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Abstract
We consider the problem of correlated data gathering by a network with a sink node and a

tree based communication structure, where the goal is to minimize the total transmission cost of
transporting the information collected by the nodes, to the sink node. For source coding of correlated
data, we consider a joint entropy based coding model with explicit communication where coding is
simple and the transmission structure optimization is difficult. We first formulate the optimization
problem definition in the general case and then we study further a network setting where the
entropy conditioning at nodes does not depend on the amount of side information, but only on
its availability. We prove that even in this simple case, the optimization problem is NP-hard. We
propose some efficient, scalable, and distributed heuristic approximation algorithms for solving this
problem and show by numerical simulations that the total transmission cost can be significantly
improved over direct transmission or the shortest path tree. We also present an approximation
algorithm that provides a tree transmission structure with total cost within a constant factor from
the optimal.

1 Introduction

1.1 Correlated Data Gathering

Consider a number of distributed data sources with a certain correlation structure and which are
located at the nodes of a network. A practical example of such a situation is the case of sensor

∗The work presented in this paper was supported (in part) by the National Competence Center in Research on
Mobile Information and Communications Systems (NCCR-MICS, http://www.mics.org), a center supported by the
Swiss National Science Foundation under grant number 5005-67322. Parts of this work have been presented at the 23rd
Conference of the IEEE Communications Society (INFOCOM 2004), and at the 4th ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc 2003).
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Figure 1: In this example, data from nodes X1, X2, . . . , XN need to arrive at sink S. A rate supply
Ri is allocated to each node Xi. In thick solid lines, a chosen tree transmission structure is shown. In
thin dashed lines, the other possible links are shown.

networks that measure environmental data [1, 23, 25]. Collecting images from various sources into a
common repository on the internet is another example of correlated data gathering. A number of links
connect sources to each other, establishing a graph where sources are nodes and links are edges. The
task is to send all the data to a particular node of the graph that is called sink. In the practical case of
sensor networks, this node is denoted as base station. A typical transmission structure that is found
in practice is the tree, that is, the data are sent from the nodes to the sink, using a tree which has the
sink as a root. Since such structures are widely used in networks and lead to computationally efficient
communication algorithms while requiring a minimum communication overhead, we will restrict our
analysis to tree transmission structures. The goal is to gather all data at the sink using this tree
(subgraph of the original graph), while minimizing a cost functional (e.g. total flow cost). We refer to
this problem as the correlated data gathering problem. This problem can be viewed as an instance of
a network flow problem, but with an original twist: because the data is correlated, standard solutions
may not be optimal, which leads to an original problem that combines the joint optimization of rate
allocation and tree building.

An example is shown in Figure 1, where we have N nodes with sources X1, . . . , XN , a sink S, and a
number of edges that connect the sources. Intermediate nodes can be also used as relays in addition to
measuring data. They aggregate their own data with the data received from other nodes, and at the
same time, due to the correlation, the intermediate nodes can reduce the necessary rate to code their
data. A very important task in this scenario is to find a tree transmission structure on the network
graph that minimizes a cost of interest (e.g. flow cost [function(rate)] · [path weight], total distance,
etc.). This leads to the question of how to construct efficient data gathering trees.

When the data measured at nodes are statistically independent, the problem becomes separable:
because of the statistical independence, the choice of transmission structure does not affect the rate at
each node. Namely, first, each node simply encodes its own data independently; then, well developed
algorithms can be used to solve various network problems involving costs related to only the link
weights (minimum and shortest path spanning tree).

However, in many situations, such as in typical sensor networks, data at nodes are not indepen-
dent. Thus, due to the correlation that is present, it is expected that coding approaches that take this
correlation into account (e.g. conditional coding), will outperform traditional approaches, for various
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cost functions of interest. Moreover, jointly exploiting the data structure and optimizing the trans-
mission structure in the network, can provide substantial further improvements. Therefore, it is worth
studying the interaction between the correlation of the data measured at nodes and the transmission
structure that is used to transport these data to the sink.

An important practical instance of this type of problem can be found in sensor networks [1, 22, 23]:
a number of sensors acquire measurements from the environment (e.g. temperature) which are typically
correlated to each other, and these measurements are sent to a base station for decision or control
purposes. Let X = (X1, . . . , XN ) be the vector formed by the random variables measured at the
nodes 1, . . . , N . The samples taken at nodes are spatially correlated. We assume that the random
variables are continuous and that there is a quantizer in each sensor (with the same resolution for
each sensor). A rate allocation (R1, . . . , RN ) (each Ri is expressed in bits) has to be assigned at the
nodes so that the quantized measured information samples are described losslessly, so that they can
be fully reconstructed at the sink. That information has to be transmitted through the links of the
network to the designated base station. We abstract the communication structure to a connectivity
graph with point-to-point links given by the edges of the graph (see Figure 1, where the edges are
determined by either the transmission range of nodes, or the by the k-nearest neighborhood). In other
words, instead of considering the full wireless multi-point case, we assume a simplified communication
model with a medium access control (MAC) protocol, which makes sure that there are no collisions
or interferences at a node. A meaningful cost function to minimize is the energy consumption, which
is essentially given by the sum of products [function(rate)] · [link weight], for all the links and node
rates used in the transmission. Here, the weight of the link between two nodes is a function of the
distance d between the two nodes of the link (e.g. kdν or k exp(νd), with k, ν constants that depend
on the transmission medium properties).

There are two complementary approaches that can be used in this problem. The first approach is
to allow nodes to use joint coding of correlated data without explicit communication (this is possible
by using random binning coding strategies, namely, using Slepian-Wolf coding [6, 24, 28]). With this
approach, finding the optimal transmission structure turns out to be simple, because the joint problem
of optimizing the transmission structure and the source coding becomes decoupled and can be solved
in a separable manner; however data coding becomes complex and global knowledge of the network
structure and the correlation structure is needed for an optimal solution1. This approach has been
treated in [7, 8], where in addition, scenarios including more than one sink are studied.

In the second approach, considered in this paper, nodes can exploit the data correlation only by
receiving explicit side information from other nodes (for example, when other nodes use a node as relay,
their data is locally available at that relaying node). Thus, the correlation structure is exploited through
communication and joint aggregate coding/decoding locally at each node. We call this approach the
explicit communication approach. In this case, data coding can be performed in a simple way and relies
only on locally available data as side information. However, optimizing the transmission structure
becomes complex, as we show in this paper. Notice that in the explicit communication case it is not
necessary to know the correlation structure a-priori. This is because the correlation structure is learned
explicitly in a distributed manner through the explicit communication itself. This leads to a simple
source coding, but the transmission structure optimization is hard.

