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Abstract. In this paper, we consider the minimization of a relevant en-
ergy consumption related cost function in the context of sensor networks
where correlated sources are generated at various sets of source nodes
and have to be transmitted to some set of sink nodes. The cost function
we consider is given by the product [rate] × [link weight]. The minimiza-
tion is achieved by jointly optimizing the transmission structure, which
we show consists of a superposition of trees from each of the source nodes
to its corresponding sink nodes, and the rate allocation across the source
nodes. We show that the overall minimization can be achieved in two
concatenated steps. First, the optimal transmission structure has to be
found, which in general amounts to finding a Steiner tree and second, the
optimal rate allocation has to be obtained by solving a linear program-
ming problem with linear cost weights determined by the given optimal
transmission structure. We also prove that, if any arbitrary traffic matrix
is allowed, then the problem of finding the optimal transmission struc-
ture is NP-complete. For some particular traffic matrix cases, we fully
characterize the optimal transmission structures and we also provide a
closed-form solution for the optimal rate-allocation. Finally, we analyze
the design of decentralized algorithms in order to obtain exactly or ap-
proximately the optimal rate allocation, depending on the traffic matrix
case. For the particular case of data gathering, we provide experimental
results showing a good performance in terms of approximation ratios.

1 Introduction

1.1 Problem Motivation

Consider networks that transport supplies among nodes. This is for instance
the case in sensor networks that measure some environmental data. Nodes are
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supplied amounts of measured data which need to be transmitted to end sites,
called sinks, for control or storage purposes. An example is shown in Fig.1, where
there are N nodes with sources X1, . . . , XN , two of them being the sinks denoted
by S1, S2, and a graph of connectivity with edges connecting certain nodes. We
will use interchangeably the notions of network entity and its graph representa-
tion across the paper. Sources corresponding to nodes in the sets V 1, V 2 need
to transmit their data, possibly using other nodes as relays, to sinks S1, S2 re-
spectively. A very important task in this scenario is to find a rate allocation
at nodes and a transmission structure on the network graph that minimizes a
cost function of interest (e.g. flow cost [data size] × [link weight], total distance,
etc.). This implies a joint treatment of source coding and optimization of the
transmission structure.
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Fig. 1. An example of a network. Sources transmit their data to the sinks. Nodes from
the V 1, V 2 set of nodes need to arrive at sink S1, S2, respectively. A rate supply Ri is
allocated to each node Xi. In solid lines, a chosen transmission structure is shown. In
dashed lines, the other possible links are shown

The problem is trivial if the data measured at nodes are statistically inde-
pendent: each node codes its data independently, and well developed algorithms
can be used to solve the minimum cost flow problem [5].

However, in many situations, data at nodes are not independent, such as in
typical sensor networks. It can be thus expected that approaches that take into
account the correlation present in the data can improve over existing algorithms,
with regard to optimizing many cost metrics of interest.

1.2 Correlated Data

The source coding approach that takes maximum advantage of the data corre-
lation, at the expense of coding complexity, is based on the important work of
[19]. In that work, Slepian and Wolf showed that when nodes measure correlated
data, these data can be coded with a total rate not exceeding the joint entropy,
even without nodes explicitly communicating with each other (under some con-
straints on the minimal rates given by the Slepian-Wolf region). Their result
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provides the whole achievable rate region for the rate allocation, that is any rate
in that region is achievable. We describe in more detail the Slepian-Wolf coding
in Sect. 2.2.

In addition to encoding the data, these data usually need to be transmitted
over the network from the sources to the sinks. In such situations, it is important
to study the influence that the transmission structure used to transport the data
has on the rate allocation at the nodes. In this work, we consider a joint treat-
ment of both the rate allocation and the chosen transmission structure. We show
that when separable joint cost functions are considered (e.g. the [data size] ×
[link weight] metric), and Slepian-Wolf coding is used, then the problem of joint
optimization separates, in the sense that first an optimal transmission struc-
ture needs to be determined, and second the optimal rate allocation is found on
this transmission structure. However, the rate allocation is determined by the
transmission structure, and thus the respective optimizations are not indepen-
dent. The optimal rate allocation is in general unique, except in some degenerate
cases. Since nodes have limited processing capability and/or battery power, it
is necessary that the rate allocation and transmission structure optimization
are done locally at each node, in a decentralized manner, by using information
available only from nodes in the neighborhood.

