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Abstract

Consider a set of correlated sources located at the nodes of a network, and a set of
sinks that are the destinations for some of the sources. We consider the minimization
of cost functions which are the product of a function of the rate and a function of the
path weight. We consider both the data gathering scenario, which is relevant in sensor
networks, and general traffic matrices, relevant for general networks. The minimization is
achieved by jointly optimizing (a) the transmission structure, which we show consists in
general of a superposition of trees from each of the source nodes to its corresponding sink
nodes, and (b) the rate allocation across the source nodes, which is done by Slepian-Wolf
coding. We show that the overall minimization can be achieved in two concatenated steps.
First, the optimal transmission structure has to be found, which in general amounts to
finding a Steiner tree and second, the optimal rate allocation has to be obtained by solving
an optimization problem with cost weights determined by the given optimal transmission
structure, and with linear constraints given by the Slepian-Wolf rate region. For the case
of data gathering, we fully characterize the optimal transmission structure and we also
provide a closed form solution for the optimal rate allocation. For the general case of an
arbitrary traffic matrix, we prove that the problem of finding the optimal transmission
structure is NP-complete. In some simplified scenarios, we compare asymptotically (large
networks) the total costs associated with Slepian-Wolf coding and explicit communication
(conditional encoding based on explicitly communicated side information), by finding
their corresponding scaling laws and analyzing the ratio of their respective costs. We also
provide the specific conditions on the correlation structure which determine the different
cases of asymptotic behaviors. Finally, we analyze the design of decentralized algorithms

∗The work presented in this paper was supported (in part) by the National Competence Center in Research on
Mobile Information and Communications Systems (NCCR-MICS, http://www.mics.org), a center supported
by the Swiss National Science Foundation under grant number 5005-67322. Parts of this work have been
presented at the 1st European Workshop on Sensor Networks (EWSN 2004), at the 23rd Conference of the
IEEE Communications Society (INFOCOM 2004), and at the 2004 International Symposium on Information
Theory (ISIT 2004).
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Figure 1: An example of a network. Sources transmit their data to the sinks. Data from the
sets V 1 and V 2 of sources need to arrive at sinks S1 and S2, respectively. A rate supply Ri is
allocated to each node Xi. In thick solid and dashed lines, a chosen transmission structure is
shown. In thin dashed lines, the other possible links of the network are shown.

in order to obtain exactly or approximately the optimal rate allocation, depending on the
scenario. For the particular case of single-sink data gathering, we provide experimental
results showing a good performance in terms of approximation ratios.

1 Introduction

1.1 Problem Motivation

Consider networks that transport supplies among nodes. This is for instance the case of sen-
sor networks that measure environmental data [2], [21], [24]. Nodes are supplied amounts of
measured data which need to be transmitted to end sites, called sinks, for control or storage
purposes. The transmission topology in our model is assumed to be an undirected fully con-
nected graph with point-to-point links. An example is shown in Figure 1, where there are N
nodes with sources X1, . . . , XN , two of them being the sinks denoted by S1 and S2, and a graph
of connectivity with edges connecting certain nodes. In this paper, we use interchangeably the
notions of network and its graph representation. Sources corresponding to nodes in the sets V 1

and V 2 need to transmit their data, possibly using other nodes as relays, to sinks S1 and S2,
respectively. A very important task in this scenario is to find a rate allocation at nodes and
a transmission structure on the network graph that minimizes a cost function of interest (e.g.
flow cost: [function (rate)] × [path weight], total distance, etc.). This implies a joint treatment
of source coding and optimization of the transmission structure.

The problem is trivial if the data measured at nodes are statistically independent: each node
codes its data independently, and well developed algorithms can be used to solve the minimum
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cost flow problem [5].
However, in many situations, data at nodes are not independent, such as in typical sensor

networks. Thus, it can be expected that approaches that take advantage of the correlation
present in the data can improve over existing algorithms, with regard to optimizing many cost
functions of interest.

1.2 Correlated Network Data Gathering

The distributed source coding approach that exploits optimally the correlation of discrete
sources is based on Slepian-Wolf coding [29], where it is shown that when nodes generate
correlated data, these data can be coded with a total rate not exceeding the joint entropy,
even without the nodes explicitly communicating with each other (under some constraints on
the rates, given by the so-called Slepian-Wolf region). This result provides the whole region of
achievable rates for the rate allocation, that is, all the rates in that region are achievable.

In addition to encoding the data, these data need to be transmitted over the network from
the sources to the sinks. In such situations, it is crucial to study the interplay between the rate
allocation at the nodes and the transmission structure used to transport the data. In this work,
we consider a joint treatment of the rate allocation and the chosen transmission structure, by
means of cost functions that are functions of both. The cost functions usually found in practice
separate the rate term from the path weight term. For instance, the [rate] × [path weight]
cost function measures the transmission price in wired networks, or the power consumption in
radio powered sensor networks [25], and the [exp(rate)] × [path weight] measures the power
consumption in noisy point to point links, where the [path weight] term is a function of the total
inter-node distance. In this work we consider jointly the optimization of both source coding
and transmission structure in the context of networks with correlated data at nodes. To the
best of our knowledge, this is the first research work that addresses jointly Slepian-Wolf lossless
source coding and network flow cost optimization.

Consider a network of N nodes. Let X = (X1, . . . , XN) be the vector formed by the random
variables representing the sources measured at the nodes 1, . . . , N . The samples taken at nodes
are spatially correlated. We assume that each random variable Xi is taken from a discrete-time
random process which is i.i.d. over time, and has a countable discrete alphabet (e.g. through
quantization of a continuous valued random variable1).

For the sake of clarity, assume first that there is only a single sink, where the data from all
the nodes has to arrive. A rate allocation (R1, . . . , RN) bits has to be assigned at the nodes so
that the discretized samples are described losslessly.

In the case of sensor networks, where measurements are taken from the environment [2], [21],
[24], a practical approach is to use nearest neighbor connectivity, as a way to avoid the complex-
ity of the wireless setting. Moreover, we assume that interference is addressed separately by the
use of an adequate multiple access protocol and/or the use of anisotropical antennae. In such
a physical setup, the spatial correlation depends only on the distance distribution across space
among nodes. Since battery power is the scarce resource for autonomous sensors, a meaningful
cost function to minimize in the case of sensor networks is the total energy consumption ( e.g.

1Denote the continuous-space random process by Xc(s), where s is the spatial coordinate. Then, the sources
are obtained by the sampling and quantization of Xc(s), namely Xi = Xq

c (si), where {si}N
i=1 are the spatial

positions of the nodes that generate the sources.
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[rate] × [path weight]). The weight of the link between two nodes is a function of the distance
d that separates the two nodes (e.g. kdα [25] or k exp(αd) [13], with k, α being constants that
depend on the medium).

The model for a single sink can be extended to the case where there is a certain number of
sinks to which data from different subsets of nodes have to be sent. Notice that in this case,
it is also possible to allocate different rates at each node, depending on which sink the data is
sent to, but this involves additional coding overhead, which might not be always feasible. We
consider both cases in this paper, but for the sake of simplicity we concentrate our discussion
on the case where there is a unique rate allocation. The sink-dependent rate allocation is a
straightforward generalization of the unique rate allocation.

1.3 Related Work

Bounds on the performance of networks measuring correlated data have been derived in [19],
[28]. On the other hand, progress towards practical implementation of Slepian-Wolf coding has
been achieved in [1], [22], [23]. However, none of these works takes into consideration the cost
of transmitting the data over the links and the additional constraints that are imposed on the
rate allocation by the joint treatment of source coding and transmission.

The problem of optimizing the transmission structure in the context of sensor networks has
been considered in [17], [26], where the [energy], and the [energy] × [delay] metric are studied,
and practical algorithms are proposed. But in these studies, the correlation present in the data
is not exploited for the minimization of the metric.

A joint treatment of data aggregation and transmission structure is considered in [14]. The
model in [14] does not take into account possible exploitation of common knowledge of the
correlation structure, for joint coding among nodes. The novelty of our work stems from the
fact that we consider the case of collaboration between nodes because we allow nodes to perform
(jointly) Slepian-Wolf coding, and this is combined with the optimization of the transmission
structure.

