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Abstract

We study the problem of A/D conversion and error-rate dependence of a class of non-bandlimited

signals which have a finite rate of innovation, particularly, a continuous periodic stream of Diracs,

characterized by a finite set of time positions and weights. Previous research has only considered

sampling of this type of signals, ignoring the presence of quantization, which is necessary for any practical

application. We first define the concept of consistent reconstruction for these signals and introduce the

operations of both: a) oversampling in frequency, determined by the bandwidth of the lowpass filter

used in the signal acquisition, and b) oversampling in time,determined by the number of samples in

time taken from the filtered signal. Accuracy in a consistentreconstruction is achieved by enforcing the

reconstructed signal to satisfy three sets of constraints,defined by: the low-pass filtering operation, the

quantization operation itself and the signal space of continuous periodic streams of Diracs. We provide

two schemes to reconstruct the signal. For the first one, we prove that the mean squared error (MSE) of

the time positions is of the order ofO(1/R2

t R
3

f ), whereRt andRf are the oversampling ratios in time

and in frequency, respectively. For the second scheme, which has a higher complexity, it is experimentally

observed that the MSE of the time positions is of the order ofO(1/R2

t R
5

f ). Our experimental results show

a clear advantage of consistent reconstruction over non-consistent reconstruction. Regarding the rate, we

consider a threshold crossing based scheme where, as opposed to previous research, both oversampling
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in time and also in frequency influence the coding rate. We compare the error-rate dependence behavior

that is obtained from both increasing the oversampling in time and in frequency, on the one hand, and

on the other hand, from decreasing the quantization stepsize.

Index Terms

Finite rate of innovation, quantization, oversampling, consistency, projection, convexity, threshold

crossing encoding.

I. I NTRODUCTION

Recent results in sampling theory [1] have shown that it is possible to develop exact sampling schemes

for a certain set of non-bandlimited signals, characterized by having a finite number of degrees of freedom

per unit time, which is called finite rate of innovation. Taking a finite number of uniform samples, obtained

from an appropriate sampling kernel, we are able to achieve perfect reconstruction. Some of these signals

with finite rate of innovation, such as streams of Diracs, havefound several applications in CDMA [2],

UWB [3] and sensor field sampling [4]. For example, results in [1] can be applied to the problem of

multipath delay estimation in wideband channels. On the other hand, in the context of sensor networks

measuring physical phenomena, such as temperature, local heat sources can be well modeled by Diracs

and the sampling kernel in this case is given by the Green’s function of the heat diffusion equation [5].

In [1], [2], [3], it was assumed that we have no quantization of the acquired samples. However, in

any practical application quantization is required. An irreversible loss of information, introduced by

quantization makes perfect reconstruction no longer possible. Motivated by the need of quantization, we

investigate Analog-to-Digital (A/D) conversion and the error-rate dependence of non-bandlimited signals

with finite rate of innovation, which has not been considered in previous research.

In this paper, we focus on the A/D conversion of a particular class of signals with finite rate of

innovation, namely, continuous periodic stream ofK Diracs, characterized by a set of time positions

{tk}
K−1
k=0 and weights{ck}

K−1
k=0 . We study the reconstruction quality of time positions under the presence

of quantization. There are two reasons for this: 1) it can be shown that the error in weights depends on

the error in time positions, and 2) in many applications, such as UWB and sensor field sampling, the

most important information is contained in the positions ofpulses.

High reconstruction accuracy in time positions can be achieved by introducing two types of oversam-

pling: 1) oversampling in frequency, determined by the bandwidth extension of the low-pass sampling

kernel, and 2) oversampling in time, determined by the number of samples taken from the acquired
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filtered signal. Introducing the oversampling is equivalentto introducing a redundancy in the system,

which usually reduces the sensitivity to degradations. Although this idea is very intuitive, the question of

fully exploiting that redundancy is not always simple. This can be already observed in the case of A/D

conversion of bandlimited signals, where the simple linearreconstruction is not optimal, in the sense

that the outputs obtained from quantizing the original and the reconstructed signal are not necessarily the

same, implying a larger reconstruction error on average. Thekey idea to achieve high accuracy is to have

a reconstruction that is consistent with all the available knowledge about the signal and the acquisition

process. Thus, in our work, we use the concept of consistency by enforcing the reconstructed signal to

satisfy three sets of constraints which are related to: 1) the sampling kernel, 2) the quantization operation

itself and 3) the space of continuous periodic streams ofK Diracs. A signal reconstruction satisfying

the three sets is said to provideStrongconsistency while if it satisfies only the first two sets is said to

provideWeakconsistency.

The concept of consistent reconstruction and the corresponding reconstruction accuracy for the case

of bandlimited signals has been considered in [6], [7], [8].However, there are three essential differences

with our work: a) we consider the reconstruction accuracy that is related to the non-bandlimited signal; b)

we exploit the knowledge about the structure of the non-bandlimited signal; c) we introduce oversampling

in frequency in addition to oversampling in time.

In this work, reconstruction algorithms for bothWeak and Strong consistency are proposed. As a

quantitative characterization of the reconstruction quality, we consider the mean squared error (MSE) of

the time positions and its dependence on the oversampling intime and in frequency. We focus on the MSE

related to time positions because, as we show in this paper, the MSE related to the weights of the Diracs

depends fundamentally on the MSE of time positions. For the first algorithm, we show both theoretically

and experimentally that the MSE performance for the time positions decreases asO(1/R2
t R

3
f ), whereRt

andRf are the oversampling ratios in time and frequency, respectively. For the second algorithm, which

achievesStrongconsistency but has a higher complexity, we obtain experimentally an MSE performance

of the order ofO(1/R2
t R

5
f ) [9]. Both results show a clear outperformance of consistentreconstructions

over non-consistent reconstructions.

We also apply encoding schemes and study the scaling laws that can be achieved for the bit rate and

the error-rate dependence, depending on the concrete encoding scheme and the reconstruction algorithm.