In particular, let us consider the case of a network of sensors taking measure-
ments from the environment [2], [12], [15]. Let X = (X1, . . . , XN ) be the vector
formed by the random variables representing the sources measured at the nodes
1, . . . , N . We assume that the random variables are continuous and that there is
a quantizer in each sensor (with the same resolution for all sensors). There are
also a number of sinks to where data from different subsets of nodes have to be
sent. A rate allocation (R1, . . . , RN ) (bits) has to be assigned at the nodes so
that the quantized measured information samples are described losslessly. No-
tice that it is also possible to allocate different rates at each node, depending
on which sink it sends its data to, but this involves important additional coding
overhead, which might not be always feasible. We consider both cases in this pa-
per. We assume that the spatial correlation between samples taken at the nodes
depends in our setting only on the distance distribution across space. In this
work, we assume that contention is solved by the upper layers. The transmission
topology in our model is assumed to be an undirected graph with point-to-point
links. Practical approaches use nearest neighbor connectivity, avoiding thus the
complexity of the wireless setting. Since battery power is the scarce resource
for autonomous sensors, a meaningful metric to minimize in the case of sensor
networks is the total energy consumption. This is essentially given by the sum
of products [data size] × [link weight] for all the links used in the transmission.
The weight of the link between two nodes is a function of the distance d of the
two nodes (e.g. kdα or k exp(αd), with k, α constants of the medium).

The novelty of our approach stems from the fact that we consider jointly the
optimization of both source coding and transmission structure in the context of
sensor networks measuring correlated data. To the best of our knowledge, this is
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the first research work that addresses jointly Slepian-Wolf lossless source coding
and network flow cost optimization.

1.3 Related Work

Progress towards practical implementation of Slepian-Wolf coding has been
achieved in [1], [13], [14]. Bounds on the performance of networks measuring
correlated data have been derived in [11], [18]. However, none of these works
takes into consideration the cost of transmitting the data over the links and
the additional constraints that are imposed on the rate allocation by the joint
treatment of source coding and transmission.

The problem of optimizing the transmission structure in the context of sensor
networks has been considered in [9], [16], where the energy, and the [energy]
× [delay] metric are studied, and practical algorithms are proposed. In these
studies, the correlation present in the data is not exploited for the minimization
of the metric.

A joint treatment of data aggregation and the transmission structure is con-
sidered in [8]. The model in [8] does not take into account possible collaborations
among nodes. In our work, we consider the case of collaboration between nodes
because we allow nodes to perform (jointly) Slepian-Wolf coding.

1.4 Main Contributions

In this paper, we address the problem of Slepian-Wolf source coding for general
networks and patterns of traffic, namely, in terms of our graph representation,
for general (undirected) graphs and different sets of source nodes and sinks. We
consider the flow cost metric given by [data size]×[link weight], and we assess
the complexity of the resulting joint optimization problem, for various network
settings. We first prove that the problem can be always be separated into the
tasks of transmission structure optimization and rate allocation optimization.
For some particular cases, we provide closed-form solutions and efficient approx-
imation algorithms. These particular cases include correlated data gathering
where there is only one sink node. In the general case, we prove that the prob-
lem is NP-complete.

The rest of this paper is organized as follows. In Sect. 2, we state the opti-
mization problem and describe the Slepian-Wolf source coding approach and the
optimal region of rate allocations. In Sect. 3 we study the complexity for the case
of a general traffic matrix problem and we prove that finding the optimal trans-
mission structure is NP-complete. We show that, if centralized algorithms were
allowed, finding the optimal rate allocation is simple; however, in our sensor net-
work setting, the goal is to find distributed algorithms, and we show that in order
to have a decentralized algorithm, we need a substantially large communication
overhead in the network. In Sect. 4, we fully solve an important particular case,
namely the correlated data gathering problem with Slepian-Wolf source coding.
In Sect. 5 we consider other particular cases of interests. Finally, we present some
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numerical simulations in Sect. 6. We conclude and present directions of further
work in Sect. 7.

2 Problem Formulation

2.1 Optimization Problem

Consider a graph G = (V, E), |V | = N . Each edge e ∈ E is assigned a weight
we. Nodes on the graph are sources of data. Some of the nodes are also sinks.
Data has to be transported over the network from sources to sinks. Denote by
S1, S2, . . . , SM the set of sinks and by V 1, V 2, . . . , V M the set of subsets V j ⊆ V
of sources; data measured at nodes V j have to be sent to sink Sj . Denote by Si

the set of sinks to which data from node i have to be sent. Denote by Ei ⊆ E the
subset of edges used to transmit data from node i to sinks Si, which determines
the transmission structure corresponding to node i.

