, while the sum\' + A? is the coarsest lattice real latticeZ?, , then, the possible solutions are

which contains bott\! andA? as sublattices. ,
tan(d) = —, c=+Va?+b2, cos(d) = a

B. Design and Parameterization f&> a va? +b?
L . . b
1 2 : —
Leti\ pe a rclectar;gular. Iatt|ce_ iR= with geperatlor matgrlx sin(f) = Nk a, beZy (22)
M. = diag[Al, A}], which defines a quantizep'. In R?,

it is easy to parameterize all the geometrically scaled-similahich agrees with [24].
sublattices ofA! in terms of the possiblscaling factorsand Although periodicity in the structure holds for any two posi-
rotation matrices as in (12). This parameterization can be usgde integersd] andd3, in practice, each paifd;, d3) is con-
in order to build a periodic EVQ if#? for any redundancy.  strained to some values to provide good quantization perfor-
Fact 2: All geometrically scaled-similar sublatticeés\ of mance. Therefore, it is desirable not to have a cell of a quan-
A" with My» = diag[A], Deltay] have generator matricestizer Q7' completely contained within a cell of another quan-
that can be characterized geometrically in the following way:tizer 972 . Ideally, adding successive quantiz€}$ will lead to
) . reductions in the size of the EVQ cells (and, therefore, in dis-
Mg, = (ClAl 0 > ( cos(f)  sin(0) ) (19) tortion). Appendix V describes in detail a simple geometric cri-

0 cfA])\ —sin(6) cos() terion that can be used to address this issue. There is no unique
where way for the order in which one can choose the different pa-
rameters. One possible way is by fixing the anglfirst, that
5= Ay [kiika fan(0) = kizka1 _ k12 is, choosing a value fo{/(ki2k21)/(ki11k22), then searching
ALV kpakoy’ TV ki1kes k11 within all the4-tuples of integers resulting in that value, and for
k11 koo each of thesé-tuples we obtain certain values for the step sizes
' cos(8)’ = cos(6) using (20).

andki1, k12, ko1, k2o are any positive integers alid< § < 5. C. Examples of Periodic EVQs i#?

Proof: See Appendix IV. We present in this section several design examples for the 2-D

The anglef is restricted to the intervdD, 7| to avoid du- case.
plicity. That is, given a valid anglé €]0, [, the angle9 47,
1 = 1, 2, 3 generate the same sublattifd because the basis
vectors will be inverted versions of the ones corresponding
¢ €]0, 3. “Notice that we are restricting the angléo be0 < 6 < .

Example 1:Let us choose an anglg such that
ti%n(a) = /2 x 3. A possible choice for the constant integers is
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Fig. 6.
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(b)

(a) Example for = 3: Structure of the EVQ and unit cell of the structure. (b) Example-fer 4: Structure of the EVQ and unit cell. Notice that in (b)

due to the symmetry that exists withifC'SL, the effective number of different EVQ cells is basicallf8 of the total number of cells within this unit cell.

k¥, = k3, = 1, k}, = 2, andk?;, = 3. If we choosel; = 2

andd3 = 3, the resulting quantizep? is given by

3
-
2 _

1

3
A%:\/;A}
1 2 __

1 3 .1
A= cos() AL A= cos() \/;Al' (23)
The corresponding EVQ cells are shown in Fig. 5(b).

Example 2: A good example for = 3 is obtained by using

the following tight frame and step sizes:

1 0
0 1
cos (%) sin (%)
F=] —sin(5) eos(5)
cos (g) sin (%)
—sin (%) Cos (%)
1 1
3I=— . Al=pAl= " Al
/[ \/gv 2 /[ 1 \/g 1
2 _1 1 1 2 _ 1 3
A= 2 <cos (%))Al A 2 <cos
3 _1 1 1 3 _ 1 1
A 2 <cos(§)>A1’ Az = 2

(%)

)
(=)

-

7)A

3>A}.

(24)

Example 3: An example forr = 4 can be obtained by using

the following tight frame and step sizes:

1 0

O 1 p=1 ab=pal=al

1 1

Vi vz A2 =2A), AZ=\2Al

—1 1 =

Vi ovE | Ab=2Al Aj=P A
P=|%& &| at=2£a1 at=gar &

—2 1 - = -

Vs | AT=2Al A=f A

2 1 =

VE Vs | AS=LAl A=Al

—1 2

R

Fig. 6(b) shows the unit cell that is repeated periodically and the
resulting EVQ cells. In this example, we have that

-5 5 -5 5\ 1
Muoo= (73 )Ma= (7 2)at

(10 0 (10 0
= (1 )= (1 2)st e

Notice in these two examples how we have chosen the step
sizes of the different quantize{g)’}_, trying to satisfy as
much as possible the constraints mentioned in Section I11-B (re-

finement between different quantizers).

D. Design of Periodic EVQs in Higher Dimensions
We now analyze the extension to higher dimensions for the

Notice that in this examplel2 = d2 = d? = d3 = 2. Fig. 6(a) Case WhereM y: = IA}, that is, if the dimension i&V, then

shows the unit cell that is repeated periodically and the resultiﬁg} = A}

EVQ cells. In this example, we have that

11 11
MACSL:<_1 I)MAl :<_1 1)(
Jat.