1.4 Main Contributions

We first show that if Slepian-Wolf coding is used in network correlated data gathering scenarios,
then the optimization separates: first an optimal transmission structure needs to be determined,
and second the optimal rate allocation has to be found for this transmission structure. The
optimal rate allocation is in general unique, except in some degenerate cases. We start our
analysis with the important case of single-sink data gathering. We show that in this case the
optimal transmission structure is the shortest path tree rooted at the sink. We fully solve the
case of linear cost function by providing a closed form solution for the rate allocation, and we
analyze the complexity of the problem when the cost function has an exponential dependence
on the rate.

Next, we consider the arbitrary traffic matrix case, and we prove that in this case finding
the optimal transmission structure is NP-complete. Moreover, we show that, if the optimal
transmission structure is approximated, then finding the optimal rate allocation is simple, by
using centralized algorithms. However, in sensor network settings, the goal is to find distributed
algorithms, and we show that in order to have a decentralized algorithm, we need a substantially
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large communication overhead in the network. We study further some particular cases of interest
where the problem is more tractable. For example, in the single-sink data gathering scenario,
we design a fully distributed algorithm for the rate allocation.

For some simplified scenarios, we compare the performance of the Slepian-Wolf coding,
in terms total flow cost, with another possible coding approach, explicit communication. We
provide asymptotic behaviors and scaling laws for the total cost flows for various correlation
structures, including bandlimited processes and Gaussian random processes. We also provide the
conditions on the correlation structure under which Slepian-Wolf coding in very large networks
performs arbitrarily better than explicit communication.

Finally, we present an approximation algorithm for the rate allocation in the single-sink
data gathering case. If the correlation structure is distance dependent, namely the correlation
between nodes decreases with the distance, then our algorithm provides solutions very close to
the optimal rate allocation, while using only local neighborhood information at each node. We
illustrate with numerical simulations the performance of our algorithm in the case of Gaussian
random processes.

1.5 Outline of the Paper

The rest of this paper is organized as follows. In Section 2, we state the optimization problem
and describe the Slepian-Wolf source coding approach. In Section 3, we consider an important
particular case, namely the single-sink correlated data gathering problem with Slepian-Wolf
source coding. In Section 4, we study the complexity of the problem for the case of a general
traffic matrix problem. In Section 5, we apply the results obtained in Section 3 to other
particular cases of interests. In Section 6, we briefly introduce the Gaussian random processes
as spatial correlation structure. In Section 7, we study the performance of Slepian-Wolf coding
in large networks, in comparison with coding by explicit communication. In Section 8, we
present an efficient decentralized algorithm for approximating the optimal rate allocation in
the single-sink data gathering case, and discuss how this algorithm can be used in the scenarios
presented in Section 5. We present some numerical simulations for Gaussian random processes
in Section 9. We conclude and present directions of further work in Section 10.

2 Problem Formulation

2.1 Optimization Problem

Consider a graph G = (V, E), |V | = N . Each edge e ∈ E is assigned a weight we. Each node
in the graph generates a source of data. Some of the nodes are also sinks. Data has to be
transported over the network from sources to sinks. Denote2 by S1, S2, . . . , SM the set of sinks
and by V 1, V 2, . . . , V M the set of subsets V j ⊆ V of sources; data measured at sources V j have
to be sent to sink Sj. Denote by Si the set of sinks to which data from node i has to be sent.
Denote by Ei ⊆ E the subset of edges used to transmit data from node i to sinks Si, which
determines the transmission structure corresponding to node i.

2In this paper, we use subindices to denote nodes and upper indices to denote sets.
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Definition 1 (Traffic matrix) We call the traffic matrix T of a graph G, the N ×N square
matrix T that has elements given by:

Tij = 1, if source i is to be transmitted to sink j,

Tij = 0, else.

With this notation, V j = {i : Tij = 1} and Si = {j : Tij = 1}.
We consider cost functions which consist of a product of a function that depends on the

rate and another function that depends on the link weight. The overall task is to assign an
optimal rate allocation {R∗

i }N
i=1 and to find the optimal transmission structure on the graph G

that minimizes the total flow cost [F (rate)] × [path weight], where F (·) is a function of the
rate allocated at a node. In all practical settings, the function F (·) is monotonically increasing.
Thus, the optimization problem is:

{R∗
i , d

∗
i }N

i=1 = arg min
{Ri,di}N

i=1

N∑
i=1

F (Ri)di (1)

where di is the total weight of the transmission structure given by Ei that is chosen to transmit
data from source i to the set of sinks Si:

di =
∑
e∈Ei

we.

where we denotes the weight (cost) associated to edge e. This weight we is in practice a
function of the distance between the nodes connected by edge e. Thus, finding the optimal
{d∗

i }N
i=1 amounts to finding the optimal transmission structure. Note that the rate terms in the

cost function (1) depend on the individual rates allocated at nodes, rather than on the total
incoming flow at nodes.

In the next section, we show that when Slepian-Wolf coding is used, the tasks of finding the
optimal {d∗

i }N
i=1 and {R∗

i }N
i=1, respectively, are separated, that is, one can first find the optimal

transmission structure, which can be shown to always be a tree, and then find the optimal rate
allocation.

2.2 Slepian-Wolf Coding

Consider the case of two random sources X1 and X2 that are correlated (see Figure 2(a)).
Intuitively, each of the sources can code their data at a rate greater or equal to their respective
entropies, R1 = H(X1), R2 = H(X2), respectively. If they are able to communicate, then
they could coordinate their coding and use together a total rate equal to the joint entropy
R1 + R2 = H(X1, X2). This can be done, for instance, by using conditional entropy, that is,
R1 = H(X1) and R2 = H(X2|X1), since X1 can be made available at node 2 through explicit
communication. Slepian and Wolf [29] showed that two correlated sources can be coded with
a total rate H(X1, X2) even if they are not able to communicate with each other. Figure 2(b)
shows the Slepian-Wolf rate region for the case of two sources. This result can be generalized
to the N -dimensional case.

Consider again the example shown in Figure 1. Assume that the set of sources that send
their data to sink j, that is the set of sources denoted {Xj1, . . . , Xj|V j |} ∈ V j, j = 1, 2, know in
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Figure 2: Two correlated sources, and the Slepian-Wolf region for their rate allocation: (a)
Two correlated sources X1, X2 send their data to one sink. (b) The Slepian-Wolf region shows
the achievable pairs of rates that can be allocated to sources X1 and X2 for lossless data coding

advance the correlation structure in that set V j. Then, nodes with sources in V j can code their
data jointly, without communicating with each other, with a total rate of H(Xj1, Xj2, . . . , Xj|V j |)
bits, as long as their individual rates obey the Slepian-Wolf constraints, which are related to
the different conditional entropies [7], [29]. As a consequence of the possibility of joint source
coding without sources communicating among them, we can state the following:

Proposition 1 – Separation of source coding and transmission structure optimization:
If the joint cost function is separable as the product of a function that depends only on the

rate and another function that depends only on the link weights of the transmission structure,
and Slepian-Wolf coding is used, then, for any traffic matrix T , the overall joint optimization
can be achieved by first optimizing the transmission structure with respect to only the link
weights, and then optimizing the rate allocation for the given transmission structure.

Proof: Once the rate allocation is fixed, the best way to transport any amount of data from
a given node i to the set of sinks Si does not depend on the value of the rates. This is true
because we consider separable flow cost functions, and the rate supplied at each node does not
depend on the incoming flow at that node. Since this holds for any rate allocation, it is true
for the minimizing rate allocation and the result follows

For each node i, the optimal transmission structure is in fact a tree with root at node i and
spanning the sinks Si to which its data are sent [5]. Thus, the entire optimization problem
can be separated into a spanning tree optimization (which is done only with respect to the
link weights) for each node, and the rate allocation optimization. Then, after the optimal
tree structure is formed, (1) becomes a problem of rate allocation that can be posed as an
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optimization problem under the usual Slepian-Wolf linear constraints, namely:

min
{Ri}N

i=1

N∑
i=1

F (Ri)d
∗
i

under constraints: (2)∑
l∈Y j

Rl ≥ H(Y j|V j − Y j), ∀ V j, Y j ⊆ V j,

that is, first the optimal weights {d∗
i }N

i=1 are found (which determine uniquely the optimal
transmission structure), and then the optimal rate allocation is found using the fixed values
{d∗

i }N
i=1 in (2). Note that there is one set of constraints for each set V j.

The problem in (2) is an optimization problem under linear constraints. If the weights
{d∗

i }N
i=1 can be determined, the optimal allocation {R∗

i }N
i=1 can be found easily with a central-

ized algorithm, by using Lagrange multipliers [18] in general for any monotonically increasing
function F (·), or using linear programming in the case where F (·) is a linear function.

