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Abstract—In this paper, we study construction of structured reg-
ular quantizers for overcomplete expansions in . Our goal is to
design structured quantizers which allow simple reconstruction al-
gorithms with low complexity and which have good performance in
terms of accuracy. Most related work to date in quantized redun-
dant expansions has assumed that the same uniform scalar quan-
tizer was used on all the expansion coefficients. Several approaches
have been proposed to improve the reconstruction accuracy, with
some of these methods having significant complexity. Instead, we
consider the joint design of the overcomplete expansion and the
scalar quantizers (allowing different step sizes) in such a way as to
produce an equivalent vector quantizer (EVQ) with periodic struc-
ture. The construction of a periodic quantizer is based on lattices
in and the concept of geometrically scaled-similar sublattices.
The periodicity makes it possible to achieve good accuracy using
simple reconstruction algorithms (e.g., linear reconstruction or a
small lookup table).

Index Terms—Consistency, intersection lattice, overcomplete ex-
pansions, periodic quantizers, tight frames.

I. INTRODUCTION AND MOTIVATION

QUANTIZED redundant expansions are useful in different
applications such as oversampled analog-to-digital (A/D)
conversion of band-limited signals [1]–[5] and multiple-

description quantization [6], [7], [36], [37]. In the first case,
the purpose of using redundant expansions is to attain accurate
digital signal representations under scenarios where the cost of
using high-rate quantization is much higher than that of having
a high oversampling or redundancy. The most important case is
the A/D conversion of band-limited signals, where in order to
use high-rate quantization to discretize the amplitude it is nec-
essary to use expensive high-precision analog circuitry. Instead,
accuracy is attained by performing oversampling and exploiting
this redundancy to reduce the loss of information caused by
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low-resolution quantization. Some other systems have been pro-
posed in the context of pattern recognition for images, where
overcomplete transforms are used to emulate the human visual
system, which has a high degree of oversampling in orientation
and scale [8], [9]. Moreover, an increase in resolution due to an-
gular oversampling in the frequency domain has been observed
experimentally for quantized (two-dimensional (2-D)) steerable
transforms [10], so that increasing the number of orientations
yields a gain in energy compaction [11]. Quantized overcom-
plete expansions also arise in the context of joint source–channel
coding for erasure channels [6], [7], [36], [37].

There are two major factors that determine the accuracy that
can be attained using quantized overcomplete expansions: the
reconstruction algorithm and the quantization scheme. There
has been extensive research work aiming at finding reconstruc-
tion algorithms that are optimal or near optimal in terms of
asymptotic (large redundancy values) accuracy. However, the
quantization scheme has been always assumed to be a uniform
scalar quantization with the same step size for all expansion co-
efficients. In this paper, we explore efficient quantization de-
signs for overcomplete expansions.

Reconstruction algorithms have been studied following two
main approaches. The first one is based on modeling the quan-
tization noise as an additive white noise uncorrelated with the
signal that is quantized. These models are sometimes conve-
nient for analysis and lead to useful results in some scenarios
[12], [13]. It can be shown that if a white-noise model is as-
sumed for the scalar quantization noise of the coefficients and
the same step size is used to quantize all the coefficients, the op-
timal reconstruction is given by the usual linear reconstruction
[14], where linear reconstruction consists of first projecting the
signal into a set of vectors (with cardinal larger than the dimen-
sion), obtaining a set of coefficients, and then reconstructing by
taking a simple weighted average of these coefficients. Thus, in
practice, linear reconstruction is always used when the assump-
tions leading to this analysis are valid. In the context of tight
frames, an important class of overcomplete expansions, theo-
retical analysis shows (under this quantization scheme and sto-
chastic model) that linear reconstruction [14] gives a reduction
in the power of each noise component (quantization noise of
each projection or coefficient) that is proportional to the redun-
dancy of the tight frame. The same decay of the mean square
error (MSE) in the signal domain can be shown theoretically
in the cases of tight frames in , Weyl–Heisenberg frames
in , and in classical oversampled A/D conversion with
uniform sampling and linear reconstruction (tight sinc frames)
where MSE [12]. The behavior of the MSE
is observed experimentally when uniform quantization with the
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same step size is used and the step size is small enough so that
the white-noise model approximately applies. One of the rea-
sons for linear reconstruction not to be optimal in some cases
is that the reconstructed signal may not be consistent with the
original signal in the sense that the output obtained from requan-
tizing the reconstructed signal is different than the output ob-
tained when quantizing the original signal, implying a larger re-
construction error on average. On the other hand, it has not been
studied whether using a more intelligent quantization system
allowing in general different step sizes to quantize the coeffi-
cients can lead to improvements in the rate-distortion perfor-
mance when reconstructing with a linear reconstruction algo-
rithm. This is one of the issues that is addressed in this paper.

The second approach is completely based on a deterministic
analysis of the quantization noise. This deterministic approach
was introduced by Thao and Vetterli [4] and later extended in
[1], [3], [5]. This deterministic analysis based on hard bounds
of the quantization noise led to two nonlinear reconstruction
algorithms for frames in , one based on projection on convex
sets (POCS) theory [15], [4], [17], [18] and the other one based
on linear programming (LP) [5]. The main result is that these
reconstruction algorithms ensure that the reconstruction vector
falls always inside the same cell as the input vector. These
reconstructions are calledconsistentand in quantization terms
this means that the equivalent quantizer is regular. It was
observed experimentally that for high enough redundancies

and for uniform quantization of all the frame coefficients
consistent reconstruction algorithms have an asymptotic MSE
behavior of . Moreover, Thao and Vetterli proved
(under some mild conditions) that consistency guarantees
this asymptotic behavior for high enough redundancies
for the case of oversampled A/D conversion of-periodic
band-limited continuous-time signals, which can be viewed
as a frame expansion in with respect to a certain discrete
Fourier transform (DFT)-like frame. Later, Cvetkovic´ [1], [2]
proved this fact under some mild restrictions for overcomplete
expansions in in general. Cvetkovic´ proposed a more effi-
cient reconstruction algorithm calledsemilinear reconstruction
algorithm which also attains asymptotically an accuracy of

without satisfying consistency. This algorithm is
based on the positions of the threshold crossings and identi-
fying a good linear system to solve. Moreover, Cvetkovic´ and
Daubechies extended this idea to be used in the context of
single-bit oversampled A/D conversion where a deterministic
dither is used in order to force threshold-crossing locations
with certain properties which allow exponential accuracy in the
bit rate [16]. Recently, Rangan and Goyal [19] have proposed
a recursive algorithm using subtractive dithered quantization
which also attains asymptotically an accuracy of ,
again, without ensuring consistency.

The crucial observation that motivates our work is that in
all the previous work a very simple quantization scheme has
been assumed which requires sophisticated reconstruction al-
gorithms [15], [4], [17]–[19], [1], [2] in order to improve its ac-
curacy with respect to the classic approach [14] (simple quanti-
zation and linear reconstruction). Instead, in this paper, we pose
the following question: are there quantization schemes where
there is no difference in performance between using simple re-

construction algorithms (e.g., linear or of similar complexity)
and more sophisticated reconstruction methods? Although all
the improved reconstruction algorithms that have been proposed
so far can achieve very good accuracy, the computational com-
plexity of these methods (although different in each case), for a
given redundancy is higher than that of linear reconstruction [5],
[4]. Since simple reconstructions (e.g., linear or lookup table)
are normally preferable in practical scenarios, in our work we
assume that a simple reconstruction will be used and the main
focus is to explore whether better quantization designs, e.g.,
using different step sizes, may have the advantage of achieving
a performance which is superior with respect to simple quanti-
zation methods, e.g., using the same step size. In other words,
our goal is to provide the tools to design the overcomplete ex-
pansions and the corresponding quantization system so that the
overall system behaves like a regular quantizer and achieves
the best possible performance using simple reconstruction al-
gorithms. Designing the quantization system with a structure
that forces consistency, using the usual linear reconstruction,
may result in worse performance, in terms of rate distortion,
than adifferentsystem whose structure results in inconsistency.
However, we will show that because of the periodic structure of
the quantization system, very simple reconstruction techniques
(e.g., those based on a lookup table) can be designed which sig-
nificantly outperform linear reconstruction.