1We prove in [8] that the optimal transmission structure is the shortest path tree (SPT ). Further, the optimal rate
allocation requires ordering of the nodes on the SPT : the optimal rate allocation at each node is obtained by conditioning
the information at that node on all nodes closer to the sink on the SPT . This requires knowledge at each node of the
SPT ordering, and thus global network knowledge.
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1.2 Related Work

The problem of data gathering has been considered in several related works in the context of sensor
networks. Let us briefly review some of the algorithms proposed so far.

In [14], the authors introduce the cluster based LEACH algorithm. In their model, the cluster
head nodes compress data arriving from nodes that belong to the respective cluster, and send an
aggregated packet to the base station. The work in [19] introduces the PEGASIS algorithm, that uses
the [energy] × [delay] metric over the routing tree; their algorithms find chains of nodes instead of
clusters. However, none of these works exploits the correlation present in the data.

In [15], data gathering is done using directed diffusion. Sensors measure events, creating gradients
of information in their respective neighborhoods, while the base station requests data by broadcasting
interests, meaning events relevant for the base station. The best paths of information flow on which
interests fit gradients are reinforced. In order to reduce communication costs, data is aggregated on
the way on aggregation trees.

Similar work where the interplay of data compression and routing is studied can be found in [27],
[11] and [17]. In [11], the authors address the problem of data gathering and compression at relay
nodes by using the theory of concave costs applied to single source aggregation. The authors develop
an elegant algorithm that finds good trees that simultaneously minimize several concave cost functions
of interest. The related problem of single-source uncapacitated minimum concave-cost network flow
has been extensively studied (e.g. [12, 29]). The main difference with our work is that in our case,
due to the correlation structure and coding model we consider, the amount of aggregated information
sent down the tree to the next hop from a particular node depends on the structure of the subtree
whose parent is that node, whereas in [11] that amount only depends on the number of nodes in the
subtree, and not on the particular links chosen to build that subtree.

In [21] an empirical data correlation model is used for a set of experimentally obtained data, and
the authors propose cluster-based tree structures shown to have a good performance depending on the
correlation level. The correlation function is derived as an approximation of the conditional entropy,
and the cost function is the sum of bits transmitted by the network. In our work, we additionally
consider the inter-node distances in the cost function, and we provide a thorough complexity analysis
of routing involving explicit communication based coding. It is interesting to note that the transmission
structures for routing driven compression found in [21] are similar to the ones we derive later in this
paper (aggregating near the sources vs. progressing towards the sink).

In [9], a circular-coverage correlation model on a grid is used, where correlation is modelled as a
parameter proportional to the area covered by a sensor. The authors provide randomized shortest-
path aggregation trees with constant-ratio approximations. We consider a different correlation model,
where coding is entropy-based and relies on nearest neighbor conditioning; moreover, we allow for
alternative routing structures other than shortest paths.

Some examples of network flow with joint coding of correlated sources under capacity constraints
on the transmission links and Slepian-Wolf constraints on the rates are studied in [3], where trees
are shown to perform suboptimally if splittable flows are allowed. Since practical use of Slepian-
Wolf codes is still difficult in the case of large sensor networks, in this paper we use a model with
explicit communication, where nodes use relayed side information to compress their data. Note
that for the explicit communication model, when splitting packets the amount of overhead increases
importantly with the network size, since nodes need to keep track from where the different subpackets
are originating, in order to construct the conditional histograms. Additionally, to the best of our
knowledge, there is no proper solution available yet to the problem of wireless data gathering with
capacities on the links2.

2Note that the use of frequency/code division multiple access incurs the additional difficulty of assigning the slots in
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1.3 Main Contributions

We first provide a formal definition of the problem of cost efficient data gathering with explicit commu-
nication in a sensor network. Namely, we study the case where joint coding of correlated data by the
network is performed explicitly, that is, the reduction in rate by entropy coding due to the correlation
is possible at a node only when side information is explicitly available (as relayed data from another
node). We consider a simplified version of our general problem setting that results in an original flow
optimization problem on a graph. We show some network examples where a joint treatment of rate
allocation and transmission structure optimization provides important improvements over the shortest
path tree. However, we prove that this optimization problem is NP-hard, by a non-trivial reduction
from the min-set cover problem. Then, we propose a set of distributed heuristic approximation al-
gorithms that provide good solutions for this problem. We show by simulations how a combination
of the shortest path tree and traveling salesman paths approximates well the solution given by sim-
ulated annealing, that is expected to provide results close to the optimum. Moreover, we present an
approximation algorithm that provides tree transmission structure solutions within a constant from
the optimal solution, for any possible graph instance (worst-case). We compare the various scenarios
through numerical simulations to show how our algorithms provide important improvements in terms
of total costs, as compared to the shortest path tree.

1.4 Outline of the Paper

In Section 2 we define the problem studied in this paper. In Section 3 we present a scenario that uses
simplified assumptions for our problem setting, and we prove that even in this case, the corresponding
optimization problem is NP-hard. In Section 4 we propose a set of heuristic approximation algorithms
that provide good average improvements over direct transmission or the shortest path tree. In Sec-
tion 5 we present an algorithm that generates a spanning tree with cost within a constant bound
from the optimal solution. Then, in Section 6, we compare our proposed algorithms by numerical
simulations. We provide our conclusions in Section 7.

2 Problem Formulation

We consider the problem of data gathering with a single sink, to which all the data has to be sent. Let
G = (V, E) be a weighted graph with |V | = N + 1. We denote by S the particular (N + 1)th node
called sink. Except the sink, every node in the graph generates a source. Each edge e = (i, j) ∈ E has
a weight we. Since the data are correlated, depending on the chosen transmission structure, each node
i has to transmit a certain rate Ri through the network to the sink. Let f(xe, we) be an arbitrary cost
function of the total rate (flow) xe going through a particular edge with weight we. Then the general
minimum cost data gathering tree problem is defined as follows: find the spanning tree T of the graph
G that minimizes the cost function:

cT =
∑
e∈T

f(xe, we), (1)

with the additional constraint that the incoming flow at the sink provides enough information to
reconstruct data measured at all nodes.