Regarding the rate, we consider two encoding schemes: a threshold crossing (TC) based scheme, similar

to the one proposed in [10] and a PCM encoding scheme, and compare the error-rate dependence that is

obtained from both increasing the oversamplings in time andin frequency, on the one hand, and on the
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other hand, from decreasing the quantization stepsize. The main novel part of the TC encoding analysis,

introduced in our work, is the additional dependence of the maximal number of threshold crossings on

the oversampling in frequency, which comes as a consequenceof considering non-bandlimited signals

with finite rate of innovation. Our results show that, using the TC encoding, we can achieve the same

error-rate dependence, for these non-bandlimited signalswith finite rate of innovation, by a) increasing

the oversampling in time and b) decreasing the quantizationstepsize [11]. This is very important from

a practical point of view because the cost of halving the quantization stepsize is much higher than that

of doubling any of the oversampling ratios (complex and expensive analog circuitry). Moreover, in order

to make the TC encoding scheme work in our case, we can adjust three parameters (the quantization

stepsize and the two oversamplings), as compared to the caseof bandlimited signal [10], where only two

parameters are adjusted (the quantization stepsize and theoversampling in time).

Although our theoretical analysis is restricted to periodic streams of Diracs, the algorithms proposed

in this paper can be also used for reconstructing other signals with finite rate of innovation such as finite

streams of Diracs and nonuniform splines.

This paper is organized as follows. Section II introduces the class of signals given by continuous-

time periodic streams of Diracs. Section III defines the oversampling in time and in frequency. Section

IV introduces the concept ofWeakconsistency andStrongconsistency and proposes the corresponding

reconstruction algorithms. In Section V, we prove an upper bound for the MSE performance achieved

by Weakconsistency and in Section VI, we present the experimental results for bothWeakand Strong

consistency. In Section VII and Section VIII, we describe and analyze the threshold crossing based

encoding and address the rate and error-rate dependence. Wecompare the error-rate dependence as a

function of the both oversamplings and the quantization stepsize. Finally, in Section IX, we conclude

with a brief summary of our work and directions for future work.

II. SIGNALS WITH FINITE RATE OF INNOVATION

New results on sampling theory show that certain classes of non-bandlimited signals, such as periodic

and finite length streams of Diracs, non-uniform splines and piecewise polynomials, can be uniformly

sampled with a finite number of samples, using sinc and Gaussian sampling kernels and then perfectly

reconstructed. Intuitively, these classes of signals are characterized by having a finite number of degrees

of freedom per unit of time, namely, havinga finite rate of innovation.

In this work, we consider a periodic stream ofK Diracs, that is,x(t) =
∑

k∈Z
ckδ(t − tk) with

period τ , where tk+K = tk + τ and ck+K = ck, ∀k ∈ Z, and δ(t) denotes a Dirac delta function.
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ĉK−1

t̂K−1 τ

. . .

. . .

(b)

Fig. 1. Reconstruction algorithms for a periodic stream of Diracs: (a) without introducing quantization; (b) introducing

quantization of the samplesyn of signaly(t). The annihilating filter in (a) corresponds to the equation (3) and the one in (b)

corresponds to the equation (4).

This signal has2K
τ degrees of freedom per unit of time, since the only knowledgethat is required to

determine the signal uniquely is given by theK time positions{tk}
K−1
k=0 and theK weights{ck}

K−1
k=0 .

This signal can be perfectly reconstructed by first applying a sinc sampling kernelhB(t) = Bsinc(Bt)

with bandwidth[−Bπ, Bπ], thus obtainingy(t) = x(t) ∗ hB(t), and then taking theN uniform samples

{yn = y(nT )}N−1
n=0 , whereT = τ/N , Bτ = 2M+1 ≥ 2K+1 and the number of samples isN ≥ 2M+1.

A periodic stream ofK Diracsx(t) can be represented through its Fourier series, as follows:

x(t) =
∑

m∈Z

X[m]ej 2πmt

τ , whereX[m] =
1

τ

K−1
∑

k=0

cke
−j

2πmtk

τ . (1)

After sampling the signal with the sinc sampling kernel, theuniform samples ofy(t) are given by:

yn =
M
∑

m=−M

X[m]ej 2πmn

N where n = 0, . . . , N − 1. (2)

Taking at least2K+1 samples{yn}
2K+1
n=1 , we can directly from (2) compute the2K+1 Fourier coefficients

X[m] of the signalx(t). Fourier coefficientsX[m] coincides with discrete-time Fourier series1 (DTFS) of

yn, that isX[m] = Y [m]. Having2K+1 Fourier coefficientsX[m], we can reconstruct first time positions

1The definition of DTFS we adopt here is:

DTSF({yn}
N−1
n=0 ) = {Y [m]} where Y [m] =

1

N

NX
n=0

yne−j2πnm/N , for m ∈ Z.
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Fig. 2. (a) Original signalx(t) given by a periodic stream of 3 Diracs,τ = 10 and tk ∈ [0, τ ], ck ∈ [−1, 1]; (b) Signaly(t)

obtained by filteringx(t) with a sinc sampling kernel; (c) Samplesyn = y(nT ); (d) Quantized samplesQ(yn); (e) Fourier

coefficients from the stream of3 Diracsx(t); (f) Fourier coefficients from the signaly(t) that are truncated Fourier coefficients

from x(t) and bandlimited to its2M +1 central components; (g)N -periodized Fourier coefficients corresponding to DTFS from

yn; (h) DTFS with small error deviations that are added to the Fourier components both in the lowpass region and highpass

region, thus making the perfect reconstruction no longer possible.

and then weights. Thus, it is clear that lowpass version of theoriginal signalx(t), that we cally(t), is

sufficient for the signal reconstruction. Analyzing the Fourier components in (1), it can be seen that each

exponential term{uk = e−j
2πtk

τ }K−1
k=0 can be annihilated by a first order FIR annihilated filterAk(z) =

(1 − e−j
2πtk

τ z−1). Extension of the filter order toK results in a filterA(z) =
∏K

k=1(1 − e−j
2πtk

τ z−1)

that annihilates all Fourier coefficients. In matrix notation, this can be represented as:
















X[0] X[−1] . . . X[−K]

X[1] X[0] . . . X[−(K − 1)]
...

...
...

...

X[K] X[K − 1] . . . X[0]

































a0

a1

...

aK

















=

















0

0
...

0

















(3)

whereai is the i-th coefficient of the annihilating polynomial. Thus, if we aregiven the2K + 1 exact

Fourier coefficients, by settinga0 = 1, we can find the unique solution of (3) that gives all the coefficients

of the annihilating filter. The roots of the annihilating filterA(z), {uk = e−j
2πtk

τ }K−1
k=0 , reveal theK time

positions{tk}
K−1
k=0 , while the corresponding weights{ck}

K−1
k=0 can be then directly computed from (1)

(see Fig. 1(a) and Fig. 2).

