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Abstract

We study the problem of A/D conversion and error-rate depeod of a class of non-bandlimited
signals which have a finite rate of innovation, particulady continuous periodic stream of Diracs,
characterized by a finite set of time positions and weighteviBus research has only considered
sampling of this type of signals, ignoring the presence afigjzation, which is necessary for any practical
application. We first define the concept of consistent retoaton for these signals and introduce the
operations of both: a) oversampling in frequency, deteeaiiby the bandwidth of the lowpass filter
used in the signal acquisition, and b) oversampling in tiotermined by the number of samples in
time taken from the filtered signal. Accuracy in a consistegbnstruction is achieved by enforcing the
reconstructed signal to satisfy three sets of constradt@Bned by: the low-pass filtering operation, the
guantization operation itself and the signal space of cootis periodic streams of Diracs. We provide
two schemes to reconstruct the signal. For the first one, weepthat the mean squared error (MSE) of
the time positions is of the order ﬂ(l/RfR?c), where R, and R; are the oversampling ratios in time
and in frequency, respectively. For the second schemehwias a higher complexity, it is experimentally
observed that the MSE of the time positions is of the ord@(df/Rfsz). Our experimental results show
a clear advantage of consistent reconstruction over noeigtent reconstruction. Regarding the rate, we

consider a threshold crossing based scheme where, as dpjpopeevious research, both oversampling
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in time and also in frequency influence the coding rate. Wepamthe error-rate dependence behavior
that is obtained from both increasing the oversamplingrimetiand in frequency, on the one hand, and

on the other hand, from decreasing the quantization stepsiz

Index Terms

Finite rate of innovation, quantization, oversamplingnsistency, projection, convexity, threshold

crossing encoding.

I. INTRODUCTION

Recent results in sampling theory [1] have shown that it ssfiile to develop exact sampling schemes
for a certain set of non-bandlimited signals, charactdrlaghaving a finite number of degrees of freedom
per unit time, which is called finite rate of innovation. Tagia finite number of uniform samples, obtained
from an appropriate sampling kernel, we are able to achieviegt reconstruction. Some of these signals
with finite rate of innovation, such as streams of Diracs, Hawmd several applications in CDMA [2],
UWB [3] and sensor field sampling [4]. For example, resultshdan be applied to the problem of
multipath delay estimation in wideband channels. On thermltand, in the context of sensor networks
measuring physical phenomena, such as temperature, leadkburces can be well modeled by Diracs
and the sampling kernel in this case is given by the Greemstion of the heat diffusion equation [5].
In [1], [2], [3], it was assumed that we have no quantizatidntt®e acquired samples. However, in
any practical application quantization is required. Arevarsible loss of information, introduced by
guantization makes perfect reconstruction no longer ptessMotivated by the need of quantization, we
investigate Analog-to-Digital (A/D) conversion and theaefrate dependence of non-bandlimited signals
with finite rate of innovation, which has not been consideregrievious research.

In this paper, we focus on the A/D conversion of a particul@sg of signals with finite rate of
innovation, namely, continuous periodic streamofDiracs, characterized by a set of time positions
{tk}fgol and weights{ck}f:*ol. We study the reconstruction quality of time positions urttie presence
of quantization. There are two reasons for this: 1) it can mvshthat the error in weights depends on
the error in time positions, and 2) in many applications,hsas UWB and sensor field sampling, the
most important information is contained in the positiongafses.

High reconstruction accuracy in time positions can be aghidy introducing two types of oversam-
pling: 1) oversampling in frequency, determined by the badth extension of the low-pass sampling

kernel, and 2) oversampling in time, determined by the nundfesamples taken from the acquired
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filtered signal. Introducing the oversampling is equivalemtintroducing a redundancy in the system,
which usually reduces the sensitivity to degradationshd@ugh this idea is very intuitive, the question of
fully exploiting that redundancy is not always simple. Thede already observed in the case of A/D
conversion of bandlimited signals, where the simple linesionstruction is not optimal, in the sense
that the outputs obtained from quantizing the original drereconstructed signal are not necessarily the
same, implying a larger reconstruction error on average. Kelyadea to achieve high accuracy is to have
a reconstruction that is consistent with all the availablevidedge about the signal and the acquisition
process. Thus, in our work, we use the concept of consistep@nforcing the reconstructed signal to
satisfy three sets of constraints which are related to: d simpling kernel, 2) the quantization operation
itself and 3) the space of continuous periodic streamg{oDiracs. A signal reconstruction satisfying
the three sets is said to providrongconsistency while if it satisfies only the first two sets is sad t
provide Weakconsistency.

The concept of consistent reconstruction and the correspgndconstruction accuracy for the case
of bandlimited signals has been considered in [6], [7], B)wever, there are three essential differences
with our work: a) we consider the reconstruction accuraey ihirelated to the non-bandlimited signal; b)
we exploit the knowledge about the structure of the non-lixaitéd signal; ¢) we introduce oversampling
in frequency in addition to oversampling in time.

In this work, reconstruction algorithms for botWeak and Strong consistency are proposed. As a
guantitative characterization of the reconstruction iyalve consider the mean squared error (MSE) of
the time positions and its dependence on the oversamplitigéand in frequency. We focus on the MSE
related to time positions because, as we show in this papeMEE related to the weights of the Diracs
depends fundamentally on the MSE of time positions. For thedlgorithm, we show both theoretically
and experimentally that the MSE performance for the timetjpors decreases &3(1 /RfRfc), whereR;
and Ry are the oversampling ratios in time and frequency, resgalgtiFor the second algorithm, which
achievesStrongconsistency but has a higher complexity, we obtain expetially an MSE performance
of the order ofO(l/R%R";) [9]. Both results show a clear outperformance of consistecdnstructions
over non-consistent reconstructions.

We also apply encoding schemes and study the scaling lawsdhabe achieved for the bit rate and
the error-rate dependence, depending on the concreteiagcxheme and the reconstruction algorithm.
Regarding the rate, we consider two encoding schemes: shthicecrossing (TC) based scheme, similar
to the one proposed in [10] and a PCM encoding scheme, and certigaerror-rate dependence that is

obtained from both increasing the oversamplings in time ianfdequency, on the one hand, and on the
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other hand, from decreasing the quantization stepsize. ™ie novel part of the TC encoding analysis,
introduced in our work, is the additional dependence of tleximal number of threshold crossings on
the oversampling in frequency, which comes as a consequ&ncensidering non-bandlimited signals
with finite rate of innovation. Our results show that, using fhC encoding, we can achieve the same
error-rate dependence, for these non-bandlimited sigmitlisfinite rate of innovation, by a) increasing
the oversampling in time and b) decreasing the quantizaiepsize [11]. This is very important from
a practical point of view because the cost of halving the tjmation stepsize is much higher than that
of doubling any of the oversampling ratios (complex and esp& analog circuitry). Moreover, in order
to make the TC encoding scheme work in our case, we can adjest frarameters (the quantization
stepsize and the two oversamplings), as compared to theo€asadlimited signal [10], where only two
parameters are adjusted (the quantization stepsize amaénsampling in time).

Although our theoretical analysis is restricted to pemoslireams of Diracs, the algorithms proposed
in this paper can be also used for reconstructing other ksigwi¢h finite rate of innovation such as finite
streams of Diracs and nonuniform splines.