The fundamental idea that we use in order to achieve this goal
is to design jointly the overcomplete expansion together with
the quantization system by choosing carefully the step sizes of
the scalar quantizers so that the whole system is equivalent to
a vector quantizer in with a periodic structure. First, we
define an equivalent vector quantizer (EVQ) given a quantiza-
tion scheme and a reconstruction algorithm. Then, based on this
equivalence, we introduce the concept of periodic quantizers
and show how to construct and design periodic quantizers. This
periodic structure can be conveniently characterized and param-
eterized in terms of lattices and sublattices. Next, we explain
the advantages that are provided by this periodic structure and
show how the periodic structure in the EVQ is a necessary con-
dition to achieve consistency under the usual linear reconstruc-
tion. Once a periodic structure is present, the number of different
cells of this vector quantizer becomes finite and although a suffi-
cient condition cannot be expressed formally, it is very simple to
check whether consistency is satisfied or not. For a given family
of vectors and a set of different step sizes which yield a periodic
vector quantizer in , it is possible to reconstruct by using
a small lookup table, where the reconstruction vectors can be
chosen to be the centroids of the cells with respect to a uniform
distribution. Moreover, it is also possible to design systems such
that the EVQ has some additional symmetry which allows to use
a very simple improved linear reconstruction. Our system pro-
vides excellent performance while having the same complexity
as linear reconstruction, but is more suitable to be used infor
low to moderate values of the dimensionand for low values
of redundancy [20], [21]. Although we present examples and
results for small redundancies, it is clearly shown that the basic
theoretical idea of periodicity can be extended to higher redun-
dancies and that the problem of finding good quantizers with
higher redundancies consists of searching for good lattices and
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sublattices with certain properties. Extensions to higher dimen-
sions have been analyzed by Sloane and Beferull-Lozano re-
cently and can be found in [22]. On the other hand, although we
believe that multiple description coding is also a potential appli-
cation of our framework, we have not explored this application
in this paper.

This paper is organized as follows. In Section II, we define the
EVQ and the property of consistency. Section III describes the
construction and design of periodic quantizers in terms of lat-
tices. In Section IV, it is first shown that the periodic structure in
the EVQ is a necessary condition to achieve consistency under
the usual linear reconstruction, and then, low-complexity recon-
struction schemes in periodic quantizers are analyzed. Finally,
numerical results for some specific designs inare shown in
Section V as well as a simple direct application of our designs
in to oversampled A/D conversion of sinusoid signals.

II. L INEAR RECONSTRUCTION, EQUIVALENT VECTOR

QUANTIZER, AND CONSISTENCY

In this section, we first review the basic concept of a tight
frame in , and express a linear reconstruction in terms of an
EVQ, which can be parameterized in terms of lattices.

A. Linear Reconstruction in Tight Frames Without
Quantization

For the sake of clarity, we review briefly the definitions and
main properties of tight frames.

Definition 1: Let where ,
. is called a frame if there exist , and

such that

(1)

and are called lower and upper frame bounds. Given a
frame , the associated frame operator: is given
by an matrix defined as

(2)

Definition 2: The minimal dual frame of is defined as
where

(3)

Definition 3: A frame is called a tight frame if ,
that is, if the lower and upper bounds are equal.

The following properties are satisfied for a tight frame.
1) The minimal dual frame of a tight frame is given by

with (4)

and the redundancy of the tight frame is equal to the frame
bounds, that is, .

2) , the expansion with respect to the frame
whose coefficients have the minimum possible norm

(most economical expansion) is given by

(5)

In this section, we restrict the discussion to the case of tight
frames that are composed by a set of different orthogonal
bases. This is done without loss of generality for purposes of
clarity because the geometric analysis is much simpler. Exten-
sions to generic frames are simple and can be obtained by using
in the reconstruction the corresponding dual frames, which will
be different in each case. With this restriction, we can group the
vectors that compose the tight frame as ,
where is the th basis.

Remark on Notation:In this paper, we make an extensive
use of superscripts and subscripts. For instance, in a tight frame
composed of orthogonal bases, the superscript indi-
cates the th basis and the subscriptindicates the th vector
of the th basis. Also, in order to avoid confusion with the su-
perscripts, to represent a numberraised to the power of (
being any real number), we will use , and we will use for
indexation ( th element), with .

For the sake of simplicity, we restrict most of the equations
and expressions of this section, without any loss of generality,
to the case of . For , the frame contains
unitary vectors that form orthogonal bases and the frame op-
erator can be written as . If we
define each orthogonal matrix as , then we
call the 2-D vector of coefficients associated
with the th basis, which is given by . The -di-
mensional vector of coefficients will be expressed as

.

B. EVQ for Linear Reconstruction

Assume that scalar quantization is applied to the frame coef-
ficients. Let be a uniform scalar quantizer with step size

and decision points . This is a particular choice
without any loss of generality, that is, what follows is also valid
for scalar quantizers with decision points
where is a reconstruction point.

Then, we define as an -di-
mensional product scalar quantizer (PSQ) applied to the-di-
mensional vector of coefficients, i.e., each of the components
of the vector are quantized by a corresponding scalar quan-
tizer (see Fig. 1).

Given a tight frame and a PSQ, we define the following
quantizer.

Definition 4: A quantizer , consists of the
following.

1) A set of rectangular quantization cells induced by
the scalar uniform quantizers which are ap-
plied to the frame coefficients associated with theth
basis.
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Fig. 1. Definition of the EVQ in for a tight frame based on the linear
reconstruction given by the minimal dual frame. A similar definition for the
EVQ can be given for any general linear reconstruction algorithm.

2) A mapping from the set of cells to a set of
reconstructions (outputs) such that satisfying

the reconstruction vector is given by

(6)

The step size associated with the scalar quantizer is de-
noted by . The vertices of the cells form what is called a
real 2-D lattice.

Definition 5: An -dimensional lattice is a discrete sub-
group of which is defined as the set of points obtained by
taking integral linear combinations of linearly independent
vectors

(7)

The set of vectors are the generator (basis) vectors
of the lattice and the matrix is called
the generator matrix of the lattice. Thus, the vertices of the cells

form a lattice having generator matrix

Because of the orthogonality, the basis vectors of the lattice
point in the same directions as the unitary vectors that compose

, but in general, it is clear that this is not the case when the
tight frame is not composed by a set of orthogonal bases, as
we will see in Section III. There are an infinite number of pos-
sible (minimal) bases that can be used for this lattice. We will
always use, as a basis for the lattice, the th orthogonal basis

. In this way, the outputs of quantizer can be ex-
pressed directly in terms of the generator matrix . Notice
that the cells associated with the quantizerare convex poly-
topes whose vertices are all in the lattice.

Given a set of quantizers , , defined as above,
we now introduce the concept of EVQ as follows.

Definition 6: An EVQ consists of the following.

1) A set of quantization cells formed by the intersection of
the rectangular cells of the quantizers .

2) A mapping from the set of cells to a set of
reconstructions given by

where (8)

Thus, the linear reconstruction, as represented in Fig. 1 and
shown in Fig. 2(b), consists of taking the geometrical average
point among the different reconstructions, .