Notice that all previous steps assume no quantization in amplitude and hence, no error iny =
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[y0, . . . , yN−1]
T , which ensures the existence of the previous exact solution. In our work we study A/D

conversion for these signals and thus we consider the operation of quantization performed ony (see

Fig. 1(b)). The quantization error in amplitude, causes an irreversible loss of information which makes

the exact recovery ofx(t) no longer possible (see Fig. 2). In order to overcome this problem, as the first

step, we are going to introduce the two types of oversampling.

III. OVERSAMPLING IN TIME AND FREQUENCY

We consider two types of oversampling in order to compensatethe error introduced by quantization.

The first one consists of taking more samplesy than we need, or equivalently taking samples ofy(t)

above the Nyquist rate. In that case we have thatN > 2M + 1. This introduces anoversampling in time

which is characterized by oversampling ratioRt = N
2M+1 .

Notice that we can also perform an additional type of oversampling by extending the bandwidth of the

sampling kernel to be greater than the rate of innovation, orequivalently, making(2M +1) > (2K +1).

We denote this type of oversampling as anoversampling in frequencywith the oversampling ratio given

by Rf = 2M+1
2K+1 . As explained in the following section, the oversampling infrequency will modify the

annihilating filter method illustrated in (3), and the corresponding matrix has to be augmented because

we use more Fourier coefficients.

We remark also that the number of samples isN = (2M + 1)Rt = (2K + 1)RfRt, which means that

N increases linearly with both types of oversampling. As shown in Sections V and VI, by increasing

these two oversamplings, and using proper reconstruction schemes, we can substantially increase the

reconstruction accuracy.

IV. CONSISTENTRECONSTRUCTION

In the reconstruction process, we enforce the concept ofconsistent reconstruction, previously introduced

in [6] for the case of bandlimited signals. The idea of consistent reconstruction is to exploit all the

knowledge from both thea priori properties of the original signal and the information provided by the

quantization process. Thus, the key is to find a reconstructionwhich is consistent with all the avail-

able knowledge. Intuitively, a consistent reconstructionwill provide, on average, a better reconstruction

accuracy than a non-consistent reconstruction.

We first define all the properties that a reconstruction should satisfy in order to be consistent. Each

property defines a set of signals, thus, requiring the satisfaction of a certain property is equivalent to

requiring the membership in a certain set of signals. The factthat all properties are satisfied by the
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Fig. 3. (a) The estimated function̂y(t) is consistent with the original signaly(t) with respect to the quantization bins. (b) If

the estimated function̂y(t) is not consistent withy(t), then we project to the border of the corresponding quantization bin.

original signal ensures that the corresponding sets have a nonempty intersection. All the constraints,

or equivalently, the sets, are going to be defined as a subsets of the space ofN -periodic discrete-time

signals, that we callH.

The first set of constraintsS1 is related to the quantization operation. The samplesy are quantized

by a uniform quantizer2, that is,yq
n = Q(yn) = ∆(⌊yn/∆⌋+ 1/2) where∆ is the quantization stepsize.

Let ln = [∆⌊yn/∆⌋, ∆⌊yn/∆⌋ + ∆] be the quantization interval to which the sampleyn belongs. The

sequence{yq
n}

N−1
n=0 gives the information about the intervals in which all the samples lie, namely,yn ∈ ln.

The set of these intervals is anN -dimensional cube, namely:

Set S1 : Given y and yq = Q(y) = [yq
0, . . . , y

q
N−1]

T , the setS1 = Q−1(yq) defines a convex set of

sampled signals such that all of them are quantized to the same quantization bins (see Fig. 3(a)).

The second set of constraintsS2 comes from the fact that the signaly(t), obtained after filteringx(t),

is periodic and bandlimited.

Set S2 : Set ofN -periodic discrete-time signals bandlimited to2M + 1 non-zero DTFS components.

In addition to the fact that theN -periodic discrete-time signals should have2M + 1 nonzero DTFS

components we also want to make use of the structure of the signal x(t), namely, that is a periodic stream

of Diracs. Therefore, we define another set of constraints, as follows:

SetS3 : Set ofN -periodic discrete-time signals, such that the{Y [m]}M
m=−M DTFS components originate

from a periodic stream of Diracs, that isY [m] = X[m] = 1
τ

∑K−1
k=0 cke

−j2πmtk/τ , m = −M, . . . , M ,

with tk, ck ∈ R, 0 < tk ≤ τ , while there are no constraints onY [m] for |m| > M .

We can get more insight into the structure of the setsS1, S2 and S3 if we observe thatS1 is an

2Another possibility to define the quantizer is to use the second type of quantizer, defined asyq
n = Q(yn) = ∆⌊yn/∆⌋. Any

choice of the quantizer is not going to have any influence on our results
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N -dimensional hypercube in theN -dimensional spaceH, S2 is an (2M + 1)-dimensional subspace of

H, and thatS2 ∩ S3 is a (2K)-dimensional (nonlinear) surface insideS2. This dimensional argument

naturally brings the notation of oversampling by space dimension ratios:N/(2M+1) and(2M+1)/(2K).

Now, we are going to define projections on the corresponding sets.

Projection P1 : Given a set of samplesy, y1 = P1(y) is obtained as:

1) if yn ∈ S1, theny1,n = yn.

2) else,y1,n is taken to be equal to the closest border of the quantizationinterval Q−1(yq
n), that is,

P1(yn) = yq
n + sign(yn − yq

n)∆
2 .

Projection P2 : Given anN -periodic discrete time signaly, y2 = P2(y) is obtained by lowpass filtering,

such that the nonzero DTFS components areY2[m] = Y [m] for m = −M, . . . , M .

Projection P3 : Given anN -periodic discrete time signaly, the projectionP3 provides a new signal

y3 = P3(y), with the set of in-band DTFS{Y3[m]}M
m=−M that areY3[m] = 1

τ

∑K−1
k=0 cke

−j
2πmtk

τ ,

m = −M, . . . , M , with tk, ck ∈ R, 0 < tk ≤ τ while the out-band DTFS remain the same, i.e.

Y [m] = Y3[m] for |m| > M .