In Section 3 we show that for the case of single-sink data gathering, the weights {d∗
i }N

i=1

correspond to the shortest paths from the nodes to the single sink, and thus they can be
determined, with standard algorithms, in polynomial time. However, in Section 4 we show that
for a general traffic matrix T , finding the optimal coefficients {d∗

i }N
i=1 is NP-complete. Moreover,

in general, even if the optimal structure is found, it is hard to decentralize the algorithm
that finds the optimal solution {R∗

i }N
i=1 of (2), as this implies a substantial amount of global

knowledge of the network. As shown in Section 3.1, a decentralized solution requires each node
to know the total weight {d∗

i }N
i=1 corresponding to all the other nodes.

Note that if the rate allocation at a source Xi is allowed to take different values Rij depending
on which sink j source Xi sends its data to, then it is straightforward to find this multiple rate
assignment. In this case, the rate allocation for each cluster is independent from the rate
allocations in the other clusters (see Section 3 and Section 8). However, this involves even more
additional complexity in coding, so in many situations it might be desirable to assign a unique
rate to each node, regardless of which sink the data is sent to. Thus, without loss of generality,
in this work we concentrate on the study of the case where a single rate allocation is done at
each node, regardless of the number of sinks to where data measured at that node has to arrive.

In the following sections, for various problem settings, we first show how the transmission
structure can be found (i.e. the values of {d∗

i }N
i=1), and then we discuss the complexity of finding

the rate allocation (2) in a decentralized manner. We begin our analysis with a particular case
widely encountered in practice, namely the single-sink data gathering problem. In this case,
there is only one sink to which data from all the other nodes have to arrive. We fully solve this
case in Section 3, and this result also provides useful insight into the structure of the general
problem.

3 Single-Sink Data Gathering

In single-sink data gathering, the entire set of N sources (V j = V ) are sent to a single sink
S = j. An example is shown in Figure 3. First, we state the following corollary of Proposition
1, valid for the case of the single-sink data gathering scenario.

8



S

X

 X1
X2

X3

N

Figure 3: In this example, data from all the nodes X1, X2, . . . , XN need to arrive at sink S.

Corollary 1 – Optimality of the shortest path tree (SPT) for the single-sink data gathering
problem:

When there is a single sink S in the data gathering problem and Slepian-Wolf coding is used,
the shortest path tree (SPT) rooted in S is optimal, in terms of minimizing (2), for any rate
allocation.

Proof: Once the rate allocation is fixed, the best way to transport the data from any node
to the sink is to use the shortest path. Minimizing the sum of costs under constraints in (2)
becomes equivalent to minimizing the cost corresponding to each node independently. Since the
shortest path tree is a superposition of all the individual shortest paths corresponding to the
different nodes, it is optimal for any rate allocation that does not depend on the transmission
structure, which is the case here

Thus, once the SPT is found, which provides {d∗
i }N

i=1, the overall optimization reduces to
solving (2). We consider two important types of function of the rate in the cost function, which
are widely used in practice. Namely, in Section 3.1, we study the case where F (R) = R, which
corresponds to wired networks and power constrained sensor networks, and in Section 3.2, the
case where F (R) = eR, which corresponds to point-to-point links in noisy wireless networks.

3.1 Linear Cost Function: Optimal Solution

For the single-sink data gathering, the cost function in (2) that has to be minimized can be
rewritten as: ∑

i∈V

RidST (i, S) (3)
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Figure 4: Nodes are ordered 1, . . . , N with increasing total weight of their path in the SPT to
the sink S. For an optimal rate allocation, node i + 1 is assigned an entropy rate obtained by
conditioning its data on data measured at nodes i, i − 1, . . . , 1. Even if nodes i + 1 and i are
consecutive in the ordering, they are not necessarily in each other’s neighborhood.

where dST (i, S) is the total weight of the path connecting node i to S on the spanning tree ST ,
and the constraints are given by: ∑

i∈Y

Ri ≥ H(Y |Y C) (4)

for any of the 2N−1 subsets Y ⊆ V (see Figure 2(b) for the achievable rate region corresponding
to two sources).

From Corollary 1, it follows that the minimization of (3) becomes now a linear programming
(LP) problem:

{R∗
i }N

i=1 = arg min
{Ri}N

i=1

∑
i∈V

RidSPT (i, S) (5)

under constraints (4).
Suppose, without loss of generality, that nodes are numbered in increasing order of the total

weight of their path to the sink on the SPT, that is:

(X1, X2, . . . , XN) with dSPT (X1, S) ≤ dSPT (X2, S) ≤ · · · ≤ dSPT (XN , S).

Thus, nodes X1 and XN are respectively the nodes corresponding to the smallest and the
largest total weight in the SPT to the sink. A network example with nodes numbered as above
is shown in Figure 4.

Theorem 1 (LP solution) The solution of the optimization problem given by (5) under con-
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Figure 5: A simple example with two nodes. The total weights from sources X1, X2 to the
sinks, are respectively dSPT (X1, S), dSPT (X2, S), dSPT (X1, S) < dSPT (X2, S), in this particular
case. In order to achieve the minimization, the cost line R1dSPT (X1, S) + R2dSPT (X2, S) has
to be tangent to the most interior point of the Slepian-Wolf rate region, given by (R1, R2) =
(H(X1), H(X2|X1)).

straints (4) is [10]:

R∗
1 = H(X1),

R∗
2 = H(X2|X1),

. . . . . . . . . (6)

R∗
N = H(XN |XN−1, XN−2, . . . , X1).

We prove Theorem 1 in Appendix A.
In words, the solution of this problem is given by the corner of the Slepian-Wolf region that

intersects the cost function in exactly one point. The node with the smallest total weight on
the SPT to the sink is coded with a rate equal to its unconditional entropy. Each of the other
nodes is coded with a rate equal to its respective entropy conditioned on all other nodes which
have a total smaller weight to the sink than itself.

Figure 5 gives an example involving only two nodes, and it is shown how the cost function is
indeed minimized with such a rate allocation. The assignment (6) corresponds in this particular
case to the point (R1, R2) = (H(X1|X2), H(X2)).

Note that if two or more nodes are equally distanced from the sink on the SPT (e.g.
dSPT (X1, S) = dSPT (X2, S), in Figure 5) then the solution of (6) is not unique, since the cost
function is parallel to one of the faces of the Slepian-Wolf region.

Even if the solution can be provided in the closed form (6), a distributed implementation of
the optimal algorithm at each node implies knowledge of the overall structure of the network
(total weights between nodes and total weights from the nodes to the sink). This knowledge is
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needed for (see Figure 4):

1. Ordering the total weights on the SPT from the nodes to the sink: each node needs
its index in the ordered sequence of nodes in order to determine on which other nodes
to condition when computing its rate assignment. For instance, it may happen that the
distance on the graph between nodes Xi and Xi−1 is large. Thus, closeness in the ordering
on the SPT does not mean necessarily proximity in distance on the graph.

2. Computation of the rate assignment:

Ri = H(Xi|Xi−1, . . . , X1) = H(X1, . . . , Xi) − H(X1, . . . , Xi−1)

Note that for each node i we need to know locally all distances among the nodes X1, . . . , Xi,
i > 1, in order to be able to compute this rate assignment, because the rate assignment
involves a conditional entropy including all these nodes.

This implies that, for a distributed algorithm, global knowledge should be available at nodes,
which might not be the case in a practical situation.

However, notice that if the correlation decreases with distance, as it is usual in sensor
networks, it is intuitive that each node i could condition only on a small neighborhood, incurring
only a small penalty. In Section 8, we propose a fully distributed heuristic approximation
algorithm, which avoids the need for each node to have global knowledge of the network, and
which provides solutions for the rate allocation which are very close to the optimum.

3.2 Cost Function with an Exponential Dependence on the Rate

We consider now the cost function [exp(rate)] × [path weight]. This cost function is typical in
the case of noisy wireless networks with point-to-point links3. Note that the [path weight] in
this case is the sum of link weights, each of them depending on a power α of the corresponding
Euclidean distance (usually α ∈ [2, 4]).