The PSQ in leads to an EVQ in and the output of
the EVQ can be written as a linear combination of the outputs
from each 2-D quantizer where it can be seen that the set
of outputs (reconstructions) of quantizer forms a coset of
the lattice . Fig. 2(a) illustrates the partition generated by the
EVQ for an example where , and the tight frame and
associated step sizes are

(9)

Fig. 2(b) illustrates how the final reconstruction vectoris
obtained. Notice that since the cells generated by the quan-
tizer are convex polytopes, the cells

corresponding to the EVQ are intersections of convex poly-
topes, and therefore are also convex polytopes in. It is im-
portant to notice that in general the EVQ is not necessarily a
Voronoi or nearest neighborvector quantizer, and although its
cells are convex polytopes, they are not in general (minimum
distance) Voronoi cells. For a cell to be a Voronoi cell, it would
be required that any point contained in that cell be closer to the
centroid of that cell than to the centroid of any other cell. This is
not satisfied in general because these cells are obtained as the in-
tersection of cells of the (nearest neighbor) quantizers
used in each of the basis, rather than as the nearest neighbor
regions for each reconstruction vector. In other words, the in-
tersection of nearest neighbor quantizers does not result in gen-
eral in a nearest neighbor quantizer. Therefore, we will refer to
EVQ cells instead of Voronoi cells. In general, for a given redun-
dancy , is obtained by averaging over thelinear reconstruc-
tions given by the corresponding quantizers

.

Remark: The concept of EVQ can be actually defined for
any reconstruction algorithm, not necessarily only for the linear
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(a) (b)

Fig. 2. (a) Example of the convex polytopesC in , (b) (Zoom) Example of outputs for the quantizersQ ,Q , and the EVQ when linear reconstruction is
used. The partial reconstructionsx̂xx , j = 1; 2 are represented by “�” and the final reconstruction̂xxx is represented by “�.” The final reconstructions are obtained
by taking the halfway point between̂xxx andx̂xx , that is,x̂xx = (x̂xx + x̂xx ). Two reconstructions are shown, each reconstruction corresponding to the case where
the original vectorxxx is in each of the two EVQ cells indicated with the bold line.x̂xx is a consistent reconstruction andx̂xx is an inconsistent reconstruction.

reconstruct ion algorithm using the minimal dual frame as de-
scribed above. However, for clarity, we have restricted in this
section the definition and concepts to this particular case. For
any other reconstruction algorithm, Definitions 4 and 6 should
be modified so that the set of reconstruction vectors are the ones
given by the particular reconstruction algorithm that is used.

Another concept that will be used in some of the next sec-
tions is the concept of fundamental polytope. The fundamental
polytope associated with the lattice is defined by

(10)

which is the parallelopiped formed by the basis vectors of the
lattice . The area of this fundamental polytope is equal to

.

C. Property of Consistency for a Generic Reconstruction
Algorithm

Although the concept of consistency was introduced in [4],
for the sake of clarity and because it is a central concept for this
paper, we review it here. Given a tight frame, constructed by
using orthogonal bases, it is desirable to design an EVQ
such that if is the original vector and is the reconstructed
vector, both and fall in the same EVQ cell. The reconstruc-
tion vectors satisfying this property are called consistent re-
constructions of .

Given a frame operator and a generic PSQ, the concepts of
consistency and linear consistency for an EVQ cell , are
defined as follows.

Definition 7 (Consistent Cell):Let be a cell in an
EVQ, and its reproduction vector. is said to be con-
sistent if .

For the particular case of using a linear reconstruction, the
definition of linearly consistent cell is as follows.

Definition 8 (Linearly Consistent Cell):Let be a cell
of an EVQ. is said to be linearly consistent if it is consis-
tent under linear reconstruction, where the linear reproduction
vector is given by .

Remark: As before, the definition of linear consistency can
be extended to any general linear reconstruction algorithm, not
just the linear reconstruction given by the minimal dual frame.

An EVQ is said to be consistent if and only if all its cells
are consistent. Similarly, a general reconstruction algo-

rithm that gives rise to a consistent quantizer is called a consis-
tent reconstruction algorithm. In particular, a quantizer which
satisfies consistency under linear reconstruction is said to be lin-
early consistent.

Given an EVQ, the optimal reconstruction for any cell is ob-
viously inside that cell, that is, the optimal reconstruction is al-
ways a consistent reconstruction.1 Since an inconsistent recon-
struction is outside the cell corresponding to the original signal

, as opposed to a consistent reconstruction, consistent recon-
structions will yield smaller squared distortion (MSE) than in-
consistent reconstructions on average for a given EVQ. In our
work, the goal is to find a set of EVQs for which it is possible
to have consistent reconstructions with simple reconstruction
algorithms.

Fig. 2(b) shows examples of both consistent and inconsistent
cells assuming linear reconstruction. One of our goals in this
paper is to design quantization techniques such that all EVQ
cells are linearly consistent. Fig. 3(a) and (b) provides a simple
and intuitive example that illustrates how linearly consistent
EVQ cells can be achievedby choosing scalar quantizers with
different step sizes for each of the bases. It can be seen in
Fig. 3(b) how the intersection between cells of and cells of

is the same across all the partition of the EVQ. As will be
explained later, the crucial idea on how to achieve consistency
with low-complexity reconstruction algorithms is to enforce a
periodicstructure on the partition defined by the EVQ, as in the
example of Fig. 3. Intuitively, the step sizes selected will depend

1This statement holds because the EVQ cells are convex.
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(a) (b)

Fig. 3. Example forr = 2 showing how the consistency problem can be solved by choosing carefully a certain frame and a set of different step sizes: (a) using
the same step sizes gives rise to inconsistent cells, one of them is indicated with a circle; (b) choosing different step sizes in each basis yields a consistent EVQ.

(a) (b)

Fig. 4. (a) Example of a linearly consistent quantizer EVQ, (b) (Zoom) four cells ofQ . The reconstructionŝxxx , j = 1; 2 are represented by “�” and the final
reconstruction̂xxx is represented by “�.”

on the angle between each of the bases. Fig. 4 shows a second
example where consistency is achieved by creating a periodic
structure.

III. CONSTRUCTION ANDDESIGN OFQUANTIZERS WITH

PERIODIC STRUCTURE

We call the type of quantizers shown in Fig. 3 “periodic quan-
tizers” because the partition they generate has a periodic struc-
ture. We derive in detail how to design such quantizers in this
section. The construction that we give in order to achieve pe-
riodicity is completely general. However, we provide designs
only for redundant families (frames) of vectors with a certain
constrained structure. More specifically, we give designs mostly
for the case of having orthogonal bases in . Some designs
extensions for are given in Section III-E where several exam-
ples are given, and extensions to higher dimensions are analyzed
in Section III-D.

A. Definition and Construction of Periodic EVQs for

In order to facilitate the understanding, we first provide a de-
tailed derivation of how to impose a periodic structure in EVQs
in for the case of redundancy . Then, we extend the
idea to higher redundancies also in, and, finally, we explain
how to obtain periodic structures in higher dimensions.

In designing an EVQ with a periodic structure, we will use
the concept of sublattice.

Definition 9 [23]: A sublattice of a given lattice
is a subset of the elements of that is itself a lattice. A

sublattice is completely specified by an invertible integer
matrix that maps a basis of into a basis of , that is,

, where and are the generator ma-
trices of and , respectively.

Given a real full rank lattice2 with generator matrix ,
we consider only full-rank sublattices , that is,

2� is said to be a full-rank lattice if its generator matrixMMM is full rank.
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(a) (b)

Fig. 5. Example 1: (a) Sublattice structure (b)EVQ cellsC .

. Another important concept is that of the index of
a sublattice contained in a lattice which is given by

(11)

The index of a sublattice is the ratio of the volumes of the funda-
mental polytope associated with the sublatticeand the one
associated with . This is also equal to the number of lattice
points of contained in each cell defined by . Notice that
in the particular case of having an integer matrix such that

, and are the same lattice. This particular
type of integer matrices satisfying this property are calleduni-
modularmatrices and by taking different unimodular matrices
one can obtain different generator matrices for the same lattice.

