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Abstract

We consider a sensor network measuring correlated data, where the task is to gather all data from

the network nodes to a sink. We consider the scenario where data at nodes is lossy coded with high-

resolution, and the information measured by the nodes has to be reconstructed at the sink within both

certain total and individual distortion bounds. First, assuming fixed node positions, we consider the

problem of finding the optimal transmission structure and the rate-distortion allocations at the various

spatially located nodes, such as to minimize the total power consumption cost of the network. We

prove that the optimal transmission structure is the shortest path tree and that the problems of rate and

distortion allocation separate in the high-resolution case, namely, we first find the distortion allocation as

a function of the transmission structure, and then, for a given distortion allocation, the rate allocation is

computed. Then, we also study the case when the node positions can be chosen, by finding the optimal

node placement for two different targets of interest, namely total power minimization and network

lifetime maximization. Finally, we propose a node placement solution that provides a tradeoff between

the two metrics.
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Fig. 1. In this example, data from nodes X1, X2, . . . , XN need to arrive at sink S. A rate supply Ri is allocated to each node

Xi, and the distortion at that node is Di. In thick solid lines, a chosen tree transmission structure is shown. In thin dashed lines,

the other possible links are shown. The weight of the path from node i to the sink is ci, and the corresponding path is shown

in gray line.

I. INTRODUCTION

A. Lossy Correlated Data Gathering

Consider a network of sensors measuring a spatially correlated data field. An important task

in such a scenario is data gathering, where the goal is to gather data from all the nodes to the

base station, or the sink, via a subset of the links of the network. An example is shown in Fig. 1,

where there are N nodes with sources X1, . . . , XN , a sink denoted by S, and a representation

graph of connectivity with edges connecting certain nodes. The transmission topology in our

model is assumed to be an undirected connected graph with nodes connected within a certain

distance, assuming a certain transmission range, with point-to-point links. Data at nodes have to

be encoded, and for proper reconstruction of the field at a sink node, they need to be available at

the sink within a certain prescribed total distortion (in Fig. 1, we denote the distortion and rate

at node i by Di and Ri, respectively). In some specific scenarios, where a minimum accuracy is

necessary for individual measurements across network nodes, there are also individual distortion

upper bounds imposed on the accuracy of data transmitted from the nodes.

In addition to the encoding of the data by the nodes, these data also need to be transmitted
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over the network from the sources to the sink, which results in certain transmission costs (in

Fig. 1, the total weight of the path from node i to the sink is denoted by ci). It is thus important to

study the interplay between the rate-distortion allocations at nodes, and the transmission structure

used to transport the data. We consider a joint treatment of the rate allocation and the chosen

transmission structure, by means of cost functions that are functions of both of them. The cost

functions, usually found in practice, separate the rate term from the path weight term [5]. For

instance, the [rate] × [path weight] cost function measures the power consumption in sensor

networks, where [rate] is the number of transmitted bits, and [path weight] is a supraunitary

power κ (usually κ = 2 or κ = 4) of the Euclidean distance over which the transmission

is done. Typical goals in such settings are (a) the minimization of the total network power

consumption, defined as the total sum of powers consumed by nodes, and (b) maximization of

the network lifetime, defined as the time until the first node fails (it runs out of power). In

this work, we consider jointly the optimization of both rate and distortion allocation at nodes,

transmission structure, and node placement, in the context of sensor networks with correlated

data at nodes.

Consider a network of N nodes (see Fig. 1). Let X = (X1, . . . , XN) be the vector formed by

the random variables representing the sources measured at nodes 1, . . . , N . The samples taken

at nodes are spatially correlated. We assume that the random variables are continuous and that

there is a high-resolution multidimensional quantizer (e.g. lattice quantizer) in each sensor. A

rate-distortion allocation {(R1, D1), . . . , (RN , DN)} (bits) has to be assigned at the nodes so that

the quantized measured information samples are described within a certain total distortion D and

potentially also with individual distortion upper bounds Dmax
i , i = 1, . . . , N . That information

has to be transmitted through the links of the network to the designated sink node1 (see Fig. 1). In

[8], [10], the problem of lossless coding of the data at nodes with Slepian-Wolf coding [19] has

been studied. In this work, we extend that problem by allowing nodes to code their data in a

lossy manner, such that the information received by the sink describes the data at nodes within

certain prescribed distortion constraints. Namely, the rate allocation at nodes in our lossy data

gathering scenario essentially depends on the differential entropy of the non-quantized data that

1Due to the interaction between the rate-distortion region and the transmission structure optimization, our results can be easily

generalized to the case of multiple sinks, as we will show in this paper.
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is measured and on the distortion levels of quantization that are assigned to each of the sources

located at nodes.