This paper is organized as follows. Section Il introduces tlasscof signals given by continuous-
time periodic streams of Diracs. Section Il defines the ovaig in time and in frequency. Section
IV introduces the concept diVeakconsistency andtrongconsistency and proposes the corresponding
reconstruction algorithms. In Section V, we prove an uppermblofor the MSE performance achieved
by Weakconsistency and in Section VI, we present the experimengalltefor bothWeakand Strong
consistency. In Section VII and Section VIII, we describe amélgze the threshold crossing based
encoding and address the rate and error-rate dependenceomiare the error-rate dependence as a
function of the both oversamplings and the quantizatiopssze. Finally, in Section IX, we conclude

with a brief summary of our work and directions for future Wor

II. SIGNALS WITH FINITE RATE OF INNOVATION

New results on sampling theory show that certain classesmfandlimited signals, such as periodic
and finite length streams of Diracs, non-uniform splines amdqwise polynomials, can be uniformly
sampled with a finite number of samples, using sinc and Gaussimpling kernels and then perfectly
reconstructed. Intuitively, these classes of signals hegacterized by having a finite number of degrees
of freedom per unit of time, namely, havirafinite rate of innovation

In this work, we consider a periodic stream &f Diracs, that is,z(t) = >, ., cd(t — tg) with

period 7, wheret, g = tx + 7 and ¢y x = ¢, Vk € Z, and §(t) denotes a Dirac delta function.
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Fig. 1. Reconstruction algorithms for a periodic stream of Diracs: (a)owithntroducing quantization; (b) introducing
quantization of the samplag, of signaly(¢). The annihilating filter in (a) corresponds to the equation (3) and the on)in (

corresponds to the equation (4).

This signal has% degrees of freedom per unit of time, since the only knowlethge is required to
determine the signal uniquely is given by thétime positions{t }; ' and the K weights {c;}+ .
This signal can be perfectly reconstructed by first applyingna sampling kernehp(t) = Bsing Bt)
with bandwidth[— B, B], thus obtainingy(t) = z(t) « hp(t), and then taking thév uniform samples
{yn = y(nT) 7]:[:‘01, whereT' = 7/N, Bt = 2M+1 > 2K +1 and the number of samplesié > 2M +1.

A periodic stream ofK’ Diracsx(t) can be represented through its Fourier series, as follows:

K-1

j Zmmt 1 2mmity,

x(t) = D X[m]e!™=",  whereX[m]=—3 e d . )
meZ k=0

After sampling the signal with the sinc sampling kernel, tiiform samples of;(¢) are given by:

M
Yn = Z X[m}e]’h;m where n=0,...,N —1. 2)
m=—M

Taking at leas2 K +1 samples[y,, } 22!, we can directly from (2) compute thd( 41 Fourier coefficients
X [m)] of the signake(t). Fourier coefficientsY [m] coincides with discrete-time Fourier sefi¢gDTFS) of

yn, thatisX [m] = Y[m]. Having2 K +1 Fourier coefficientsX [m], we can reconstruct first time positions

The definition of DTFS we adopt here is:

N
DTSR{yn} ) = {Y[m]} where Y[m] = %Zyne*ﬂ"mm, for mez.
n=0
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Fig. 2. (a) Original signak(t) given by a periodic stream of 3 Diracs,= 10 andt € [0, 7], cx € [—1,1]; (b) Signaly(t)

obtained by filteringz(¢) with a sinc sampling kernel; (c) Samplgs = y(nT); (d) Quantized sampleQ(y,); (e) Fourier
coefficients from the stream &f Diracsz(t); (f) Fourier coefficients from the signal(t) that are truncated Fourier coefficients
from z(¢t) and bandlimited to it M + 1 central components; (gy-periodized Fourier coefficients corresponding to DTFS from
yn; (h) DTFS with small error deviations that are added to the Fourier caemgs both in the lowpass region and highpass

region, thus making the perfect reconstruction no longer possible.

and then weights. Thus, it is clear that lowpass version ofotfiginal signalx(t), that we cally(t), is

sufficient for the signal reconstruction. Analyzing the Reucomponents in (1), it can be seen that each

exponential term{u;, = e‘j%}f:‘ol can be annihilated by a first order FIR annihilated filtgr(z) =

.27ty

(1 — e~3"7*2=1). Extension of the filter order td< results in a filterA(z) = [, —e? 727

that annihilates all Fourier coefficients. In matrix notatithis can be represented as:

X X[~ ... X[-K] % !
e | I N 3)
X)Xt w0 ) e )\

wherea; is thei-th coefficient of the annihilating polynomial. Thus, if we agwen the2K + 1 exact
Fourier coefficients, by setting, = 1, we can find the unigue solution of (3) that gives all the coeffits

of the annihilating filter. The roots of the annihilating filtdx z), {u; = eI T f;ol, reveal theK time
positions{tk}f:‘ol, while the corresponding Weighl{sk}f:‘o1 can be then directly computed from (1)

(see Fig. 1(a) and Fig. 2).

Notice that all previous steps assume no quantization inliardp and hence, no error iy =



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

[0, ..,yn—_1]T, which ensures the existence of the previous exact solutivaur work we study A/D
conversion for these signals and thus we consider the operat quantization performed o (see
Fig. 1(b)). The quantization error in amplitude, causes avarsible loss of information which makes
the exact recovery af(¢) no longer possible (see Fig. 2). In order to overcome thislprmpas the first

step, we are going to introduce the two types of oversampling

[11. OVERSAMPLING IN TIME AND FREQUENCY

We consider two types of oversampling in order to compentgedesrror introduced by quantization.
The first one consists of taking more sampleshan we need, or equivalently taking samplesy(f)
above the Nyquist rate. In that case we have fkiat 2\ + 1. This introduces awversampling in time
which is characterized by oversampling rafip = %ﬂ

Notice that we can also perform an additional type of oveing by extending the bandwidth of the
sampling kernel to be greater than the rate of innovatioreguivalently, making2M +1) > (2K +1).

We denote this type of oversampling as@rersampling in frequencwyith the oversampling ratio given

by Ry = 22%111 As explained in the following section, the oversamplingfriequency will modify the
annihilating filter method illustrated in (3), and the copesding matrix has to be augmented because
we use more Fourier coefficients.

We remark also that the number of samplesvis= (2M +1)R; = (2K + 1)R;R;, which means that
N increases linearly with both types of oversampling. As ghdmw Sections V and VI, by increasing
these two oversamplings, and using proper reconstructitberses, we can substantially increase the

reconstruction accuracy.

IV. CONSISTENTRECONSTRUCTION

In the reconstruction process, we enforce the concepbagistent reconstructiompreviously introduced
in [6] for the case of bandlimited signals. The idea of comsistreconstruction is to exploit all the
knowledge from both the priori properties of the original signal and the information pded by the
guantization process. Thus, the key is to find a reconstruatibich is consistent with all the avail-
able knowledge. Intuitively, a consistent reconstructigh provide, on average, a better reconstruction
accuracy than a non-consistent reconstruction.