ProjectionP3 involves augmenting the matrix in (3) using2M + 1 Fourier components. Notice that,

since there is quantization taking place, we do not have the exact Fourier coefficients, but only estimates

Y2[m] = X̂[m], and therefore (3) does not have an exact solution. Therefore, in order to get better

estimates of the time positions, we use a generalized form of(3), with an augmented equation system

using the2M + 1 Fourier component estimates and increasing the order of theannihilating filter, as

follows:

















Y2[0] Y2[−1] . . . Y2[−L]

Y2[1] Y2[0] . . . Y2[−L + 1]
...

...
...

...

Y2[M ] Y2[M − 1] . . . Y2[M − L]

































a0

a1

...

aL

















≃

















0

0
...

0

















(4)

where the left-hand-side matrix has a size(M +1)× (L+1) with K ≤ L ≤ M andL is the filter order.

In (4), we indicate with the symbol≃ that the system of equation is not exactly satisfied. Notice here

how the oversampling in frequency is introduced by extending the number of rows fromK +1 to M +1

and at the same time, making the order of the filter larger thanK, that isL ≥ K. By takinga0 = 1, the
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system (4) becomes equivalent to a high-order Yule-Walker (HOYW) system [12]:
















Y2[−1] Y2[−2] . . . Y2[−L]

Y2[0] Y2[−1] . . . Y2[−(L − 1)]
...

...
...

...

Y2[M − 1] Y2[M − 2] . . . Y2[M − L]

































a1

a2

...

aL

















≃ −

















Y2[0]

Y2[1]
...

Y2[M ]

















(5)

or in matrix notation,

Ĥa ≃ −ĥ (6)

whereĥ = [ Y2[0] Y2[1] . . . Y2[M ] ]T , a = [ a1 . . . aL ]T and

Ĥ =

















Y2[−1] Y2[−2] . . . Y2[−L]

Y2[0] Y2[−1] . . . Y2[−(L − 1)]
...

...
...

...

Y2[M − 1] Y2[M − 2] . . . Y2[M − L]

















Since bothĤ andĥ are distorted from the original values, the use of Total LeastSquare (TLS) method,

which allows for the fact that botĥH andĥ may have some error, instead of Least Square (LS) method

is more appropriate [13]. Simulation results in [14] show that, in general, for solving HOYW equations

the TLS method achieves the better accuracy than the LS method. This is particularly clear in cases

where the zeros of the annihilating filter approach the unit circle [13]. As pointed out before, the order

L of the annihilating filter may lie betweenK and M . So, there will beK “correct” or signal-related

roots andL − K extraneous roots, created artificially by the method. There are several ways to decide

the positions of the ”correct” roots. We propose two methods:

1) Choose theK roots that are closest to the unit circle. This is the common solution used for the

retrieval of sinusoids in noise [15], which can be seen as a dual problem in the frequency domain.

2) Perform two steps:

a) Compute roots without increasing the filter order.

b) Compute roots increasing the filter order and choose the roots that are the closest to the roots

in a).

Notice that by increasingM andL, extraneous roots can be very close to the unit circle and thefirst

method might fail. Since the second method does not have this problem and we are primarily interested

in the reconstruction accuracy for high oversamplings, we use the second method in this work.

If there was no quantization and the estimated{Y2(m)}M
m=−M were the exact ones, then the chosen

roots would all lie on the unit circle. However, because of the quantization error, an additional step is
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Fig. 4. (a) Non-consistent reconstruction algorithm consists of applyingprojectionsP1, P2 and P3 once; (b) TheWeak

consistency algorithm consists of first iterating projectionsP1 andP2, and then once applying projectionP3; (c) The Strong

consistency algorithm consists of iterating projectionsP1, P2 andP3.

required after the TLS projection, which consist of projecting the obtained roots to the unit circle, in

order to get unit-norm root estimatesûk = e−j
2πt̂k

τ . From ûk, we can directly compute the time positions

{t̂k}
K
k=0. Then, using (1), we can estimate the weights{ĉk}

K
k=0. The whole process including the TLS

projection, extracting the ”correct” roots and computing the time positions and weights, can be seen as

the third projectionP3.

Notice that although we are primarily interested in the reconstructionx̂(t), we can consider reconstruc-

tion y3 ∈ S2 ∩ S3 since there is one-to-one correspondence between the set ofall possible inputsx(t)

and a subset ofH, which is exactlyS2∩S3. After defining the sets of constraints and the corresponding

projections we are ready to formally define the non-consistent reconstruction and to introduce the two

levels of consistency.

Definition 1: Reconstructiony3 = P3(P2(yq)) is called a non-consistent reconstruction.

What makes this reconstruction non-consistent is the fact that after re-sampling and re-quantizing, the

signalP2(yq) may not always lie in the same quantization bins as the original y, or equivalently, it is

possible thatP2(yq) /∈ S1∩S2. Notice that, quantization applied to a signal that belongsto S1∩S2 makes

it leaveS1 ∩ S2, although it still remains in the global spaceH. Certain improvement can be achieved

forcing some of the previously defined constraints. Therefore, we defineWeakconsistent reconstruction,

as follows:

Definition 2: Reconstructiony3 ∈ P3(S1 ∩ S2) is calledWeakconsistent reconstruction.

To impose theWeakconsistent reconstruction, notice that setsS1 and S2 are convex sets andP1

and P2 are convex projections. Therefore, starting from the quantized samplesyq obtained from the

original signal, and iterating only the projectionsP1 and P2, we will converge toy2 ∈ S1 ∩ S2. The

convergence is ensured by the theorem of alternating projections on convex sets (POCS) [15]. Moreover,

in practice, numerically speaking, aWeakconsistent reconstruction can be approached within a finite

number of iterations. Once we have converged to the reconstructiony2 ∈ S1∩S2, we apply the additional

projectionP3, over the setS3 to obtainy3 ∈ P3(S1 ∩S2) ⊂ S2 ∩S3. TheWeakconsistency algorithm

is illustrated in Fig. 4(b).
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Notice that, as opposed to the setsS1 andS2, which do not contain any information about the structure

of the signalx(t), the setS3 use the knowledge about the Fourier coefficients originated from a stream

of Diracs. Following the idea ofWeakconsistent reconstruction we can extend the concept of consistency

to not only the two setsS1 andS2 but alsoS3. These three sets are used to enforce a stronger sense of

consistency, that is calledStrongconsistency and is defined as follows:

Definition 3: Reconstructiony3 ∈ S1 ∩ S2 ∩ S3 is calledStrongconsistent reconstruction.