Moreover, we study the problem of optimal node placement for the tasks of first, minimizing

the total network power consumption, and second, maximizing the network lifetime. Note that

the placement solutions resulting from these two corresponding optimizations are different, since

optimizing the lifetime of the network means equalizing power consumption at nodes, which

does not necessarily coincide with the optimal placement solution when the sum of power

consumptions has to be minimized. Interestingly, for the correlation functions we consider in

this paper, when total network power consumption is minimized, the bottleneck node in the

optimal positioning is the one at the extremity of the network, rather than the node closest to

the sink. This is both due to the coding strategy, that assigns low rates to nodes far from the

sink, and to the inter-node distance optimization, as we show in this paper.

The general distributed rate-distortion region for coding correlated data at general quantization

resolution levels (e.g. low rates) is not known even for the Gaussian case [16]. Thus, we will

restrict our study to the case of data gathering with lossy high-resolution quantization [3], [20],

in which case, the rate-distortion region is known. Namely, the rate-distortion region of coding

with high-resolution for arbitrarily correlated sources has been found in [20]. In general (e.g.

low resolution) this region provides an outer bound, which becomes tighter as the resolution

increases. Thus, the results we obtain for the data gathering scenario in the high-resolution case

provide a lower bound on the performance of any other rate-distortion allocation strategy, in terms

of power efficiency, for a network that performs data gathering of correlated data. Moreover, our

results on the problem of joint rate-distortion allocation and transmission structure optimization

can be generalized should good bounds for low resolution rate-distortion curves become available.

B. Related Work

Recent work that exploit correlation in the data in the context of sensor networks include [2],

[11], [15], [17]. A setting related to the problem we consider in this paper, namely optimizing

correlated data gathering with communication costs for the case of lossless coding of finely

quantized data with the same scalar (resolution) quantizer at each node, has been studied in

[8], where Slepian-Wolf [6], [19] bounds are used, and in [9], where a simple coding technique

with explicit communication is considered; in this work, while assuming high-rate quantization,
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lattice quantizers are used where the resolutions of the quantizers can be adapted across nodes.

A similar problem of data compression by opportunistic aggregation was considered in [14],

where no collaboration among nodes is assumed. In this work we consider collaboration among

nodes by lossy coding of jointly correlated data at nodes, and we provide the optimal allocation

within the rate-distortion region given in [20], that minimizes the transport cost to perform the

data gathering to a sink. Moreover, we consider the effect of this coding technique on the optimal

placement of the nodes for gathering lossy coded data when both total network power efficiency

and lifetime optimization are considered.

C. Main Contributions and Outline

We solve the total power efficiency optimization problem by finding the transmission structure

and the rate-distortion allocations across nodes in a closed form, for high-resolution coding of

correlated data. Namely, we show that (a) the shortest path tree (SPT ) is the optimal transmission

structure, and (b) the solution of the rate-allocation optimization can be decoupled in two steps:

we first find the rate allocation, and then we use the closed-form solution for the rate allocation

to determine the distortion allocation. Our result also provides a general lower bound in terms of

power efficiency for the cost of data gathering of lossy coded data in sensor networks with a given

connectivity graph. Further, when the positions of the nodes can be chosen, we determine the

optimal node placing for optimizing two metrics of interest, namely the total power consumption

on one hand, and the network lifetime on the other hand. Finally, we propose a solution for the

node placement which provides a tradeoff between the two metrics.

The rest of the paper is structured as follows. In Section II, we formulate the optimization

problem we consider in this paper, and briefly introduce a family of Gaussian random fields that

we use as an example of correlation fields. In Section III, we show that the optimization problem

separates, and we sequentially find the optimal transmission structure, rate allocation, and dis-

tortion allocation under various settings with total and individual distortion constraints. Further,

in Section IV, we find the optimal placement in a one-dimensional scenario for two optimization

goals, namely network total power and network lifetime, and we present numerical simulations

to illustrate our results. We also propose a simple solution for the node placement that provides

a tradeoff between the two metrics. We conclude with Section V.
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II. PROBLEM SETTING

A. Optimization Problem

For the optimization of rate-distortion allocation, and transmission structure, we use a family

of cost functions that separate the rate and the total path weights. These power cost functions

are relevant for various problems in sensor networks related to power efficiency optimization

[5]. More specifically, we assume that the power to transmit a bit through a link distance we is

wκ
e , κ ≥ 2. Our results also apply for other models for the power dependence on the distance

[12].

