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Abstract — Consider a set of correlated sources lo-
cated at the nodes of a network, and a sink to which
the data from all the sources have to arrive. We ad-
dress the minimization of a separable joint communi-
cation cost function given by the product [rate] · [edge
weight]. We present two possible approaches for rate
allocation, namely Slepian-Wolf coding, and coding by
explicit communication, and compare asymptotically
(large networks) the associated total costs by finding
their corresponding scaling laws and analyzing the ra-
tio between them. We also provide the specific con-
ditions on the correlation structure which determine
the different cases of asymptotic behaviors.

Consider a number of data sources with a certain spatial
correlation structure and which are located at the nodes of a
network. The network is represented by a graph G = (V, E)
which connects the sources, represented by the nodes, through
links, represented by the edges. The goal is to transport
the data from the nodes to a particular sink node S, such
that a total communication cost function is minimized. The
cost function is related to the lossless coding rate allocation
(R1, . . . , RN ) for the sources (X1, . . . , XN ), and the weights
of the links. We restrict the optimization over the set of data
gathering trees:{

{R∗
i }N

i=1, ST ∗
}

= arg min
{Ri}N

i=1,ST

∑
i∈V

RidST (i, S) (1)

where ST is a spanning tree for G and dST (i, S) is the cost of
the path connecting node i to S on the ST tree.

A joint treatment of data aggregation and the transmis-
sion structure is found in [3], where no collaboration among
nodes is considered. We consider collaboration by distributed
Slepian-Wolf coding, for which communication among the
nodes is not necessary [1, 4], and compare this approach with
explicit communication coding [2, 3]. The choice of approach
depends on the network knowledge that the nodes have.

We analyze a one-dimensional network model with N nodes
equally spaced on a line (Figure 1). For this model, the op-
timal transmission structure is the shortest path tree (SPT )
for both rate allocation approaches. Let us denote the con-
ditional entropies by ai = H(Xi|Xi−1, . . . , X1). If nodes are
assumed to know the correlation structure, then they can per-
form Slepian-Wolf coding. In this case, the solution of (1) is
[1] (R∗

1, R
∗
2 , . . . , R∗

N) = (a1, a2, . . . , aN). On the contrary, in
the explicit communication approach, nodes can exploit the
data correlation only by receiving explicit side information
from other nodes (that is, when other nodes use a node as
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Figure 1: Rate allocation for Slepian-Wolf coding (above)
and explicit communication coding (below).
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Figure 2: The ratio of total costSW (N)/costEC(N) as a func-

tion of the network size for a refinement network sampling a

Gaussian random field (left) and a bandlimited process (right).

relay, their data is locally available at that relaying node). In
this case, due to the symmetry of the correlation structure,
the rate allocation can be written as (R∗

1, R
∗
2 , . . . , R∗

N ) =
(aN , aN−1, . . . , a1). Consider the ratio between the total costs
associated to the two coding approaches:

γ(N) =
costSW (N)

costEC(N)
=

∑N
i=1 iai∑N

i=1(N − i + 1)ai

.

Theorem 1 If limi→∞ ai = C > 0, then limN→∞ γ(N) = 1
and costSW (N) = Θ(costEC(N)). If limi→∞ ai = 0, then: (a)
if ai = Θ(1/ip), p ∈ (0, 1), then limN→∞ γ(N) = 1 − p and
costSW (N) = Θ(costEC(N)); (b) if ai = Θ(1/ip), p ≥ 1, then
limN→∞ γ(N) = 0 and costSW (N) = o(costEC(N)); more-
over, if p = 1 then γ(N) = Θ(1/ log N), if p ∈ (1, 2) then
γ(N) = Θ(1/Np−1), if p = 2, γ(N) = Θ(log N/N), if p > 2
then γ(N) = Θ(1/N).

Theorem 1 can be applied for various correlation models [1],
including sampled Gaussian continuous-space WSS random
processes, and bandlimited processes (see Figure 2).
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