We restrict our discussion to functions f(·, ·) which are separable as the product of a function
that depends only on the rate and another function that depends only on the link weights of the

a distributed manner. Moreover, TDMA can not be used for gathering of i.i.d. snapshots, since delays destroy the data
relevance in this case.
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transmission structure3. Without loss of generality, we assume f(x, w) = x · w.
Note that in a data gathering scenario based on explicit communication, it is not practical to allow

splittable flows, the reason being that it is hard to implement a protocol where intermediate nodes are
able to disseminate from where pieces of information originate; such knowledge is crucial since data are
correlated and the compression is based on entropy conditioning4. Moreover, a fully wireless scenario
requires solving the general problem with capacitated flows, and this requires considering of additional
issues like wireless interference; to the best of our knowledge this is still an open problem. Thus, in
this paper, we consider unsplittable and uncapacitated flows. Under these assumptions, the optimal
transmission structure is a tree. Namely, in order that the sink has full information about all nodes,
each node needs to either provide its full information, or it needs such side information from another
node, to perform data conditioning. As a result, at least an incoming link to each non-leaf node in the
transmission tree has to contain full side information; thus, adding links to a tree only increases the
total cost of communication.

With these assumptions, the expression (1) to be minimized can be rewritten as:

cT =
∑
i∈V

RidT (i, S) (2)

where dT (i, S) is the total weight of the path connecting node i to S on the T tree. Ri is the incoming
rate at node i that models the rate in bits obtained by coding either (a) the full information at that
node, if there is no side information available, or (b) the information at that node conditioned by side
information available from forwarded nodes.

The important new feature that makes this problem different from classical network flow theory is
the following: by changing the transmission structure, since we change the inter-node distances, both
the set of rates {Ri}Ni=1, which depends on the inter-node correlation, and the path weights {dT (i)}Ni=1

are affected. Thus, the optimization of the set of rates and the path weights has to be done jointly,
and it cannot be decoupled. We call this new problem the minimum cost correlated data gathering tree
problem.

We now particularize the optimization problem (2) to the explicit communication based coding
setting. In classical network transport theory, the amount of supply (rate in our case) at a node is
fixed and independent of the communication links that are chosen to transport the various supplies. In
particular, the supply provided by the ith node is independent of the nodes that are connected to
the ith node through the chosen edges. In our problem formulation, an important novelty is that the
supply at a given node depends both on the incoming flow from other nodes that use that node as relay,
and also on the transmission structure that is used for these nodes. This novel feature is not captured
by generalized network flow settings [4], where supplies at nodes depend only on the incoming flow,
but not on the transmission structure used to transport that flow.

Consider again the example in Figure 1, where nodes have to communicate their correlated data
to one sink. To reduce the complexity of local coding, we assume that each relay node forwards
received packets without decoding/re-coding received information and they only perform compression
by conditional entropy coding of its own measured data, given the received data from the nodes that
are using it as intermediate relay node. Denote by H(X) the entropy5 of a discrete random variable

3This corresponds to many practical settings (e.g. the [rate] · [path weight] cost function measures the transmission
cost in wired networks, and the [exp(rate)] · [path weight] measures the battery consumption in wireless networks, where
the [path weight] term is a function of the inter-node distances along a path).

4However, this is not needed in the Slepian-Wolf scenario, since nodes need not explicitly communicate to coordinate
for coding with joint entropy rather than the sum of individual entropies [7].

5The entropy is a measure of uncertainty of a random variable [6]: H(X) = −∑x∈X p(x) log p(x), where X is the
discrete alphabet of X.
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X, and by H(X|Y ) the conditional entropy of a random variable X given that the random variable
Y is known. If we consider node X3, then the rate it has to supply depends on whether (a) neither
X1 nor X2 use it as a relay, and then X3 uses a rate H(X3), or (b) X1 and/or X2 use it as a relay,
and then X3 uses a rate H(X3|X1 and/or X2). It is clear that in either of these two cases, the optimal
transmission structure might not be the shortest path tree. We show in the next Section 3 how the joint
dependence of rates and path weights on the transmission structure actually makes our optimization
problem NP-hard.

3 Complexity Analysis and Approximation Algorithms

For the sake of simplicity and clarity in our arguments, and without loss of generality in the complexity
analysis, we use in this section a simplified model for the data correlation, which allows a clearer
analysis of complexity, and for which we develop efficient heuristic approximation algorithms. As we
show in this work, this model still completely preserves the original complexity of the optimization
problem. Namely, in our model, data at each node are entropy coded with H(Xi) = R bits if no
side information is available from other nodes; but only H(Xi|Xj1 , . . . , Xjk

) = r ≤ R bits, ∀k, are
needed if the node i has side information available coming from at least another node, which uses
node i as relay. Thus, our simplification is that r is constant and does not depend on the number of
nodes on which conditioning is done. For instance, this naturally approximates well the case when the
correlation function between two nodes decreases with distance6. Namely, in this case conditioning on
the closest neighbor results in the most important entropy reduction as compared to conditioning on
more than one node.

Note that this simple coding strategy is easy to implement in a practical scenario. Sensor nodes
have limited information processing capabilities, and prior knowledge of their correlation structure is
assumed unknown. Suppose a transmission protocol needs to be implemented in the nodes, to perform
information reduction by using conditional entropy. Thus, one possible simplification is to consider
fixed block size appendices (in our setting, of size r) to the forwarded packet, that accommodate the
average expected entropy reduction, regardless of the position of the node. The entropy reduction can
be performed by simple look-up tables once the correlation is learnt.

For the rest of this paper, we denote by ρ = 1− r/R the correlation coefficient.

3.1 The Tradeoff between Shortest Path Tree and Traveling Salesman Path

In the case of uncorrelated data, if the cost for transmitting over an edge is proportional (by a
fixed constant) to the Euclidean length of that edge, then the problem is trivial and the optimal
communication structure is the edge connecting the node to the sink. However, for an arbitrary weight
function on the edge, transmitting via relays may be better than direct transmission (for example, if
the edge weight is dν , ν > 1). In the case of correlated data, as it is the case in sensor networks, things
become even more interesting, even for very simple networks, because the rates {Ri}Ni=1 are affected
by the choice of the transmission structure.

The example in Figure 2 shows that even in simple network cases, finding good correlated data
gathering structures is not trivial at all. If the data were independent, the shortest path tree (SPT)
would be optimal (see Figure 2 (a)). However, we see that in this example, if ρ > 1/2, the SPT is no
longer optimal, since its cost is larger than the one corresponding to the gathering tree in Figure 2
(b).

6For instance, the valid correlation models Kij = exp(−αdβ
ij), β ∈ {1, 2} are widely used in spatial statistics. In these

models, correlation decreases rapidly with distance.
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Figure 3 shows one other simple network example, with N nodes equally-spaced on an unit
length arc circle at distance D from the sink. It is straightforward to show that limN→∞ cTSP

cSPT
=

(1 − ρ)
(

1
2D + 1

)
, where cTSP , cSPT are the total flow costs of the two corresponding trees. Consider

the case when the number of nodes is very large and the correlation coefficient is arbitrarily close to
unity. This means that a path passing through all the nodes and ending at the sink (a traveling sales-
man path, TSP) can be arbitrarily more cost efficient than the direct transmission which corresponds
to the SPT in this case.