We consider the case when relay nodes transmit data to be forwarded sequentially as it
arrives, rather than waiting to aggregate the whole incoming data into a single packet. In other
words, each rate Ri (coming from source Xi) is associated to a single data packet. Namely,
we consider the minimization of (1), that is a cost function in which the term corresponding
to each node i depends on the individual rate Ri allocated at that node, rather than on the
total sum of rates forwarded by the node. Note that this is a reasonable assumption for the
type of scenarios considered in this paper, when some scheduling policy is employed to avoid
wireless interference [15]. In such scenarios, a node need not wait for all incoming data before
making a transmission, but rather data should be sent a packet at a time by forwarding nodes4.
Moreover, in the case of a cost function exponential in the rate term, this strategy is usually
more power efficient (e.g. for Ri, Rj > 1, exp(Ri + Rj) > exp(Ri) + exp(Rj)). Optimization

3We can write the maximum rate that can be transmitted over a wireless channel as [7] R = 1
2 log(1 + Ps

Pn
)

where Ps is the power of the transmitted signal, and Pn is the power of the noise at the receiver; in practice,
Pn depends on the transmission distance. Then Ps ≈ eR × Pn.

4The related latency problem where additional delay constraints are considered is outside the scope of this
paper.
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with nonlinear cost functions of the link flow is significantly more difficult and is not considered
further in this paper.

Thus assuming a cost function which is exponential in the rate, the optimization problem
(3) becomes now:

{R∗
i }N

i=1 = arg min
{Ri}N

i=1

∑
i∈V

eRidSPT (i, S) (7)

under the Slepian-Wolf constraints (4).
By making the change of variables Pi = eRi , for all i = 1, . . . , N , then (7) becomes equivalent

to:
{P ∗

i }N
i=1 = arg min

{Pi}N
i=1

∑
i∈V

PidSPT (i, S)

under the constraints: ∑
i∈Y

log Pi ≥ H(Y |Y C)

for all Y ⊆ X.
For the sake of clarity, consider the simple case of two sources. The problem in this case is:

{P ∗
1 , P ∗

2 } = arg min
P1,P2

(P1dSPT (1, S) + P2dSPT (2, S)) (8)

under constraints

P1 ≥ eH(X1|X2),

P2 ≥ eH(X2|X1), (9)

P1P2 ≥ eH(X1,X2).

The solution of this minimization problem is illustrated in Figure 6. Notice that, with the
change of variables, the cost function remains linear, while the constraints become multiplicative
instead of additive.

We observe that the rate allocation depends on the slope of the cost function, that is, on the
total weights dSPT (i, S). Depending on these weights, the tangent point of the cost function to
the rate region curve can be either on the joint constraint curve given by the third constraint in
(9) (thicker curve in Figure 6), which corresponds to having active only the third constraint in
(9), or on one of the corner points, which corresponds to one of the two first constraints in (9)
being active only. As the number of sources N increases, it becomes cumbersome to provide a
direct closed form for the optimal rate allocation, although it can be obtained systematically
using Lagrangian optimization. For the simple case of two sources, depending on the ratio
η = dSPT (X1, S)/dSPT (X2, S), the optimal rate allocation is

(R1, R2) =

⎧⎨
⎩

(H(X1), H(X2|X1)) if η ≤ eH(X2|X1)−H(X1),
(1

2
(H(X1, X2) − log η, H(X1, X2) + log η)) if η ∈ (eH(X2|X1)−H(X1), eH(X2)−H(X1|X2)),

(H(X1|X2), H(X2)) if η ≥ eH(X2)−H(X1|X2)

We show in Appendix B how this rate allocation is obtained.

We have studied so far the case when there is a single sink. For simplicity, we limit the
discussion of the next sections to the case of a linear separable cost function, namely, F (R) = R.
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Figure 6: The same example with two nodes. The minimization is achieved at the point where
the cost line P1dSPT (X1, S) + P2dSPT (X2, S) is tangent to the transformed Slepian-Wolf rate
region.

4 Arbitrary Traffic Matrix

We begin the analysis with the most general case, that is, when the traffic matrix T is arbitrary,
by showing the following proposition [9]:

Proposition 2 – The optimal transmission structure for a general traffic matrix T is a super-
position of Steiner trees: Given an arbitrary traffic matrix T , if F (R) = R then, (a) for any
node i, the optimal value d∗

i in (2) is given by the minimum weight tree rooted in node i and
which spans the nodes in Si; this is by definition the minimum Steiner tree that has node i as
root and which spans Si, and (b) the problem is NP-complete.

Proof: The proof is straightforward: first, notice that we can optimize the transmission
structure regardless of the rate allocation. Data from node i has to be sent over the transmission
structure with minimum total weight to the nodes in Si, possibly via nodes with sources in
V − {i, Si} (see Figure 7). This is a minimum Steiner tree problem for the graph G, thus, it is
NP-complete

The approximation ratio of an algorithm that finds an approximate solution for an optimiza-
tion problem is defined as the guaranteed ratio between the cost of the approximate solution
and the optimal one [6]. If the weights of the graph are the Euclidean distances (we = le for all
e ∈ E), then the problem becomes the Euclidean Steiner tree problem, and it admits a polyno-
mial time approximation scheme (PTAS) [3] (that is, for any ε > 0, there is a polynomial time
approximation algorithm with an approximation ratio of 1 + ε). However, in general, the link
weights are not the Euclidean distances (e.g. if we = l2e etc.). Then finding the optimal Steiner
tree is APX-complete (that is, there is a hard lower bound on the approximation ratio that can
be achieved by any polynomial time approximation algorithm), and is only approximable (with
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Figure 7: A network example with two sinks. Data from the subsets V 1 (dotted) and V 2 (solid)
have to be transmitted to sinks S1 and S2, respectively. For each of the nodes i, j and k, the
transmission structure is the Steiner tree covering the respective node and both sinks S1 and
S2. For the rest of the nodes, the transmission structure is the shortest path from that node to
the corresponding sink. The overall optimal transmission structure is the superposition of all
these individual Steiner trees.

polynomial time in the input instance size, namely the number of nodes) within a constant
factor of (1 + ln 3)/2 [4], [27].

Once the optimal weights {d∗
i }N

i=1 are found (i.e. approximated by some approximation
algorithm for solving the Steiner tree), then, as mentioned in Proposition 2, (2) becomes a
Linear Programming (LP) problem and the solution of this problem is given by a corner of
the Slepian-Wolf region (see Figure 5). Consequently, it can be readily solved in a simple way
with a centralized algorithm, where global knowledge of the network is allowed. However, it is
not possible in general to find a closed form expression for the optimal rate allocation solution.
Notice also that the derivation of a decentralized algorithm for the rate allocation optimization
is difficult, as this involves exchange of network knowledge among the subsets of nodes.

Example: Figure 8 shows a simple example, but sufficiently complete to illustrate the
impossibility of solving this problem without having global knowledge of the network struc-
ture. Suppose that the optimal total weights {d∗

i }3
i=1 in (2) have been approximated by some

algorithm. Then, the cost function to be minimized, by finding the optimal rates {Ri}3
i=1, is:

R1w11 + R2(w21 + w22) + R3w32

with d∗
1 = w11, d

∗
2 = w21 + w22, d

∗
3 = w32, and the Slepian-Wolf constraints are given by:

R1 + R2 ≥ H(X1, X2)

R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)
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Figure 8: Two sets of sources transmit their correlated data to two sinks.

for set V 1 = {X1, X2}, and respectively,

R2 + R3 ≥ H(X2, X3)

R2 ≥ H(X2|X3)

R3 ≥ H(X3|X2)

for set V 2 = {X2, X3}.
Suppose the weights are such that w11 < w21 + w22 < w32. A decentralized algorithm

has to use only local information, that is, information only available in a certain local range or
neighborhood. In this case, this means that each node only knows (a) the Euclidean distance to
its neighbors in its corresponding cluster and (b) the total weights d∗

i from its neighbors to the
corresponding sinks. Thus, we assume that only local Slepian-Wolf constraints are considered
in each set V j for the rate allocation, and for the nodes in one subset no knowledge about the
total weights d∗

i from nodes in other subsets is available. Then, as we have seen in Section 3,
by solving each of the two LP problems, it readily follows that the optimal rate allocations in
each of the two subsets are, respectively, given by:

R1
1 = H(X1)

R1
2 = H(X2|X1), for set V 1

R2
2 = H(X2)

R2
3 = H(X3|X2), for set V 2.

where the upper index indicates the corresponding set.
If each node can send a different rate depending on the sink it has to send a certain data to,

then, there is no problem in decentralizing the algorithm for finding the optimal rate allocation.
But this implies on the other hand more complexity for the coding at each node.