The concept of theStrongconsistency adds a third property in addition to the previous two properties

defined by the concept ofWeakconsistency. Similarly to theWeakconsistency algorithm we can define

a Strongconsistency algorithm, where we generalize the idea of alternating projections to more than two

projections. We form a composite projection by the sequential application ofP1, P2 and P3 and the

goal is to converge to a point in the intersection setS1 ∩ S2 ∩ S3. In practice, we have to check that

the reconstructed signaly2 (see Fig. 1) is the result of filtering a periodic stream of Diracs. In terms of

Fourier coefficients,Strongconsistent reconstruction means thaty2 has Fourier coefficients satisfying (1).

Notice that although for high enough oversampling, the projectionP3 is convex, the setS3 is not convex.

In general, this could cause problems when iterating the composite projectionP3P2P1, because while

any projectionPi mapping toSi will reduce (more precisely, not increase) the distance toSi, if one of

the sets is not convex, we could still get an increase in distance to the intersection setS1∩S2∩S3. Here,

we conjecture that for large enoughRt andRf , the convergence property is ensured. Our experimental

results in Section VI confirm clearly this conjecture. TheStrongconsistency algorithm is illustrated in

Fig. 4(c). Notice that the complexity of theStrong consistent reconstruction is higher than theWeak

consistent algorithm, because it involves iterations of all three projections.

To illustrate the fact thatStrongconsistency introduces one more set of constraints and hence reduces

the set of possible reconstructions, as compared toWeakconsistency, we remark that

S1 ∩ S2 ∩ S3 ⊂ S3 ⇒ P3(S1 ∩ S2 ∩ S3) = S1 ∩ S2 ∩ S3.

On the other hand,

P3(S1 ∩ S2 ∩ S3) ⊂ P3(S1 ∩ S2),

that confirms that the set ofStrongconsistent reconstruction is a subset of theWeakconsistent recon-

struction set. This implies that by enforcingStrong consistency in our reconstruction, on average, the

reconstruction will be closer (or the same, but never further) to the original signal, than in the case of

enforcing onlyWeakconsistency.
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It is important to note that, sincey2 is a bandlimited signal, there exist algorithms [16], [17],[18] for

reconstructingy2 which do not require iterated projections and which achievea similar reconstruction

accuracy as the one shown in Theorem 1 (see Section V). These algorithms could then be followed by

projectionP3 in order to achieve a performance similar to theWeakconsistency algorithm. However, the

algorithms in [16], [17], [18] do not ensure the consistencywith respect to the quantization bins, which

means that they can not be used, together with projectionP3, in order to achieveStrongconsistency.

More specifically, iterating the algorithms in [16], [17], [18] together with projectionP3, we will be

like projecting only on the spaceS2 and S3. In our Strong consistent reconstruction algorithms (see

Fig. 4(c)), by projecting on the additional setS1, we reduce the set of possible reconstructions, and

consequently, we increase further the reconstruction accuracy.

A. Extension to other non-bandlimited signals with finite rateof innovations

Our reconstruction algorithms can be applied to other typesof signals with finite rate of innovation,

such as finite (non-periodic) streams of Diracs and periodic nonuniform splines, where oversampling in

time and in frequency can be again introduced.

The reconstruction of finite streams of Diracs from filtered unquantized samples, is explained in [1].

Basically, after getting the filtered samplesyn, using a sinc sampling kernel, an annihilating discrete-time

filter method is used to obtain first the time positions and then the weights. In the case of quantization,

after quantizing the samplesyn, as before, we can project to the space of (non-periodic) bandlimited

signals, with bandwidth determined by the oversampling in frequency, and check if the new samplesŷn

belongs to the corresponding quantization bins. If this is not the case, we can perform projectionP1, as

before. Similarly toP3, we can define a projection on the signal space of finite streams of Diracs.

Analyzing periodic non-uniform splines, we can see that the(S + 1)th derivative of a periodic

nonuniform spline of degreeS with knots at{tk}
K−1
k=0 is given by a periodic stream ofK Diracs. This

allows us to extend easily the reconstruction algorithm to the case of nonuniform splines. The(S + 1)th

derivative of a nonuniform splinex(S+1)(t) has Fourier coefficients given by:

X(S+1)[m] =
1

τ

K−1
∑

k=0

cke
−j2πmtk

Differentiating (1)S + 1 times we see that, the Fourier coefficientsX(S+1)[m] are related to the Fourier

coefficientsX[m] of the corresponding stream of Diracs that has time positions {tk}
K−1
k=0 and weights

{ck}
K−1
k=0 , in the following way:

X(S+1)[m] = (j2πm/τ)(S+1)X[m], m ∈ Z.
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Therefore, we can use the same consistent reconstruction algorithms for reconstructing the time positions

and weights of Diracs, providing the final reconstruction of the nonuniform splines.

V. THEORETICAL PERFORMANCE OFOVERSAMPLING

A. Error in Time Positions{tk}

As explained in the previous section, in order to estimate the time positions and weights, some of

the consistency constraints that we enforce involve theN -periodic band-limited(M ≤ N) discrete-time

signaly2. We can easily change the bandwidth of the signaly2, by increasing/decreasing the bandwidth of

the sampling kernelhB, which is equivalent to changing the oversampling ratio in frequencyRf . Notice

that by changing the bandwidth, we change the signaly2. In terms of DTFS, increasing/decreasing the

bandwidth is equivalent to adding/removing nonzero DTFS. Similarly, for the fixed bandwidth of the

sampling kernel we still can choose how many samplesy we want to have, that is, what will be the

oversampling ratio in timeRt. In the following we are going to see what is the dependence ofthe

reconstruction quality onRt andRf . As a quantitative characterization of the reconstructionquality we

introduce the following distances:

1) d1(y, y′) = MSE(y, y′) = MSE(Y , Y ′) where the last equality comes from the Parseval

theorem;

2) d2(y, y′) = MSE(P3(P2(y)), P3(P2(y′)));

3) d3(y, y′) = MSE(t, t′) for y ∈ S2 ∩ S3;

4) d4(y, y′) = MSE(c, c′) for y ∈ S2 ∩ S3.