1 L
_ \/3 Al
= oL 1
V3

2 0 1
= (3 Dann=o(

sk =

1
0

0
1

V3

(25)

A} SinceA! is a cubic lattice, a ge-
ometrically scaled similar sublattic€A has to be also cubic
and thus its generator matrix has to Mesy = BsaM 1 =
Bs,Al, where the integer matriBs, satisfies the orthogo-
nality property

by 0 0
T 0 by --- 0
BSABSA: 0 . : R bl,bg,...,bN€Z+.
0 0 bn
(28)
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If SA7 is thejth sublattice, we construct thigh lattice A7 as The intersection of these three lattices, that is, the CSL, can
we have done before faN = 2, that is, dividing by integers be easily calculated and is given by

{d{_ N | and the associated orthogonal mafftkand step sizes 40 0 0
. A(,SL — 2 0 2 0
=~ 0 0 2 0 0 2
1
0 L. 0 which is a version of the well-known latticB, (best known
Fi— Vb B, lattice quantizer in four dimensions) on the scale at which its
0 : minimal squared norm is.
1 . T .
0 U NS E. Design of Periodic EVQs for Other Redundant Families
N
/bj Itis also possible to construct periodic quantizers using fami-
Af _ L Al df €z, (29) lies (frames) of vectors with integer redundamd_yut which (_10
d! not consist of a set of orthogonal bases. In this subsection, we

show examples which are based on hexagonal lattlgds R?,
and all the results regarding periodicity in the structure of thend sublattices which are geometrically similay = ¢> = ¢)
final EVQ and the CSIA®S™ apply also here. to hexagonal lattices.
Since the matrixM s, is proportional taBgs, by Al, let us Conway and Sloane [24] have parameterized all the possible
focus on the problem of finding integer matridBg , satisfying sublattices which are geometrically similar to the hexagonal lat-
the properties mentioned above, thus, looking at geometricaige A = A,, whose generator matrix is given by

similar sublattices oZ”". Clearly, we can construct matrices 1 0
Bg, in the following way: My = <__1 @> A (33)
2 2
ap 0 -+ 0 Notice that if we want to associate this lattice with a basis of a
0 az --- 0 frame(F"), the vectors of this basis have to be orthogonal to the
By = 0 ... e Hsy, a1,...,any €1 basis vectors of the lattice. Moreover, the step sizes associated
0 0 a' with the vectors that compode' have to be calculated so that
N the lines inR? intersect exactly to generald,: . It is trivial to
H?AHSA & I-ISAH?;A =ml, meZ,. (30) s_how by simple trigonometry thd' and the associated step
sizes are
The problem of finding matriceH s, satisfying the above prop- P 0 1 Al — Al \/§A
erty has been studied extensively [29], [32] and the algebraic = @ 1 1= 527 5o (34)

theory of orthogonal designs allows to find general construgc-, . . S .

tions of orthogonal matrices with indeterminate entries. Itis shovyn n [214]_that a sublatt|c§A,_wh|ch 's geometri-
Notice that the matricedf s, actually generate geometri_caIIy similar to A+, is generated by (using complexl notation)

cally similar or equivalent sublattices with indéx — /2, % = o+ bwandy = w(a + bw), wherew = —1/2 +iv/3/2,

: 1 X .
m € Z . Explicit constructions in higher dimensions have beeti b € Z, and the indexSA/A’| of the corresponding sublattice

1 _ .2 2 ; ; ; ;
provided by Sloane and Beferull-Lozano and can be found f/SA/A | = a” = ab+b”. Translating this to matrix notation,

[22]. More specifically, constructions are given for dimensiorb“é[e have that the possible generator matricesStbrare given

N = 3,6, 12, 24, 2% k > 2. For illustration purposes, we y

present here a simple example fér= 4. Details about the tes- (a . z_)) V3
selation of the space that is generated are also given in [22]. Mg, = < i /3 2 ) A. (35)
—atb V3 (,_p
Example 4: 2 > (a=?)
Notice also thaf\/,: andMg, are related as follows:
2 0 0 0 b V3
a—b) L b
— |0 200 1 Msy =M, (-3 ] :< b )Mm
My=1¢9 02 0™ — By (a-b) —b a=b
00 0 2 (36)
+1 +1 +1 41 which corresponds to a rotation of an angguch thatan(6) =
M,. = +1 -1 +1 -1 Al /3t and a scaling of/a2 — ab + 2. Using this approach, we
+1 -1 =1 +1 can design again frames and PSQs such that a periodic EVQ is

+1 4+l -1 -1 generated. Figs. 7 and 8 show examples of periodic EVQs for

—1 41 +1 4+1 redundancies = 2 andr = 3, respectively.

-1 -1 +1 -1 1 It is also possible to construct periodic EVQs for higher di-
Mys = -1 -1 -1 +1 Ay (31) mensions using redundant families which are not comprised of

1 +1 -1 -1 orthogonal bases, by means of other types of lattices such as
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@ (b)
Fig. 7. Example for = 2. (a) Structure of the sublatticeA with @ = 1, b = 3. (b) Structure of the EVQ and unit cell.

YAV AV, YAV AVAVAVAAV YAV AV
\WAVAYAVaSA V. AVAVAYAVa A,

(@ (b)
Fig. 8. Example for = 3. (a) Structure of the sublatticeA with « = 1, b = 3. (b) Structure of the EVQ and unit cell.
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those studied in [24] and [33], but these designs are not cdhat the resulting EVQ has a periodic structure. This result fol-
sidered in this paper. Several examples of these other differews basically from the fact that when there is no periodicity in
constructions can also be found in [22]. the partition defined by an EVQ, the vertices of any two lattices
At andA’2 (j; # j2) can have arbitrary relative positions, at
least in one of the components, which makes it always possible
to find linearly inconsistent cells. On the contrary, when there

In this section, we analyze how to achieve consistency in Fj@_periodicity, there is only a finite number of relative positions

riodic quantizers under simple reconstruction algorithms (e.§5€€ Fig- 4) and linear consistency is not precluded.