Definition 1 (Traffic matrix). We call the traffic matrix of a graph G the
N × N square matrix T that has elements given by:

Tij = 1, if source i is needed at sink j,

Tij = 0, else.

With this notation, V j = {i : Tij = 1} and Si = {j : Tij = 1}.
The overall task we consider is to assign an optimal rate allocation R∗

i , i =
1, . . . , N for the N nodes and to find the optimal transmission structure on the
graph G that minimizes the total flow cost [data size] × [link weight]. Thus, the
optimization problem is:

{R∗
i , d

∗
i }N

i=1 = arg{Ri,di} min
N∑

i=1

Ridi (1)

where di is the total weight of the transmission structure chosen to transmit
data from source i to the set of sinks Si:

di =
∑

e∈Ei

we.

Notice that finding the optimal {di}N
i=1 is equivalent to finding the optimal

transmission structure.
In the next Sect. 2.2 we show that, when Slepian-Wolf coding is used, the

tasks of finding the optimal {di}N
i=1 and respectively {Ri}N

i=1 are separated, that
is, one can first find the optimal transmission structure, which can be shown to
be always a tree, and then find the optimal rate allocation. As a consequence,
after finding the optimal transmission structure, (1) can be posed as a linear
programming problem in order to find the optimal rate allocation. We study the
complexity of solving the overall problem under various scenarios.
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2.2 Slepian Wolf Coding

Consider the case of two random sources X1 and X2 that are correlated (see Fig.
2(a)). Intuitively, each of the sources can code their data at a rate equal to at
least their corresponding entropies, R1 = H(X1), R2 = H(X2), respectively. If
they are able to communicate, then they could coordinate their coding and use
together a total rate equal to the joint entropy R1 + R2 = H(X1, X2). However,
Slepian and Wolf [19] showed that two correlated sources can be coded with a
total rate H(X1, X2) even if they are not able to communicate with each other.
This can be also easily generalized to the N -dimensional case. Fig. 2(b) shows
the Slepian-Wolf rate region for the case of two sources.

Sink

X2

X1

(a) Two correlated
sources X1, X2 send
their data to one sink

121

12

2

2

1

H(X )

R

R

H(X )H(X |X )

H(X |X )

(b) The Slepian-Wolf region
shows the achievable pairs of
rates that can be allocated to
sources X1 and X2 for lossless
data coding

Fig. 2. Two correlated sources, and the Slepian-Wolf region for their rate allocation

Consider again the example shown in Fig. 1. Assume that the set of sources
that send their data to sink j, that is the set of nodes denoted {Xj1, . . . , Xj|V j |} ∈
V j , j = 1, 2, know in advance the correlation structure in that set V j (which
depends only on the distance in our model). This is a reasonable assumption
to make for localized data requests from the sources (that is, when nodes
in V j are geographically close to each other). Then, nodes in V j can code
their data jointly, without communicating with each other with a total rate of
H(Xj1, Xj2, . . . , Xj|V j |) bits, as long as their individual rates obey the Slepian-
Wolf constraints related to the different conditional entropies [6], [19].

Proposition 1 (Separation of source coding optimization and trans-
mission structure optimization). When Slepian-Wolf coding is used, the
transmission structure optimization separates from the rate allocation optimiza-
tion, in terms of the overall minimization of (1).
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Proof. Once the rate allocation is fixed, the best way to transport any amount
of data from a given node i to the set of sinks Si does not depend on the value
of the rate. This is true because we consider separable flow cost functions, and
the rate supplied at each node does not depend on the incoming flow at that
node. Since this holds for any rate allocation, it is true for the minimizing rate
allocation and the results follows. ��

For each node i, the optimal transmission structure is in fact a tree that spans
node i and the sinks Si to which its data are sent [5]. Thus, the whole optimiza-
tion problem can be separated into a spanning tree optimization for each source,
and the rate allocation optimization. Then, after the optimal tree structure is
formed, (1) becomes a problem of rate allocation that can be posed as a linear
programming (LP) problem under the usual Slepian-Wolf linear constraints:

min
{Ri}N

i=1

N∑

i=1

Rid
∗
i

under constraints: (2)
∑

l∈Yj

Rl ≥ H(Yj |V j − Yj), (∀)V j ,Yj ⊆ V j ,

that is, first the optimal weights {d∗
i }N

i=1 are found (which determine in general
uniquely the optimal transmission structure), and then the optimal rate alloca-
tion is found using the fixed values {d∗

i }N
i=1 in (2). Note that there is one set of

constraints for each set V j .
Moreover, note that (2) is an LP optimization problem under linear con-

straints, so if the weights {d∗
i }N

i=1 can be determined, the optimal allocation
{Ri}N

i=1 can be found easily with a centralized simplex algorithm [10]. However,
in Sect. 3 we will show that for a general traffic matrix T , finding the optimal
coefficients {d∗

i }N
i=1 is NP-complete. Moreover, in general, even if the optimal

structure is found, it is hard to decentralize the algorithm that finds the optimal
solution {R∗

i }N
i=1 of (2), as this requires a substantial amount of global knowledge

of the network.
In the following sections, for various problem settings, we first show how the

transmission structure can be found (i.e. the values of {d∗
i }N

i=1), and then we
discuss the complexity of solving (2) in a decentralized manner.

3 Arbitrary Traffic Matrix

We begin the analysis with the most general case, that is when the traffic matrix
T is arbitrary, by showing the following proposition:

Proposition 2 (The optimal transmission structure is a superposition
of Steiner trees). Given an arbitrary traffic matrix T , then, for any i, the
optimal value d∗

i in (2) is given by the minimum weight tree rooted in node i and
which spans the nodes in Si; this is exactly the minimum Steiner tree that has
node i as root and which spans Si, which is an NP-complete problem.
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Proof. The proof is straightforward: data from node i has to be send over the
minimum weight structure to the nodes in Si, possibly via nodes in V − {i, Si}.
This is a minimum Steiner tree problem for the graph G with weights we, thus
it is NP-complete. ��

The approximation ratio of an algorithm that finds a solution for an opti-
mization problem is defined as the guaranteed ratio between the cost of the found
solution and the optimal one. If the weights of the graph are the Euclidean dis-
tances (we = le for all e ∈ E), then the problem becomes the Euclidean Steiner
tree problem, and it admits a PTAS [3] (that is, for any ε > 0, there is a poly-
nomial time approximation algorithm with an approximation ratio of 1 + ε).
However, in general, the link weights are not the Euclidean distances (e.g. if
we = l2e etc.). Then finding the optimal Steiner tree is APX-complete (that is,
there is a hard lower bound on the approximation ratio), and is only approx-
imable (with polynomial time in the input instance size) within a constant factor
(1 + ln 3)/2 [4], [17].

The approximation ratios of the algorithms for solving the Steiner tree trans-
late into bounds of approximation for our problem. By using the respective ap-
proximation algorithms for determining the weights di, the cost of the approx-
imated solution for the joint optimization problem will be within the Steiner
approximation ratio away from the optimal one.

Once the optimal weights d∗
i ’s are found (i.e. approximated by some approxi-

mation algorithm for solving the Steiner tree), then, as we mentioned above, (2)
becomes a Linear Programming (LP) problem. Consequently, it can be readily
solved with a centralized program. The solution of this problem is given by the
innermost corner of the Slepian-Wolf region that is tangent to the cost function
(see Fig. 3 for an example with two nodes or sources). If global knowledge of
the network is allowed, then this problem can be solved computationally in a
simple way. However, it is not possible in general to find in closed-form the op-
timal solution determined by the corner that minimizes the cost function, and
consequently the derivation of a decentralized algorithm for the rate allocation,
as this involves exchange of network knowledge among the clusters.