In practice, the distancesd2, d3 andd4 are the most interesting. However, in some of our proofs and

developments involvingd3, we need to make use of the distanced1 for the case ofy ∈ S1 ∩ S2 as an

intermediate step. Later we show theoretically thatd4 depends ond3 and we also show experimentally

that d1 does not differ too much fromd2 when y ∈ S1 ∩ S2 (see Fig. 5). For theStrong consistent

reconstruction the distancesd2 andd3, wherey ∈ S1 ∩ S2 ∩ S3, are experimentally shown in the next

section.

Theorem 1: Given the twoN -periodic discrete time signalsy, y′ ∈ S1 ∩ S2 where the setsS1 and

S2 are uniquely determined byx(t), Rt and Rf , there exists anN0 such that ifN ≥ N0, there is a

constantc > 0, which depends only onx(t) and not onRt andRf , such that:

d1(y, y′) ≤
c

R2
t

.

Proof: see Appendix I.
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The importance of this theorem is that even if we increaseRf , while keeping theRt constant, the

upper bound ofd1 remains the same. However, it is clear that since, we estimate the time positions from

DTFS of y2, the number of available Fourier components in addition tod1 directly impactsd3. That is,

increasingRf , intuitively will improve the time positions estimates. Onthe other hand, notice also that,

since from Theorem 1d1 will decrease as we increaseRt, thend3 will decrease as we increase bothRt

and Rf . Here, we also remark that increasingRt or/andRf , we also increase the number of samples

sinceN = (2K + 1)RtRf .

In the following theorem, we examine the order of dependenceof d3 as a function of both oversamplings

Rt andRf , for the case ofWeakconsistent reconstruction.

Theorem 2: Given the twoN -periodic discrete time signalsy, y′ ∈ S1 ∩ S2 where the setsS1 and

S2 are uniquely determined byx(t), Rt andRf , there exist some constantsa ≥ 1 andb ≥ 1, such that

if Rt ≥ a and Rf ≥ b, there is a constantc′ > 0 which depends only onx(t) and not onRt and Rf ,

and it holds that:

d3(y, y′) ≤
c′

R3
fR2

t

.

Proof: see Appendix II.

From Theorem 2 it can be seen that if we are limited to the some large but finite number of samples

and N ≫ 2K + 1, by increasingRf we reduce thed3 faster than by increasingRt. Thus, if we are

allowed to use a fixed number of samplesN and our goal is to minimize onlyd3 we will tend to increase

oversampling in frequency,Rf . In Sections VII and VIII the influence of increasing theRt andRf on

the required bit-rate and error-rate dependence will be considered as well.

B. Error in Weights{ck}

Given the time position estimates{t̂k} we can directly estimate the weights{ĉk} from (1) as:
















X[0]

X[1]
...

X[M ]

















=
1

τ

















1 1 · · · 1

u0 u1 · · · uK−1

...
... · · ·

...

uM
0 uM

1 · · · uM
K−1

































c0

c1

...

cK−1

















(7)

Notice here, that the Fourier coefficients are the one that comes as the result of the projectionP2, that

is X = Y2. We can also write the previous equation in the matrix notation as follows:

Y2 =
1

τ
V C.
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Notice that the matrixV hasM ≥ K rows, due to the oversampling in time, which implies that the

system in (7) is overdetermined. Thus, we can computeC in the two ways, using a TLS projection or

a LS projection. In the latter case,C given by:

C = (V HV )−1V HY2

The error in vectorC defined byd4 depends directly on the error inY2, which is equal tod1 in the case

of Weakconsistent reconstruction and on the error inV which is related to the error in time positions,

i.e. d3. Hence,

d4(y, y′) = f(d1(y, y′), d3(y, y′)) for y, y′ ∈ S1 ∩ S2.

Because of this dependence, in this work, we focus on the error related to DTFS and the error in time

positions. Moreover, in many practical applications, suchas UWB communications (e.g. PPM modulation)

and sensor networks sampling local physical sources, the important information is given by time positions.

VI. EXPERIMENTAL PERFORMANCE OFOVERSAMPLING
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Fig. 5. TheWeak consistent reconstruction. Dependence of accuracy on oversampling in timeRt for: (a) d1 - MSE of Fourier

coefficients whereX[m] = Y2[m] and Y ′
2 [m] is the reconstruction wherey2 ∈ S1 ∩ S2; (b) d3 - MSE of time positions.

In this section, we show experimental results for the three algorithms illustrated in Fig. 4, with

parameters:K = 2, τ = 10, tk ∈ (0, τ ], ck ∈ [−1, 1]. The positions and the weights are randomly

chosen from the corresponding intervals and the results arethe average over 300 signals. For theWeak

consistency algorithm, our numerical results confirm Theorems 1 and Theorem 2, with a performance of
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Fig. 6. TheNon-consistent, Weak consistent and Strong consistent reconstruction. Dependence of accuracy on oversampling

in frequencyRf for: (a) MSE of Fourier coefficientsX[m] = Y2[m]; (b) MSE of time positions.

O(1/R2
t R

3
f ), illustrated in Fig. 5 and Fig. 6. TheStrongconsistency algorithm provides an experimental

behaviour ofO(1/R2
t R

5
f ) that is also illustrated in Fig. 6. We have compared our consistent reconstruction

algorithms with the case of non-consistent reconstruction. A clear outperformance of our reconstruction

algorithms over non-consistent reconstructions is observed (see Fig. 5(a), 6).

We can conclude that by increasing the oversampling in frequencyRf , we can achieve a reconstruction

accuracy which is (polynomially) superior for both theWeakand theStrongconsistency algorithms than

the one obtained by increasingRt. Moreover, from the results of MSE dependence on the quantization

stepsize derived in Section VIII, we also conclude that oversampling in frequency outperform decreasing

of the quantization stepsize∆. Therefore, oversampling in frequency provides largest gain in performance.

Next, we analyze encoding schemes and the scaling laws that can be achieved in terms of bit rate and

error-rate dependence.