We first define all the properties that a reconstruction shoatify in order to be consistent. Each
property defines a set of signals, thus, requiring the satisfa of a certain property is equivalent to

requiring the membership in a certain set of signals. The ttaat all properties are satisfied by the
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Fig. 3. (a) The estimated functigj(¢) is consistent with the original signgl¢) with respect to the quantization bins. (b) If
the estimated functiofy(¢) is not consistent withy(¢), then we project to the border of the corresponding quantization bin.

original signal ensures that the corresponding sets havenammpty intersection. All the constraints,
or equivalently, the sets, are going to be defined as a subk#tge @pace ofV-periodic discrete-time
signals, that we calH.

The first set of constraint§; is related to the quantization operation. The samplesre quantized
by a uniform quantizés that is,ys = Q(y,) = A(|lyn/A] + 1/2) whereA is the quantization stepsize.
Let I, = [Alyn/A], Alyn/A] + A] be the quantization interval to which the samplebelongs. The
sequence y iV:‘Ol gives the information about the intervals in which all thengées lie, namelyy,, € [,,.
The set of these intervals is ai-dimensional cube, nhamely:

Set S; : Giveny andy? = Q(y) = [y, ...,y%_,]7, the setS; = Q'(y9) defines a convex set of
sampled signals such that all of them are quantized to the sprantization bins (see Fig. 3(a)).

The second set of constrain® comes from the fact that the signglt), obtained after filtering:(¢),
is periodic and bandlimited.

Set S, : Set of N-periodic discrete-time signals bandlimited2d/ + 1 non-zero DTFS components.
In addition to the fact that thév-periodic discrete-time signals should ha&f + 1 nonzero DTFS
components we also want to make use of the structure of thelsi¢t), namely, that is a periodic stream

of Diracs. Therefore, we define another set of constraintsolémsfs:

SetS3 : Set of N-periodic discrete-time signals, such that {hé[m]}%:_M DTFS components originate
from a periodic stream of Diracs, that ¥[m] = X[m] = L 37 epe 2mm0/™ m = —M, ..., M,
with tg, ¢, € R, 0 <t < 7, while there are no constraints 8f{m/| for |m| > M.

We can get more insight into the structure of the s&€{sSs and Ss3 if we observe thatS; is an

2Another possibility to define the quantizer is to use the second type of quamkifimed ag/? = Q(y.) = Aly./A|. Any
choice of the quantizer is not going to have any influence on our results
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N-dimensional hypercube in th&¥-dimensional spacé{, Sz is an(2M + 1)-dimensional subspace of
H, and thatSz N S3 is a (2K)-dimensional (nonlinear) surface insid. This dimensional argument
naturally brings the notation of oversampling by space disien ratios:N/(2M +1) and(2M +1)/(2K).
Now, we are going to define projections on the corresponditg se
Projection P; : Given a set of sampleg, y1 = Pi(y) is obtained as:
1) if y, € S1, thenyy , = yn.
2) else,y; , is taken to be equal to the closest border of the quantizatitemval Q' (y:), that is,
Py (yn) = v + sign(y, — y) 2
Projection P, : Given anN-periodic discrete time signal, y2 = P=(y) is obtained by lowpass filtering,
such that the nonzero DTFS components ¥ren] = Y [m] for m = —M, ..., M.
Projection P53 : Given anN-periodic discrete time signaj, the projectionPs provides a new signal
ys = Ps(y), with the set of in-band DTFYYs[m|}M_ , that areYslm] = LS K1 emi™7",
m = —M,...,M, with t;,¢;, € R, 0 < t, < 7 while the out-band DTFS remain the same, i.e.
Y[m] = Y3[m] for |m| > M.

Projection P involves augmenting the matrix in (3) usi?g/ + 1 Fourier components. Notice that,
since there is quantization taking place, we do not havethetd-ourier coefficients, but only estimates
Ya[m] = X[m], and therefore (3) does not have an exact solution. Thetefiorerder to get better
estimates of the time positions, we use a generalized fori8)pfwith an augmented equation system
using the2M + 1 Fourier component estimates and increasing the order ofmimhilating filter, as

follows:

Val0]  Yo[=1] ... Ya[-I] ao 0
Y, Y, ... Y5|—L a

A e ||| “
Yo[M] Yo[M —1] ... YoM — L] ary, 0

where the left-hand-side matrix has a si{dd + 1) x (L+1) with K < L < M andL is the filter order.
In (4), we indicate with the symbat that the system of equation is not exactly satisfied. Notiae he
how the oversampling in frequency is introduced by extegdie number of rows fronk +1 to M + 1

and at the same time, making the order of the filter larger tiathat is. > K. By takingag = 1, the
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system (4) becomes equivalent to a high-order Yule-Walk&YW) system [12]:

Yo[-1]  Ya[-2] ... Ya[-L] a Ya[0]
Ya[0] Yo[-1] ... Ya[—(L—1)] | Yg:[l} ©
VoM —1] Yo[M =2 ... YoM —I] ar Ya[M]
or in matrix notation,
Ha~ —h (6)
whereh = [ 30] Y3[l] ...Ya[M] ] . a=[a; ... ay ]" and
Vol-1] Va2 Yol-I]
. Y5[0] Yo[—1] Yo[—=(L —1)]
VoM —1] Yo[M—2] ... Yo[M—I]

Since bothH andh are distorted from the original values, the use of Total L&agtare (TLS) method,
which allows for the fact that botlil and~ may have some error, instead of Least Square (LS) method
is more appropriate [13]. Simulation results in [14] showttla general, for solving HOYW equations
the TLS method achieves the better accuracy than the LS methdsl.isTbarticularly clear in cases
where the zeros of the annihilating filter approach the umilei[13]. As pointed out before, the order
L of the annihilating filter may lie betweeR and M. So, there will beK “correct” or signal-related
roots andL — K extraneous roots, created artificially by the method. Theeesaveral ways to decide
the positions of the "correct” roots. We propose two methods

1) Choose theK roots that are closest to the unit circle. This is the commdutism used for the

retrieval of sinusoids in noise [15], which can be seen asa pioblem in the frequency domain.

2) Perform two steps:

a) Compute roots without increasing the filter order.
b) Compute roots increasing the filter order and choose thts that are the closest to the roots
in a).

Notice that by increasing/ and L, extraneous roots can be very close to the unit circle andirte
method might fail. Since the second method does not have tbidgm and we are primarily interested
in the reconstruction accuracy for high oversamplings, s thhe second method in this work.

If there was no quantization and the estimaféd(m)}}_ , were the exact ones, then the chosen

roots would all lie on the unit circle. However, because @& fuantization error, an additional step is
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@) (b) (©)
Fig. 4. (a) Non-consistent reconstruction algorithm consists of applgiogections P, P> and Ps once; (b) TheWeak
consistency algorithm consists of first iterating projectidhsand P2, and then once applying projectidfs; (c) The Strong

consistency algorithm consists of iterating projectidhs P> and Ps.

required after the TLS projection, which consist of projegtihe obtained roots to the unit circle, in

27

- From i, we can directly compute the time positions

order to get unit-norm root estimatég = e~
{fk}szo. Then, using (1), we can estimate the weigfts}’ . The whole process including the TLS
projection, extracting the "correct” roots and computihg time positions and weights, can be seen as
the third projectionPs.