Thus, we can see from this simple example that we obtain different values for the rate
associated to a node (in this particular case, node 2), depending on the set. Unless every node
(not only node 2 in this particular case) has global knowledge of the total weights from nodes
1, 2, 3 to the sinks S1 and S2, which allows for getting the necessary global ordering in total
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Figure 9: Data from X1, X2 need to be transmitted to all nodes S1, S2, S3, S4.

weight, it is not possible to find the optimal rate allocation for this problem. As explained in
Section 3.1, the optimal rate allocation involves solving an LP problem which depends jointly
on all the weights w11, w21, w22, w32. Therefore, from this example we can see that for this
network topology, it is necessary to have global information at each node. The same problem
will appear in any network topology where ∃j, k with V j ∩ V k 
= ∅. This makes it necessary
to have an additional important communication overhead (which grows exponentially with the
number of nodes) in order to transfer all this topology information before the nodes can start
encoding5.

There are however some other important special cases of interest where the problem is more
tractable, from a decentralized point of view, and we treat them in the following section.

5 Other Cases of Interest

5.1 Broadcast of Correlated Data

This case corresponds to the scenario where a set of L sources are sent to all nodes (Si = V ).
A simple example is shown in Figure 9. In this case, the traffic matrix is Tij = 1, for i ∈
{i1, . . . , iL} ⊂ V and 1 ≤ j ≤ N .

In this case, for any node i, the value d∗
i in (2) is given by the tree of minimum weight which

spans V ; this is the minimum spanning tree (MST ), and thus, by definition, it does not depend
on i. Thus, in this case all weights {d∗

i }N
i=1 are equal. Notice that this case trivially includes the

typical single-source broadcast scenario where one node transmits its source to all the nodes in
the network.

5.2 Multiple-Sink Data Gathering

This case corresponds to the scenario where all sources (V j = V ) are sent to some set Sa of
sinks. In this case (see Figure 10), finding the optimal weights {d∗

i }N
i=1 is as difficult as in the

arbitrary matrix case presented in Section 4, because for every i, the optimal weight d∗
i is equal

to the weight of the minimum Steiner tree rooted at i and spanning the nodes in the set Sa.
However, given the optimal transmission structure and assuming global knowledge of the

network at each node, the optimal rate allocation can be easily found in a similar manner as

5We do not consider the optimization of this overhead in this paper.
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Figure 10: Data from all nodes have to be transmitted to the set of sinks Sa = {S1, S2}. Each
sink has to receive data from all the sources.

in Section 3.1. First, we order the nodes by increasing distance d∗
1 < d∗

2 < · · · < d∗
N , and then

the optimal rate allocation is as given in (6).

5.3 Localized Data Gathering

This case corresponds to the scenario where data from disjoint sets {V 1, V 2, . . . , V L} are sent
to some sinks {S1, S2, . . . , SL}. In this case, for each node i, the solution for the optimal weights
{d∗

i }N
i=1 is again the corresponding Steiner tree rooted at i and that spans Si. Assuming d∗

i (or
an approximate value) is found, then the optimal rate allocation can be found for each set
{V j}L

j=1, in the same way as in Section 3.1, that is, we solve L LP programs independently.
Notice that in this case, since V j ∩ V k = ∅,∀j 
= k, it is possible (as opposed to the example in
Section 4) to solve this problem in a decentralized manner, that is, assuming that each node in
a set V j has only knowledge about the nodes in that set.

Algorithm 1 Optimization for localized data gathering:

• For each set V j, order nodes {i, i ∈ V j} as a function of the total weight {d∗
i }N

i=1.

• Assign rates in each V j as in (6), taking into account this order.

Thus, we see that in this case, although finding the optimal transmission structure is NP-
complete, if a good approximation for the transmission structure can be determined, then the
optimal rate allocation is straightforward.

In our further discussion, we make use of Gaussian random processes a sour source model.
We describe it briefly for the sake of completeness.

6 Source Model: Gaussian Random Processes

A model frequently encountered in practice is the Gaussian random field. This has also the nice
property that the dependence in data at different nodes is fully expressed by the covariance
matrix K, which makes it more suitable for analysis. Thus, we assume a jointly Gaussian
model for the spatial data X measured at nodes, with an N -dimensional multivariate normal

18



distribution GN(µ,K):

f(X) =
1√

2π det(K)1/2
e−( 1

2
(X−µ)T K−1(X−µ))

where K is the covariance matrix (positive definite) of X, and µ the mean vector. The diagonal
elements of K are the individual variances Kii = σ2

i . The off-diagonal elements Kij, i 
= j depend

on the distance between the corresponding nodes (e.g. Kij = σ2 exp(−cdβ
i,j), with β ∈ {1, 2}).

Then, for any index combination I = {i1, . . . , ik} ∈ {1, . . . , N}, k ≤ N , WI = (Xi1 , . . . , Xik) is
k-dimensional normally distributed with covariance matrix being the submatrix K[I] selected
from K, with rows and columns corresponding to {i1, . . . , ik}.

Without loss of generality, we use here differential entropy instead of the usual entropy, since
we assume that the data at all nodes is quantized independently with the same quantization
step, and the differential entropy differs from the usual entropy by a constant for uniformly
quantized variables [7], assuming a sufficiently small stepsize. Let Y = (Xi1 , . . . , Xik) be a set
of k discrete random variables, obtained by performing independent quantization with stepsize
∆. Then, it follows that [7]:

H(Y ) ≈ h(Gk(µ,K)) − k log ∆, as ∆ → 0,

where the differential entropy of a k-dimensional multivariate normal distribution Gk(µ,K) is:

h(Gk(µ,K)) =
1

2
log(2πe)k det(K).

In this paper, we use this approximation by considering a sufficiently small stepsize ∆.
The Slepian-Wolf constraints (4) can readily be expressed as:

h(Y |Y C) = h(Y, Y C) − h(Y C)

=
1

2
log

(
(2πe)N−|Y C | det(K)

det(K[Y C ])

)

where K[Y C ] is the selected matrix out of K, with indices corresponding to the elements of Y C

respectively. Notice that the matrix notation K[Y ] implies that a certain ordering is done; this
is valid for any ordering for the nodes.

This natural correlation model is useful for us because our approximation algorithm can be
easily tested. Consider for example the case where the correlation decays exponentially with
the distance. Then, the performance of our approximation algorithm is close to optimal even
for small neighborhoods N (i).

7 Scaling Laws: A Comparison between Slepian-Wolf

Coding and Explicit Communication Based Coding

The alternative to Slepian-Wolf coding is coding by explicit communication, which is considered
in [12], [8]. In this case, compression at nodes is done only using explicit communication among
nodes, namely, a node can reduce its rate only when data from other nodes that use it as
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Figure 11: A one dimensional example: The rate allocations for Slepian-Wolf (above the line)
and explicit communication (below the line).

relay (as opposed to Slepian-Wolf coding where no communication among nodes is required for
joint optimal rate allocation) is available. We study the complexity of joint rate allocation and
transmission structure optimization with explicit communication in a separate work [12], [8].

In this section, we compare the asymptotic behavior (large networks) of the total cost using
Slepian-Wolf coding and the total cost with coding by explicit communication. The advan-
tages that coding by explicit communication has over Slepian-Wolf coding are (i) no a-priori
knowledge of the correlation structure is needed, and (ii) the compression, which is done by
conditional encoding, is easily performed at the nodes relaying data. However, even for a simple
one dimensional setting presented in this section, our analysis shows that in large networks, for
some cases of correlation models and network scalability, Slepian-Wolf coding can provide very
important gains over coding by explicit communication, in terms of total flow cost.

For the sake of simplicity in the analysis, we consider a one-dimensional network model
where there are N nodes placed uniformly on a line (see Figure 11). The distance between two
consecutive nodes is d. The nodes need to send their correlated data to the sink S.

For this scenario, the SPT is clearly the optimal data gathering structure for both coding
approaches. Thus, the overall optimization problem (3) simplifies, and we can compare the two
different rate allocation strategies in terms of how they influence the total cost.

Within the one-dimensional model, we consider two important cases of network scalability,
namely, the expanding network, where the inter-node distance is kept constant and equal to
d = 1 (that is, by increasing N we increase the distance between the node N and the sink
S), and the refinement network, where the total distance from node N to the sink S is kept
constant, namely Nd = 1 (that is, nodes are uniformly placed on a line of length 1, and hence,
by adding nodes, the inter-node distance goes to zero).