linear or lookup table). The proof of this result is exactly the same conceptually for

any value of the redundaneyand for any dimensioV because

the crucial point is just the periodicity in the structure regardless

of the underlying frame that is used. Since for higher dimensions

N and higher redundanciegshe proof becomes much more te-
Although the results presented in this section hold for arjious without adding anything new conceptually, we reduce the

type of frame and any type of linear reconstruction algorithmyoof to ther = 2 andN = 2 case. However, for completeness,

the proofs of these results are much clearer and much moredramples will be shown where linear consistency is satisfied for

tuitive for the case of linear reconstruction using the minimal > 2 in R2.

dual frame and for tight frames composed of a set ofthog- We need the following lemma.

onal bases. We show in Theorem 2 that, given a frame, a neces- ) 1 . .

sary condition to have consistency under linear reconstructionLemma 3:LetA” be a rectangular lattice with

is that the scalar quantizers acting on the coefficients are such M, = diag[A], A}]

IV. CONSISTENTRECONSTRUCTION INPERIODIC QUANTIZERS

A. Consistency Under Linear Reconstruction Using the
Minimal Dual Frame
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Fig. 9. Examples of Linearly Consistent Quantizers for{a3 3 and (b) forr = 4. Minimal dual frame is used for the linear reconstruction.

andA? another (generic) lattice whose generator matrix is paells inside the fundamental polytope of the C8tST. In fact,

rameterized as
2
M,: = (Al X

0 A2

42, d2 e ,.

Proof. See Appendix VI.

The consequence of this lemma is that, wii€nmeets the
conditions of the lemma, the vertices belonging\ty which
can also be written as

{wi} = {k1 (AToT + A303) + k2 (ATT — A3¢3) .

whereA?, A2 e R, 0 ¢ ]o, g[ 37)

Then, the following equations:
A cos(f) — A3sin(f) = q1 A7
A cos(f) + AZsin(f) = A7
A?sin(f) + A2 cos(
A?sin(f) — A2 cos(
whereqi, g2, g3, g4 € Q (rational numbers

are all satisfied iftM y» = diag[1/d?, 1/d3]M s,> whereSA?
is a sublattice ofA!, that is, Mg,- is given as in (19), and

given a set of latticed!, A2, ..., A", we can always easily
enumerate the positions of the vertices of each of them inside
CSSL in terms of the corresponding generator matrices and
check computationally whether consistency is satisfied or not.

We show in Fig. 9 examples of linear consistencyRihfor
redundancies = 3, 4, where the reconstruction vectors have
been represented by™

B. Consistent Reconstruction Algorithms With Improved
Performance

Given a regular EVQ, it is desirable for a good rate-distor-
tion performance that the reconstructions be located near the
centroids of the EVQ cells. It can be seen in Fig. 9 how the con-
sistent linear reconstructions given by the minimal dual frames
for r = 3, 4 are not located near the centroids corresponding
to a uniform distribution. In order to achieve a better perfor-
mance, it is necessary to use more intelligent (although simple
and low-complexity) reconstruction algorithms which make ex-
plicit use of the periodicity property.

1) Reconstruction With a Small Lookup Table in Periodic
EVQs: Given a periodic EVQ, it is possible to perform recon-
struction efficiently and accurately by using a small-size lookup
table scheme, which also ensures consistency. This can be done

have only a finite number of different (relative) positions withidor any periodic EVQ. Let us first consider the case of tight
the cellsCA' of the quantize)' (see, for example, Fig. 5(b)). frames composed by a set of orthogonal bases. Assume, for sim-
In Theorem 2, we use this fact so that if any of the previoyslicity and without loss of generality, th&f = 2 and letP, be

four equations (38)—(41) is not satisfied, we can always firtle smallest rectangular polytope which is a basic unit polytope
vertices where at least one component can have any arbitrfoythe partition defined by the EVQ. Notice that although the
position within a cell of the quantizep®, and this allows us to minimal unit cell C¢5* may not be rectangular, from Lemma

find (linearly) inconsistent cells.

Theorem 2: If the EVQ is a nonperiodic quantizerR¥, then
it is always possible to find a linearly inconsistent cell.
Proof. See Appendix VII.

1, sinceA! is rectangular, it is always possible to find a rect-
angular polytopeP, (with volume larger than the volume of
CS5L) which is also a (nonminimal) basic unit polytope. The
reason for choosing this basic rectangular polytope is that the re-
construction algorithm becomes even simpler in this case. Since

Thus, periodicity in an EVQ is a necessary condition tthe periodicity of the EVQ is determined by-S", the smallest
achieve consistency under linear reconstruction. Notice thatrectangular polytop@©“S™t coveringC$St is a valid candidate
a periodic EVQ there are only finitely many distinct EVQ cellsfor P,. It is clear that, due to the periodicity determined by
Checking whether linear consistency is satisfied, we only ne®¥SL, any vertical or horizontal shift oP“St by an integer
to check on the distinct EVQ cells, which are actually the EVQumber of step sizes\} is the horizontal step size an¥l} is
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N

obtained by averaging over all the vertices (extreme points) of
the cell (barycenter of the cell), which can be shown to be ex-
actly equal to the centroid of the corresponding (convex) cell
assuming a uniform distribution [25]. In the example shown in
Fig. 10, the needed lookup table consists of only 24 reconstruc-
tion vectors. The fundamental advantage provided by the peri-
odicity is that if the periodic EVQ is well designed, the size of
the lookup table can be made small, and does not increase with
the rate of the EVQ. Notice also that for this example, with the
reconstructions given by the lookup table, the EVQ cells are ac-
tually (minimum-distance) Voronoi cells. For the case of arbi-
trary EVQs, a valid polytop®, is always given by”$¢5t and a
similar reconstruction procedure can be followed. Neywvill
be calculated by quantizing with respectt65" which will not
be, in general, a rectangular lattice. For instance, for those peri-
odic EVQs based on hexagonal latticeqify a valid polytope
P, will be an hexagonal cell. For instance, in Fig. 8, a vatid
is illustrated.