Notice that although we are primarily interested in the rstauctionz(¢), we can consider reconstruc-
tion y3 € S2 N S3 since there is one-to-one correspondence between the a#tpafssible inputse(t)
and a subset of{, which is exactlySs N S3. After defining the sets of constraints and the corresponding
projections we are ready to formally define the non-consisteconstruction and to introduce the two

levels of consistency.
Definition 1: Reconstructionys = Ps(P2(y?)) is called a non-consistent reconstruction.

What makes this reconstruction non-consistent is the fetdfter re-sampling and re-quantizing, the
signal P>(y?) may not always lie in the same quantization bins as the aigjn or equivalently, it is
possible thatP» (y?) ¢ S1NS2. Notice that, quantization applied to a signal that beldng$; N.S2 makes
it leave S1 N S2, although it still remains in the global spagé Certain improvement can be achieved
forcing some of the previously defined constraints. Therefare defineWeakconsistent reconstruction,
as follows:

Definition 2: Reconstructiorys € Ps(S1 N S2) is calledWeakconsistent reconstruction.

To impose théWeak consistent reconstruction, notice that séts and S, are convex sets ané;
and P, are convex projections. Therefore, starting from the quadtisampleg? obtained from the
original signal, and iterating only the projectio#y and P, we will converge toys € S1 N Ss. The
convergence is ensured by the theorem of alternating giojecon convex sets (POCS) [15]. Moreover,
in practice, numerically speaking, \Weak consistent reconstruction can be approached within a finite
number of iterations. Once we have converged to the reaa&iny, € S1NS2, we apply the additional
projection Ps, over the setSg to obtainys € P3(S1 N S2) C S2N.S3. The Weakconsistency algorithm
is illustrated in Fig. 4(b).
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Notice that, as opposed to the sétsand.S3, which do not contain any information about the structure
of the signalz(t), the setSs use the knowledge about the Fourier coefficients originatewh fa stream
of Diracs. Following the idea dfVeakconsistent reconstruction we can extend the concept oistensy
to not only the two set$; and S> but alsoSs. These three sets are used to enforce a stronger sense of
consistency, that is calleStrongconsistency and is defined as follows:

Definition 3: Reconstructionys € S1 NS> N Sy is calledStrongconsistent reconstruction.

The concept of thé&trongconsistency adds a third property in addition to the previto properties
defined by the concept dveakconsistency. Similarly to th&Veakconsistency algorithm we can define
a Strongconsistency algorithm, where we generalize the idea ofretang projections to more than two
projections. We form a composite projection by the seqgaémipplication of P;, P, and P3 and the
goal is to converge to a point in the intersection Setn Sz N Ss. In practice, we have to check that
the reconstructed signak (see Fig. 1) is the result of filtering a periodic stream of Dstda terms of
Fourier coefficientsStrongconsistent reconstruction means thathas Fourier coefficients satisfying (1).
Notice that although for high enough oversampling, thegmiipn Ps is convex, the sefs is not convex.

In general, this could cause problems when iterating theposite projectionPs P» Py, because while
any projectionP; mapping toS; will reduce (more precisely, not increase) the distanc§ toif one of

the sets is not convex, we could still get an increase inigtdo the intersection sé4 N.S3N.S3. Here,

we conjecture that for large enoudty and Ry, the convergence property is ensured. Our experimental
results in Section VI confirm clearly this conjecture. TBongconsistency algorithm is illustrated in
Fig. 4(c). Notice that the complexity of th&trong consistent reconstruction is higher than Weak
consistent algorithm, because it involves iterations bftake projections.

To illustrate the fact thaBtrongconsistency introduces one more set of constraints andeheltices

the set of possible reconstructions, as compared/gakconsistency, we remark that
S1NS;NS3C S = P3(Slﬂ52ﬂ53)251ﬂ52ﬂ53.

On the other hand,
P3(Sl NSz N 53) - P3(51 N 52),

that confirms that the set @trongconsistent reconstruction is a subset of Weakconsistent recon-
struction set. This implies that by enforcirgrong consistency in our reconstruction, on average, the
reconstruction will be closer (or the same, but never fujthe the original signal, than in the case of

enforcing onlyWeakconsistency.
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It is important to note that, sincge is a bandlimited signal, there exist algorithms [16], [1[ZB] for
reconstructingy. which do not require iterated projections and which achi@w&milar reconstruction
accuracy as the one shown in Theorem 1 (see Section V). Thes#tatgocould then be followed by
projection Ps in order to achieve a performance similar to tWeakconsistency algorithm. However, the
algorithms in [16], [17], [18] do not ensure the consistemath respect to the quantization bins, which
means that they can not be used, together with projedignin order to achieveStrongconsistency.
More specifically, iterating the algorithms in [16], [17],glLtogether with projectionP;, we will be
like projecting only on the spacSs and S3. In our Strongconsistent reconstruction algorithms (see
Fig. 4(c)), by projecting on the additional s&%, we reduce the set of possible reconstructions, and

consequently, we increase further the reconstructionracgu

A. Extension to other non-bandlimited signals with finite raténnovations

Our reconstruction algorithms can be applied to other tygfesignals with finite rate of innovation,
such as finite (non-periodic) streams of Diracs and periodituniform splines, where oversampling in
time and in frequency can be again introduced.

The reconstruction of finite streams of Diracs from filtered wamized samples, is explained in [1].
Basically, after getting the filtered samplgs using a sinc sampling kernel, an annihilating discretesti
filter method is used to obtain first the time positions and thenvteights. In the case of quantization,
after quantizing the samplag,, as before, we can project to the space of (non-periodiciilbaited
signals, with bandwidth determined by the oversampling@gdiency, and check if the new samplgs
belongs to the corresponding quantization bins. If thisdsthe case, we can perform projectiéh, as
before. Similarly toPs, we can define a projection on the signal space of finite stredréracs.

Analyzing periodic non-uniform splines, we can see that (§e+ 1)th derivative of a periodic
nonuniform spline of degre§ with knots at{tk}kfi‘o1 is given by a periodic stream df Diracs. This
allows us to extend easily the reconstruction algorithmh dase of nonuniform splines. T& + 1)th

derivative of a nonuniform splinge(S*+1)(¢) has Fourier coefficients given by:
=
X(S+1) _ = —j2mmiy
[m] . kz_o cpe

Differentiating (1) S + 1 times we see that, the Fourier coefficietf§’ 1) [m] are related to the Fourier
coefficients X [m] of the corresponding stream of Diracs that has time positigp};,' and weights

{ex )1y, in the following way:

X m] = (j2mm/r)S DX [m], m e 2.
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Therefore, we can use the same consistent reconstructioritafgs for reconstructing the time positions

and weights of Diracs, providing the final reconstruction ted honuniform splines.

V. THEORETICAL PERFORMANCE OFOVERSAMPLING
A. Error in Time Positions{t }

As explained in the previous section, in order to estimatetime positions and weights, some of
the consistency constraints that we enforce involve Xhperiodic band-limited M < N) discrete-time
signalys. We can easily change the bandwidth of the sigpalby increasing/decreasing the bandwidth of
the sampling kernek g, which is equivalent to changing the oversampling ratioregfiencyR,. Notice
that by changing the bandwidth, we change the sigpallin terms of DTFS, increasing/decreasing the
bandwidth is equivalent to adding/removing nonzero DTFS. Gtyil for the fixed bandwidth of the
sampling kernel we still can choose how many samplese want to have, that is, what will be the
oversampling ratio in timeR,. In the following we are going to see what is the dependencehef
reconstruction quality o, and R;. As a quantitative characterization of the reconstructjaality we

introduce the following distances:

1) di(y,y’) = MSE(y,y’) = MSE(Y,Y’) where the last equality comes from the Parseval

theorem;

2) da(y,y’) = MSE(Ps(P2(y)), Ps(P2(y')));

3) ds(y,y’) = MSE(t,t’) for y € S; N Ss;

4) dy(y,y’) = MSE(e,c’) for y € Sa N Ss.