Figure 4 shows a simple example (but sufficiently complete) which illustrates
the difficulty of this problem. Suppose that the optimal total weights {d∗

i }3
i=1 in

(2) have been approximated by some algorithm. Then the cost function to be
minimized is:

R1w11 + R2(w21 + w22) + R3w32

with d∗
1 = w11, d

∗
2 = w21 + w22, d

∗
3 = w32, and the Slepian-Wolf constraints are

given by:

R1 + R2 ≥ H(X1, X2)
R1 ≥ H(X1|X2), for set V 1 = {X1, X2}
R2 ≥ H(X2|X1)
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d(X ,S)R + d(X ,S)R 1 22
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2 1

1 2 1

1 2H(X )
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H(X |X ) H(X )

R

R

Fig. 3. A simple example with two nodes. The total weights d1, d2, from sources X1, X2

to the sinks, are respectively d(X1, S), d(X2, S), d(X1, S) > d(X2, S), in this particular
case. In order to achieve the minimization, the cost line d(X1, S)R1 + d(X2, S)R2 has
to be tangent to the most interior point of the Slepian-Wolf rate region, given by
(R1, R2) = (H(X1|X2), H(X2))

and respectively,

R2 + R3 ≥ H(X2, X3)
R2 ≥ H(X2|X3), for set V 2 = {X2, X3}
R3 ≥ H(X3|X2).

S S

XX X

V 2

1 2 3

V 1

1 2

w w
2111 3222

w w

Fig. 4. Two sets of sources transmit their correlated data to two sinks

Suppose the weights are such that w11 < w21 + w22 < w32. A decentralized
algorithm has to use only local information, that is, information only available
in a certain local transmission range or cluster neighborhood). We assume that
only local Slepian-Wolf constraints are considered in each set V j for the rate
allocation, and no knowledge about the total weights di from nodes in the other
subsets is available. Then, it readily follows that the optimal rate allocations in
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each of the two subsets are:

R′
1 = H(X1)

R′
2 = H(X2|X1), for set V 1

and respectively,

R′
2 = H(X2)

R′
3 = H(X3|X2), for set V 2.

If the rate allocation at a source Xi can take different values Rij depending
to which sink j source Xi sends its data, then it is straightforward to find this
multiple rate assignment. The rate allocation for each cluster will be independent
from the rate allocations in the other clusters (see Sect. 4 for the closed-form
solution for the rate allocation for each set V j , and a decentralized algorithm
for finding the optimal solution).

However, this involves even more additional complexity in coding, so in some
situations it might be desirable to assign a unique rate to each node, regardless
of which sink the data is sent to. We can see from this simple example that we
cannot assign the correct unique optimal rate R2 to source X2, unless node 2 has
global knowledge of the whole distance structure from nodes 1, 2, 3 to the sinks
S1 and S2. For a general topology, knowledge in a node from the nodes belonging
to other different sets is needed at least at nodes that are at the intersection of
sets (in this example, source X2). Even so, it is clear that such global sharing
of cluster information over the network is not scalable because the amount of
necessary global knowledge grows exponentially.

There are however some important special cases of interest where the problem
is tractable, and we treat them in the following two sections.

4 Data Gathering: All Sources (V j = V ) Sent to One
Sink S = j

This case has been studied in the context of the network correlated data gathering
problem [7], and is a particular case of the problem we consider in this paper.
An example is shown in Fig. 5.

In this case, the problem simplifies: if there is a single sink S, then the Steiner
tree rooted at i and spanning node S is actually the shortest path, of total weight
di, between the two nodes. The overall optimal transmission structure is thus
the superposition of the shortest paths from each node i to the sink S. This
superposition forms the shortest path tree (SPT) rooted in S. The SPT can be
easily found with a distributed algorithm (e.g. Bellman-Ford).

Let us review in Sect. 4.1 the results contained in [7].

4.1 Solution of the LP Problem

The algorithm for finding the optimal rate allocation for this setting is:
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Fig. 5. In this example, data from nodes X1, X2, . . . , XN need to arrive at sink S.

Algorithm 1. Data gathering optimal Slepian-Wolf rate allocation:

– Find the weights di = dSPT (i, S), for each node i, given by the SPT of the
graph G, by running e.g. distributed Bellman-Ford.

– Solve the constrained LP:

(R∗
1, . . . , R

∗
N ) = arg min

{Ri}

∑

i

RidSPT (i, S),

under constraints: (3)
∑

i∈Y

Ri ≥ H(Y|YC), (∀)Y ⊆ V

where dSPT (i, S) is the total length of the path in the SPT from node i to S,
and (R∗

1, . . . , R
∗
N ) is the optimal rate allocation.

As discussed in Sect. 3, we see that in order to express the rate constraints,
centralized knowledge of the correlation structure among all nodes in the network
is needed. Nevertheless, in this case there is a single set of constraints that
involves all the nodes, and because of this the solution for the rate allocation
can be expressed in a closed-form.