From these simple examples, it can be seen that the correlated data gathering problem with
explicit communication is actually a hard optimization problem, in general. Formally, in terms of
graph optimization, we can rewrite the minimization of (2) for the case of explicit communication as
follows:

• Given: graph (V, E).

• Find: the spanning tree T = {L, I} with L being the set of leaves, I being the set of non-terminal
nodes, L ∪ I = V , L ∩ I = ∅.

• such that:

T = arg min
{L,I}

⎛
⎝r
∑
j∈I

dT (j, S) + R
∑
l∈L

dT (l, S)

⎞
⎠

where dT (i, S) is the total weight of the path on the T tree from node i to the sink S.
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In terms of the correlation coefficient, ρ = 1− r/R:

T = arg min
L

(
(1− ρ)

∑
i∈V

dT (i, S) + ρ
∑
l∈L

dT (l, S)

)
(3)

Let us first look at the two extreme cases, that is ρ → 0 and ρ → 1. When ρ → 0 (independent
data), the optimal tree is the SPT, which is known to be solvable in polynomial time by e.g. a
distributed Bellman-Ford algorithm. At the other extreme, when ρ→ 1 (data maximally correlated),
the optimal solution is a spanning tree for which the sum of paths from the leaves to the sink is
minimum. For this, the core information is taken from the leaf nodes, and passing through all the
in-tree nodes only adds an infinitesimally small amount of new information, since data is strongly
correlated. It is straightforward to show that solving this problem is equivalent to solving the multiple
traveling salesman optimization problem (k − TSP )[18], which is known to be NP-hard.

To the best of our knowledge, (3) is an original spanning tree optimization problem on a graph. In
Section 3.2, we show that this problem is also NP-hard for the general case 0 < ρ ≤ 1. However, it is
possible to design good approximation algorithms and we provide them in Section 4.

3.2 NP-Completeness

In order to prove the NP-hardness of the optimization problem given in (3), we show that the decision
version of the problem is NP-complete. The decision version of our optimization problem is:

Definition 1 Network data gathering tree cost decision problem.

• Instance: An undirected graph G = (V, E) with weights we assigned to the edges e ∈ E, a positive
integer M , and a particular node S ∈ V .

• Question: Does the graph admit a spanning tree T such that, when assigning supplies Ri = R
to the leaf nodes and Ri = r < R to the in-tree nodes in the spanning tree T , the total cost of T
given by (3) is at most M?

Theorem 1 (NP-completeness) There is no polynomial time algorithm that solves the network
data gathering tree cost problem, unless P=NP.

Proof: See Appendix A (we use a non-trivial reduction from the min-set cover problem).

Arbitrary function of rate

Note that the NP-completeness result holds for any monotonically increasing function of the rate,
since an arbitrary function only modifies the values of R and r, but not the multiplicative separable
form of the cost function.

Since (3) is a particular version of the general problem (1), it follows by a trivial reduction that
(1) is also NP-hard:

Corollary 1 Minimizing
∑

i∈V RidT (i, S) with Ri = f(
∑

e→i xe) for an arbitrary monotonic function
f(·), is NP-hard.

Note also that, in general, node i has information from all the nodes in the subtree sbt(i) rooted
at node i. Our simplified model is a particular case of this general entropy coding problem, where
H(Xi|{Xj}, j ∈ sbt(i)) is approximated with H(Xi|Xj), with j being a child of i. Then it can be
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shown easily that the NP-complexity of our simplified example extends also to this more general case
by means of a trivial further reduction.

Note that the NP-hardness of the problem for a single sink generalizes by a straightforward reduc-
tion to the case of multiple sinks. However, the derivation of approximation algorithms for the multiple
sinks case is significantly more difficult. For instance, the generalization of the SPT/TSP structure
to multiple sinks is non-trivial due to the interactions between the approximated structures derived
for each single sink in particular. This is because nodes that are leaves for a particular structure can
be in-tree nodes for other structures, and thus their corresponding rate allocation cannot be uniquely
determined.

3.3 The Dual Problem: NP-Completeness of Broadcast of Correlated Data

The problem formulation for correlated data tree broadcast is also essentially provided by the simplified
problem (3), with the difference that now r > R, that is, the amount of forwarded data diminishes
as it is broadcast from a source node to the extremities of the network. The outer (leaf) nodes can
use the data from their parent nodes to fully reconstruct their own data. Thus, in general, relays only
need to send further to their children an amount of data equal to the entropy of their corresponding
children, conditioned on their own measured data.

Proposition 1 There is no polynomial time algorithm that solves the dual problem of correlated data
broadcast (namely, r > R in Theorem 1), unless P=NP.

Proof: See Appendix B.

4 Heuristic Approximation Algorithms

In this section we introduce a set of approximation algorithms for solving problem (3).

4.1 Shortest path tree

SPT is computed by using the distributed Bellman-Ford algorithm [4] for simultaneously determining
the shortest paths from all nodes to the sink. If the data is independent, this is the optimum solution,
but it is far from optimal if there are high correlations.

4.2 Greedy algorithm

We start from an initial subtree composed only of the sink node. Then, we add successively, to the
existing subtree, the node whose addition results in the minimum cost increment. As expected, given
the relationships between the problem in this paper and the TSP problem, greedy algorithms perform
suboptimally, in the same way as the greedy approximation algorithm for TSP provides a quite
suboptimal solution. The reason is that far nodes are being left out, so they need to connect to the
sink via a path with large weight.

4.3 Simulated annealing

We propose now a computationally heavy method which is known to provide results that are close
to optimal for combinatorial problems involving a large number of variables, similar to the problem
considered in this paper (e.g. TSP). This method was inspired by the fitness landscape concept used
in evolutionary biology, physics of disordered systems and combinatorial optimization [26]. The fitness
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landscape formulation of our problem is as follows: (a) the configuration space is the set of all spanning
trees (completely defined by the parent relationship), (b) the move set is: one node changes its parent,
(c) the fitness function is g(T ) = R

∑
l∈L dT (l, S)+r

∑
j∈I dT (j, S). Our goal is to minimize the fitness

over the set of spanning trees.
A very general heuristic optimization method is simulated annealing (SA) [13]. It gives very good

results when applied to another NP-hard combinatorial problem in graphs, the traveling salesman
problem (TSP) [18, 26].