In practice, the distance®, d3 andd, are the most interesting. However, in some of our proofs and
developments involvingls, we need to make use of the distanefor the case ofy € S1 N Sy as an
intermediate step. Later we show theoretically ttiatdepends oni; and we also show experimentally
that d; does not differ too much frond, wheny € S; N S2 (see Fig. 5). For thé&trong consistent
reconstruction the distancels and ds, wherey € S; N .Sz N S3, are experimentally shown in the next
section.

Theorem 1: Given the twoN-periodic discrete time signalg, y’ € S1 N Se where the set$; and
S, are uniquely determined by(t), R; and Ry, there exists anVy such that if N > N, there is a

constantc > 0, which depends only or(¢) and not onRk; and Ry, such that:

C
di(y,y') < —5.
R}

Proof: see Appendix I.
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The importance of this theorem is that even if we incre&se while keeping theR; constant, the
upper bound ofl; remains the same. However, it is clear that since, we estithattime positions from
DTFS of y2, the number of available Fourier components in additiod;talirectly impactsds. That is,
increasingR, intuitively will improve the time positions estimates. @me other hand, notice also that,
since from Theorem #; will decrease as we increasg, thends will decrease as we increase bath
and Ry. Here, we also remark that increasify or/and R, we also increase the number of samples
since N = (2K + 1)R;Ry.

In the following theorem, we examine the order of dependendg as a function of both oversamplings
R; and Ry, for the case ofVeakconsistent reconstruction.

Theorem 2: Given the twoN-periodic discrete time signalg, y’ € S1 N S2 where the set$; and
S, are uniquely determined hy(t), R; and Ry, there exist some constanis> 1 andb > 1, such that
if R, > a and Ry > b, there is a constant > 0 which depends only or(t) and not onR; and Ry,

and it holds that:

/
d3(y,y’) < %
Proof: see Appendix II. eyt

From Theorem 2 it can be seen that if we are limited to the songe laut finite number of samples
and N > 2K + 1, by increasingR; we reduce thelz faster than by increasing;. Thus, if we are
allowed to use a fixed number of sampiEgsand our goal is to minimize onlys we will tend to increase
oversampling in frequency®;. In Sections VII and VIII the influence of increasing tii& and R, on

the required bit-rate and error-rate dependence will besidened as well.

B. Error in Weights{cy}

Given the time position estimatds;} we can directly estimate the weighs,} from (1) as:

X1[0] 11 1 co
X[” 1 () Uy o UK-—1 C1
_ L o . | )
T : D : :
X[M] wdl W W CK—1

Notice here, that the Fourier coefficients are the one thatesoas the result of the projectid®,, that

is X = Y>. We can also write the previous equation in the matrix nota#s follows:

1
Y, =-VC.
T
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Notice that the matrix hasM > K rows, due to the oversampling in time, which implies that the
system in {) is overdetermined. Thus, we can compdfein the two ways, using a TLS projection or

a LS projection. In the latter cas€; given by:

C = (Viv) lviy,
The error in vectolC' defined byd, depends directly on the error ¥k, which is equal tai; in the case
of Weakconsistent reconstruction and on the erroMnwhich is related to the error in time positions,
i.e. d3. Hence,

di(y,y’) = f(di(y,y’),d3(y,y’)) for y,y’ € S1NSs.

Because of this dependence, in this work, we focus on the mtated to DTFS and the error in time
positions. Moreover, in many practical applications, sastUWB communications (e.g. PPM modulation)

and sensor networks sampling local physical sources, tpertiant information is given by time positions.

VI. EXPERIMENTAL PERFORMANCE OFOVERSAMPLING

-13 T T T -3
£ - d, - Weak consistent reconstruction
hd d, - Weak consistent reconstruction

-135F ~ 2 1
~ d, - non-consistent reconstruction -4+
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|
[\
I
T
v
’,
I

AN
>
o
T
.
’
i

1
)

log, (MSE(tt))

log, o(MSE(Y,,.Y",)

-8k

-9 4

25

3
IoglO(Rt)

(@)

0.5

1 1.5
IoglO(Rt)

(b)

Fig. 5. TheWeak consistent reconstruction. Dependence of accuracy onammplieg in timeR; for: (a) d1 - MSE of Fourier

coefficients whereX[m] = Yz[m] and Y;[m] is the reconstruction whergz € S1 N S2; (b) ds - MSE of time positions.

In this section, we show experimental results for the thrigmriahms illustrated in Fig. 4, with
parametersK = 2, 7 = 10, ¢, € (0,7], ¢ € [-1,1]. The positions and the weights are randomly
chosen from the corresponding intervals and the resultshar@verage over 300 signals. For theak

consistency algorithm, our numerical results confirm Theasrémand Theorem 2, with a performance of
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in frequencyR; for: (a) MSE of Fourier coefficient([m] = Y2[m]; (b) MSE of time positions.

O(l/Rfsz), illustrated in Fig. 5 and Fig. 6. Th&trongconsistency algorithm provides an experimental
behaviour ofO(l/RER}’z) that is also illustrated in Fig. 6. We have compared our ctersiseconstruction
algorithms with the case of non-consistent reconstructfoclear outperformance of our reconstruction
algorithms over non-consistent reconstructions is oleskfgee Fig. 5(a), 6).

We can conclude that by increasing the oversampling in &equR? s, we can achieve a reconstruction
accuracy which is (polynomially) superior for both tieakand theStrongconsistency algorithms than
the one obtained by increasidg. Moreover, from the results of MSE dependence on the quaiatiza
stepsize derived in Section VIII, we also conclude that cwesing in frequency outperform decreasing
of the quantization stepsizk. Therefore, oversampling in frequency provides largest gaperformance.

Next, we analyze encoding schemes and the scaling laws dhabe achieved in terms of bit rate and

error-rate dependence.

VIlI. ENCODING SCHEME AND BIT RATE

As explained in Section Ill, by increasing; or Ry, we increase the number of samplgg,}. It is
clear that using the traditional way of encoding, that idsetcode modulation (PCM) encoding, the bit
rate depends linearly on the number of samplesnd for each sample, using a scalar quantizer with
stepsizeA, we need at most + log,(d, /A) bits, whered, denotes the dynamic range in amplitude of

the signaly(¢). From (15) it can be easily shown that
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K
d, <2 (Z |Ck|) ML — 4, =0y), ®)

k=0
and we assume that the weights are bounded by some fixed bdbatss, ¢, € [—a,a]. Hence, for a

fixed A, the bit rate can be bounded as:

Bres = (14108 (%)) =V 0lows (1) = O(: s log, 1y, ©

On the other hand, when the sampling interval is sufficientlg,fsome simple and efficient techniques
can be developed [10], for which the required bit rate is wriglly smaller than in the case of PCM
encoding. In the following, we show how to make use of the lteso [10], developed for bandlimited
signals to compute the dependence of the bit rate on Bptand R, for our problem.