Note that, as opposed to the Slepian-Wolf scenario considered in [8], here, since we consider

the case of lossy coding of data at the nodes, this implies an additional number of optimization

variables, namely the values of the distortions {Di}N
i=1 at nodes. This increases importantly

the complexity of the problem. Also, additional constraints are introduced by the rate-distortion

region [20]. In the case of high resolution coding (Di → 0, for any i ∈ V ), that we consider

in this paper, the rate-distortion region derived in [20] becomes tight. In general, this region

provides an outer bound which becomes tighter as the rates become large. The expressions

for the rate/distortion region for high-resolution data rates found in [20] are similar in form

to the Slepian-Wolf region [19], although they include additional terms related to the various

distortions. Also, as in the Slepian-Wolf scenario, an important feature of the rate-distortion

region in [20] is that no communication is allowed among the nodes for performing the data

coding, although, of course, in our data gathering problem, communication is needed and used

only to transport the coded data from nodes to the sink. As a result of this, the problems of

transmission structure optimization, rate and distortion allocation separate, as we will see in

detail in Section III.

Assume a given node placement such as the one illustrated in Fig. 1. Denote Ri and Di,

i = 1 . . . N , the allocated rate and distortion at node i. The most general form of our optimization

problem is given as follows:
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{R∗
i , D

∗
i , ST ∗}N

i=1 = arg min
{Ri,Di,ST}N

i=1

N
∑

i=1

ciRi (1)

under the constraints
∑

i∈X

Ri ≥ h(X|V \X ) − log
(

(2πe)|X |Πi∈XDi

)

,∀X ⊂ V (2)

N
∑

i=1

Di ≤ D (3)

Di ≤ Dmax
i , i = 1 . . . N. (4)

where ST is the spanning tree to be found, which defines the transmission structure; ci, i =

1 . . . N are the total weights of the path from node i to the sink on the spanning tree ST , thus

ci =
∑

e∈Ei
wκ

e , where e ∈ Ei, and Ei is the set of edges linking node i to the sink S on ST ,

and we is the Euclidean distance of edge e; h(·) denotes the differential entropy. The constraints

given by (2) express the rate-distortion region constraints given in [20], namely that the sum of

rates for any given subset of nodes has to be larger than the entropy of the random variables

measured at those nodes, conditioned on the random variables measured at all other nodes. In

constraint (3), D is the maximum allowed total distortion and in (4), Dmax
i , i = 1 . . . N are the

maximum individual constraints.

The optimization problem (1) assumes a fixed placement of nodes. However, in practice,

notice that a well chosen placement of nodes (namely, allowing adjustable values of ci, under

the constraint that the desired measured field is fully covered by the nodes) can drastically

increase the total efficiency of the network, as shown in [13]. In the general two-dimensional

setting, the problem (1) is hard to formalize and solve when the node placement is introduced as

a variable in the optimization, since a proper constraint set for the node placements, that preserve

coverage, needs to be defined. Thus, in Section III, where we study the general optimization

for a two-dimensional network, we will consider that the node placement is fixed. However, in

Section IV, we will particularize the optimization (1) for the one-dimensional case, for which

we solve completely the placement problem too. Namely, we provide optimal node placements

for (a) minimization of the total power consumed by the network, and (b) maximization of the

lifetime of the network.



8

B. Example: Correlated Gaussian Random Field

For the sake of clarity, in our numerical simulations we assume a jointly Gaussian model for

the spatial data X measured at nodes, with an N -dimensional multivariate normal distribution

X ∼ NN(µ,K):

f(X) =
1√

2π det(K)1/2
e−( 1

2
(X−µ)T

K
−1(X−µ))

where K is the covariance matrix of X, and µ the mean vector. The diagonal elements of K

are the variances Kii = σ2
i . The rest of Kij depend on the distance between the corresponding

nodes (e.g. Kij = σiiσjj exp(−ad
β
i,j) or Kij =

σiiσjj

1+adβ , with a > 0 and β ∈ {1, 2}), where di,j

is the distance between nodes i and j [7], [10]. Without loss of generality, we will restrict our

analysis to unit variance σii = 1, i = 1 . . . N and zero-mean µ = 0 processes: X ∼ NN(0,K).

Notice that although the numerical evaluations will be performed using the Gaussian random

field model, our results are valid for any spatially correlated random processes, whose correlation

decreases with the distance.

III. OPTIMIZATION

A. The Optimal Communication Tree Structure is SPT

Constraints (2) imply that nodes can code (asymptotically at high resolution) with any rate

that obeys the rate-distortion region without explicitly communicating data with each other.

As a consequence of the fact that it is possible to perform joint source coding without nodes

communicating among them, we can state the following Proposition:

Proposition 1 – Separation of the joint optimization of source coding and transmission struc-

ture:

The overall joint optimization (1) can be achieved by first optimizing the transmission structure

with respect to only the path weights ci, and then optimizing the distortion and rate allocation

under the remaining constraints, for the given transmission structure.