Because of the periodicity in the structure of any periodic

EVQ, the information can be easily encoded in an embedded
(successive) manner by dividing it into two parts, the entropy

Fig. 10. Reconstruction algorithm based on lookup table: represents associated with the cellsP, }, and the conditional entropy as-

recpnstruction_vectors,*” 'the valu_es of tbe "quantized coefﬁ_cients WhiChSOCiated with the structure of cells that is inside eBghwhich
define the equivalent cell in the unit cél,, “x” represents the input vector. .

All the information is first translated to the unit cal,, then the reconstruction IS the same structure as#,. In Fig. 10, for instance, given a
vector of the equivalent cell is read, and finally it is translated back to theertain polytopeP;,, which can be found by quantizing the co-
proper cell. Notice that in this example, with this lookup table scheme, thgs;~: 1,1 ; ; ; 1 1
EVQ cells are actually (minimum-distance) Voronoi cells. '%ﬁfl_ClentS{yl,.yQ}, respectively, with step .SIZ@1 and2A; .
(this can be viewed as a coarse prequantization), the only addi-
) ) ) ) ) tional information that has to be stored to encode a vector is an
the vertical step size) gives rise to another polytope which alsex petween and24.

keeps periodicity. L The vectors of the lookup table can be easily calculated in
In Fig. 10, the polytope that has been choseln IS 'ndicatﬁﬂy dimensionV by using LP. In order to do so, for each EVQ
using bold line. Consider the polytopg, and letNy and Ny cg|in the polytopeP,, we run a large enough number of linear
be the number of step sizes that determine the length of the,g-ams with different cost vectors pointing in different direc-
S|desl(vert|cal anij horizontal) 6%,. For the example in Fig. ti5ns inRY and where the constraints are such that they define
;O,Nl =2 ant_:l]_\f2 = 2. Letw, be the center aP,. .leen any  the specific EVQ cell in terms of inequality constraints. This al-
input signalz, it is straightforward to find the equivalent poly-joys ys to calculate all the vertices of the corresponding EVQ
tope P, which is a translation oP, given by cell and by taking the average we obtain a good approximation
Pr =P, +niNIAL + nlNIAL of its centroid. Moreover, it is not necessary to calculate the
vectors of the lookup table for each rate of the EVQ because,
by linearity, all the vertices scale their coordinates linearly and
The basic idea is that given any EVQ o6l ? it is possible  simultaneously withAl. Therefore, we only need to calculate
to find very easily and quickly the equivalent cell (by equivathese vectorsncefor the rate corresponding th} = 1. This
lent cell we mean a congruent cell that is exactly equal in shapeocedure is explained in greater detail in [22].
and size) which is insidé®,. Given an input signat whose 2) Improved Linear Reconstruction in Periodic EVQs With
quantized coefficients arg, = PSQ(y), wherey = Fz, it Spherical Symmetryit is also possible to design periodic
is possible to translate the values of the quantized coefficieft§Qs with additional symmetry properties so that a very
to other valueg> which define the equivalent celi” V' that ~ simple improved linear reconstruction algorithm can be used to
is inside P,. This translation is illustrated in Fig. 10. Lef, obtain reconstructions that are located near the centroids of the
be the center of the polytop®,. In this particular case, sinceEVQ cells (assuming a uniform distribution). Let us consider a
P, is rectangular (cubic in higher dimensions), it is clear thgeriodic EVQ that satisfies the following two properties.

N
AVANAVEVINA

AR/~
o Nk oIk

LN TN TN

for some integers!, nl € 2. (43)

v), can be calculated by a simple floor operation beca®sts 1) ltis consistent under the usual linear reconstruction using
rectangular. If we led = v, — vy, then ifz,, is the reconstruc- the minimal dual frame.

tion vector corresponding WEVQ, the reconstruction corre-  2) These linear reconstruction vectors are located with cir-
sponding toC,;E"Q is justz = x, — d. The reconstructiog, cular symmetry (spherical symmetry fo¢ > 2) with

is obtained by just looking up the corresponding reconstruction  respect to the lattice points of either the CSES™ or a
vector stored in a lookup table. Notice that we can perform op-  coset (translation) of it.

timal reconstruction for the case of a uniform input distribution, Several examples have been found where this circular sym-
because, for each EVQ cell insid®,, we can store a vector metry is satisfied, as for instance, the two examples shown in
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Fig. 11. Examples of circular symmetryR¥: (a) r = 2. Squares represent the lattice points of a cosatef-. (b) r = 3. Squares represent the lattice points
of ACSL,

Fig. 11 for redundancies = 2 andr = 3, and the example 4 table may be large. However, note that for some important ap-
for dimensionV = 4 andr = 3. The circular symmetry makesplications, such as those involving very high-frequency analog
it simple to design a perturbation so that the reconstruction vesignals (e.g., optical signals), it is usually not feasible to use
tors that are obtained are close to the centroids with respect t@dundancies higher than = 3 or » = 4. Moreover, there
uniform distribution. exist also other systems called Polyphase A/D converters [38],
Let Z1, be the reconstruction given by a usual lattice quaifi39] that divide the bandwidth of the input signal into different
tizer with reproduction vectors given by the points of the CSharrow subbands (low dimension), and use a different low-rate
or a translation of it. For the examples shown in Fig. 11, th&D converter for each of the subband signals, that is, where
points of these lattices are represented by squares and oneauth of these A/D converters works at a low oversampling ratio.
the Voronoi cells is also highlighted with bold lines. It is veryOur system can also be designed theoretically for many different
simple to improve the linear reconstruction given by the mirdimensions as shown by Sloane and Beferull-Lozano in [22] but
imal dual frame by performing a perturbation the generated tesselations can become very complicated for di-
(44) mensionsN > 8 and the number of elements in the lookup
. ) ; ] o table is also large. FQ¥ < 8, itis possible to find constructions
wherezyp is the reconstruction given by the minimal dua,ch that the number of different cells (number of elements in
frame and the direction of the perturbation is determined by th&, lookup table) is sufficiently small.