The idea originates from the equivalence between the toaditiinterpretation of the digital version of
an analog signal, where the uncertainty is determined bygthentization stepsize at the exact time
instants, and the alternative one [10], [19], where thetdigsignal is uniquely determined by the
sampling intervals in which its quantization thresholdssiogs occur. A unique representation in the
alternative interpretation is ensured if the following twonditions are satisfied: 1) the quantization
threshold crossings are sufficiently separated, 2) at maostgoantization threshold crossing occurs in
each sampling interval. The first condition requires that thtervals between consecutive crossings
through any given threshold are limited from below by a cansf}; > 0. The second condition is
satisfied if the slope of the signal is finite, which is ensuredtt®y fact that the signaj(¢) has finite
energy and is bandlimited. Thus, there is always an intéfyat 0 on whichy(¢) cannot go through more
that one quantization threshold crossing. For a sufficidimly sampling period, that i8; < min(7,T5),
all quantization threshold crossings occur in distinct glamy intervals, and a unique representation is
ensured.

The encoded information, in the case of threshold crossifig3 based encoding, are the positions of
the sampling time intervals in which the quantization tho#d crossings occur. The signal is observed
in a given time interval, which in our case is the periad-or determining the position of each sampling
interval of length7; = 7/N, we need at most + log,(7/T;) bits. Every threshold crossing can be
determined with respect to the previous one by introducinyg one additional bit to indicate the direction,
upwards or downwards, of the next threshold crossing. tfuantization threshold crossings occur during
the periodr, then the required bit rate iBrc = C(2 + logy(Ts/7)).

Next, we need to determine the maximal number of threshalslsings. There are two types of threshold
crossings: 1) a d-crossing which is preceded by a threshosing of a different threshold level (Fig. 3(a)

- first and second treshold crossing), and 2) an s-crossinghwhipreceded by a crossing of the same
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threshold level (Fig. 3(a) - second and third treshold cragsiThe sum of these two types of threshold
crossings is the total number of threshold crossings peoger From results on non-harmonic Fourier
expansions [20], the s-crossings for the case of bandlihsignals constitute a sequence of uniform
density’p, which equivalently means that the zeros of the first dexieatf y(¢) constitute a sequence of
the same density. Thep,is bounded ag = O( faz) = O(Ry), where f,,q, is the maximum frequency
of the signaly(¢) and it is of the order of the bandwidtB. Consequently, the number of s-crossirdgs

is given byCs = O( fmaz) = O(Ry). The maximum possible number of d-crossirigsdepends linearly
on the maximum dynamic rangg, of the signaly(t), that isCy = O(%) = O(Ry) and., as it is shown
in (8), depends linearly o ¢, hence, the same dependence holds for the number of diugesshat is,
Cq = O(Ry). Therefore,

Brc < c3Ry(2 +logy(caRiRy)), (10)

where c3 and ¢4 are some constants that depend on the specific sigftaland on the quantization
stepsizeA, but which do not depend oR; and R;. The additional bits required for specifying the first
threshold crossing (the others are going to be specified \eithect to this one) have arbitrary small
effect on the required bit rate over the sufficiently long tiperiod.

Comparing (9) and (10), we can conclude that the TC based enrbds clear advantages over the
traditional PCM encoding, since the bit-rate for TC based dimgpgrows much more slowly as a function
of the oversampling in time&,. We also remark that these coding results are applicabldbss of the

reconstruction method that is used (e.g. consistent orcoogistent reconstruction).

VIlIl. ERROR-RATE DEPENDENCE

A natural question that arises in oversampled A/D convargdo compare the improvement in error-
rate that comes, on the one hand, from the oversamplingsirinase from increasing; and Ry, and on
the other hand, from reducing the quantization stepaiz&or the measure of the error-rate dependence,
we consider the MSE of the time positions, as a function of theate.

We have shown in Section V what is the dependence of both the M$iEhe positions and the bit

rate as a function of the oversampling rati®sand R;. In this section, we also introduce the dependence

3A sequence),, of real or complex numbers has uniform densityp > 0, if there are constants < co ands > 0 such
that: a)[An — | < L,n € Z, b) [An — Am| = s >0, wheren # m.
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of the MSE of time positions and the bit rate on the quantizasitepsizeA, and then we examine the
error-rate dependence considering all the three parasyétgrZ; and A.

It has been shown in [10] that if: 1) there is a large numberuaingization levels compared to the signal
amplitude range, and 2) the quantization stepgizis sufficiently small, then, it is approximately correct
to model the quantization error as a uniformly distributdutes noise over the interval-A /2, A /2] that

is independent of the input signal. Assuming the white nbased model, we have:
MSE(y(t),§(t)) = MSE(Yz, Yz) = A%/12.

Recall from Section Il that we estimate the time positionsrfrihe Fourier coefficient [m]| = Ya[m],

hence, the error for the time positions can be computed to taofider approximatiohas:

B Oty
=M
Mo bty | M .
Et)I® < ( > |vim ) ( > 16<Y2[m]>|2> = EMSE(Y2, Ya) (11)
m:—M 2 msz
2
where¢ = "M ‘%ﬁn}‘ measures the dependence of the time positions on the Faoedficients

and does not depend on the quantization step&iz€he inequality in (11) follows simply from Cauchy-

Schwartz inequality. Therefore, for sufficiently smallit holds that:
MSE(t,t) = O(A?). (12)

Concerning the bit rate, it is clear that increasing/desirgpthe quantization stepsize, we reduce/increase
the required bit rate.
In the case of PCM encoding, for a fixd® and Ry, it can be seen from (9) that, the bit rate, as a

function of the quantization stepsizk, is given by:

B (110 (%)) =0 (s (1)), @

In the case of TC based encoding, the dependence of the dibmathe quantization step siZecomes
through the dependence on the maximum number of threshosiogs, namely(,q..(A) = O(1/A),

which together with (10) and taking into account that nBywand R are kept constant, results in:

1 1
Breo < C5ERf(2 + logy(caRReRy)) = O (A) ; (14)

“We assume sufficiently high enough oversamplings and sufficiently sgoalhtization stepsize, so that the first order

approximation is correct.
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TABLE |

ERROR-RATE DEPENDENCE

Encoding method Variation Bit rate Weakconsistency - theory Strongconsistency - experiments
MSE(t,t) error-rate MSE(t,t) error-rate
R O(logs Re) || O(1/R3) 02 2Brc) || O(1/R})  O(@2 2Brc)
Threshold crossing encoding Ry O(Rylogy Ry) || O(1/R3) O(BL2) O(1/R%) O(B;2)
A 0(1/A) 0(A?) O(Br¢) 0(A?) O(Br¢)
Ry O(Ry) O(1/R})  O(Bpiw) O(/R})  O(Bpia)
PCM encoding Ry O(Rylogy Ry) || O(1/R3) O(Bpi ) O(1/R%) O(BpZ )
A O(logy(1/4)) O(A?%)  O(272FBrcu) o(a?) O(272FBracar)

where Br¢ denotes the bit rate corresponding to TC based encodingaisdsome constant that does
not depend ok, Ry and A. All the results, for theMSE(t,E) and the bit rate, are given in Table I.
Analyzing Table I, we can see first that in the case of PCM engpdire best error-rate dependence
is obtained by decreasing the quantization stepaizestead of increasing any type of oversampling.
Since we have a logarithmic increaé¥log,(1/A)) of the bit rate and an error decrease @fA?),
changing the stepsiz& and fixing the oversampling ratios, we get a dependence of MSEeodrder of
O(2728Brea) wheref is some constant that does not dependdgn;,;. Assuming PCM encoding, this
performance can not be achieved by increasing the oversagmpliosz; and R ;. However, using the TC
based encoding, we can achieve the same dependence (asadheimg the quantization stepsizg, by
increasing the oversampling in tind&.. This is very important because, in practice, the cost (ceriyl
of expensive high-precision analog circuitry) of halvidgis much higher than that of doubling;.
However, by increasing the oversampling in frequerty, the required bit rate grows exponentially
faster than in the case of increasiyy or decreasingA. Therefore, asymptotically (high rates), the

error-rate performance obtained by increasigis inferior to that of increasingdz; or decreasing\.