Proof: The joint cost function we consider is separable as the product of a function that

depends only on the rate and another function that depends only on the link weights of the

transmission structure. Once the rate allocation is fixed, the best way (least cost) to transport

any amount of data from a given node i to the sink S does not depend on the value of the rate
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Ri. Since this holds for any rate allocation, it is also true for the minimizing rate allocation and

the result follows.

Proposition 1 implies that the optimal transmission structure that optimizes (1) is the shortest

path tree: ST ∗=SPT. Denote by c∗i the total weight of the path from node i to the sink S on

the SPT. Suppose without loss of generality that nodes are ordered in a list with increasing

values of the weights corresponding to the shortest paths from each node to the sink, that is,

c∗1 ≤ c∗2 ≤ · · · ≤ c∗N . Then, by using Proposition 1, the optimization (1) becomes:

{R∗
i , D

∗
i }N

i=1 = arg min
{Ri,Di}N

i=1

N
∑

i=1

c∗i Ri

under the constraints (5)

(2), (3), (4).

Note that Proposition 1 also implies that our results can be easily extended to the case of

multiple sinks. Namely, if data from a given node is required at more than one sink, then there

are two possible scenarios for the rate allocation at a node: (a) to code its data with a different

rate for each sink, or (b) to code its data with the same rate for all sinks. In the first scenario,

the optimal transmission structure corresponding to each sink will be the shortest path from the

node to that sink, and there will be a separate optimal rate-distortion allocation solution across

the network, for each sink. In the second scenario, the shortest path from a node to the sink

will be replaced by the weight of the minimal Steiner tree2 spanning the node and the sinks

that require data from that node. All the results of this paper naturally generalize to the case of

multiple sinks by replacing the SPT with a superpositions of Steiner trees corresponding to the

optimal transmission structure of each node; this will also determine the corresponding optimal

weights. Therefore, we will restrict our analysis to the case of a single sink.

B. Optimal Rate Allocation

First, we show that, regardless of constraints (3), (4), the optimal rate allocation has to obey

only constraints (2), that is, the rate allocations do not depend on either the upper bounds on

2The Steiner problem is a computationally difficult approximation problem, however good approximation algorithms are known

to exist [1].
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the total distortion or on the individual distortions. Moreover, for any set of distortion values

{Di}N
i=1, the rate allocation is given by:

Theorem 1 Optimal rate allocation:

R∗
1 = h(X1) − log 2πeD1

R∗
2 = h(X2|X1) − log 2πeD2

. . . (6)

R∗
N = h(XN |XN−1, . . . , X1) − log 2πeDN .

Proof: First, we prove that (6) is a feasible solution for (5). Consider any constraint from

(2), for some subset X ⊂ V . Denote by M = |X | the number of elements in X . Order the

indices of Xi ∈ X as i1, i2, i3, . . . iM , with i1 indexing the closest node and iM the furthest node

from the sink on the SPT .

If we rewrite the left-hand-side of (2) in terms of the solutions (6) that we provide in the

statement of the theorem, we have:
∑

i∈X

Ri = h(XiM |XiM−1, . . . , X1) − log 2πeDiM + (7)

h(XiM−1
|XiM−1−1, . . . , X1) − log 2πeDiM−1

+

· · · + h(Xi1 |Xi1−1, . . . , X1) − log(2πe)Di1 .

Expanding the right-hand-side terms with the chain law for conditional entropies, we obtain:

h(X|XC) = h(XiM |XC ∪ {X − {XiM}}) + h(XiM−1
|XC ∪ {X − {XiM , XiM−1

}}) +

· · · + h(Xi1 |XC ∪ {X − {XiM , . . . , Xi1}} − log(2πe)|X |Di1Di2 . . . DiM (8)

= h(XiM |V − {XiM}) − log 2πeDiM +

h(XiM−1
|V − {XiM , XiM−1

}) − log 2πeDiM−1
+

· · · + h(Xi1 |V − {XiM , XiM−1
, . . . , Xi1}) − log 2πeDi1 .