difference vectotl = IMD — TLQ- Thus, the magnitude of the  \ye have compared the rate-distortion performance of a) usual
perturbation ig|d]|6A] and the value of has to be chosen ap-jinear reconstruction (minimal dual frame) with a nonperiodic
propriately so that the final reconstructigris as close as pos-

= ﬂA?MD + 5A%(ﬁMD — fiLQ)

vectorz and the scaling of the lattices changes only. The o the Jookup table scheme or the improved linear reconstruc-
main advantage of this method with respect to the lookup taligy, (iheir difference in performance is negligible in these ex-

scheme is that we do not need a lookup table to store the repty,|as)- and c) usual linear reconstruction (minimal dual frame)

duction vectors of the cells contained inside the minimal pefiseq yith a periodic EVQ with different quantization step sizes.

odic _unit of the tesselation. However, further research is NeCa$ie pit rate associated with the quantized tight frame coeffi-
sary In ordertq understand what are the necessary and sufficigRhys is obtained by measuring the joint entropy of all these
conditions which ensure that the property of circular symmetgy, ii>e coefficients, and the distortion is measured in terms of
is satisfied. the MSE. The input source that has been used is a 2-D Gaussian
distribution\/(0, 02I) with o = 0.3. The periodic EVQs that
have been used are the ones shown in Figs. 11(a) and 6(a), re-
spectively, forr = 2 andr = 3. For these two examples, the
Our designs are more suitable to be used for small redund#ate-distortion performances of the lookup table scheme and the
cies and low to moderate dimensions, and have a complexityproved linear reconstruction using a periodic EVQ are ap-
similar to the usual linear reconstruction. At high redundancig¥oximately the same because the reconstructions can be taken
it is always possible to find designs but they may not be vetg be practically the same and obviously, the associated rate is
efficient in terms of coding due to the number of constrain&lso the same.
in the quantization step sizes that have to be met and also thé can be seen in Fig. 12 that the best performance is clearly
number of reproductions which have to be stored in the lookaghieved by the lookup table and the improved linear recon-

V. NUMERICAL RESULTS FORSOME PERIODIC EVQ DESIGNS
AND APPLICATIONS
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Fig. 12. Comparison, for a 2-D uncorrelated Gaussian source, of 1) usual linear reconstruction with a nonperiodic quantizer with equal gstepization
sizes (classic system); 2) reconstruction in a periodic EVQ with different quantization step sizes using either the lookup table scheme oretthdiriegrov
reconstruction (the difference in performance for these two systems is negligible for these examples); 3) usual linear reconstruction imagizediwith
different quantization step sizes. The values of MSE are given per vector in decibels and the bit rate is given in bits per vector. Part (a) cortbspExaasyile
shown in Fig. 11(a) withr = 2 and part (b) corresponds to the example shown in Fig. 6(a)mvith3

struction systems, with a gain of around 0.2 dB+#oe 2 and achieves, in all cases, a superior performance over the nonperi-
a gain of around 0.7 dB far = 3 over the classic system thatodic EVQ.
uses linear reconstruction and the same quantization step sizes.

At the same time, Fig. 12 also shows clearly the fact thad, Implications for Oversampled A/D Conversion

a linearly consistent EVQ does not necessarily yield a better|; can be shown that the oversampling of a periodic band-lim-
rate-distortion performance tharddferentlinearly nonconsis- jieq signal can be expressed as a frame operat@fiwhose
tent EVQ atthe same rate, that s, by enforcing a periodic struggpyt are the Fourier coefficients (finite discrete Fourier expan-
ture we may get a quantizer with worse performance than afion) of the signal that is sampled [4]. As a particular illus-
other quantizer whose structure results in linear inconsistengytive case, if we consider the space of sinusoids of pefiod
hpwever, when we use a per|0d|_c_EVQ and enforce the CAhanned by{cos(2rt/T), sin(2xt/T)}, the sampling and uni-
sistent reconstructions to be sufficiently close to the real cegym scalar quantization in amplitude of these signals is equiva-
troids by using our reconstruction methods, the periodic EVfgnt to the quantization of an overcomplete expansion (frame) in
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OVERLOADREGION APPENDIX |
K e e e e e s e e A A PROOF OFFACT 1

oL — = = = — =] SinceSA is a sublattice oA, SA is a subgroup of the addi-

o6F . —— . _—— . _— . —— . — . —— 1 tivegroupAl, and the result follows directly by group theory.
' S R ' | The periodicity is determined by the subgroup and, therefore,
the minimal periodic unit is given by the tiling contained in
C3A, the fundamental polytope associated with the sublattice

04f —_ —_ : —_—— —— —_ . —_—

0.2 —_ —_ : _ R _ J—

o T - = " "‘ - — —~ 7 1 SA. Since the subgroup structure is true for any dimengign
o2r L — = = = — 1 the periodicity property is also true for any dimensiyn [
S e ol B B e ol
sl L — = = = = —— ] APPENDIX I

PROOF OFLEMMA 1

P N S S R LetM,; = Ay, M ,: and consider the matrid ,; given by
: : OVERLOAD REGION =

i L . L ) 1 5
0 0.1 0.2 03 04 o5 08 0.7 0.8 0.9 1 a7 0 k 11 k{z
. — 1
Fig. 13. Scalar quantizers (time domain) corresponding to the EVQ in d}, _k21 k22

Fig. 6(a).