IX. CONCLUSIONS ANDFUTURE WORK

In this paper, we studied reconstruction of non-bandlichisggnals with finite rate of innovation,
particularly, periodic streams of Diracs, under the presesf quantization. High reconstruction accuracy
is obtained by introducing the oversampling in time and ieqfrency, and enforcing the concept of
consistency. We defined the conceptMdéakand Strongconsistency and we examined the performance
in terms of MSE of time positions, that is achieved witfeak and Strong consistent reconstruction

algorithms. We concluded that the oversampling in frequgmovides a superior decrease in MSE of
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time positions. On the other hand, in terms of error-rateeddpnce, by using a threshold crossing
based encoding, the oversampling in time provides a supernor-rate trade-off over the oversampling

in frequency. Moreover, it is also observed that the erabe-rdependence obtained from doubling the
oversampling in time is the same as the one obtained fromingalhe quantization stepsize, while,

in practice, the cost of performing the oversampling in timemuch lower than that of reducing the

quantization stepsize.

Some future lines of research include finding faster condisteconstruction algorithms, such as
algorithms which do not require projection iterations,emdion of our results of A/D conversion for
the case of more general sampling kernels (e.g. Gaussialkgrreconstruction of signals with finite
rate of innovations under physics based kernels, such & thiven by a heat diffusion equation [5],

and extension of our results to multidimensional non-biamtid signals with finite rate of innovations.

APPENDIX |

PROOF OFTHEOREM 1

In order to prove Theorem 1, we need first to compute the slopleedfiltered signaj(¢). This signal

is nothing but the sum of2'M + 1-periodized” sinc functions, that is:

i [, (@M + 1)(t = ty)m/7)

y(t) = 2 Sin((£ = tp)m/7) (15)
It is then obvious that the slope gft) is of the following order:
O(1), for t=t
dy(t) _ (1) k (16)
dt O(R;) otherwise

Using the results on oversamplety D conversion of band-limited signals ih?(R) [10], it can be
shown that in the case of stable samptifgl], which is satisfied by the class of periodic bandlimited
signals, theM SE(y(t),y(t)) can be written as follows:

MSE(u(t).5(0) < S5 T 11y )] )

SDefinition of stable sampling: A sequence of real numkeys),.c = is said to be a sequence of stable sampling in the space
of square-integrable-bandlimited function, denoted by, if there exist two constantsi > 0 and B < oo, such that for any

f in V., the following sequence holds:

A/ \dm<2|f)\|<B/ z)|2da
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where A and B are some constants such thét> 0 and B < oo and they do not depend on the signal
y(t) (particularly, they come from the definition of stable samg)iand||-|| is the L?(R) norm. Inserting

(16) in (17) we get the final conclusion, that is:

9B 72
d y) = MSE(y(t),y(t)) < -——

Here,y andy are any two signals it$; N Ss.

1
O(R7) =0 (R%) . (18)

APPENDIXII
PROOF OFTHEOREM 2
The annihilating filter method with oversampling in time andfiequency is the classical high-order
Yule-Walker system (HOYW)[12]. In order to prove Theorem 2 go through the two main steps:
1) We first show how the estimation accuracy is effected by:
a) the number of YW equations, or equivalently, the overdamgpn frequencyRy;
b) the model order, or equivalently, the filter order L.
For this purpose, we use a common singular value decompogBVD)-based HOYW procedure.
2) Then, we use the known result that the TLS-based HOYW methodhren&VD-based HOYW
method are asymptotically equivalent.
SVD-based method finds the ramk-(K being the number of Diracs) best approximatifify in the

Frobenious norm sense and obtains the following solution:

Hyga = —h
a = —(Hg)'h
where(-)' denotes the Moore-Penrose pseudoinversg)ofn general, the matri¥ has full rank being
equal to mitiL, M) and (H)' does not approachH )" which has rankk, even for the case wheh/
increases without bound. In contrast(td)T, the pseudoinvers(aFIK)T — (H)Jr as the error inX[m)]
becomes smaller. This is a crucial property that is necegsameducing the error in the estimates.
Suppose that are the exact coefficients of the annihilating filter polyndmighen, the following

analysis holds:
i—a = —(H)h—-a
= —(Hk)'(h+Ha—-Ha)-a
= —(Hg)'(h+Ha)+[(Hg) H—Ia

= —(Hp) e+ [(Hg) H-1Ia (19)
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where

£:ﬁ+ﬂa:[ﬁ ﬂ]
a

First, we show what is the relationship between the maRix= (a — a)(a — a)’, associated to the
annihilating filter coefficients and the matri®, = (¢ — t)(t — t)”, associated to the time positions.

The angular positions of the roots of the annihilating filtaregiis the estimates of the time positions.
Assuming that the roots are sufficiently close to the unitlejreo that the first approximation of the
Taylor series expansion corresponding to the time postloids, it can be shown [12] that:

> 1 Bk_jak T/~
= o0 e{a%ﬁ,ﬁ e )

2 —L]

with wg, = [ug tu 2. .. “)7 or, in matrix form,

~

fot — %Re{FG(&—a)}. (20)

Therefore:

~

P, = E-tE-t7 = %ﬁzRe{FG(& —a)}Re{(a — a)TGTFT},

where:
ar = [ cos(2nty) 2cos(4nty) ... Lcos(2Lwt) la,
B = [sin(27ty) 2sin(4nty) ... Lsin(2Lxty) la,
%{gg{ 0 ual uaL
F= . G=
N wiy

Applying the same arguments as in [22], where a similar esgdo@ is found for the complex sinusoids
in noise, it can be shown that:
1

= i a — ~ _  N\T T T _7i HpoH
P = 4F2R6{FG(a a)}Re{(éd—a)" G F }_24W2R6{FG'PGG Fiy (21)

where(-)" denotes Hermitian transpose.
Unfortunately, it appears difficult to derive an explicit egpsion for the matrixP, for the various
choices of L, because the vectar changes itself with.. However, it is possible to obtain a compact

formula for P, that is:
11

=5 m1«26{1~“GHT ¢ HEGH Y (22)

Pt
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and investigate the influence af and L on the estimation accuracy. For the proof of (22) we refer to
[12], and its references, where the related problem of esgtng sinusoids in noise, is studied.
Now, we show that the order of magnitude B is O (ﬁ) for sufficiently largeM and whenL

is of the order ofM. First, notice that can be factorized as follows:

-1 —L
K-1 U Uk
H = Cl
k=0
M M-L
Uj Ug,
1 1 Co 0 ual uaL
= : : : : =SCG. (23)
M M -1 I
Uy ... U4 0 CK—1 U e Up

Since all these matrices are of full rank, we can use standstdts on the Moore-Penrose pseudoin-

verse together with (23), to show that:
H' =Gc(Gc")c 1(sts)tsH. (24)
Inserting (24) in (22) we obtain that:
P = %ﬁzRe{FC—l(SHS)—1SHgsHS(sHS)—IC—lFH} (25)

In the next steps of the proof, we analyze in detail the diffiéterms involvingP; in (25). We examine
the order of each term and use the notatjor diagO(fi(q))] + O(f2(q)) to denote that matriy has
diagonal elements of the ordér(f1(¢)) and off-diagonal elements of the ordé f2(q)) while fi(q)

and f»(q) are any two functions of. For evaluating the order of some terms we also need thexfivitp

standard result [23] :

ﬁ i R { 0(1) forw=wands >0 (26)
m=1 O(1/L) —jO(1/L) forw #wands >0

1) C = diaglO(1)] and consequently"~! = diag/O(1)], sinceC depends only on the signalt)
and has no dependence &f or L.

2) LaG" =diagO(1)]+0(1/L)—jO(1/L) and consequently: GG*) ™' =diaglO(1)]+O(1/L)—
jO(1/L), which can be verified by direct multiplication using (26).

3) LSS =diagO(1)+O(1)—O(1/M) and consequentlyj\%SHS)_1:diag[O(l)HO(l)—jO(l/M),
which can be verified again by direct multiplication since thatrix S has a similar structure as
G".

4) LF =diagO(1/L)+jO(1)] and consequentlyi.F")~! =diag[O(1/L)+;jO(1)]
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From the definition ofv;, we have that:

1 1
ZQO = Z[costho .+ Lcos L2ty JA
1
= Z[costho ... Lcos L2mty [(—H'h)
1

1 ! 1 A
ﬁ[ cos 27ty - LcosL27rt0]GH<L%;'GH> c! <MSHS> (MSHh>. (27)

Next, by multiplying the corresponding matrices, it canoalse verified, by direct computation,

that:
7z cos (2mtg) -+ Lcos(2Lmtg) |G = 28)
=[0(1)-jO(1/L) O(1/L)~-jO(1/L) --- O1/L)—jO(1/L)]-
For the last part in (27) we get that:
H
. ug . Uy Zk 0 CrUR ) Z% 0 fol Crug g "
_— H = = —_— .
MS h M
upt Zk 0 crup’ Z% 0 fc(ol CRUR UK
The term on the right hand-side of the previous equation hagalfowing order:
| MKl = | MKl
m, —m — 71 m(ty —t,
i crRup Uy = or Ck+MZche g2Em( )
m=0 k=0 k=0 m=1 k=0
= | M | MKl
_ — 2= m(t,—t,
= M Ck+MZCT+MZ Z 6‘7T ( )
k=0 m=1 m=1 k=0,k#r
K-1
= O(1/M)+0(1)+ c,(O(1/M) + jO(1/M)
k=0,k#r
= O(1)+j0(1/M)
and therefore
1 .
175" h =10(1) +jOQ/M)] k1. (29)

Putting together the results from previous steps and subsgt(28) and (29) in (27) and assuming

that L and M are of the same order, we can conclude that:

1
70 = O(1) +350(1/L). (30)
Similarly:
%[ sin (27mtg) --- Lsin(2Lwty) }GT =

=[lo@/L)—-jo1) o@/L)-;jo(1/L) - O(1/L)—;jO(1/L) ],
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5)

obtaining for g3, that:
1
T =0(1/L) +jO().

The same procedure can be used to evaluate the order;0f3;} for k£ > 0, obtaining:

%ak — O(1) +jO(1/L) and %Bk — O(1/L) + jO(1).

This leads to the conclusion thatF' = diagO(1/L) + jO(1)].
SHeeHS = MSE(X, X)O(L) = MSE(Yz,Ys) for M > L
The key point is that first we can split mat§¢ into two terms, one depending only dt, and
the other one depending only @i and L, or equivalently, onR;, assuming thaL is also of the

order of M. Following similar arguments as in [12], the matgg” can be rewritten as:
£6" = MSE(Ya, Yp) A" AT,
where(-)* denotes conjugation af) and
1 a1 - ay 0

0 1 a --- ajy
(M+1|M+L+1)

Thus, it follows that:
SHeeHS = MSE(Ys, Ys)SHA*ATS.

In order to obtain an insight on the order 8f ¢¢7S, we compute the explicit form for the case
of one Dirac and describe how to generalize the result forcHse of X' Diracs.

For K = 1, we have that:

T
S=(uf uh - u ) SMS =M+, GG" =1,
0
u
i’ “
U 1
a=-H¢| ' | = -6"Gae")c7\(s"s)18"Se = —
M ug
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Then, for the case wher&® > L, we have that;

1
1
1 uo (1= 1)
1 .
—ZUO 0 .
: 0 L—1 L—1
Ug Ug (1_ L)
T _%UOL u(lJ 0
A S p— p—
1
1 M
—TUp U 0
M+1L
0 “Uy L
1, L :
_IUO .
M+L1
U T

and

1\?2 L—1\2 L—1\2 1
H*T f— _— — ) _— —— o o o —
SAAS—1+< )+ +(1 L)+1+<L)+ +<L)

L
B (L+1)(2L +1)
- L?ZZ - 3L '

t~

Now, noticing that the coefficients of the annihilating filteavie the following form:

Co €o
a = -H'S| : [=—@G"@Ge")'c'(s"s)'s")s| (31)

CK—-1 CK—1

Zk =0 “k; O(1/L)

K-1 2
U 1/L
— _gfeeh) | =—% im0 Ui+ OU/D) (32)
o uf +0(1/L)
then, by doing the same steps as for the case of one Dirac, iwaethe diagonal elements of

SH A* AT S are of the order O(L), or equivalently:

. £
S So

K3 7 7

(e = %( W0 ot M )ATAT =0(1)+O(1/L).
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For the off-diagonal elements, taking into account the jgestructure ofA* A” that follows from

(31), we have:

uj
1
1 1 ul 1
A I b A T T yArAt [ < 7()i=0(1) +O0(1/L).

This upper bound is sufficient for us and we do not have to seanctighter bounds. Thus:
ST A*ATS = O(L) (33)

Finally, we can calculate the order of the matfx as follows:

-1 -1
= el ene (3578) (s (s1s) e
11 L -
- e MSE(Ya, Ya)O(1) + O]k
— 90+ 7OWknk (34)

ChangingL = M = O(Ry) in (34) and using the result from Theorem 1 fprc S; N Sz we get

1
Pr=0|—]|.
(333:;)

The final results follows from [24], where it is shown that theuis derived for the Yule-Walker

that:

system and the least square solution has asymptoticallgaime behavior as the total least square

solution. Therefore,

K
R R 1
d3(y,y) = MSE(t,t) = Z (Pr)ii = O | 5353 | - (35)
i=1 R Rf
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