VII. E NCODING SCHEME AND BIT RATE

As explained in Section III, by increasingRt or Rf , we increase the number of samples{yn}. It is

clear that using the traditional way of encoding, that is, pulse-code modulation (PCM) encoding, the bit

rate depends linearly on the number of samplesN and for each sample, using a scalar quantizer with

stepsize∆, we need at most1 + log2(dy/∆) bits, wheredy denotes the dynamic range in amplitude of

the signaly(t). From (15) it can be easily shown that
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dy ≤ 2

(

K
∑

k=0

|ck|

)

2M + 1

τ
=⇒ dy = O(Rf ), (8)

and we assume that the weights are bounded by some fixed bounds,that is,ck ∈ [−a, a]. Hence, for a

fixed ∆, the bit rate can be bounded as:

BPCM =
N

τ

(

1 + log2

(

dy

∆

))

= N O(log2(Rf )) = O(RtRf log2 Rf ). (9)

On the other hand, when the sampling interval is sufficiently fine, some simple and efficient techniques

can be developed [10], for which the required bit rate is substantially smaller than in the case of PCM

encoding. In the following, we show how to make use of the results in [10], developed for bandlimited

signals to compute the dependence of the bit rate on bothRt andRf , for our problem.

The idea originates from the equivalence between the traditional interpretation of the digital version of

an analog signal, where the uncertainty is determined by thequantization stepsize at the exact time

instants, and the alternative one [10], [19], where the digital signal is uniquely determined by the

sampling intervals in which its quantization threshold crossings occur. A unique representation in the

alternative interpretation is ensured if the following twoconditions are satisfied: 1) the quantization

threshold crossings are sufficiently separated, 2) at most one quantization threshold crossing occurs in

each sampling interval. The first condition requires that the intervals between consecutive crossings

through any given threshold are limited from below by a constant T1 > 0. The second condition is

satisfied if the slope of the signal is finite, which is ensured bythe fact that the signaly(t) has finite

energy and is bandlimited. Thus, there is always an intervalT2 > 0 on whichy(t) cannot go through more

that one quantization threshold crossing. For a sufficientlyfine sampling period, that isTs ≤ min(T1, T2),

all quantization threshold crossings occur in distinct sampling intervals, and a unique representation is

ensured.

The encoded information, in the case of threshold crossings (TC) based encoding, are the positions of

the sampling time intervals in which the quantization threshold crossings occur. The signal is observed

in a given time interval, which in our case is the periodτ . For determining the position of each sampling

interval of lengthTs = τ/N , we need at most1 + log2(τ/Ts) bits. Every threshold crossing can be

determined with respect to the previous one by introducing only one additional bit to indicate the direction,

upwards or downwards, of the next threshold crossing. IfC quantization threshold crossings occur during

the periodτ , then the required bit rate isBTC = C(2 + log2(Ts/τ)).

Next, we need to determine the maximal number of threshold crossings. There are two types of threshold

crossings: 1) a d-crossing which is preceded by a threshold crossing of a different threshold level (Fig. 3(a)

- first and second treshold crossing), and 2) an s-crossing which is preceded by a crossing of the same
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threshold level (Fig. 3(a) - second and third treshold crossing). The sum of these two types of threshold

crossings is the total number of threshold crossings per period τ . From results on non-harmonic Fourier

expansions [20], the s-crossings for the case of bandlimited signals constitute a sequence of uniform

density3ρ, which equivalently means that the zeros of the first derivative of y(t) constitute a sequence of

the same density. Then,ρ is bounded asρ = O(fmax) = O(Rf ), wherefmax is the maximum frequency

of the signaly(t) and it is of the order of the bandwidthB. Consequently, the number of s-crossingsCs

is given byCs = O(fmax) = O(Rf ). The maximum possible number of d-crossingsCd depends linearly

on the maximum dynamic rangedy of the signaly(t), that isCd = O(dy

∆ ) = O(Rf ) and., as it is shown

in (8), depends linearly onRf , hence, the same dependence holds for the number of d-crossings, that is,

Cd = O(Rf ). Therefore,

BTC ≤ c3Rf (2 + log2(c4RtRf )), (10)

where c3 and c4 are some constants that depend on the specific signalx(t) and on the quantization

stepsize∆, but which do not depend onRt andRf . The additional bits required for specifying the first

threshold crossing (the others are going to be specified with respect to this one) have arbitrary small

effect on the required bit rate over the sufficiently long timeperiod.

Comparing (9) and (10), we can conclude that the TC based encoding has clear advantages over the

traditional PCM encoding, since the bit-rate for TC based encoding grows much more slowly as a function

of the oversampling in timeRt. We also remark that these coding results are applicable regardless of the

reconstruction method that is used (e.g. consistent or non-consistent reconstruction).

VIII. E RROR-RATE DEPENDENCE

A natural question that arises in oversampled A/D conversion is to compare the improvement in error-

rate that comes, on the one hand, from the oversamplings, in our case from increasingRt andRf , and on

the other hand, from reducing the quantization stepsize∆. For the measure of the error-rate dependence,

we consider the MSE of the time positions, as a function of the bit rate.

We have shown in Section V what is the dependence of both the MSE of time positions and the bit

rate as a function of the oversampling ratiosRt andRf . In this section, we also introduce the dependence

3A sequenceλn of real or complex numbers has uniform densityρ, ρ ≥ 0, if there are constantsL ≤ ∞ and s > 0 such

that: a)|λn − n
ρ
| ≤ L, n ∈ Z, b) |λn − λm| ≥ s > 0, wheren 6= m.
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of the MSE of time positions and the bit rate on the quantization stepsize∆, and then we examine the

error-rate dependence considering all the three parameters, Rt, Rf and∆.

It has been shown in [10] that if: 1) there is a large number of quantization levels compared to the signal

amplitude range, and 2) the quantization stepsize∆ is sufficiently small, then, it is approximately correct

to model the quantization error as a uniformly distributed white noise over the interval[−∆/2, ∆/2] that

is independent of the input signal. Assuming the white noisebased model, we have:

MSE(y(t), ŷ(t)) = MSE(Y2, Ŷ2) = ∆2/12.

Recall from Section II that we estimate the time positions from the Fourier coefficientsX[m] = Y2[m],

hence, the error for the time positions can be computed to a first order approximation4 as:

E(tk) =
M
∑

m=−M

∂tk
∂Y2[m]

E(Y2[m])

|E(tk)|
2 ≤

(

M
∑

m=−M

∣

∣

∣

∣

∂tk
∂Y2[m]

∣

∣

∣

∣

2
)(

M
∑

m=−M

|E(Y2[m])|2

)

= ξ MSE(Y2, Ŷ2) (11)

whereξ =
∑M

m=−M

∣

∣

∣

∂tk

∂Y2[m]

∣

∣

∣

2
measures the dependence of the time positions on the Fouriercoefficients

and does not depend on the quantization stepsize∆. The inequality in (11) follows simply from Cauchy-

Schwartz inequality. Therefore, for sufficiently small∆ it holds that:

MSE(t, t̂) = O(∆2). (12)

Concerning the bit rate, it is clear that increasing/decreasing the quantization stepsize, we reduce/increase

the required bit rate.