whose inverse is equal to

R2. Each sampling time is directly associated with the vector 1 k;éd{ k{éd{;
@i = [cos(2rt;/T), sin(27t;/T)] and all these vectors define (Ap) ' = e
the equivalent frame iR2. Moreover, by Parseval’s theorem, k11kas + k127‘21 —kaydy Fyydy
we have that 1 (t]n t{2> 5
“Di\g
MSE = [|5(1) — y(1)|F = [|& — || DIty ty

wherej(t) is the reconstructed sinusoid, that is, the MSE of theheret;, . € Z andD’ € Z, is the denominator that is left after
reconstructed sinusoidal signal in the converter is the sameatighe common factors have been canceled out. For gavk
the MSE that occurs on the frame domain. Thus, given a tighefine the lattice\”" with generator matrix given by

frame inR? together with a set of different step sizes such that ) )

a periodic EVQ is obtained, if we translate the values of angle x» =D’ (Axi) T My = D7 (Ay;) T Ay My =D’ M 1.

to sampling times, we can obtain the scalar quantizers that are 47
applied at the corresponding sampling times. For instance, the

quantizer in Fig. 6(a) gives rise to a converter with uniform sarhlotice thatA?" C A7 is a sublattice ofA’ because the ma-

pling in time and with two different scalar quantizers, one wittix D?(A,;)~" has integer entries. Let.m. (a1, ag, - . ., a,)
a step size larger than the other one (see Fig. 13). be theleast common multiplef a1, as, ..., a., that iS, the
smallest positive integer that all, as, ..., a,. divide. After
VI. CONCLUSION calculatingM ,;» Vj =1, ..., r, we defineD as

The basic results presented in this paper are as follows. We D= l.c.m(Dl, D% ..., D)
study the problem of achieving consistency in quantized over-
complete expansions with low-complexity algorithms. Consisnd the lattice\ with generator matrisM . = DM 1, which
tency leads to EVQs which are regular. In order to achieve thiseans that\° is an integer scaling af®. Thus, we have that

goal, we allow the use of different step sizes in the scalar quamtic ¢ AY" ¢ A9 ¢ AL, Vj = 1, ..., r. This implies clearly
zation of the expansion coefficients and construct EVQs havitigatA° C (A1 NA2N---NA”") and, therefore)® is a sublattice
cells with a periodic structure. Periodic quantizers are definedafithe CSLASL. ]

terms of lattices and sublattices with certain properties and we
give various design examples based on different tight frames.
On the one hand, we show that periodicity is a necessary con-
dition to have consistency under simple linear reconstruction.
On the other hand, a periodic structure makes it possible to reSinceA“S" is the finest sublattice of all the latticés, j =
construct efficiently and accurately using either a small lookup ..., r, if we consider any celC'CSt, the relative positions
table whose size does not increase with the rate of the quantiakthe lattice points{v]} (vertices of the cells associated with
or using a simple improved linear reconstruction for periodit?) for each latticeA’, which are inside the cellSt, these
EVQs with certain convenient structural properties. Regardipgsitions are always the same independently of which(¢et
future work, it should be noticed that further research is needisdchosen. This immediately implies that the structure of the
in order to make it possible to apply our approach to A/D comesulting EVQ is a periodic repetition of the structure of cells
version of arbitrary band-limited signals. that is inside the fundamental polytop&™>" of the CSL. [

APPENDIX Il
PROOF OFLEMMA 2
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(@)
Fig. 14. Two limiting cases for the step siz&§ andA2 of the quantizer)?.

APPENDIX IV
PROOF OFFACT 2

The proof follows in a straightforward manner by direct cal-

culation from the definition of sublattice, which implies that

alAl 0 cos(f) sin(6)
0 A} —sin(f) cos(f)
kit Al kAl
:< 1A k2 2>. (48)
—ko1 A} koo AL

Hence, a set of sufficient conditions is given by
c1Aifcos(8), sin(0)] = [k11 AT, k12 Aj]
coAY[—sin(f), cos(0)] = [—ka1 AL, k2o A}]
ki1, k12, ka1, ko2 € 2. (49)

If we use the variablg =
tions, we get that

¢ cos(0) =kqy (50)
crsin(f) = Bkia (51)
—cofsin(f) = —koy (52)
o cos(6) = koo (53)

Without loss of generality, we consider the céisec § < 7.
This constrains the signs of all the integéis, k12, k21, and
koo to be positive. Solving the previous equations foand f

results in
k11k21 k12k21
= 5 9 = .
b V k12k22 ) V k11k22

The values for; andc, follow from (50) and (51).

(54)

APPENDIX V
GEOMETRIC CONSTRAINTS ON THESTEP SIZES

Let us consider for simplicity the caseiof= 2. The approach
we have followed is to constrain the possible step sixés

A2 to have values between the two limiting cases that happen
when the Voronoi region of one quantizer is totally inside of a
Voronoi cell of the other quantizer, as shown in Fig. 14. These

2—% and simplify the previous equa-
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(b)

two limiting cases establish upper and lower bounds for the pair
(d?, d%) such that all pairs in between will satisfy the property.
By using elemental trigonometry, we can calculate upper and
lower bounds for the paifd?, d2).
From Fig. 14(a), we get that

ki1k3s + kiokd,

k31 + k3,
ki1k3s + kiokd,

ki + ki

(55)

A sin(f) + A cos(f) > A} = d}

v

A7sin(f) + Ajcos(f) > A3 = d3

v

which gives lower bounds fof? andd3.
In the same way, from Fig. 14(b), we get that

k3, k2

Al sin(f) + AZcos(f) > Ay = =t % > 1
2 g 1 k| k5
A5 sin(f) + Al cos(f) > A = d2 + d2 >1 (56)

which gives upper bounds fa¥ andd?.
For instance, in Example 1, the pair#, d3) are constrained

by

di > 1. d3 >3
22+ d2 >d2d2, 3dP+di>d2d2 (57)
which limits the possible values ¢f?, d2) to