Algorithm 1 Simulated annealing:

• Take a cooling schedule h[k], k = 1, . . . , K. Initialize parent nodes with par(i) = S, i = 1, . . . , N . De-
note by N (i) the set of one-hop neighbors of i.

• While k < K

– k = k + 1, l = g(T );

– choose i, j ∈ N (i), at random such that deleting edge (i, par(i)), and adding edge (i, j) to
the tree, does not form a cycle; let T ′ be the newly generated spanning tree and let l′ = g(T ′)
be its corresponding fitness.

– make the change par(i)← j, and assign T ← T ′ with probability

p =

{
1, if l′ ≤ l

exp(− l′−l
h[k] ), if l′ > l

.

• Endwhile.

For ρ = 0 (SPT), our experiments show that it does provide the exact solution, and convergence is
easy to achieve. When ρ is close to 1, the generated landscape is not smooth any longer, so convergence
is difficult to obtain in a reasonable number of iterations. We obtained good results (iteration steps
vs. ruggedness) with the Lundy and Mees schedule [20]: h[k] = h[k−1]

1+
h[0]−h[K]
Kh[0]h[K]

.

Simulated annealing is usually hard to implement in a decentralized manner, and is computa-
tionally expensive. It does however provide a good benchmark close to optimal against which other
heuristic algorithms can be tested.

4.4 Balanced SPT / TSP tree

We propose a heuristic approximation algorithm consisting of a combination of SPT and k − TSP ,
inspired from the solutions obtained using simulated annealing. The solution provided by this algorithm
consists of a SPT structure around the sink that has a certain radius and a set of TSP paths starting
from each of the leaves of the SPT . Depending on the amount of correlation, that is the value of ρ,
a certain radius for the SPT is more appropriate. We briefly describe the intuition why there is such
a value for this radius. Since the leaf nodes contribute most to the cost (R > r), then in order to
minimize the cost, the flows of R data coming from the leaves of the tree have to travel short paths
to the sink (the SPT effect), but in the same time through as many nodes as possible, to reduce the
total number of leaves (the TSP effect). On the other hand, when the correlation is large (r is small),
the effect of transporting flows of r data through the tree is negligible, so it is essential to have as
many in-tree nodes as possible, thus the TSP effect is more important; when the correlation is small
(r is large), it is more important that the data from in-tree nodes reach the sink on shortest paths,
and thus the SPT effect becomes more pronounced.
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n

m

Figure 4: Square grid network: the SPT (solid lines) is built on the nodes in the m × m sub-grid
around the sink (larger black dot). The rest of the nodes are spanned by TSP s (dashed lines) rooted
in the leaves of the SPT .

Algorithm 2 SPT/TSP balanced tree:

• Build the SPT for the nodes that are in a radius q(ρ) from the sink. Denote this SPT by T . The
optimal choice for the radius q(ρ) decreases with the increase of the correlation coefficient ρ. Let
VT denote the nodes in T . Let VTS = V \VT .

• While VTS 
= ∅
– Denote by L the set of leaves of T .

– {i0, l0} = arg min{i∈L,l∈VTS} (d(l, i) + dT (i, S)).

– T = T ∪ (i0, l0), VT = VT ∪ {i0}, VTS = VTS\{i0}.
The second part of Algorithm 2 is actually a suboptimal nearest neighbor approximation of the

k − TSP , which is easily implementable in a distributed manner.

Square grid network graph: optimal radius for the SPT/TSP algorithm

Since the TSP problem is NP-complete, it is difficult to provide an analytical study of the dependence
of the optimal SPT radius on the correlation structure for a general connectivity graph. Therefore,
for analysis, we restrict our attention to a square grid graph and study in detail the structure of our
SPT/TSP algorithm in this case. Namely, we study the dependence of the optimal radius on the
correlation coefficient ρ.

Consider a square grid network with (2n+1)×(2n+1) nodes (see Figure 4). The SPT is built on the
square area of (2m+1)×(2m+1) nodes around the sink. Note that the SPT subtree has 8m leaves. For
the rest of the graph, equal length TSP paths are built. Namely, for each leaf of the SPT subtree, a
TSP rooted at that leaf node is constructed, which spans floor

(
(2n + 1)2 − (2m + 1)2/(8m)

)
of the

nodes left outside the SPT subtree.
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Figure 5: Square grid network: normalized cost of the SPT/TSP tree for a grid network of size
N = 101 × 101 nodes (n = 50) and several values of the correlation coefficient ρ. Note how the
optimum value of the radius m increases from 0 to n as ρ decreases from 1 (high correlation) to 0 (no
correlation).

We plot in Figure 5 the total cost of the SPT/TSP tree as a function of the correlation coefficient
ρ. As expected, the optimal SPT radius m decreases with the increase of the correlation coefficient ρ.

Next, we compute analytically the optimal ’radius’ m/n of the SPT subtree as a function of the
correlation coefficient ρ = 1− r/R. After some computations, we obtain that the optimal m is a root
of the following polynomial: P (Z) = 3rZ4 +(8r−16R)Z3 +(−r−4rn+4R−4rn2)Z2 +(rn4 +2rn3 +
rn2). This polynomial has 4 roots, but by solving it numerically, we find that only one of them is in
the interval [0, n]. We plot this solution for the optimal radius in Figure 6. The discontinuity at ρ = 0
is due to the properties of the very particular regular grid structure that is analyzed. A particular
interesting abrupt phenomenon is observed asymptotically: when n is sufficiently large, there is an
optimal normalized radius for the SPT , which does not depend on the correlation coefficient ρ.

4.5 Leaves deletion approximation

This algorithm is a simplified version of the TSP/SPT algorithm. Namely, this algorithm constructs
first the global SPT , and then uses one-hop TSP paths from the outer nodes of the SPT . It is based
on the observation that good cost improvements may be obtained mainly by making the leaf nodes
change their parent node to some other leaf node in their neighborhood. This operation is done only
if it reduces the total cost of the whole tree.

Algorithm 3 Leaves deletion algorithm (LD):

• Initialize T ← SPT . Each node i maintains its parent, number of children, and total distance
dT (i, S) on the current spanning tree to the sink. Let par(i) denote the parent node of node i.

• While there is a decrease in cost:

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correlation coefficient ρ

N
o

rm
a

liz
e

d
 o

p
tim

a
l r

a
d

iu
s 

m
/n

n=10
n=100
n=1000

Figure 6: Square grid network: optimal radius of the SPT (normalized with respect to the radius of
the square grid), as a function of the correlation coefficient ρ, for various sizes N = (2n + 1)2 of the
network.