Consider the terms on the right-hand-side of (7) and (8). For any ik ∈ X , the term correspond-

ing to Xik in (8) is at most equal to its counterpart in (7), because the set of nodes on which

the entropy conditioning is done for each term in (7) is a subset of its counterpart in (8). Since
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the choice of X was arbitrary, then any constraint in (2) is satisfied by the assignment (6). Note

also that the rate allocation in (6) satisfies with equality the constraint on the total sum of rates:
∑

i∈V

Ri ≥ h(X1, . . . , XN ) − log(2πe)NΠN
i=1Di. (9)

We prove now by induction that the assignment in (6) makes the expression to be minimized

in (5) smaller than any other valid assignment. Note first that we cannot allocate to XN less than

h(XN |XN−1, XN−2, . . . , X1)−log 2πeDN bits, due to the particular constraint in (2) correspond-

ing to X = {XN}. Assume now that a rate allocation solution with h(XN |XN−1, XN−2, . . . , X1)−
log 2πeDN bits to XN is not optimal, and XN is assigned h(XN |XN−1, . . . , X1)− log 2πeDN +b

bits. Due to (9), at most b bits in total can be extracted from the rates assigned to some of the other

nodes. But since c∗N is the largest coefficient in the optimization problem (5), it is straightforward

to see that any such change in rate allocation increases the cost function in (5). Thus assigning

RN = h(XN |XN−1, . . . , X1) − log 2πeDN bits to XN is optimal.

Consider now the rate assigned to XN−1. From the rate constraint corresponding to X =

{XN−1, XN}, it follows that:

RN + RN−1 ≥ h(XN , XN−1|XN−2, . . . , X1) − log(2πe)2DNDN−1

= h(XN |XN−1, XN−2, . . . , X1) − log 2πeDN +

h(XN−1|XN−2, . . . , X1) − log 2πeDN−1.

Since for optimality of the solution RN must be given by RN = h(XN |XN−1, XN−2, . . . , X1)−
log 2πeDN , thus RN−1 ≥ h(XN−1|XN−2, . . . , X1)− log 2πeDN−1. Following a similar argument

as for XN , the optimal solution allocates RN−1 = h(XN−1|XN−2, . . . , X1)− log 2πeDN−1. The

rest of the proof follows similarly by considering successively the constraints corresponding to

subsets X = {Xi, Xi+1, . . . , XN}, with i = N − 2, N − 3, . . . 1.

C. Total Distortion Constraint

In this section, we consider optimization of (1) for the case where we assume that the

constraints given by (4) are not active. By Theorem 1, if the positions of the nodes are fixed,

{R∗
i }N

i=1 only depends on {Di}N
i=1. Therefore, at this point, we can insert in (5) the values for

{R∗
i }N

i=1 given by Theorem 1, thus obtaining an optimization problem having as argument the

set of distortions {Di}N
i=1 only, that is:
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{D∗
i }N

i=1 = arg min
{Di}N

i=1

N
∑

i=1

c∗i · (h(Xi|Xi−1, . . . , X1) − log 2πeDi)

under the constraint (10)
N
∑

i=1

Di ≤ D.

Note that the differential entropy terms in (10) do not depend on the distortions Di. Thus,

(10) can be equivalently written as:

{D∗
i }N

i=1 = arg max
{Di}N

i=1

N
∑

i=1

c∗i log 2πeDi

under the constraint (11)
N
∑

i=1

Di ≤ D.

Denote
∑N

i=1 c∗i = C. The solution of the optimization problem (11) is easily obtained, using

Lagrange multipliers, giving a linear distribution of distortions:

D∗
i = D · c∗i

C
, i = 1 . . . N. (12)

By combining (6) and (12), we obtain that the rate-distortion allocation at nodes is given by:

R∗
i = h(Xi|Xi−1, . . . , X1) − log

(

2πeDc∗i
C

)

, i = 1 . . . N. (13)

Note that for correlation functions that depend only on the distance among nodes, as we con-

sider in this paper, and for an uniform placement of nodes, the differential entropy monotonically

decreases as the number of nodes on which conditioning is done increases. Also, by definition,

the sequence {c∗i }N
i=1 is monotonically increasing with i. As a result, the rate allocation Ri in

(13) is a function that monotonically decreases with the node index i.

Further, (13) essentially depends only on the path weights ordering of the nodes on the SPT ,

given by {c∗i }N
i=1. For example, in the case of correlated Gaussian random fields, (13) can be

written as:

R∗
i = log

det(K(1, . . . i))

det(K(1, . . . , i − 1))

C

c∗i · D
, i = 1 . . . N, (14)

where K(1, . . . , i) is the correlation matrix corresponding to nodes 1, . . . , i.

In Fig. 2, we illustrate the distortion and rate allocations provided by (14) for the one-

dimensional grid, shown in Fig. 3, with uniform inter-node distances, measuring a correlated
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Fig. 2. One-dimensional grid with constraint on the total distortion. Nodes are labelled with increasing indexes, with node 1

closest to the sink and node N farthest. The correlation model is exp(−adi,j).
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Fig. 3. One-dimensional grid network.