{(2.3), (2,4), (2,5), (2,6), (2,7), (3,3)}.
APPENDIX VI
PROOF OFLEMMA 3

By adding and subtracting (38) and (39), and doing the same
for (40) and (41), we get the following equivalent set of equa-
tions:
q1 + q2

Afcos(6) = At = q1A] (58)
A%mmZQ%@N:’A§ (59)
AZ sin(6) = # NN, (60)
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Fig. 15. Case 1 (Case 2 is Case 1 rotatel) Bthe proof of the Theorem. It is not possible (if the EVQ is not periodic) to keep linear consistency simultaneously
in the two (small) EVQ cells shown.

A2 cos(f) = B~ AL = ¢,A} (61) sistent cell, we consider the vertices/of. Any vertex can be
2 written as

with q3, g3, 43, ¢ € Q.
e e w= k1 (AT@] + A393) + ko (ATl — Ade3)

Assume that (58)—(61) are satisfied. Manipulating these equa- ki, ke € Z. (70)
tions, we get . .
The components of these lattice points are
2
Dividing (58) and (59),tan(f) = A—; q—? 62) “h=
Ag o k1 (A2 cos(6) — A2 sin(6)) +ka (A2 cos(6) + A2 sin(6))
Dividing (60) and (61),tan(6) = % q_;?, (63) k1 (A% sin(8)+ A3 cos(6)) +k2 (A sin(h) — A3 cos(6))
A2 Al Zi‘ ki ke €2, (71)
Dividing (58) and (61), A—% = A—} q—,l (64) Notice that the two terms in the first component coincide with
Ag A% ? the left-hand-sides of (38) and (39) and the two terms in the
Dividing (59) and (60), _é = _f q_,l (65) second component coincide with the left-hand-sides of (40) and
Ay Ard (41). Applying Lemma 3, ifQ? is not constructed so that the
Solving these equations and expressing all the step sizes in tef¥& is @ periodic quantizer, that is, if
of Al we obtain M ,: # diag[1/d3, 1/d3]M s>
T with SA? being a geometrically scaled-similar sublattice\df
tan(d) =/ qfq? (66) at least one of the following equationsriet satisfied:
7194 (first component inw)
! 1 .
Al =pAl = [ 1%2 AL (67) Afcos(f) — AZsin(f) = 1A} (72)
344 (first component inw)
/
A2 = i\ Al (68) A? cos(f) + Alsin(f) = A7 (73)
cos(f) .
(second component @)
AZo [Bn2 G [0 1 G g Afsin(f) + A3 cos(0) = g3A; (74)
0244 cos(f) |/ a3d; cos(6) (second component i)
(69) A?sin(f) — Al cos() = qu A5 (75)
If we compare (66)—(69) with (19) aznd (20), we have otz)tained whereqi, g2, g3, g2 € Q

. . k K2 k2, . .
exactly the same equations with = s ¢ = R g = 77 thatis, atleast ong; ¢ Q. We now recall one of the properties

andg), = kf;’. Since the final set of equations is equivalent t8f themod function, which is that itz = nv whereu ¢ Q and
the first four equations (38)—(41), it is clear that this lemma f& € B then{kzmod v, k € Z} =0, v[. In the case of having

also true in the other direction. O # = quWwithgq € Q, then, the sefkzmodv, k € Z} is com-
posed only of a finite number of distinct values. This gives two

cases. Case 1: if at least one of the equations (38), (39) is not
satisfied, then the first (horizontal) component in (71) of the lat-
tice points ofA? can have an arbitrary value (moduld) (see
Without loss of generality, we can assume a quantizér Fig. 15) and Case 2: if at least one of the equations (40), (41) is
associated with a lattica' where F' = I,,, andM,. = not satisfied, then the second (vertical) component in (71) can
diag[A1, Al]. A general quantize®? can be associated with have an arbitrary value (modult}). Notice that Case 1 and
a lattice A2. We denote by|; the components aof expressed Case 2 are equivalent because the only difference between them
in the basig{ ¢!, ¢}, i = 1, 2, wherei = 1 indicates, without is which coordinate fails to have a finite number of different
loss of generality, the natural basis. In order to find an incomalues. Case 1 is the one that is actually represented graphically

APPENDIX VII
PROOF OFTHEOREM 2
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in Fig. 15, and Case 2 corresponds to the Fig. 15 rotated 90 de- I, A7 ol < L, A7 + A (83)
grees. Thus, the proof of Case 1 and Case 2 is exactly the same, Iygﬁé T2l IyzA% + Al
and we can consider only Case 1 without loss of generality. A? 0

Thus, consider that at least one of the equations (38), (39) is vi|a — < 01> <Zi|p <wila+ <A2> (84)
not satisfied and also let first both (40), (41) be satisfied, thus 2
allowing a finite number of values (moduldy) in the second 0 . A2
component. vol> = <A§> Zal2 < vzl + < 0 > (85)

Then, if we apply the previous property of thevd function, h
we can find a vertex of A% of the form where

(LA} +~ 1 _ cos(0) 1, A} +sin(0)y; + cos(f)er
vh = ( Yy ) ’ vy €0, Ay vil> = —sin(6) xlAl + cos(0)y; — sin(f)eq
wherel, A} <y < (I, +1)A3 and I, I, € Z. (76) vl = ( cos(0) (1., + 1)A} + sin(8)ys — COS(9)62>
2|2