– For each leaf node i: Find the leaf node j ∈ N (i) that maximizes R(dT (i, S) + dT (j, S))−
(R(di,j +dT (j, S))+ rdT (j, S))−A(i), where A(i) is an adjustment term indicating the cost
lost by transforming single parent nodes into leaves. If the maximizing quantity is positive,
then assign par(i)← j and update the corresponding distances on the tree to the sink, and
number of children, for all the three nodes involved {i, former par(i), j}.

• Endwhile.

This algorithm involves a small number of iterations after SPT is computed, and is fully dis-
tributed. Note that a known good approximation for the geometric TSP is to start from the minimum
spanning tree (MST) and eliminate the leaves by successively passing the traveling salesman path
through them. Here, we can see that a simplified similar procedure provides good results in our case
as well, which confirms the link between our problem and the TSP.

5 Strict Approximation Algorithms

In this section we present a strict approximation algorithm, that is an algorithm which guarantees a
solution for which the cost is only a constant factor higher than the cost of an optimal solution. We
start this section by giving a lower bound on the cost of an optimal solution.

Lemma 1 (Lower Bound) The cost of the optimal solution copt is bounded from below by copt ≥
max(r · cSSP , R · cMST ), where cSSP is the sum of the costs of all the shortest paths to the sink, and
cMST is the cost of the minimum spanning tree of all the nodes, including the sink.

Proof: Nodes in the network can either send their raw data directly to the sink, or use the raw
data of other nodes to code their data, and then send their coded data to the sink. Let the nodes who
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send their data in the raw format be the set B. Let the nodes who code their data using using the
raw data of node u be the set Cu. The set B and the sets Cu for all u ∈ V form a partition over all
nodes, that is: V = B ∪∑u∈B Cu.

After deciding how the set of nodes will be partitioned, an optimal algorithm will use the shortest
paths (SP ) to deliver the raw data from nodes in B to the sink. Similarly, the encoded data of nodes
in set Cu will travel along shortest paths (SP ) to the sink. Nodes from Cu need to encode their data
using the raw data of node u, u being a node in set B. On the other hand the sink needs to decode
the encoded data of nodes from Cu; to do so, the sink needs the raw data of node u too. The optimal
way to distribute the raw data of u is given by the minimum spanning tree (MST ) between the nodes
in the set Cu, node u itself, and the sink. Summing up, the cost of the optimal algorithm is therefore

copt =
∑
u∈B

R · SP (u, sink) +
∑
u∈B

(
R ·MST (Cu, u, sink) +

∑
v∈Cu

r · SP (v, sink)

)
.

We can bound this equation in two ways from below. Since the sets B and Cu form a partition of
all nodes V , and since r ≤ R, each node must transmit its data to the sink on the shortest path, at
least in the coded form. Therefore the optimal cost contains at least the sum of the shortest paths
(SSP) of the coded data:

copt =
∑
u∈B

R · SP (u, sink) +
∑
u∈B

(
R ·MST (Cu, u, sink) +

∑
v∈Cu

r · SP (v, sink)

)

≥
∑
u∈B

r · SP (u, sink) +
∑
u∈B

∑
v∈Cu

r · SP (v, sink)

=
∑
u∈V

r · SP (u, sink) = r · cSSP .

On the other hand, since B and Cu form a partition of all nodes V , the terms containing raw data
(R) must include a spanning tree. Since the minimum spanning tree (MST ) is the cheapest possible
spanning tree, the cost of the optimal algorithm is also bounded from below by the cost of the MST ,
used to transmit the uncoded data. The lemma follows immediately.

In the following we present an approximation algorithm that is optimal up to a constant factor.
The algorithm is based on the shallow light tree (SLT ), a spanning tree that approximates both the
MST and the shortest paths for a given node (e.g. the sink). The SLT was introduced in [2, 5]. Given
a graph G(V, E) and a positive number γ, the SLT has two properties:

• Its total cost is at most 1 +
√

2γ times the cost of the MST of the graph G(V, E);

• The distance on the SLT between any node in V and the sink is at most 1 +
√

2/γ times the
shortest path from that node to the sink.

For more details on the construction of the shallow light tree (SLT ) we refer to [16].
The algorithm is as follows: First the SLT spanning tree is computed, the sink being the root

of the SLT . Then the sink broadcasts its value Rsink to all its one-hop neighbor nodes in the SLT .
When node v is receiving a value Ru from a neighbor u, node v encodes its locally measured data Rv

using Ru, and transmits its encoded value rv to the sink on the path given by the SLT . Then node
v broadcasts its value Rv to all its one-hop neighbors but u; in other words to all its children but not
its parent in the SLT . We call this the SLT algorithm.
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The sink has its own data R available locally (or it can use the R data of its first-hop neighbors),
and thus can perform recursive decoding of the gathered data, based on the encoded r values that it
receives from all the nodes7.

Theorem 2 The SLT algorithm is a 2(1 +
√

2)-approximation of (3).

Proof: The total cost of the SLT algorithm is given by

cSLT = R · cSLT +
∑
v∈V

r · |PathSLT (v, sink)|.

The first term follows from each node sending its raw data to all its children in the SLT . The
second term corresponds to the sum of the shortest paths in the SLT . Using the SLT properties we
have cSLT ≤ R · (1 +

√
2γ)cMST + r · (1 +

√
2/γ)cSSP . We choose γ = 1, with α = R · cMST and

β = r · cSSP . Then
cSLT = (1 +

√
2)(α + β).

Dividing cSLT by copt = max(α, β) as derived in Lemma 1, the second factor of cSLT will be upper
bounded by 2, and the approximation ratio will consequently be (1+

√
2)·2 ≈ 4.828. This ratio becomes

tight at α ≈ β; if α� β or β � α the approximation ratio of the SLT algorithm is better.
Thus SLT provides a worst-case bound for our problem. Figure 7 shows the best choice of γ for

the SLT , found experimentally, as a function of the correlation coefficient ρ. Note that when the data
is independent (ρ→ 0), the optimal choice of γ is large; that is, the SLT is close to the SPT . On the
contrary, for high correlation (ρ→ 1), a good SLT should be close to the MST (value of γ close to 1),
and the MST is known to approximate the TSP within a constant. These results for the best choice
of the parameter γ for the SLT approximation are as expected, following our discussion in Section 3.