Gaussian random field with β = 1 (which corresponds to sampling a continuous Gauss-Markov

process). The same analysis holds for arbitrary two-dimensional networks. For clarity in our

numerical experiments, we keep the values of the model parameters constant along this paper:

Gaussian random processes with α = 10−3, β = 1, and N = 20, D = 10−3, Dmax
i = 0.7 · 10−3,

κ = 2.

These results are intuitively expected: at the extremities of the network (where the cost c∗i

of the path from node i to the sink is large), small rates are allocated, meaning large allocated

distortions and that conditioning is done on many nodes that are closer to the sink on the SPT;

on the contrary, large rates, meaning small distortions and that conditioning is done on fewer
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exp(−ad2

i,j).

nodes closer to the sink on the SPT, are allocated at nodes near the sink (where the cost c∗i is

small). For the nodes in-between, there is a monotonically increasing set of rates as we move

towards the sink.

Note that for β = 1, the resulting continuous process is Gauss-Markov, which means that

if the nodes are equally-spaced then the differential entropies are equal in (13), and thus the

decrease in rate in Fig. 2(b) is due only to the increase in allocated distortion.

Similar results are obtained for many other network parameter settings. For instance, for a

process with β = 2, the result is a less abrupt decay of the rate when the node index increases,

as a result of both the smoother decrease of the differential entropy and of the increase in

allocated distortion in (14), with the number of nodes on which conditioning is done (see Fig. 4,

for N = 20, D = 10−3, α = 0.1, κ = 2, β = 2). For the sake of clarity, in the next sections

we only show numerical results for processes with correlation function exp(−a|d|); the curves

corresponding to all our results are similar in shape and behavior for processes with correlation

function exp(−a|d|2) or 1
1+a|d|β

.

D. Individual Distortion Constraints

Let us now additionally introduce the individual constraints (4). For the sake of clarity,

assume first that all individual constraints are equal, namely Dmax
i = T . Using again Lagrange
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optimization, it is simple to show that the solution in this case can be obtained as follows:

• Consider the solution for the distortion allocation given by (12), without introducing indi-

vidual distortion constraints.

• Let m + 1 be the smallest node index for which Di ≥ T, i = m + 1 . . . N . Allocate

D∗
i = T, i = m + 1, . . . , N , that is, we make the last N − m constraints alive. To find the

rest of the distortion values Di, i = 1, . . . ,m, we solve:

{D∗
i }m

i=1 = arg max
{Di}m

i=1

m
∑

i=1

c∗i log 2πeDi

under the constraint (15)
m
∑

i=1

Di ≤ D − (N − m)T.

which is exactly the same type of problem as in (11). Thus, the complete solution is readily

given by:

Di = T, i = m + 1 . . . N

Di = c∗i
D − (N − m)T

Cm

where Cm =
∑m

i=1 c∗i . Fig. 5 shows the distortion and rate allocations that are obtained in

this case.

In Fig. 5(b), we see that when individual distortions are considered, the rates allocated at the

nodes of the extremity of the network are equalized (as compared to Fig. 2(b)). As a result of

this rate load added to nodes at the extremity of the network, the rates at the nodes closer to

the sink can be correspondingly decreased.

In the case where the individual constraints are different, a similar procedure can be used,

that is, a subset of the constraints will be made active and then again a problem similar to (11)

can be easily solved.

IV. PLACEMENT OPTIMIZATION FOR THE ONE-DIMENSIONAL NETWORK

A. Total Power Minimization

In some scenarios, the positions of the nodes are not fixed in advance, but it is possible to

place the nodes optimally so as to minimize various resources [13]. Since the study in this paper

is concerned with power efficient scenarios, one possible task to be achieved when the node
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(a) Distortion allocation as function of node index.
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(b) Rate allocation as a function of node index.

Fig. 5. One-dimensional grid with constraints on the total and individual distortions. Nodes are labelled with increasing indexes,

with node 1 closest to the sink and node N farthest.

placement can be chosen is the total power efficiency. Namely, we consider the optimization (1)

where the positions of the nodes are additional variables, and the optimization is done additionally

over the weights of the paths from the nodes to the sink:

{R∗
i , D

∗
i , c

∗
i }N

i=1 = arg min
{Ri,Di,ci}N

i=1

N
∑

i=1

ciRi (16)

under the constraints (2), (3), (4),

with additional constraints on max{ci}N
i=1 (coverage constraint) and on max{ci−ci−1}N

i=2 (inter-

node space constraint). The coverage constraint imposes that the entire area is covered. The

inter-node space constraint ensures that any given point in the measured area is close enough to

a sensor node, such that the data corresponding to that point can be reconstructed with a certain

minimal accuracy at the sink, by approximating it with the value measured by the closest sensor.