As mentioned in Section 6, we consider that the nodes of the network are sampling a
Gaussian continuous-space wide-sense-stationary (WSS) random process Xc(s), where s denotes
the position. Thus, we have a vector of correlated sources X = (X1, . . . , XN) where Xi = Xc(id)
and where the correlation structure for the vector X is inherited from the correlation present
in the original process Xc(s). As N goes to infinity, the set of correlated sources represents a
discrete-space random process denoted by Xd(i), with the index set given by the node positions.
Thus the spatial data vector X measured at the nodes has an N -dimensional multivariate
normal distribution GN(µ,K). In particular, we consider two classes of random processes:

(a) Non-bandlimited processes, namely (a.1): Kij = σ2
ij exp(−c|di,j|), which corresponds to
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a regular continuous-space process [16], and (a.2): Kij = σ2
ij exp(−c|di,j|2), which corre-

sponds to a singular continuous-space process [16], where c > 0.

(b) Bandlimited process with bandwidth B, that is, there exists a continuous angular fre-
quency such that SXc(Ω) = 0, for |Ω| ≥ Ω0, where SXc(Ω) is the spectral density and
B = 2Ω0. This process can also be shown to be a singular continuous-space process6 [16].

Let us denote the conditional entropies by ai = H(Xi|Xi−1, . . . , X1). Note that for any
correlation structure, the sequence ai is monotonically decreasing (because conditioning cannot
increase entropy), and is bounded from below by zero (because the entropy cannot be negative).
Since the nodes are equally spaced, and the correlation function of a WSS process is symmetric,
it is clear that H(XI |XI−1, XI−2, . . . , XI−i) = H(XI |XI+1, XI+2, . . . , XI+i), for any I, 0 ≤ i ≤
I − 1.

Let us denote by γ(N) the ratio between the total cost associated to Slepian-Wolf coding
(costSW (N)) and the total cost corresponding to coding by explicit communication (costEC(N)),
that is:

γ(N) =
costSW (N)

costEC(N)
=

∑N
i=1 iai∑N

i=1(N − i + 1)ai

(10)

Then, the following theorem holds [11]:

Theorem 2 (Scaling Laws) Asymptotically, we have the following results:

(i) If limi→∞ ai = C > 0,

• limN→∞ γ(N) = 1

• costSW (N) = Θ(costEC(N))

(ii) If limi→∞ ai = 0,

(ii)-1 If ai = Θ(1/ip), p ∈ (0, 1),

• limN→∞ γ(N) = 1 − p

• costSW (N) = Θ(costEC(N))

(ii)-2 If ai = Θ(1/ip), p ≥ 1,

• limN→∞ γ(N) = 0

• costSW (N) = o(costEC(N))

• If p = 1, γ(N) = Θ(1/ log N)

• If p ∈ (1, 2), γ(N) = Θ(1/Np−1)

• If p = 2, γ(N) = Θ(log N/N)

• If p > 2, γ(N) = Θ(1/N)

We prove Theorem 2 in Appendix C. In Figure 12, we show typical behaviors of the ratio of
total flow costs for the two coding approaches.

We apply now Theorem 2 to the correlation models we consider in this paper:

6Actually, it can be shown that the same singularity property holds as long as SXc
(Ω) = 0 on some frequency

interval of non-zero measure [16].
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Figure 12: Typical behavior of the ratio of the total costs costSW (N)/costEC(N).

• For an expanding network: In cases (a.1) and (a.2), the result of sampling is a discrete-
space regular process [20], thus limi→∞ ai = C > 0, and it follows that limN→∞ γ(N) = 1.
In case (b), if the spatial sampling period d is smaller than the Nyquist sampling rate
1/B of the corresponding original continuous-space process, then limi→∞ ai = 0. The
specific speed of convergence of ai depends on the spatial sampling period (that is, how
small it is with respect to 1/B) and the specific (bandlimited) power-spectrum density
function of the process. In Figure 13, we show the bandlimited example with correlation
K(τ) = Bsinc(Bτ). It can be seen that when d < 1/B, ai = o(1/i) and thus, the ratio of
total costs goes to zero. Also, the smaller d is, the faster the convergence is.

• For a refinement network: In case (a.1), we show in Appendix D that H(Xi|Xi−1, . . . , X1) =
H(Xi|Xi−1), thus ai = H(Xi|Xi−1) for any i ≥ 2. Then, for any finite N , aN > 0. Since
iai does not converge to zero (see Figure 14), then it follows from Theorem 2 that in the
limit, the ratio of total costs is limN→∞ γ(N) = 1. In case (a.2), a closed form expression
for the conditional entropy is difficult to derive. However, we show numerically in Figure
14(a) that in this case ai decreases faster7 than 1/i. For comparison purposes, we show in
Figure 14(a) also the behavior for case (a.1). Thus, from Theorem 2, limN→∞ γ(N) = 0.
In Figure 14(b), we plot also the ratio of total costs for both correlation models. Finally,
in case (b), ai goes to zero very fast, as for the case (a.2), because of the singularity of
the original bandlimited process. It can be seen in Figure 15 how the ratio of costs starts
to decrease as soon as d < 1/B, thus limN→∞ γ(N) = 0.

7Since these two processes are both non-bandlimited, sampling them results in discrete-space regular pro-
cesses [20]. However, the sampled model (a.2) inherits a ’superior predictability’ than (a.1), which makes ai

decrease faster than 1/i.

22



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

Number of nodes on which conditioning is done

i *
 H

(X
i|X

i−
1
,.
..
,X

1
)

d=0.50/B
d=0.60/B
d>1/B

(a) The product between the conditional entropy
and number of nodes on which conditioning is done.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Network size N

co
st

S
W

(N
)/

co
st

E
C

(N
)

d=0.5/B
d=0.6/B
d>1/B

(b) Ratio of total costs.

Figure 13: Expanding network sampling a bandlimited process with correlation model given
by K(τ) = Bsinc(Bτ): (a) The conditional entropy H(Xi|Xi−1, . . . , X1) decreases faster than
1/i if d < 1/B; (b) The behavior of the ratio of total costSW (N)/costEC(N) as a function of
the size of the network.
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Figure 14: We consider a correlation dependence on the inter-node distance d given by
exp(−c|τ |β), β ∈ {1, 2}: (a) The conditional entropy H(Xi|Xi−1, . . . , X1) decreases faster than
1/i for β = 2, but is constant for β = 1 (after i ≥ 2); (b) The behavior of the ratio of total
costSW (N)/costEC(N) with as a function of the size of the network.
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Figure 15: Refinement network sampling a bandlimited process; we denote the reference band-
width with BL = 1/dL: (a) The conditional entropy H(Xi|Xi−1, . . . , X1) decreases faster
than 1/i as soon as B < 1/d, that is, N > 1/dL; (b) The behavior of the ratio of total
costSW (N)/costEC(N) as a function of the size of the network.

Intuitively, similar results to the ones presented in this section hold also for higher dimen-
sions, when the transmission structure that is used is the same (e.g. SPT) for both types of
coding. The ideas leading to the results for the one-dimensional network can be generalized
to two-dimensional networks. For instance, one can consider a two-dimensional wheel struc-
ture with the sink in the center of the wheel, where entropy conditioning at the nodes on any
spoke is done as in the one-dimensional case (see Figure 16). The same analysis as in the one-
dimensional case holds, with the additional twist that, according to Theorem 1, Slepian-Wolf
coding at node i is done by conditioning not only on the nodes closer to the sink on its spoke,
but also on the nodes on the other spokes closer to the sink on the SPT than node i (the
dashed circle in Figure 16). However, the explicit communication coding is still done only on
the nodes on the spoke that forward their data to node i (the solid circle in Figure 16). Thus,
the ratio of costs γ(N) in the two-dimensional case is upper bounded by its counter-part in the
one-dimensional case, which means that the results of Theorem 2 apply for the two-dimensional
case as well.

8 Heuristic Approximation Algorithms

In Section 3.1, we found the optimal solution of the LP problem for the rate assignment under
the Slepian-Wolf constraints. In this section, for the sake of clarity, we consider the design of
a distributed heuristic approximation algorithm for the case of single-sink data gathering.