We introduce the concept of geometrically scaled-similar
sublattices from which we build periodic tesselations.

Definition 10: Given a real lattice in with generator
matrix , a lattice is geometrically scaled-similar to iff

(12)

where is a orthogonal matrix, that is, a rotation and/or
a reflection in , is a unimodular integer matrix, and

.

If is geometrically scaled-similar to and is also a sub-
lattice of , then we denote it by . Note that this can only be
true for specific values of , , and .

Thus, a geometrically scaled-similar sublattice of a lat-
tice is obtained by simply rotating and/or reflecting the lat-
tice and then scaling each of the new axes. The matrixal-
lows us to choose different basis vectors for the sublattice.
If , then is a pure rotation, and the scaling pa-
rameters and allow to control the magnitudes in each of
the two vectors that define its basis. If , then
contains or is a reflection. The possible orientations and values
for and that determine a geometrically scaled-similar sub-
lattice will be given in Section III-B. Notice that in the particular

case of having , would be a geometrically similar
(or equivalent) sublattice of, as defined by Conwayet al.[24],
[23]. We restrict to be a pure rotation so that we can associate
each rotation with a basis of a frame, as we explain next. Fig.
5(a) shows an example for a redundancy of a geometri-
cally scaled-similar sublattice of a rectangular lattice.

Without loss of generality, in the following we will construct
geometrically scaled-similar sublattices of a canonical lattice

, where has generator matrix

(13)

that is, the generator vectors of are scaled versions of the
canonical basis vectors ,

. We define the quantizer as the quantizer with rectan-
gular cells whose vertices are given by the lattice.

Notational Remark:In order to distinguish between the cells
associated with a lattice or a quantizer and the cells as-
sociated with a sublattice , we will use the following
notation: a) will denote the set of cells associated with
and , where we use now instead of in order to empha-
size that these cells are associated with the lattice; b)
will denote the set of cells associated with . The subscript
will indicate in both cases a particular cell.

Definition 11 (Periodicity Property):An EVQ is said to be
periodic if the partition of the space given by its quantizing cells
satisfies the following two properties.

1) There exists a minimal periodic unit which is the
union of a finite set of cells .

2) There exists a lattice which determines this period-
icity such that all the cells of the EVQ are given by

, that is, copies of the minimal unit
translated by the points of.

Fig. 5(b) shows the unit cell with bold lines for a par-
ticular EVQ with redundancy . The periodicity structure
is achieved by finding lattices whose intersection is not empty,
which involves the concept of sublattice.
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Fact 1: If is a sublattice of , the partition defined by the
intersection of the cells with the cells determined by has
a periodic structure (tesselation) with the minimal periodic unit
given by , where is the fundamental polytope
associated with the sublattice and the whole tesselation is
obtained by translating the cells with the points of .

Proof: See Appendix I.

This fact can be observed in Fig. 5(a) where in this case, the
sublattice is a geometrically scaled-similar sublattice. In this
work, we use Fact 1 for the particular case where the sublat-
tices are geometrically scaled-similar.

Definition 12: Given a set of lattices , , the
coincidence site lattice (CSL) is the intersection lattice:

(14)

which is the finest common sublattice of all the lattices,
.

In order to achieve periodicity, our goal is to construct a set
of lattices whose intersection is not empty. For
this, it is sufficient to find a set of geometrically scaled-similar
sublattices of the first lattice . For nota-
tional convenience, we take and we will always take

in (12) so that the basis vectors of theth geometrically
scaled-similar sublattice are orthogonal (because of the rotation
matrix) and can be associated with theth orthogonal basis of a
tight frame. Each rectangular cell defined by each sublat-
tice has sides with lengths and . Since we have
that , .
Moreover, since the index of a sublattice is always an integer,
we have that .

Suppose we design jointly a lattice with gener-
ator matrix (choosing certain values for

), and different geometrically scaled-similar sub-
lattices of denoted by . Given a sublat-
tice , we define a finer lattice with generator
matrix given by

(15)

where , , , , , , that is, are any positive
integers.

As we show in Lemma 1 later, if we associatequantizers
, respectively, with the lattices , this construc-

tion given above is sufficient in order to ensure that the inter-
section of all the lattices , is not empty, and
therefore, by group theory, the intersection is a lattice. Notice
that if we consider only one lattice together with the canon-
ical lattice , both constructed as described in (15), and we de-
fine corresponding quantizers and , respectively associ-
ated with them, it follows from Fact 1 and because are

positive integers, that the cells given by have a peri-
odic structure, which is still determined by (see Fig. 5(b)).
Therefore, for , it is clear that periodicity holds.

Next, we show that the construction of given
above ensures that these lattices have a nonempty intersection,
which actually implies a periodic structure3 in the resulting
EVQ.

Lemma 1: Given a set of lattices , such that
and is a sublattice of , then the CSL

contains as a sublattice, a lattice that is an integer scaling of
, that is, , where .

Proof: See Appendix II. The importance of calculating the
CSL comes from the fact that its fundamental cell
is the unit cell that is repeated in the periodic structure of the
resulting EVQ, as shown in the following lemma.

Lemma 2: Given quantizers , , associated
with the lattices , , the partition of EVQ cells
has a periodic structure, with the unit cell that is repeated period-
ically being , the fundamental polytope of the CSL .

Proof: See Appendix III.

Notice that any other lattice that is also a sublattice (although
coarser than the CSL) of all the lattices, de-
termines also a unit cell that is repeated periodically but this
unit cell will be larger than . For instance, the fundamental
polytope of the rectangular lattice described in Lemma 1,
will be also repeated periodically but .

Next, we show how simple it is to calculate the generator ma-
trix of the CSL for any dimension . For this, it is nec-
essary to first review the following concept for-dimensional
lattices.

Definition 13: Given -dimensional lattices ,
in satisfying the property that an -dimensional

lattice for which , , we define the
( -dimensional) sum lattice as follows
[26]:

where ...
(16)

Remark: The lattice is the lattice generated by all the
basis vectors of all the lattices , in (not
simply the union of the lattice points). The matrix defined
above can be reduced to obtain the actual generator
matrix using the so-called Hermite normal form (HNF)
reduction algorithm [26].

Definition 14: The dual lattice of a lattice in is
defined as follows [23]:

(17)

3Notice that a periodic tesselation may be obtained also using other methods
which are not based on intersecting lattices, that is, forcing the intersection of the
lattices� ; . . . ; � is just one (purely geometrical) way to obtain a periodic
tesselation, but one could also build a periodic tesselation in other ways.
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The generator matrix of is given by ,
and we have also that [23].

It is important to note that the sum of two lattices and
is not necessarily a lattice; for instance, taking and

, then their sum is not a lattice because the sum is
not a discrete subgroup of. It can be shown [30], [31] that if

and are contained in a certain full-rank lattice , then
is a full-rank lattice.

Based on the previous definitions, the following important
theorem from lattice theory allows us to calculate the intersec-
tion lattice of a set of lattices [27], [28].

Theorem 1: Given lattices , , the following
holds:

(18)

Notice that using Lemma 1 the construction of the lattices
we have presented here ensures that always

exist and is a full-rank lattice, implying a periodic structure in
the EVQ. The necessary and sufficient condition for to
exist and be a full-rank lattice is that the matrix
be a matrix of rational numbers. This condition is implicitly used
in order to prove Lemma 1. In the same way, our construction
also ensures that always exists and is a full-rank
lattice. The lattice is the finest lattice which is a sublat-
tice of and , while the sum is the coarsest lattice
which contains both and as sublattices.

B. Design and Parameterization for

Let be a rectangular lattice in with generator matrix
, which defines a quantizer . In ,

it is easy to parameterize all the geometrically scaled-similar
sublattices of in terms of the possiblescaling factorsand
rotation matrices as in (12). This parameterization can be used
in order to build a periodic EVQ in for any redundancy.