For the sake of simplicity, in this section, we consider a one-dimensional scenario (see Fig.

3). A similar analysis can be performed in the two-dimensional case, since the rate and distortion

allocations only depend on the ordering of the nodes on the computed SPT ; however, in the

two-dimensional case, an additional model describing how nodes can be moved from their

initial positions is required (e.g. on two-dimensional grids), which makes the problem more

complicated. One possible solution is to use a radial structure for the node placement, as in [13]
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Fig. 6. A wheel two-dimensional placement, with the sink in the middle.

(see Fig. 6), where the placement of nodes for each spoke is as in the optimal one-dimensional

placement presented in this section. A complete study of the optimal number of spokes and

number of nodes per spoke for a given N is beyond the scope of this paper.

Finding analytically the solution for (16) by partial derivatives is complicated, since the expres-

sions for the rates {R∗
i }N

i=1 obtained in (13) depend on both {D∗
i }N

i=1 and {h(Xi|Xi−1, . . . , X1)}N
i=1;

moreover, these sets of values depend themselves on the values of {ci}N
i=1. Instead, we use the

following iterative algorithm for optimization:

Algorithm 1: Optimal placement (see Fig. 7).

• Step 1: Initially, the values of ci are chosen such that the nodes are equally spaced (as in

Fig. 3)3.

• Step 2: until convergence do:

– (a) Solve (16) with parameters {ci}N
i=1 to obtain {Ri}N

i=1 as in (13).

– (b) Solve (16) with parameters {Ri}N
i=1 to obtain {ci}N

i=1.

3Note that the placement uniquely determines the ordering of nodes. Namely, once an order is set among the nodes, the same

order will hold along the optimization, while only the distances between the nodes will change.
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Fig. 7. Optimized placement for the one-dimensional network.

The convergence of the algorithm is ensured by the convexity of the cost function and the

constraint sets [4]. Moreover, since there is only one local minimum, the convergence of the

algorithm to the global minimum is ensured.

The optimization in Step 2(a) of the Algorithm has been presented in Section III. We describe

now the optimization in Step 2(b). For the sake of clarity, let us first ignore the inter-node

constraints in (16). Denote wκ
i = ci − ci−1, i = 1 . . . N , where wi is the Euclidean distance

between node i and node i − 1, and κ is the power coefficient of the distance4. Thus, ci =
∑i

j=1 w2
i . The values of R∗

i are computed as in (13), using as initialization wi = L
N

, corresponding

to equally spaced nodes. Notice that the expression of the solution for R∗
i is independent of the

actual value of the placement. Therefore, we can now rewrite the optimization (16) including

the unknowns {wi}N
i=1 as follows:

{w∗
i }N

i=1 = arg min
{wi}N

i=1

N
∑

i=1

(
N
∑

j=i

R∗
j )w

κ
i

under the constraint: (17)
N
∑

i=1

wi = L.

The solution of (17) is easily obtained using Lagrange multipliers. For κ = 2, it is possible

to obtain the closed-form solution:

w∗
i =

L

∑N
j=i R

∗
j

(

∑N
l=1

1
∑N

j=l R∗

j

) , i = 1 . . . N. (18)

4For the sake of the simplicity of analysis, we will use κ = 2 in solving the optimization problems, however our results can

be easily extended to arbitrary values of κ; it is hard to obtain closed-form solutions for arbitrary κ > 2.
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(a) Distortion allocation as a function of node index.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

Node index i

R
a
te

 R
i

(b) Rate allocation as a function of node index.

Fig. 8. Optimized placement for the one-dimensional network for the case of minimization of total consumed power.

Note that by placing the nodes as given by (18) the rate allocation changes as a function

of {w∗
i }N

i=1, since both the differential entropies and optimal distortions in (13) depend on the

values of ci. Next, for these values of {c∗i }N
i=1, we optimize over {R∗

i }N
i=1 (Step 2(a) of Algorithm

1). We repeat this iterative procedure until the algorithm converges. The resulting distortion and

rate allocation are shown in Fig. 8.

It is complicated to study in a closed-form the monotonicity of the rate allocation (13)

for a placement which is not uniform, due to the complex interplay between node positions,

distortion allocations and conditional differential entropies. However, our numerical simulations

show monotonicity of the rate allocation in the case of power efficient optimal placement, as

well.

The convergence of Algorithm 1 is ensured by the convexity of the cost function and the

constraint sets. For the instances we used (N = 20, α = 10−3, κ = 2, β = 1, no constraints

on the inter-node distances), the algorithm converges in at most 4 steps. Our numerical results

show that nodes at the extremity of the network are largely spread, and nodes near the sink are

closer to each other (see Fig. 9(b)).