Suppose without loss of generality that nodes are numbered in increas-
ing order of their distance to the sink on the SPT: (X1, X2, . . . , XN ) with
dSPT (X1, S) ≤ dSPT (X2, S) ≤ · · · ≤ dSPT (XN , S).

Proposition 3 (LP solution). The solution of the optimization problem in
(3) is:

R∗
1 = H(X1),

R∗
2 = H(X2|X1),

. . . . . . . . . (4)
R∗

N = H(XN |XN−1, XN−2, . . . , X1).

That means that each node codes its data with a rate equal to its respective
entropy conditioned on all other nodes which are closer to the sink than itself.
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4.2 Approximation Algorithm

In the previous subsection, we present the optimal solution of the linear pro-
gramming rate assignment for the single sink data gathering problem, under
Slepian-Wolf constraints. We consider now the problem of designing a distributed
approximation algorithm. Even if we can provide the solution in a closed form as
(4), the nodes still need local knowledge of the overall structure of the network
(distances between nodes and distances to the sink). This local knowledge is
needed for:

1. Ordering the distances on the SPT from the nodes to the sink: each node
needs its index in the ordered sequence of nodes so as to determine on which
other nodes to condition when computing its rate assignment.

2. Computation of the rate assignment:

Ri = H(Xi|Xi−1, . . . , X1)
= H(X1, . . . , Xi) − H(X1, . . . , Xi−1)

Note that all distances among nodes (1, . . . , i) are needed locally at node i
for computing this rate assignment.

Such global knowledge might not be available. Thus, we propose a fully dis-
tributed approximation algorithm, which avoids the need for a node to have
global knowledge of the network, and which provides solutions very close to the
optimum.

Suppose each node i has complete information (distances between nodes and
distances to the sink) only about a local vicinity N (i). This information can be
computed by running for example a distributed algorithm for finding the SPT
(e.g. Bellman-Ford). The approximation algorithm that we propose is based on
the observation that nodes that are outside this neighborhood count very little,
in terms of rate, in the local entropy conditioning, under the assumption that
the correlation decreases with the distance between nodes, which is a natural
assumption.

Algorithm 2. Approximated Slepian-Wolf coding:

– Find the SPT.
– For each node i:

• Find in the neighborhood N (i) the set Ci of nodes that are closer to the
sink, on the SPT, than node i.

• Transmit at rate R†
i = H(Xi|Ci).

This means that data are coded locally at the node with a rate equal to
the conditional entropy, where the conditioning is performed only on the subset
formed by the neighbor nodes which are closer to the sink than the respective
node.

The proposed algorithm needs only local information, so it is completely
distributed. Still, it will give a solution very close to the optimum since the



56 R. Cristescu, B. Beferull-Lozano, and M. Vetterli

neglected conditioning is small in terms of rate for a correlation function that is
sufficiently decaying with distance (see Sect. 6 for some numerical simulations).

Similar techniques can be used to derive decentralized approximation algo-
rithms for some of the other particular cases of interests that we discuss in the
next section.

5 Other Particular Cases

5.1 Broadcast of Correlated Data

This case corresponds to the scenario where some sources are sent to all nodes
(Si = V ). A simple example is shown in Fig. 6. In this example, the traffic
matrix has Tij = 1, (∀)j, for some arbitrary L nodes {i1, . . . , iL} ⊂ V .

4S

2XX

3S

1

2

1

S

S

Fig. 6. Data from X1, X2 need to be transmitted to all nodes S1, S2, S3, S4

In this case, for any node i, the value d∗
i in (2) is given by the tree of minimum

weight which spans V ; this is the minimum spanning tree (MST), and thus, by
definition, it does not depend on i.

Note that in this case all weights {d∗
i }N

i=1 are equal, thus the optimal solution
Ri is not unique and therefore we have a degenerate solution case for the LP in
(2). There is only one set of constraints, and the cost line is exactly parallel to
the diagonal hyper-plane in the Slepian-Wolf region (e.g. in Fig. 3, this happens
when the dashed cost line becomes parallel to the diagonal solid line in the
boundary). In such a case, not only a corner, but any point on this diagonal
hyper-plane of the Slepian-Wolf region is optimal.

Notice that this case includes the typical broadcast scenario where one node
transmits its source to all the nodes in the network.