Fact 2: All geometrically scaled-similar sublattices of
with have generator matrices

that can be characterized geometrically in the following way:

(19)

where

and , , , are any positive integers and .
Proof: See Appendix IV.

The angle is restricted to the interval to avoid du-
plicity. That is, given a valid angle , the angles ,

generate the same sublattice because the basis
vectors will be inverted versions of the ones corresponding to

.

The generator matrix of lattice , as given in (15), and
step sizes associated with the scalar quantizers

can be parameterized by

(20)

A few comments are in order.
1) Only those angles such that ,

, lead to geometrically scaled-similar sublattices.
2) For a given fixed angle there is more than one solution

for , , and .
3) The product , as it should be, be-

cause

(21)

4) If we consider the particular case of having
and , that is, geometrically similar sublattices of the cubic
real lattice , then, the possible solutions are4

(22)

which agrees with [24].
Although periodicity in the structure holds for any two posi-

tive integers and , in practice, each pair is con-
strained to some values to provide good quantization perfor-
mance. Therefore, it is desirable not to have a cell of a quan-
tizer completely contained within a cell of another quan-
tizer . Ideally, adding successive quantizerswill lead to
reductions in the size of the EVQ cells (and, therefore, in dis-
tortion). Appendix V describes in detail a simple geometric cri-
terion that can be used to address this issue. There is no unique
way for the order in which one can choose the different pa-
rameters. One possible way is by fixing the anglefirst, that
is, choosing a value for , then searching
within all the -tuples of integers resulting in that value, and for
each of these-tuples we obtain certain values for the step sizes
using (20).

C. Examples of Periodic EVQs in

We present in this section several design examples for the 2-D
case.

Example 1: Let us choose an angle such that
. A possible choice for the constant integers is

4Notice that we are restricting the angle� to be0 < � < .
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(a) (b)

Fig. 6. (a) Example forr = 3: Structure of the EVQ and unit cell of the structure. (b) Example forr = 4: Structure of the EVQ and unit cell. Notice that in (b)
due to the symmetry that exists withinC , the effective number of different EVQ cells is basically1=8 of the total number of cells within this unit cell.

, , and . If we choose
and , the resulting quantizer is given by

(23)

The corresponding EVQ cells are shown in Fig. 5(b).

Example 2: A good example for is obtained by using
the following tight frame and step sizes:

(24)

Notice that in this example, . Fig. 6(a)
shows the unit cell that is repeated periodically and the resulting
EVQ cells. In this example, we have that

(25)

Example 3: An example for can be obtained by using
the following tight frame and step sizes:

(26)

Fig. 6(b) shows the unit cell that is repeated periodically and the
resulting EVQ cells. In this example, we have that

(27)

Notice in these two examples how we have chosen the step
sizes of the different quantizers trying to satisfy as
much as possible the constraints mentioned in Section III-B (re-
finement between different quantizers).

D. Design of Periodic EVQs in Higher Dimensions

We now analyze the extension to higher dimensions for the
case where , that is, if the dimension is , then

. Since is a cubic lattice, a ge-
ometrically scaled similar sublattice has to be also cubic
and thus its generator matrix has to be

, where the integer matrix satisfies the orthogo-
nality property

...
...

(28)
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If is the th sublattice, we construct theth lattice as
we have done before for , that is, dividing by integers

and the associated orthogonal matrixand step sizes
will be given by

...
...

(29)

and all the results regarding periodicity in the structure of the
final EVQ and the CSL apply also here.

Since the matrix is proportional to by , let us
focus on the problem of finding integer matrices satisfying
the properties mentioned above, thus, looking at geometrically
similar sublattices of . Clearly, we can construct matrices

in the following way:

...
...

(30)

The problem of finding matrices satisfying the above prop-
erty has been studied extensively [29], [32] and the algebraic
theory of orthogonal designs allows to find general construc-
tions of orthogonal matrices with indeterminate entries.

Notice that the matrices actually generate geometri-
cally similar or equivalent sublattices with index ,

. Explicit constructions in higher dimensions have been
provided by Sloane and Beferull-Lozano and can be found in
[22]. More specifically, constructions are given for dimensions

, . For illustration purposes, we
present here a simple example for . Details about the tes-
selation of the space that is generated are also given in [22].

Example 4:

(31)

The intersection of these three lattices, that is, the CSL, can
be easily calculated and is given by

(32)

which is a version of the well-known lattice (best known
lattice quantizer in four dimensions) on the scale at which its
minimal squared norm is.

E. Design of Periodic EVQs for Other Redundant Families

It is also possible to construct periodic quantizers using fami-
lies (frames) of vectors with integer redundancybut which do
not consist of a set of orthogonal bases. In this subsection, we
show examples which are based on hexagonal latticesin ,
and sublattices which are geometrically similar
to hexagonal lattices.

Conway and Sloane [24] have parameterized all the possible
sublattices which are geometrically similar to the hexagonal lat-
tice , whose generator matrix is given by

(33)

Notice that if we want to associate this lattice with a basis of a
frame , the vectors of this basis have to be orthogonal to the
basis vectors of the lattice. Moreover, the step sizes associated
with the vectors that compose have to be calculated so that
the lines in intersect exactly to generate . It is trivial to
show by simple trigonometry that and the associated step
sizes are

(34)

It is shown in [24] that a sublattice , which is geometri-
cally similar to , is generated by (using complex notation)

and , where ,
, and the index of the corresponding sublattice

is . Translating this to matrix notation,
we have that the possible generator matrices forare given
by

(35)

Notice also that and are related as follows:

(36)

which corresponds to a rotation of an anglesuch that
and a scaling of . Using this approach, we

can design again frames and PSQs such that a periodic EVQ is
generated. Figs. 7 and 8 show examples of periodic EVQs for
redundancies and , respectively.

It is also possible to construct periodic EVQs for higher di-
mensions using redundant families which are not comprised of
orthogonal bases, by means of other types of lattices such as
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(a) (b)

Fig. 7. Example forr = 2. (a) Structure of the sublatticeS� with a = 1; b = 3. (b) Structure of the EVQ and unit cell.

(a) (b)

Fig. 8. Example forr = 3. (a) Structure of the sublatticeS� with a = 1; b = 3. (b) Structure of the EVQ and unit cell.

those studied in [24] and [33], but these designs are not con-
sidered in this paper. Several examples of these other different
constructions can also be found in [22].

IV. CONSISTENTRECONSTRUCTION INPERIODIC QUANTIZERS

In this section, we analyze how to achieve consistency in pe-
riodic quantizers under simple reconstruction algorithms (e.g.,
linear or lookup table).

A. Consistency Under Linear Reconstruction Using the
Minimal Dual Frame

Although the results presented in this section hold for any
type of frame and any type of linear reconstruction algorithm,
the proofs of these results are much clearer and much more in-
tuitive for the case of linear reconstruction using the minimal
dual frame and for tight frames composed of a set oforthog-
onal bases. We show in Theorem 2 that, given a frame, a neces-
sary condition to have consistency under linear reconstruction
is that the scalar quantizers acting on the coefficients are such

that the resulting EVQ has a periodic structure. This result fol-
lows basically from the fact that when there is no periodicity in
the partition defined by an EVQ, the vertices of any two lattices

and can have arbitrary relative positions, at
least in one of the components, which makes it always possible
to find linearly inconsistent cells. On the contrary, when there
is periodicity, there is only a finite number of relative positions
(see Fig. 4) and linear consistency is not precluded.

The proof of this result is exactly the same conceptually for
any value of the redundancyand for any dimension because
the crucial point is just the periodicity in the structure regardless
of the underlying frame that is used. Since for higher dimensions

and higher redundanciesthe proof becomes much more te-
dious without adding anything new conceptually, we reduce the
proof to the and case. However, for completeness,
examples will be shown where linear consistency is satisfied for

in .
We need the following lemma.