Note that by using a similar technique we can solve the problem that additionally considers the

constraints imposed on the maximum inter-node distances. In the resulting solution, the distances
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(b) Distance from sink as a function of node index.

Fig. 9. Placement optimization for minimizing the total power.

between the nodes would become more even.

B. Network Lifetime Maximization

The plot in Fig. 9 shows the power consumption at each node and the distances from the nodes

to the sink for the scenario in Section IV-A, as a result of solving problem (16). Moreover, in

Fig. 10 we plot the variance of power consumption per node as the size of network increases. We

see that the decrease in variance slows down as the size of the network increases.

The power consumption of a node is a quantity inversely proportional to the lifetime of a

node. Sometimes, in practice, a different target of interest is to maximize the lifetime of the

network. For instance, in Fig. 9, the last node N will be the first to die. Let us now separately

consider another set of constraints related to the lifetime of the network, namely we impose

that all nodes consume the same amount of power. This new set of constraints are aimed at

maintaining a large number of nodes alive. Namely, our problem now amounts to solving the
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Fig. 10. Variance of the power consumption with the increase of the network size.

following set of equations:
N
∑

i=1

wi = L (19)

(

N
∑

j=i

R∗
j

)

w2
i =

(

N
∑

j=k

R∗
j

)

w2
k, i, k = 1 . . . N

N
∑

i=1

Di = D.

The solution is easily found to be:

w∗
i =

L
√

∑N
j=i R

∗
j

(

∑N
l=1

√

1
∑N

j=l R∗

j

) . (20)

A similar result can be easily obtained for an arbitrary value of the distance power coefficient

κ, namely the square roots in (20) are replaced by the κth roots.

Note that {R∗
i }N

i=1 depend on {w∗
i }N

i=1 as in (13), thus we can implement a similar iterative

procedure to find the optimal weights {w∗
i }N

i=1:

Algorithm 2: Lifetime optimization.

• until convergence do:



22

0 5 10 15 20
0.07

0.072

0.074

0.076

0.078

0.08

Node index i

R
i ⋅ 

w
i2

(a) Power consumption as a function of node index.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Node index

D
is

ta
n
ce

 f
ro

m
 s

in
k

(b) Distance from sink as a function of node index.

Fig. 11. Placement for lifetime optimization.

– (a) Given {wi}N
i=1, express {Ri}N

i=1 as (13).

– (b) Solve (19) with parameters {Ri}N
i=1 to obtain {wi}N

i=1 as (20).

Fig. 11 shows the distance from sink, and power consumption at each node, when the

optimization of node placement is done as in (20).

For the same instance, the total power consumed with the optimized placement of Section

IV-A is 1.17 [bit · m2], whereas with the scenario in this section, the total power is 1.55 [bit

· m2]. Note that a placement that optimizes both the total power consumption of the network

while maintaining the same individual consumption levels at nodes should be a tradeoff of the

results of the two optimization problems.

However, it is complicated to provide an exact optimal solution for the node placement that

optimizes one of the target metrics under constraints on the other target metric. This requires

starting from the node placement solution that optimizes one of the metrics, and moving each

and every node until the constraint on the other quantity is satisfied. This optimization is clearly

not scalable, thus, we provide a simple sub-optimal solution that still provides a good behavior,

in terms of trading-off nicely both costs.

Namely, we propose a solution for the node placement that is obtained by computing a

weighted combination of the two separate placement solutions. Namely, if we denote the place-
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Fig. 12. Normalized total power and power variance for the tradeoff placement, as a function of the weighting factor γ.

ment solution for total power minimization in (17) by {w ′
i}N

i=1, and the placement solution for

network lifetime maximization in (20) by {w′′
i }N

i=1, then our proposed tradeoff solution is:

w∗
i = γ · w′′

i + (1 − γ) · w′
i, i = 1 . . . N. (21)

In Fig. 12, we plot the normalized values for the total power and respectively power variance,

for γ ∈ [0, 1], when node positioning is done as in (21). Note that, as expected, the choice of γ

provides a tradeoff between having a small power consumption for the network versus equalizing

the individual power at nodes.

V. CONCLUSIONS

We considered the problem of power efficient data gathering in sensor networks, with high-

resolution coding, under distortion constraints. We found the rate and distortion allocations in a

closed-form, and illustrated our results with numerical experiments on Gaussian correlated ran-

dom fields. We also studied the problem of optimal placement for two power efficiency targets of

interests, namely total power and network lifetime, and compared the tradeoffs involved. Finally,



24

we proposed a node placement solution that provides a tradeoff for the optimization of the two

metrics.
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