5.2 Multiple Sink Data Gathering

This case corresponds to the scenario where all sources (V j = V ) are sent to
some set Sa of sinks. In this case (see Fig. 7), finding the optimal weights {d∗

i }N
i=1

is as difficult as in the arbitrary matrix case, presented in Sect. 3. For every i,
the optimal weight d∗

i is equal to the weight of the minimum Steiner tree rooted
at i and spanning the nodes in the set Sa.
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SS
1 2

Fig. 7. Data from all nodes has to be transmitted to the set of sinks Sa = {S1, S2}.
Each sink has to receive data from all the sources

However, given the optimal transmission structure, the optimal rate alloca-
tion can be easily found in a similar manner as in Sect. 4. First, we order the
nodes in increasing order of increasing distance d∗

1 < d∗
2 < · · · < d∗

N , and then
the optimal rate allocation is given as (4).

5.3 Localized Data Gathering

This case corresponds to the scenario where disjoint sets {V 1, V 2, . . . , V L} are
sent to some sinks {S1, S2, . . . , SL}. In this case, for each i, the solution for the
optimal weight d∗

i is again the corresponding Steiner tree rooted at i and that
spans Si. If d∗

i can be found, then the rate allocation can be approximated by
a decentralized algorithm for each set {V j}L

j=1, in the same way as in Sect. 4,
that is, we solve L LP programs independently (decentralization up to cluster
level).

Algorithm 3. Disjoint sets.

– For each set V j, order nodes {i, i ∈ V j} as a function of the total weight di.
– Assign rates in each V jas in (4), taking into account this order.

6 Numerical Simulations

We present numerical simulations that show the performance of the approxima-
tion algorithm introduced in Sect. 4, for the case of data gathering. We consider
a stochastic data model given by a multi-variate Gaussian random field, and a
correlation model where the inter-node correlation decays exponentially with the
distance between the nodes. In this case, the joint entropy of the data measured
at a set of nodes is essentially given by the logarithm of the determinant of the
corresponding covariance matrix.

Then, the performance of our approximation algorithm will be close to opti-
mal even if we consider a small neighborhood N (i) for each sensor i. We use an
exponential model of the covariance Kij = exp(−ad2

i,j), for varying neighbor-
hood range radius and several values for the correlation exponent a. The weight
of an edge (i, j) is wi,j = d2

i,j and the total cost is given by expression (3). Fig-
ure 8(a) presents the average ratio between the approximated solution and the



58 R. Cristescu, B. Beferull-Lozano, and M. Vetterli

optimal one. In Fig. 8(b) we show a comparison of the rate allocations with our
different approaches for rate allocation, as a function of the distances from the
nodes to the sink.
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(a) Slepian-Wolf coding.
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Fig. 8. (a) Average value of the ratio between the optimal and the approximated
solution, in terms of total cost, vs. the neighborhood range. The network instances have
50 nodes uniformly distributed on a square area of size 100 × 100, and the correlation
exponent varies from a = 0.001 (high correlation) to a = 0.01 (low correlation). The
average has been computed over 20 instances for each (a, radius) pair. (b) Typical rate
allocation for a network instance of 50 nodes, and correlation exponent a = 0.0005.
On the x-axis, nodes are numbered in order as the distance from S increases, on the
corresponding spanning tree

7 Conclusions and Future Work

We addressed in this paper the problem of joint rate allocation and transmission
structure optimization for sensor networks, when the flow cost metric [rate] ×
[link weight] is considered. We showed that if the cost function is separable,
then the tasks of optimal rate allocation and transmission structure optimization
separates. We assess the difficulty of the problem, namely we showed that for
an arbitrary transfer matrix the problem of finding the optimal transmission
structure is NP-complete. The problem of optimal rate allocation can be posed
as a linear programming (LP) problem, but it is difficult in general to find
decentralized algorithms that use only local information for this task. We also
studied some particular cases of interest where the problem becomes easier and a
closed form solution can be found and where efficient approximation algorithms
can be derived.

Our future research efforts include the derivation of efficient distributed ap-
proximation algorithms for both finding the optimal transmission structure and
the optimal distribution of rates among the various subsets of sources for more
general cases of transmission matrices. Moreover, an interesting research issue is
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to find tight bounds for the approximation ratios, in terms of power costs, for
these distributed algorithms. Also, we consider more general network problems
where for each node i, there is a source vector −→

X i = (Xi1, . . . , Xim) and any
subvector of this vector has to be transmitted to some set of sinks.
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