Suppose each node i has complete information (distances between nodes and total weights to
the sink) only about a local vicinity N1(i) formed by its immediate neighbors on the connectivity
graph G. All this information can be computed in a distributed manner by running for example
a distributed algorithm for finding the SPT (e.g. Bellman-Ford). By allowing a higher degree of
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i

S

EC

SW

Figure 16: A two-dimensional network with a wheel structure, with the sink S in the center.
Slepian-Wolf coding for node i is done by conditioning on the nodes in the dashed region
(denoted by SW ). Explicit communication coding for node i is done by conditioning on nodes
in the solid region (denoted by EC).

(local) overhead communication, it is also possible for each node i to learn this information for
a neighborhood Nk(i) of k-hop neighbors. The approximation algorithm we propose is based on
the observation that nodes that are outside this neighborhood count very little, in terms of rate,
in the local entropy conditioning, under the assumption that local correlation is dominant. For
instance, in sensor networks, this is a natural assumption, since usually the correlation decreases
with the increase of the distance between nodes.

Algorithm 2 Approximated Slepian-Wolf coding:

• For each node i, set the neighborhood range k (only k-hop neighbors).

• Find the SPT using a distributed Bellman-Ford algorithm.

• For each node i, using local communication, obtain all the information from the neigh-
borhood Nk(i).

– find in the neighborhood Nk(i), the set Ci of nodes that are closer to the sink, on the
SPT, than the node i itself.

– transmit at rate R†
i = H(Xi|Xj, j ∈ Ci).

This means that data are coded locally at the node with a rate equal to the conditional
entropy, where the conditioning is performed only on the subset Ci formed by the neighbor
nodes which are closer to the sink than the respective node.

The proposed algorithm needs only local information, so it is completely distributed. For a
given correlation model, depending on the reachable neighborhood range, this algorithm gives
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a solution close to the optimum since the neglected conditioning is small in terms of rate for a
correlation function that decays sufficiently fast with the distance (see Section 9 for numerical
experiments).

Although we only consider in this section the single-sink data gathering case, similar tech-
niques can be used to derive decentralized heuristic approximation algorithms for all network
scenarios where V j ∩ V k = ∅,∀j 
= k and each node from a set can only send to one sink.

9 Numerical Simulations

We present numerical simulations that show the performance of the approximation algorithm
introduced in Section 8, for the case of single-sink data gathering. We consider the stochastic
data model introduced in Section 6, given by a multi-variate Gaussian random field, and a cor-
relation model where the inter-node correlation decays exponentially with the distance between
the nodes.

More specifically, we use an exponential model of the covariance Kij = exp(−cd2
i,j), where

di,j denotes the distance between nodes i and j, and several values for the correlation exponent
c. The weight of an edge (i, j) is wi,j = d2

i,j and the total cost is given by expression (5). Figure
17 presents the average ratio of total costs between the Slepian-Wolf approximated solution
using a neighborhood of N1(i) for each node, and the optimal one. In Figure 18, we show a
comparison of our different approaches for the rate allocation, as a function of the distances
from the nodes to the sink. Note that the slight increase in rate allocation with Slepian-Wolf
coding for the furthest nodes from the sink is a boundary effect, namely nodes that are at
the extremity of the square grid simulation area that we use have a smaller number of close
neighbors on which to condition, as compared to nodes which are located at an intermediate
distance from the sink.

10 Conclusions and Future Work

We addressed the problem of joint rate allocation and transmission structure optimization for
sensor networks, when the flow cost cost function [function (rate)] × [path weight] is considered.
We showed that if the cost function is separable, then the tasks of optimal rate allocation and
transmission structure optimization separate. We assess the difficulty of the problem, namely
we showed that for an arbitrary transfer matrix the problem of finding the optimal transmission
structure is NP-complete. For linear cost functions, the problem of optimal rate allocation can
be posed as a linear programming (LP) problem, while in the general case, it can be posed as a
Lagrangian optimization problem. It is difficult in general to find decentralized algorithms that
use only local information for this task. We also studied some cases of interest where the problem
becomes easier, leading to a closed form solution and where efficient approximation algorithms
can be derived. For a one-dimensional network we provide scaling laws for asymptotic behavior
and limits of the ratio of total costs associated to the two coding approaches. In particular,
we show that for some conditions on the correlation structure, the use of Slepian-Wolf coding
techniques can result in unbounded gains in terms of total flow cost over simple coding by
explicit communication.
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Figure 17: Slepian-Wolf coding: average value of the ratio between the optimal and the approx-
imated solution, in terms of total cost, vs. the neighborhood range. Every network instance has
50 nodes uniformly distributed on a square area of size 100×100, and the correlation exponent
varies from c = 0.001 (high correlation) to c = 0.01 (low correlation). The average has been
computed over 20 instances for each (c, radius) value pair.
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We study in detail [12], [8] this alternative technique for joint rate allocation and transmis-
sion structure optimization, namely explicit communication.

Our future research efforts include the related problems of joint efficient placement and
transmission, the case when the links are capacity constraint, and the derivation of efficient
distributed approximation algorithms for both finding the optimal transmission structure and
the optimal distribution of rates among the various subsets of sources for various more general
cases of transmission matrices. Moreover, an interesting research issue is to find tight bounds
for the approximation ratios, in terms of total costs, for these distributed algorithms.
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A Proof of Theorem 1

Proof: First, we prove that (6) is indeed a feasible solution for (5), that is, it satisfies all the
constraints given by (4). Consider any constraint from (4), for some subset Y ⊂ V . Denote by
M = |Y | the number of elements in Y . Order the indices of Xi ∈ Y as i1, i2, i3, . . . iM , with i1
closest and iM furthest from the sink on the SPT .

If we rewrite the left-hand-side in terms of the solutions that we provide in the theorem
statement, we have:∑

i∈Y

Ri = H(XiM |XiM−1, . . . , X1) + H(XiM−1
|XiM−1−1, . . . , X1) +

· · · + H(Xi1 |Xi1−1, . . . , X1). (11)

Expanding the right-hand-side terms with the chain law for conditional entropies, we obtain:

H(Y |Y C) = H(XiM |Y C ∪ {Y − {XiM}}) +

H(XiM−1
|Y C ∪ {Y − {XiM , XiM−1

}}) +

· · · + H(Xi1 |Y C ∪ {Y − {XiM , . . . , Xi1}})
= H(XiM |V − {XiM}) +

H(XiM−1
|V − {XiM , XiM−1

}) + (12)

· · · + H(Xi1 |V − {XiM , XiM−1
, . . . , Xi1})

Consider the terms on the right-hand-side in expressions (11) and (12). It is clear that for
any ik ∈ Y , the term corresponding to Xik in (12) is at most equal to its counterpart in (11).
This is because the set of nodes on which the entropy conditioning is done for each term in (11),
is a subset of its counterpart in (12). Since the choice of Y was arbitrary, then any constraint
in (4) is satisfied by the assignment (6).

On the other hand, note also that the rate allocation in (6) satisfies with equality the
constraint on the total sum of rates:∑

i∈V

Ri ≥ H(X1, . . . , XN). (13)

This proves that (6) is a valid rate allocation. We have to prove now that the assignment
in (6) makes the expression to be minimized in (5) smaller than any other valid assignment.
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We prove this by recursion. Note first that the rate allocation to node N is minimal.
That is, we cannot allocate to XN less than H(XN |XN−1, XN−2, . . . , X1) bits, due to the
Slepian-Wolf constraint corresponding to Y = {XN}. Assume now that a solution that assigns
H(XN |XN−1, XN−2, . . . , X1) bits to XN is not optimal, and XN is assigned H(XN |XN−1, . . . , X1)+
b bits. Due to (13), at most b bits in total can be extracted from the rates assigned to some
of the other nodes. But since dSPT (XN , S) is the largest coefficient in the optimization prob-
lem (5), it is straightforward to see that any such change in rate allocation increases the cost
function in (5). Thus assigning RN = H(XN |XN−1, . . . , X1) bits to XN is indeed optimal.

Consider now the rate assigned to XN−1. From the rate constraint corresponding to Y =
{XN−1, XN}, it follows that:

RN + RN−1 ≥ H(XN , XN−1|XN−2, . . . , X1)

= H(XN |XN−1, XN−2, . . . , X1) + H(XN−1|XN−2, . . . , X1).