Lemma 3: Let be a rectangular lattice with
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(a) (b)

Fig. 9. Examples of Linearly Consistent Quantizers for (a)r = 3 and (b) forr = 4. Minimal dual frame is used for the linear reconstruction.

and another (generic) lattice whose generator matrix is pa-
rameterized as

where (37)

Then, the following equations:

(38)

(39)

(40)

(41)

where rational numbers

are all satisfied iff where
is a sublattice of , that is, is given as in (19), and

.
Proof: See Appendix VI.

The consequence of this lemma is that, whenmeets the
conditions of the lemma, the vertices belonging to, which
can also be written as

(42)

have only a finite number of different (relative) positions within
the cells of the quantizer (see, for example, Fig. 5(b)).
In Theorem 2, we use this fact so that if any of the previous
four equations (38)–(41) is not satisfied, we can always find
vertices where at least one component can have any arbitrary
position within a cell of the quantizer , and this allows us to
find (linearly) inconsistent cells.

Theorem 2: If the EVQ is a nonperiodic quantizer in , then
it is always possible to find a linearly inconsistent cell.

Proof: See Appendix VII.

Thus, periodicity in an EVQ is a necessary condition to
achieve consistency under linear reconstruction. Notice that in
a periodic EVQ there are only finitely many distinct EVQ cells.
Checking whether linear consistency is satisfied, we only need
to check on the distinct EVQ cells, which are actually the EVQ

cells inside the fundamental polytope of the CSL . In fact,
given a set of lattices we can always easily
enumerate the positions of the vertices of each of them inside

in terms of the corresponding generator matrices and
check computationally whether consistency is satisfied or not.

We show in Fig. 9 examples of linear consistency infor
redundancies where the reconstruction vectors have
been represented by “”.

B. Consistent Reconstruction Algorithms With Improved
Performance

Given a regular EVQ, it is desirable for a good rate-distor-
tion performance that the reconstructions be located near the
centroids of the EVQ cells. It can be seen in Fig. 9 how the con-
sistent linear reconstructions given by the minimal dual frames
for are not located near the centroids corresponding
to a uniform distribution. In order to achieve a better perfor-
mance, it is necessary to use more intelligent (although simple
and low-complexity) reconstruction algorithms which make ex-
plicit use of the periodicity property.

1) Reconstruction With a Small Lookup Table in Periodic
EVQs: Given a periodic EVQ, it is possible to perform recon-
struction efficiently and accurately by using a small-size lookup
table scheme, which also ensures consistency. This can be done
for any periodic EVQ. Let us first consider the case of tight
frames composed by a set of orthogonal bases. Assume, for sim-
plicity and without loss of generality, that and let be
the smallest rectangular polytope which is a basic unit polytope
for the partition defined by the EVQ. Notice that although the
minimal unit cell may not be rectangular, from Lemma
1, since is rectangular, it is always possible to find a rect-
angular polytope (with volume larger than the volume of

) which is also a (nonminimal) basic unit polytope. The
reason for choosing this basic rectangular polytope is that the re-
construction algorithm becomes even simpler in this case. Since
the periodicity of the EVQ is determined by , the smallest
rectangular polytope covering is a valid candidate
for . It is clear that, due to the periodicity determined by

, any vertical or horizontal shift of by an integer
number of step sizes ( is the horizontal step size and is
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Fig. 10. Reconstruction algorithm based on lookup table: “�” represents
reconstruction vectors, “�” the values of the quantized coefficients which
define the equivalent cell in the unit cellP , “�” represents the input vector.
All the information is first translated to the unit cellP , then the reconstruction
vector of the equivalent cell is read, and finally it is translated back to the
proper cell. Notice that in this example, with this lookup table scheme, the
EVQ cells are actually (minimum-distance) Voronoi cells.

the vertical step size) gives rise to another polytope which also
keeps periodicity.

In Fig. 10, the polytope that has been chosen is indicated
using bold line. Consider the polytope and let and
be the number of step sizes that determine the length of the
sides (vertical and horizontal) of . For the example in Fig.
10, and . Let be the center of . Given any
input signal , it is straightforward to find the equivalent poly-
tope , which is a translation of given by

for some integers (43)

The basic idea is that given any EVQ cell it is possible
to find very easily and quickly the equivalent cell (by equiva-
lent cell we mean a congruent cell that is exactly equal in shape
and size) which is inside . Given an input signal whose
quantized coefficients are PSQ , where , it
is possible to translate the values of the quantized coefficients
to other values which define the equivalent cell that
is inside . This translation is illustrated in Fig. 10. Let
be the center of the polytope . In this particular case, since

is rectangular (cubic in higher dimensions), it is clear that
can be calculated by a simple floor operation becauseis

rectangular. If we let , then if is the reconstruc-
tion vector corresponding to , the reconstruction corre-
sponding to is just . The reconstruction
is obtained by just looking up the corresponding reconstruction
vector stored in a lookup table. Notice that we can perform op-
timal reconstruction for the case of a uniform input distribution,
because, for each EVQ cell inside , we can store a vector

obtained by averaging over all the vertices (extreme points) of
the cell (barycenter of the cell), which can be shown to be ex-
actly equal to the centroid of the corresponding (convex) cell
assuming a uniform distribution [25]. In the example shown in
Fig. 10, the needed lookup table consists of only 24 reconstruc-
tion vectors. The fundamental advantage provided by the peri-
odicity is that if the periodic EVQ is well designed, the size of
the lookup table can be made small, and does not increase with
the rate of the EVQ. Notice also that for this example, with the
reconstructions given by the lookup table, the EVQ cells are ac-
tually (minimum-distance) Voronoi cells. For the case of arbi-
trary EVQs, a valid polytope is always given by and a
similar reconstruction procedure can be followed. Now,will
be calculated by quantizing with respect to which will not
be, in general, a rectangular lattice. For instance, for those peri-
odic EVQs based on hexagonal lattices in, a valid polytope

will be an hexagonal cell. For instance, in Fig. 8, a valid
is illustrated.

Because of the periodicity in the structure of any periodic
EVQ, the information can be easily encoded in an embedded
(successive) manner by dividing it into two parts, the entropy
associated with the cells , and the conditional entropy as-
sociated with the structure of cells that is inside each, which
is the same structure as in . In Fig. 10, for instance, given a
certain polytope , which can be found by quantizing the co-
efficients , respectively, with step sizes and
(this can be viewed as a coarse prequantization), the only addi-
tional information that has to be stored to encode a vector is an
index between and .

The vectors of the lookup table can be easily calculated in
any dimension by using LP. In order to do so, for each EVQ
cell in the polytope , we run a large enough number of linear
programs with different cost vectors pointing in different direc-
tions in and where the constraints are such that they define
the specific EVQ cell in terms of inequality constraints. This al-
lows us to calculate all the vertices of the corresponding EVQ
cell and by taking the average we obtain a good approximation
of its centroid. Moreover, it is not necessary to calculate the
vectors of the lookup table for each rate of the EVQ because,
by linearity, all the vertices scale their coordinates linearly and
simultaneously with . Therefore, we only need to calculate
these vectorsoncefor the rate corresponding to . This
procedure is explained in greater detail in [22].

2) Improved Linear Reconstruction in Periodic EVQs With
Spherical Symmetry:It is also possible to design periodic
EVQs with additional symmetry properties so that a very
simple improved linear reconstruction algorithm can be used to
obtain reconstructions that are located near the centroids of the
EVQ cells (assuming a uniform distribution). Let us consider a
periodic EVQ that satisfies the following two properties.

1) It is consistent under the usual linear reconstruction using
the minimal dual frame.