6 Numerical Simulations

Our simulations were done in MATLAB for a network of nodes randomly distributed on a 100× 100
grid, with a value ν = 2 for the power of the distance. We consider several sizes of the network, from
N = 10 up to N = 500 nodes, and various values for the correlation coefficient ρ among the nodes,
within the interval ρ ∈ [0, 1]. As mentioned before, the algorithm that is used for finding the SPT in
a distributed manner is a distributed version of the Bellman-Ford algorithm, which runs in O(N |E|)
steps. The actual speed of convergence depends on the degree of each node in the graph, which in
turn depends on the range N (i) over which nodes search for neighbors. For the graph structures we
consider, Bellman-Ford runs in an average of 50 steps for a network size of 500 nodes.

Our experiments show important average improvements of the LD algorithm over the SPT for
nodes randomly distributed on a 100× 100 grid (see Figures 8–10). The computational load of LD is
small, namely at most 4 iteration steps after the SPT are required for its implementation, while the
algorithm is still distributed.

When comparing the various heuristic algorithms with the simulated annealing solution, which is
expected to provide results close to optimal, we notice that our simple heuristic algorithms perform
relatively well, while being completely distributed, scalable and efficient from a complexity point of
view (see Figure 9). Note that it is possible that simulated annealing did not provide the optimal

7In a practical scenario, this corresponds to a powerful base station which broadcasts to the nodes a predicted message
R, based either on previous reports from the nodes, or on the own measurement of the sink. The nodes only need to
send back adjustments r, by conditioning on the side information (for example, in a temperature measuring scenario,
the sink broadcasts its measurement and nodes only need to feedback the deviations from this measurement).
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cLD
−1), in %, of leaves deletion (LD) over shortest path
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17



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

 

(a) SPT algorithm

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

 

(b) Leaves deletion algo-
rithm

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

 

(c) Simulated annealing

0

1

2

3

4

5

6
x 10

5

C
o
s
t

SPT LD SA 

(d) Total cost

Figure 9: Data gathering tree algorithms on a network instance: N = 100, ρ = 0.5: (a) Shortest path
tree (SPT ), (b) Leaves deletion (LD), (c) Simulated annealing, (d) Total flow cost. Costs for this
instance: SPT : 3.52e+6; LD: 3.36e+6; SA: 3.31e+5.
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rithm
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Figure 10: Approximated gathering trees on a network instance: N = 200, ρ = 0.2: (a) Shortest
path tree (SPT ), (b) Leaves deletion (LD), (c) SPT/TSP algorithm. Costs for this instance: SPT:
2.74e+5; LD: 2.36e+5; SPT/TSP: 2.15e+5.

solution either, but it is expected to do so with the right scheduling policy and with a long enough
running time.

Solutions for a network instance are shown in Figures 9–10. We show in Figure 10 some simulation
results for the SPT/TSP algorithm. In Figure 10(c) we plot the branches in the SPT subtree in solid
lines, and the branches added in the step involving TSP paths are shown in dashed lines. For networks
with ρ = 0.2 and N = 200, the improvements are of the order of 10% over the LD algorithm.

Our experiments show important improvements of the LD and the SPT/TSP algorithms over SPT,
in terms of average performance over randomly generated networks (see Figure 11).

For illustrative purposes, we show in Figure 12 the SLT tree and the SPT/TSP tree for a network
instance with N = 100. In terms of total cost, as expected, from an average case point of view, the
SPT/TSP algorithm performs better than the SLT algorithm (see Figure 13). In these results, the
value of the radius q(ρ) for the SPT/TSP has been chosen as in Figure 6, and for the SLT , the
value of γ has been chosen as in Figure 7. Note that for small values of the correlation coefficient
ρ ≈ 0, the two trees perform similarly, since both algorithms provide solutions close to the SPT ,
which is the optimal solution when there is no correlation in the data. When the correlation coefficient
ρ approaches 1, the SLT provides a solution close to the MST , and thus, the ratio between the costs
provided by the two algorithms shows how well the MST approximates the TSP . Namely, the MST
provides a constant approximation for the TSP in the worst case, while, by design, the SPT/TSP
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Figure 11: Average ratios of total costs between leaves deletion (LD) and SPT, and between balanced
SPT/TSP and SPT: ρ = 0.9.

algorithm searches for better approximations for the TSP .

7 Conclusions

In this paper, we formulate the network correlated data gathering tree problem with coding by explicit
communication. Namely, we address an optimization problem that considers transmission structure
optimization in networks where connectivity is modelled as a graph. A transmission tree structure
implies both a certain rate allocation at the nodes and a certain transmission cost per bit between
connected nodes. We first proved that the problem is NP-hard even for scenarios with several simpli-
fying assumptions. We propose approximation algorithms for the transmission structure that provide
significant gains over the shortest path tree. Moreover, our algorithms provide solutions close to the
optimal, which is shown experimentally by comparing our approximation algorithms to a provably
optimal but computationally heavy optimization method, namely, simulated annealing.

A Proof of Theorem 1

First, the decision version of our problem is in NP: a nondeterministic algorithm needs to guess the
parent relationship (that is, specify the parent node for each of the nodes), and then find in polynomial
time the nodes that are not parent nodes, assign to all nodes the number of bits corresponding to
either leaf or in-tree node, and test that its total cost is less than the given value M .

Next, to prove the NP-hardness, we perform a reduction from the set cover problem [10], whose
decision version is defined as follows:

Definition 2 Set cover.

• Instance: A collection C of subsets of a finite set P and an integer 0 < K ≤ |C|, with |C| the
cardinality of C.
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Figure 12: Approximated gathering trees on a network instance: N = 100, ρ = 0.8: (a) Shallow light
tree (SLT ), (b) SPT/TSP algorithm. Costs for this instance: SLT: 1.79e+005; SPT/TSP: 1.55e+5.
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• Question: Does C contain a subset C ′ ⊆ C with |C ′| ≤ K, such that every element of P belongs
to at least one of the subsets in C ′ (this is called a set cover for P )?

For any instance of the set cover problem we build an instance of our decision problem. Figure
14(a) illustrates the construction of the graph instance for our problem. The resulting graph is formed
of three layers: a sink node S, a layer corresponding to the subsets Ci ∈ C, and a layer corresponding
to the elements {pj} of the set P . For each element Ci ∈ C we build a structure formed by 4 nodes
x1, x2, x3, x4, as in Figure 14(b) (there are four different nodes for each subset Ci, but we drop the
superscript Ci of the nodes x for the sake of simplicity). This structure originates from our toy example
in Section 3.1 and has properties linked with the tradeoffs observed there. The node x3 is linked to
the sink S, node x4 is connected only to node x1, and x1, x2, x3 are all interconnected. Furthermore,
we connect each structure Ci ∈ C (namely the node x1 from that structure) to only the nodes in the
P layer that correspond to elements contained in Ci (example: in the instance in Figure 14(a), subset
C1 = {p1, p2, p4}, C2 = {p2, p3, p|P |−1} etc.) All the edges connecting the P layer to the C layer have
a weight d > 0; for all Ci, the edges of type (x1, x3) and (x2, x3) have weight a ≥ 1; the rest of the
edges shown in Figure 14(a) have all weight 1. All other edges are assumed of infinite weight and are
not plotted. Without loss of generality, we consider that in-tree nodes use r = 1 bits for coding their
data, while leaf nodes use R > 1 bits.