Consider now the following two input vectats andz, defined sin(0) (L., + 1)Af + cos(8)y2 + sin(f)e;

as follows: . From the first component inequality in either (82) or (83), and
o1l =v1] — <5> _ <1z1A1 +e - 5) using the fact that; > 0 ande, > 0 can be taken as small as
0 (! we want, we get the following lower bound fa{:
5 L, + DAY — ey + 6
Ta|y =val1 + (0) = <( ’ )y; 2 ) (77) A7 > Alcos(f) + Alsin(f). (86)
wherev; = vy .}, v2 = Viy=Al—es}> Al > 6 Similarly, from (84) and (85), we can obtain, after operating,
€ >0, A} > 6> 0, 6§ < min(eq, €) lower bounds forAf andA3. Let y; = y; mod Aj, i = 1, 2,
AL <y < (I, +1)AL that is, 1 =y1 — I, A% andpus =yo—I,,, A}. The actual lower
Iy 8o <1 v 2 bounds forA? andA2 depend on the parameters and >
92A2<y2<(y2+1)A% 9 1 1. .
I Iny, I, I, € 1. A7 > Ajcos(f) + Agsin(f) — 2sin(f) g 1
If we apply the quantizer®® and Q? to the input vectora, (tightest ifug < %) (87)
andz, and then take the average, the final reconstructigns ) L )
andz» given by the EVQ are A3 > Aysin(f) + Ay cos(f) — 2cos(0)p2
1 2 cos 2 sin € . . Al
) LA+ 50 - 2@ B 4o (tlghtest if1 < —2> (88)
T |1 - I Al Al A2 sin(6) A2 cos(0) ; (78) 2
+ T t— 7+ % A? > Alcos(f) — Absin(f) + 2sin(6) s
1 1 A cos(@) Ag sin(6) e Al
£:2|1 _ I’I’QA + 4 + + 4 2 ) (79) (tlghtest if[lQ Z 72> (89)
IVQAQ + Aé + A2 5111(9) A cos(9) + y)
4 > Al 6) — AJ f)+2 0
In order to be able to express the constralnts to satisfy c0n5|s- 1sin(f) — Az cos(#) + 2 cos(f) N
tency along the two directions determined by the second basis (tightest if g > ) (90)
{p?, ¥3}, we also expres#; andz, with their components 2

given with respect to this second basis (this is actually equivalegk show next that it is always possible to find poistsandz
to a clockwise rotation of the plane by an anglé/pbs shown sychthag;, = p». Since (74) and (75) are satisfied, §gt= o

in (80) and (81) at the bottom of the page. For notational cogndg, = 22, such thaged(ny, mq) =1 andged(na, ms) =1.
venience, assume that the symbgls< are component-wise Then, we have that

relation symbols. Then, all the constraints that have to be satis-
fied to achieve consistency are given by the following compo- {k1 (A7 sin(#) + A3 cos(6))

nent-wise inequalities: + ko (Afsin(f) — A3 cos(f)) mod A3, ki, ks € Z}
I, Al I, Al + Al 1 1 _ 1
( 1 i>fﬁlll<< ‘Al i) (82) _fp Be 28 (mma DA gy
I, A3 I, A5+ A3 mima’ mims m1ms
A I_T/IA% COS(H) + Iy1A225in(6) + A c:zs(@) + A, sin(@) _ % + sin(20)y1 + COS<20)61
$1|2 = (80)

1 CcOs 1 SiIl L Al CcOSs L :2 CcOS 1 Sill €
SN TS B o
IZ)A% COS(G) + yzA sin(6) + 3Al ZOS(G) + Al séi;l(&) + ATf + sin(29)y2 _ cos(B)e2

N 2 2 2
T2l2 = I,,ALcos()  3Alsin(8) , Alcos(d) A2 9): in(6 ’ (81)
—I,, Al sin(f) + Dz22c0s®) _ 38, 5in(0) | Bpcosl) _ 2y 4 cos(B)yz 4 sin(B)es
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This directly implies that we can always (by varyikigandks in [5]
(91)) find two vertice; andw, (satisfying thatu; = us = p)
of the following form: [6]
| leA% + €1 | ((Iwg —|—1)A% —62)
v = v = .
o IUIA% + 12 o [yzA% + [7]
(92) 18

Consider now the case that at least one of the equations (74),
(75) were not satisfied. Then, it is also clear that we could fin 1[58]]
cells with values of:; andyus as close to each other as wanted
because we have a continuum of values (modik) in this
component, and the same conclusions in the Proofwould follow1]
Consider first the case @f; = us = pu < 2 . In this case,
if we multiply (87) and (88) bycos(6) andsin(f), respectively,
and then we sum them, making use of the equatitf(#) +
sin(#) = 1, we obtain an upper bound fdx! given by

Al < AZcos() + AZcos(6) + sin(26) (2 — AL).  (93)
In order for the upper (93) and lower (86) boundsﬁo}f to be

[12]
[13]
(14]

(15]

(16]
the only vaI|d vaIue fopisp = =2 Consrder now the case of
Bl = p2 = p > 22 |n the same Way, if we multiply (89) and
(90) by cos(8) andsm( ), respectively, and we sum them, we
obtain an upper bound fak! given by

Af < Afcos() + AZsin(6) +sin(260)(AY —2u).  (94)

As before, for the upper (94) and lower (87) bounds to be consig!?]
tent, we neeqs < < 22 which implies again that = =2. Thus,
inorderto achreve consistency simultaneously for the input ved20]
tors:cllandzg, as defined in (92), it is necessary to have always
= %. But this is clearly impossible because, for instance, by21]
taking vertices withky, ko given byk; = lymq andky = loms,

l1, 1> € Z'in (91), we have alwayg = 0. Therefore, we con- [
clude that it is impossible to achieve consistency for the two

(17]

(18]

input vectorse; andz, simultaneously. o [
[24]
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