2) These linear reconstruction vectors are located with cir-
cular symmetry (spherical symmetry for ) with
respect to the lattice points of either the CSL or a
coset (translation) of it.

Several examples have been found where this circular sym-
metry is satisfied, as for instance, the two examples shown in
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(a) (b)

Fig. 11. Examples of circular symmetry in : (a)r = 2. Squares represent the lattice points of a coset of� . (b) r = 3. Squares represent the lattice points
of � .

Fig. 11 for redundancies and , and the example 4
for dimension and . The circular symmetry makes
it simple to design a perturbation so that the reconstruction vec-
tors that are obtained are close to the centroids with respect to a
uniform distribution.

Let be the reconstruction given by a usual lattice quan-
tizer with reproduction vectors given by the points of the CSL
or a translation of it. For the examples shown in Fig. 11, the
points of these lattices are represented by squares and one of
the Voronoi cells is also highlighted with bold lines. It is very
simple to improve the linear reconstruction given by the min-
imal dual frame by performing a perturbation

(44)

where is the reconstruction given by the minimal dual
frame and the direction of the perturbation is determined by the
difference vector . Thus, the magnitude of the
perturbation is and the value of has to be chosen ap-
propriately so that the final reconstructionis as close as pos-
sible to the centroid of the cell. Note that once the best value
for has been chosen, this is fixed and independent of the input
vector and the scaling of the lattices changes only. The
main advantage of this method with respect to the lookup table
scheme is that we do not need a lookup table to store the repro-
duction vectors of the cells contained inside the minimal peri-
odic unit of the tesselation. However, further research is neces-
sary in order to understand what are the necessary and sufficient
conditions which ensure that the property of circular symmetry
is satisfied.

V. NUMERICAL RESULTS FORSOME PERIODIC EVQ DESIGNS

AND APPLICATIONS

Our designs are more suitable to be used for small redundan-
cies and low to moderate dimensions, and have a complexity
similar to the usual linear reconstruction. At high redundancies,
it is always possible to find designs but they may not be very
efficient in terms of coding due to the number of constraints
in the quantization step sizes that have to be met and also the
number of reproductions which have to be stored in the lookup

table may be large. However, note that for some important ap-
plications, such as those involving very high-frequency analog
signals (e.g., optical signals), it is usually not feasible to use
redundancies higher than or . Moreover, there
exist also other systems called Polyphase A/D converters [38],
[39] that divide the bandwidth of the input signal into different
narrow subbands (low dimension), and use a different low-rate
A/D converter for each of the subband signals, that is, where
each of these A/D converters works at a low oversampling ratio.
Our system can also be designed theoretically for many different
dimensions as shown by Sloane and Beferull-Lozano in [22] but
the generated tesselations can become very complicated for di-
mensions and the number of elements in the lookup
table is also large. For , it is possible to find constructions
such that the number of different cells (number of elements in
the lookup table) is sufficiently small.

We have compared the rate-distortion performance of a) usual
linear reconstruction (minimal dual frame) with a nonperiodic
EVQ with equal quantization step sizes, that is, the quantization
system used in all the previous work; b) reconstruction based on
a periodic EVQ with different quantization step sizes using ei-
ther the lookup table scheme or the improved linear reconstruc-
tion (their difference in performance is negligible in these ex-
amples); and c) usual linear reconstruction (minimal dual frame)
used with a periodic EVQ with different quantization step sizes.
The bit rate associated with the quantized tight frame coeffi-
cients is obtained by measuring the joint entropy of all these
quantized coefficients, and the distortion is measured in terms of
the MSE. The input source that has been used is a 2-D Gaussian
distribution with . The periodic EVQs that
have been used are the ones shown in Figs. 11(a) and 6(a), re-
spectively, for and . For these two examples, the
rate-distortion performances of the lookup table scheme and the
improved linear reconstruction using a periodic EVQ are ap-
proximately the same because the reconstructions can be taken
to be practically the same and obviously, the associated rate is
also the same.

It can be seen in Fig. 12 that the best performance is clearly
achieved by the lookup table and the improved linear recon-
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(a)

(b)

Fig. 12. Comparison, for a 2-D uncorrelated Gaussian source, of 1) usual linear reconstruction with a nonperiodic quantizer with equal quantizationstep
sizes (classic system); 2) reconstruction in a periodic EVQ with different quantization step sizes using either the lookup table scheme or the improved linear
reconstruction (the difference in performance for these two systems is negligible for these examples); 3) usual linear reconstruction in a periodicquantizer with
different quantization step sizes. The values of MSE are given per vector in decibels and the bit rate is given in bits per vector. Part (a) corresponds to the example
shown in Fig. 11(a) withr = 2 and part (b) corresponds to the example shown in Fig. 6(a) withr = 3

struction systems, with a gain of around 0.2 dB for and
a gain of around 0.7 dB for over the classic system that
uses linear reconstruction and the same quantization step sizes.

At the same time, Fig. 12 also shows clearly the fact that,
a linearly consistent EVQ does not necessarily yield a better
rate-distortion performance than adifferentlinearly nonconsis-
tent EVQ at the same rate, that is, by enforcing a periodic struc-
ture we may get a quantizer with worse performance than an-
other quantizer whose structure results in linear inconsistency;
however, when we use a periodic EVQ and enforce the con-
sistent reconstructions to be sufficiently close to the real cen-
troids by using our reconstruction methods, the periodic EVQ

achieves, in all cases, a superior performance over the nonperi-
odic EVQ.

A. Implications for Oversampled A/D Conversion

It can be shown that the oversampling of a periodic band-lim-
ited signal can be expressed as a frame operator inwhose
input are the Fourier coefficients (finite discrete Fourier expan-
sion) of the signal that is sampled [4]. As a particular illus-
trative case, if we consider the space of sinusoids of period
spanned by , the sampling and uni-
form scalar quantization in amplitude of these signals is equiva-
lent to the quantization of an overcomplete expansion (frame) in
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Fig. 13. Scalar quantizers (time domain) corresponding to the EVQ in
Fig. 6(a).

. Each sampling time is directly associated with the vector
and all these vectors define

the equivalent frame in . Moreover, by Parseval’s theorem,
we have that

MSE

where is the reconstructed sinusoid, that is, the MSE of the
reconstructed sinusoidal signal in the converter is the same as
the MSE that occurs on the frame domain. Thus, given a tight
frame in together with a set of different step sizes such that
a periodic EVQ is obtained, if we translate the values of angles
to sampling times, we can obtain the scalar quantizers that are
applied at the corresponding sampling times. For instance, the
quantizer in Fig. 6(a) gives rise to a converter with uniform sam-
pling in time and with two different scalar quantizers, one with
a step size larger than the other one (see Fig. 13).

VI. CONCLUSION

The basic results presented in this paper are as follows. We
study the problem of achieving consistency in quantized over-
complete expansions with low-complexity algorithms. Consis-
tency leads to EVQs which are regular. In order to achieve this
goal, we allow the use of different step sizes in the scalar quanti-
zation of the expansion coefficients and construct EVQs having
cells with a periodic structure. Periodic quantizers are defined in
terms of lattices and sublattices with certain properties and we
give various design examples based on different tight frames.
On the one hand, we show that periodicity is a necessary con-
dition to have consistency under simple linear reconstruction.
On the other hand, a periodic structure makes it possible to re-
construct efficiently and accurately using either a small lookup
table whose size does not increase with the rate of the quantizer
or using a simple improved linear reconstruction for periodic
EVQs with certain convenient structural properties. Regarding
future work, it should be noticed that further research is needed
in order to make it possible to apply our approach to A/D con-
version of arbitrary band-limited signals.

APPENDIX I
PROOF OFFACT 1

Since is a sublattice of , is a subgroup of the addi-
tive group , and the result follows directly by group theory.
The periodicity is determined by the subgroup and, therefore,
the minimal periodic unit is given by the tiling contained in

, the fundamental polytope associated with the sublattice
. Since the subgroup structure is true for any dimension,

the periodicity property is also true for any dimension.