The goal is to find a spanning tree for this graph, for which the cost in (3) is at most M . We now
show that if M = |P |(d + a + 1)R + K(2aR + 3R + a + 2) + (|C| −K)(aR + 3R + 2a + 4), for the
positive integer K ≤ |C|, then finding a spanning tree with cost at most M is equivalent to finding
a set cover of cardinality K or less for the set P . Notice that the construction of our graph instance
from the set cover instance can be performed in polynomial time.

With a large enough value chosen for d (i.e. d > |C|(2aR + 3R + a + 2)/R), a tree with cost at
most M will contain exactly |P | links between the layers P and C. That means that no pj node is
used as relay, so all pj ∈ P are necessarily leaf nodes. If some pj node was used as relay, then the cost
of the tree would contain R bits passing through more than |P | such links, which would result in a
cost larger than M . This also implies that the only way the Ci structures can connect to the sink S
is via their corresponding x3 node, so all x3’s must be in-tree nodes. Furthermore, all x4’s nodes need
to be connected to their corresponding x1 node in order to belong to the tree, so necessarily all x4-s
are leaf nodes and all x1’s nodes are in-tree nodes. The only degrees of freedom are the choices of two
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out of the three edges interconnecting the nodes x1, x2, x3, for each structure Ci.
The key idea of our proof is that, for properly chosen values for d and a, finding a tree with cost

at most M means connecting the nodes in layer P to at most K nodes of layer C. If the tree needs
to connect the layer P to more than K nodes in layer C, then the cost of the tree will necessarily be
higher than M . The intuition is that ’detours’ via the (x1, x2) edges are worthy from the point of view
of cost reduction only if the flow that goes through node x1 comes exclusively from node x4 and no
flow from the P layer goes through x1. If some flow from the P layer joins as well, then the optimal
path would use the edge (x1, x3) instead. In this latter case, we see now that for optimality, the edge
(x1, x2) should not be used.

We choose a value of a ≥ 1 such that (a + 2)/a < R < (a + 2)/(a − 1). Note that, for a given
R > 1, it is always possible to choose a value for a that fulfills this condition.

With the given weights on the edges, if no pj node is connected to a Ci structure, then since
R > (a + 2)/a, the optimal pattern (pattern 1, see Figure 15) for this structure contains the links
(x4, x1), (x1, x2), (x2, x3), (x3, S), with cost (a+3)R+(a+2)+(a+1)+1. The other possible structures
contain either links (x4, x1), (x1, x3), (x2, x3), (x3, S) (pattern 2) with cost (a+2)R+(a+1)R+(a+1)+1,
or links (x4, x1), (x1, x3), (x2, x1), (x3, S) (pattern 3) with cost (a + 2)R + (a + 2)R + (a + 1) + 1. They
both are sub-optimal if R > (a+2)/a (since pattern 2 is always better than pattern 3, we will consider
only pattern 2 for the rest of our proof).

However, when m ≥ 1 nodes {pj}mj=1 from the P layer connect to x1, for any of Ci’s, the pattern
1 is no longer optimal, because it has a cost m(d + a + 2)R + (a + 3)R + (a + 2) + (a + 1) + 1. The
alternative structure (pattern 2) has cost m(d + a + 1)R + (a + 2)R + (a + 1)R + (a + 1) + 1, which is
more efficient if m ≥ 1, and R < (a+2)/(a−1). We notice that in an optimal tree the cost to transmit
data from each pj to the sink S is the same for all pj ’s nodes (and equal to (d + a + 1)R). Therefore
the goal is to keep minimal the part of the total cost corresponding to the rest of the nodes (i.e. nodes
in layer C).

That means that to find a tree with cost less or equal to |P |(d + a + 1)R + K(2aR + 3R + a + 2) +
(|C| −K)(aR + 3R + 2a + 4) is equivalent to finding a set of K elements or less from the C layer to
which all nodes in the set P connect. This is actually achieved by having at most K nodes of type x1

used to connect to the pj ’s nodes, which turns out to be equivalent to finding a set cover for the set
P of size K or less, that is to solving the set cover problem.
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Thus our decision problem is NP-complete and our optimization problem NP-hard.

B NP-Completeness Correlated Data Broadcast

We prove that the problem is NP with a reduction from 3-SAT. The reduction works as follows: for
any 3-SAT instance, we build a 3-layered network: sink, variables, clauses (Figure 16). We link the sink
to nodes corresponding to each of the variables, and add two nodes for each variable corresponding
to the true and false possible values for the respective variable, and one more node for selecting at
least one of the variables values. Then we add one more layer with one node for each clause, and link
it to the corresponding true or false node, that is contained in that clause. We show that finding a
minimum tree for this instance of the problem is equivalent to finding a satisfying assignment of the
variables in the 3-SAT instance. We will do this by choosing such values for the edges so as to force the
optimal tree to contain one single branch, corresponding to either the true or false node, per variable
(that is, all clauses are linked to at most one of the two nodes of any variable).

. . . . . 

. . . . . Clauses

VariablesT F T F T F

x2x1

C1 C2

C1=x1+x2+xn
−−

d

1 1

1 1

1

C|C|

x |V|

e.g.

Figure 16: The reduction from any instance of 3-SAT to an instance of our problem.

Assign weight 1 to all edges except the ones connecting the clauses to the variables, which have
weight d chosen large enough so an optimal tree will not pass through more than |C| such links. Then,
a 3-SAT instance is satisfiable if and only if the corresponding graph admits a data gathering tree of
size |C| · R(d + 2) + |V | · 3R + |V | · 2R + |V | · 2r + |V | · r, where |C| is the number of clauses and
|V | is the number of variables. If both T/F branches corresponding to the same variable need to be
connected to the clause nodes, then one of the 2R terms is replaced with a 2r term so the tree is no
longer optimal. As the construction of the tree corresponding to the 3-SAT instance is polynomial,
then our problem is at least as hard as 3-SAT, and thus NP-complete.
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