Since for optimality RN must be given by RN = H(XN |XN−1, XN−2, . . . , X1), it follows that
RN−1 ≥ H(XN−1|XN−2, . . . , X1). Following a similar argument as for XN , we can show in the
same way that the optimal solution allocates RN−1 = H(XN−1|XN−2, . . . , X1). The rest of the
proof follows similarly by considering successively the constraints corresponding to the subsets
Y = {Xi, Xi+1, . . . , XN}, with i = N − 2, N − 3, . . . 1

B Exponential Dependence in Rate: Optimal Rate Al-

location for the Case of Two Nodes.

As seen in Figure 6, the solution of (8) can be either on the thicker curve in Figure 6, when the
first two (linear) constraints in (9) are inactive, or on one of the two corners, when either of the
first two constraints become active. First, we put to inactive the first two (linear) constraints
in (9). The Lagrangian corresponding to the minimization of (8) under constraints (9) is:

L(P1, P2) = dSPT (X1, S)P1 + dSPT (X2, S)P2 + λ(P1P2 − eH(X1,X2)).

Then, by taking partial derivatives of L(P1, P2) with respect to P1 and P2 and after some
computations, we obtain:

P1 =

√
dSPT (X2, S)

dSPT (X1, S)
eH(X1,X2)

P2 =

√
dSPT (X1, S)

dSPT (X2, S)
eH(X1,X2).

By enforcing the first two constraints active, it follows that the optimal solution is on either
corner on the transformed Slepian-Wolf region if:

dSPT (X2, S)

dSPT (X1, S)
≤ eH(X1|X2)−H(X2), corresponding to the corner (eH(X2), eH(X1|X2)),

dSPT (X2, S)

dSPT (X1, S)
≥ eH(X1)−H(X2|X1), corresponding to the corner (eH(X1), eH(X2|X1)).

otherwise it lies on the thicker curve shown in Figure 6.
Letting ν = dSPT (X2,S)

dSPT (X1,S)
and undoing the change of variable the result follows.
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C Proof of Theorem 2

Denote γ = limN→∞ γ(N).

C.1 Case (a): ai → C, C > 0

Lemma 1 If gi → 0, and gi is monotonically decreasing, then:

lim
N→∞

1

N

N∑
i=1

gi = 0

Proof:
Since gi → 0 and gi is monotonically decreasing, it results that for any ε > 0, there exists

an integer Nε such that for any i ≥ Nε, gi < ε. Then, for any ε > 0,

lim
N→∞

1

N

N∑
i=1

gi ≤ lim
N→∞

1

N
[Nεd0 + (N − Nε)ε]

= 0 + lim
N→∞

(N − Nε)ε

N
= ε

Since this happens for any ε > 0, the result follows

Lemma 2 Let ai → C, C > 0. Then γ = 1:

lim
N→∞

∑N
i=1 iai∑N

i=1(N − i + 1)ai

= 1 (14)

Proof: We can write:

lim
N→∞

∑N
i=1 iai∑N

i=1(N − i + 1)ai

= lim
N→∞

∑N
i=1 iai

(N + 1)
∑N

i=1 ai −
∑N

i=1 iai

= lim
N→∞

1

(N + 1)
∑N

i=1 ai∑N
i=1 iai

− 1
(15)

Now, since ai → C, C > 0, then we can write:

ai = gi + C, C > 0,

where gi → 0 and gi is monotonically decreasing.
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Then

lim
N→∞

(N + 1)

∑N
i=1 ai∑N
i=1 iai

=

= lim
N→∞

(N + 1)
∑N

i=1(gi + C)∑N
i=1 i(gi + C)

= lim
N→∞

(N + 1)
∑N

i=1 gi + N(N + 1)C∑N
i=1 igi + C N(N+1)

2

= lim
N→∞

1
N

∑N
i=1 gi + C

1
N(N+1)

∑N
i=1 igi + C/2

We can easily prove that 0 ≤ limN→∞ 1
N(N+1)

∑N
i=1 igi ≤ 1

N
limN→∞

∑N
i=1 gi, thus, it is

enough to apply Lemma 1 and obtain that

γ =
1

2 − 1
= 1

C.2 Case (b): ai → 0

Lemma 3 Let ai → 0. If ai decreases faster than 1/i, then γ = 0. If ai decreases as fast as
1/ip, 0 < p < 1, then γ = 1 − p.

Proof:
From (15), we see that the limit γ = 0 iff the ratio∑N

i=1 iai

(N + 1)
∑N

i=1 ai

(16)

goes to zero as N → ∞.

• If ai decreases faster than 1/i, then iai → 0. Then we can use directly Lemma 1 for iai:

lim
N→∞

N∑
i=1

iai

N + 1
= 0

Since
∑N

i=1 ai is monotonically increasing, the result γ = 0 follows.

If ai decreases as fast as 1/i, then, without loss of generality, take ai = 1/i. Then

γ = lim
N→∞

1

(N + 1)
∑N

i=1 1/i

N
− 1

But, since
∑N

i=1 1/i is divergent, it follows again γ = 0.
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• If ai decreases slower than 1/i, suppose without loss of generality that ai = 1/ip, with
p ∈ (0, 1).

Then, by using the integral test, we obtain

lim
N→∞

∑N
i=1 i1−p

(N + 1)
∑N

i=1 i−p
= lim

T→∞

∫ T

0
t1−pdt

(T + 1)
∫ T

0
t−pdt

= lim
T→∞

t2−p

2−p
|t=T
t=0

(T + 1) t1−p

1−p
|t=T
t=0

= lim
T→∞

T 2−p

2−p

(T + 1)T 1−p

1−p

=
1 − p

2 − p
.

This means that the sought limit in the case p ∈ (0, 1) is:

γ =
1

2−p
1−p

− 1
= 1 − p

So far, we have seen that

γ(N) =
1

(N + 1)
∑N

i=1 ai∑N
i=1 iai

− 1

converges to zero if iai goes to zero in the limit i → ∞. Suppose without loss of generality
ai = 1/ip, so the condition for limN→∞ γ(N) = 0 is p ≥ 1.

We note that the rate of decay of the ratio of costs is directly related with the rate of
increase with N of the partial sum sN(q) =

∑N
i=1

1
iq

for q > 0, namely:

• sN(q) = Θ(N1−q), if q ∈ (0, 1);

• sN(q) = Θ(log N), if q = 1;

• sN(q) = Θ(1), if q > 1.

We thus obtain:

Case p = 1:

In this case, γ(N) = Θ( 1

N log N
N

−1
) = Θ( 1

log N
).

Case p ∈ (1, 2):

In this case, γ(N) = Θ( 1
N 1

N2−p −1
) = Θ( 1

Np−1 ).
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Case p = 2:

In this case, γ(N) = Θ( 1
N 1

log N
−1

) = Θ( log N
N

).

Case p > 2:

In this case, γ(N) = Θ( 1
N−1

) = Θ( 1
N

)

D Conditional Entropy for Correlation Law exp(−c|τ |)
Consider the one-dimensional example in Figure 11. For the sake of simplicity, assume that the
variance σ2 = 1. The correlation between nodes l and j is Klj = exp(−c|l − j|d). Denote by
ρ = exp(−cd). Then we can write the covariance matrix of any i consecutive nodes on the line
as:

Ki =

⎛
⎜⎜⎜⎜⎝

1 ρ ρ2 . . . ρi−1

ρ 1 ρ . . . ρi−2

. . . . . . . . . . . . . . .
ρi−2 ρi−1 . . . 1 ρ
ρi−1 . . . ρ2 ρ 1

⎞
⎟⎟⎟⎟⎠

and thus their joint differential entropy is:

h(X1, . . . , Xi) = log(2πe)i det(Ki) = log(2πe)i(1 − ρ2)i−1

It follows that we can write the conditional differential entropy as:

h(Xi|Xi−1, . . . , X1) = h(Xi, Xi−1, . . . , X1) − h(Xi−1, . . . , X1)

= log(2πe)i(1 − ρ2)i−1 − log(2πe)i−1(1 − ρ2)i−2

= log
(2πe)i(1 − ρ2)i−1

(2πe)i−1(1 − ρ2)i−2

= log(2πe)(1 − ρ2)

= h(Xi|Xi−1)

which depends on the inter-node distance d, but not on the number of nodes i.
Since the conditional entropy ai = H(Xi|Xi−1, . . . , X1) differs in approximation by only a

constant from the conditional differential entropy, it follows ai ≈ H(Xi|Xi−1), for any i.

35