APPENDIX II
PROOF OFLEMMA 1

Let and consider the matrix given by

(45)

whose inverse is equal to

(46)

where and is the denominator that is left after
all the common factors have been canceled out. For each, we
define the lattice with generator matrix given by

(47)

Notice that is a sublattice of because the ma-
trix has integer entries. Let
be the least common multipleof , that is, the
smallest positive integer that all divide. After
calculating , we define as

and the lattice with generator matrix , which
means that is an integer scaling of . Thus, we have that

, . This implies clearly
that and, therefore, is a sublattice
of the CSL .

APPENDIX III
PROOF OFLEMMA 2

Since is the finest sublattice of all the lattices ,
, if we consider any cell , the relative positions

of the lattice points (vertices of the cells associated with
) for each lattice , which are inside the cell , these

positions are always the same independently of which cell
is chosen. This immediately implies that the structure of the
resulting EVQ is a periodic repetition of the structure of cells
that is inside the fundamental polytope of the CSL.
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(a) (b)

Fig. 14. Two limiting cases for the step sizes� and� of the quantizerQ .

APPENDIX IV
PROOF OFFACT 2

The proof follows in a straightforward manner by direct cal-
culation from the definition of sublattice, which implies that

(48)

Hence, a set of sufficient conditions is given by

(49)

If we use the variable and simplify the previous equa-
tions, we get that

(50)

(51)

(52)

(53)

Without loss of generality, we consider the case .
This constrains the signs of all the integers, , , and

to be positive. Solving the previous equations forand
results in

(54)

The values for and follow from (50) and (51).

APPENDIX V
GEOMETRIC CONSTRAINTS ON THESTEP SIZES

Let us consider for simplicity the case of . The approach
we have followed is to constrain the possible step sizes,

to have values between the two limiting cases that happen
when the Voronoi region of one quantizer is totally inside of a
Voronoi cell of the other quantizer, as shown in Fig. 14. These

two limiting cases establish upper and lower bounds for the pair
such that all pairs in between will satisfy the property.

By using elemental trigonometry, we can calculate upper and
lower bounds for the pair .

From Fig. 14(a), we get that

(55)

which gives lower bounds for and .
In the same way, from Fig. 14(b), we get that

(56)

which gives upper bounds for and .
For instance, in Example 1, the pairs are constrained

by

(57)

which limits the possible values of to

APPENDIX VI
PROOF OFLEMMA 3

By adding and subtracting (38) and (39), and doing the same
for (40) and (41), we get the following equivalent set of equa-
tions:

(58)

(59)

(60)
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Fig. 15. Case 1 (Case 2 is Case 1 rotated 90�) in the proof of the Theorem. It is not possible (if the EVQ is not periodic) to keep linear consistency simultaneously
in the two (small) EVQ cells shown.

(61)

with

Assume that (58)–(61) are satisfied. Manipulating these equa-
tions, we get

Dividing (58) and (59), (62)

Dividing (60) and (61), (63)

Dividing (58) and (61), (64)

Dividing (59) and (60), (65)

Solving these equations and expressing all the step sizes in terms
of we obtain

(66)

(67)

(68)

(69)

If we compare (66)–(69) with (19) and (20), we have obtained
exactly the same equations with , , ,

and . Since the final set of equations is equivalent to
the first four equations (38)–(41), it is clear that this lemma is
also true in the other direction.

APPENDIX VII
PROOF OFTHEOREM 2

Without loss of generality, we can assume a quantizer
associated with a lattice where and

. A general quantizer can be associated with
a lattice . We denote by the components of expressed
in the basis , , where indicates, without
loss of generality, the natural basis. In order to find an incon-

sistent cell, we consider the vertices of. Any vertex can be
written as

(70)

The components of these lattice points are

(71)

Notice that the two terms in the first component coincide with
the left-hand-sides of (38) and (39) and the two terms in the
second component coincide with the left-hand-sides of (40) and
(41). Applying Lemma 3, if is not constructed so that the
EVQ is a periodic quantizer, that is, if

with being a geometrically scaled-similar sublattice of,
at least one of the following equations isnot satisfied:

(first component in )

(72)

(first component in )

(73)

(second component in)

(74)

(second component in)

(75)

where

that is, at least one . We now recall one of the properties
of the function, which is that if where and

, then , . In the case of having
with , then, the set , is com-

posed only of a finite number of distinct values. This gives two
cases. Case 1: if at least one of the equations (38), (39) is not
satisfied, then the first (horizontal) component in (71) of the lat-
tice points of can have an arbitrary value (modulo ) (see
Fig. 15) and Case 2: if at least one of the equations (40), (41) is
not satisfied, then the second (vertical) component in (71) can
have an arbitrary value (modulo ). Notice that Case 1 and
Case 2 are equivalent because the only difference between them
is which coordinate fails to have a finite number of different
values. Case 1 is the one that is actually represented graphically
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in Fig. 15, and Case 2 corresponds to the Fig. 15 rotated 90 de-
grees. Thus, the proof of Case 1 and Case 2 is exactly the same,
and we can consider only Case 1 without loss of generality.

Thus, consider that at least one of the equations (38), (39) is
not satisfied and also let first both (40), (41) be satisfied, thus
allowing a finite number of values (modulo ) in the second
component.

Then, if we apply the previous property of the function,
we can find a vertex of of the form

where and (76)

Consider now the following two input vectors and defined
as follows:

(77)

where

If we apply the quantizers and to the input vectors
and and then take the average, the final reconstructions
and given by the EVQ are

(78)

(79)

In order to be able to express the constraints to satisfy consis-
tency along the two directions determined by the second basis

, we also express and with their components
given with respect to this second basis (this is actually equivalent
to a clockwise rotation of the plane by an angle of) as shown
in (80) and (81) at the bottom of the page. For notational con-
venience, assume that the symbols are component-wise
relation symbols. Then, all the constraints that have to be satis-
fied to achieve consistency are given by the following compo-
nent-wise inequalities:

(82)

(83)

(84)

(85)

where

From the first component inequality in either (82) or (83), and
using the fact that and can be taken as small as
we want, we get the following lower bound for :

(86)

Similarly, from (84) and (85), we can obtain, after operating,
lower bounds for and . Let , ,
that is, and . The actual lower
bounds for and depend on the parameters and

tightest if (87)

tightest if (88)

tightest if (89)

tightest if (90)

We show next that it is always possible to find pointsand
such that . Since (74) and (75) are satisfied, let
and , such that and .
Then, we have that

(91)

(80)

(81)
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This directly implies that we can always (by varyingand in
(91)) find two vertices and (satisfying that )
of the following form:

(92)

Consider now the case that at least one of the equations (74),
(75) were not satisfied. Then, it is also clear that we could find
cells with values of and as close to each other as wanted
because we have a continuum of values (modulo) in this
component, and the same conclusions in the proof would follow.

Consider first the case of . In this case,
if we multiply (87) and (88) by and , respectively,
and then we sum them, making use of the equality

, we obtain an upper bound for given by

(93)

In order for the upper (93) and lower (86) bounds of to be
consistent,5 it is necessary to have , which implies that

the only valid value for is . Consider now the case of

. In the same way, if we multiply (89) and
(90) by and , respectively, and we sum them, we
obtain an upper bound for given by

(94)

As before, for the upper (94) and lower (87) bounds to be consis-
tent, we need , which implies again that . Thus,
in order to achieve consistency simultaneously for the input vec-
tors and , as defined in (92), it is necessary to have always

. But this is clearly impossible because, for instance, by
taking vertices with , given by and ,

in (91), we have always . Therefore, we con-
clude that it is impossible to achieve consistency for the two
input vectors and simultaneously.
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