In the case of PCM encoding, for a fixedRt andRf , it can be seen from (9) that, the bit rate, as a

function of the quantization stepsize∆, is given by:

BPCM = N

(

1 + log2

(

dy

∆

))

= O

(

log2

(

1

∆

))

. (13)

In the case of TC based encoding, the dependence of the bit-rate on the quantization step size∆ comes

through the dependence on the maximum number of threshold crossings, namely,Cmax(∆) = O(1/∆),

which together with (10) and taking into account that nowRt andRf are kept constant, results in:

BTC ≤ c5
1

∆
Rf (2 + log2(c4RtRf )) = O

(

1

∆

)

, (14)

4We assume sufficiently high enough oversamplings and sufficiently smallquantization stepsize, so that the first order

approximation is correct.
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TABLE I

ERROR-RATE DEPENDENCE

Encoding method Variation Bit rate Weakconsistency - theory Strongconsistency - experiments

MSE(t, t̂) error-rate MSE(t, t̂) error-rate

Rt O(log2 Rt) O(1/R2
t ) O(2−2αBT C ) O(1/R2

t ) O(2−2αBT C )

Threshold crossing encoding Rf O(Rf log2 Rf ) O(1/R3
f ) O(B−3

TC) O(1/R5
f ) O(B−5

TC)

∆ O(1/∆) O(∆2) O(B−2
TC) O(∆2) O(B−2

TC)

Rt O(Rt) O(1/R2
t ) O(B−2

PCM ) O(1/R2
t ) O(B−2

PCM )

PCM encoding Rf O(Rf log2 Rf ) O(1/R3
f ) O(B−3

PCM ) O(1/R5
f ) O(B−5

PCM )

∆ O(log2(1/∆)) O(∆2) O(2−2βBP CM ) O(∆2) O(2−2βBP CM )

whereBTC denotes the bit rate corresponding to TC based encoding andc5 is some constant that does

not depend onRt, Rf and∆. All the results, for theMSE(t, t̂) and the bit rate, are given in Table I.

Analyzing Table I, we can see first that in the case of PCM encoding, the best error-rate dependence

is obtained by decreasing the quantization stepsize∆ instead of increasing any type of oversampling.

Since we have a logarithmic increaseO(log2(1/∆)) of the bit rate and an error decrease ofO(∆2),

changing the stepsize∆ and fixing the oversampling ratios, we get a dependence of MSE ofthe order of

O(2−2βBP CM ), whereβ is some constant that does not depend onBPCM . Assuming PCM encoding, this

performance can not be achieved by increasing the oversampling ratiosRt andRf . However, using the TC

based encoding, we can achieve the same dependence (as when reducing the quantization stepsize∆), by

increasing the oversampling in timeRt. This is very important because, in practice, the cost (complexity

of expensive high-precision analog circuitry) of halving∆ is much higher than that of doublingRt.

However, by increasing the oversampling in frequencyRf , the required bit rate grows exponentially

faster than in the case of increasingRt or decreasing∆. Therefore, asymptotically (high rates), the

error-rate performance obtained by increasingRf is inferior to that of increasingRt or decreasing∆.

IX. CONCLUSIONS ANDFUTURE WORK

In this paper, we studied reconstruction of non-bandlimited signals with finite rate of innovation,

particularly, periodic streams of Diracs, under the presence of quantization. High reconstruction accuracy

is obtained by introducing the oversampling in time and in frequency, and enforcing the concept of

consistency. We defined the concept ofWeakandStrongconsistency and we examined the performance

in terms of MSE of time positions, that is achieved withWeak and Strong consistent reconstruction

algorithms. We concluded that the oversampling in frequency provides a superior decrease in MSE of
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time positions. On the other hand, in terms of error-rate dependence, by using a threshold crossing

based encoding, the oversampling in time provides a superior error-rate trade-off over the oversampling

in frequency. Moreover, it is also observed that the error-rate dependence obtained from doubling the

oversampling in time is the same as the one obtained from halving the quantization stepsize, while,

in practice, the cost of performing the oversampling in timeis much lower than that of reducing the

quantization stepsize.

Some future lines of research include finding faster consistent reconstruction algorithms, such as

algorithms which do not require projection iterations, extension of our results of A/D conversion for

the case of more general sampling kernels (e.g. Gaussian kernels), reconstruction of signals with finite

rate of innovations under physics based kernels, such as those given by a heat diffusion equation [5],

and extension of our results to multidimensional non-bandlimited signals with finite rate of innovations.

APPENDIX I

PROOF OFTHEOREM 1

In order to prove Theorem 1, we need first to compute the slope of the filtered signaly(t). This signal

is nothing but the sum of ”2M + 1-periodized” sinc functions, that is:

y(t) =
K
∑

k=0

ck
sin((2M + 1)(t − tk)π/τ)

sin((t − tk)π/τ)
(15)

It is then obvious that the slope ofy(t) is of the following order:

dy(t)

dt
=







O(1), for t = tk

O(Rf ) otherwise.
(16)

Using the results on oversampledA/D conversion of band-limited signals inL2(R) [10], it can be

shown that in the case of stable sampling5 [21], which is satisfied by the class of periodic bandlimited

signals, theMSE(y(t), ŷ(t)) can be written as follows:

MSE(y(t), ŷ(t)) ≤
9

4

B

A

τ2

N2
||y′(t)||2, (17)

5Definition of stable sampling: A sequence of real numbers(λn)n∈Z is said to be a sequence of stable sampling in the space

of square-integrableπ-bandlimited function, denoted byVπ, if there exist two constants,A > 0 andB < ∞, such that for any

f in Vπ, the following sequence holds:

A

Z
∞

−∞

|f(x)|2dx ≤
X

n

|f(λn|
2 ≤ B

Z
∞

−∞

|f(x)|2dx



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 23

whereA andB are some constants such thatA > 0 andB < ∞ and they do not depend on the signal

y(t) (particularly, they come from the definition of stable sampling) and|| · || is theL2(R) norm. Inserting

(16) in (17) we get the final conclusion, that is:

d1(y, ŷ) = MSE(y(t), ŷ(t)) ≤
9

4

B

A

τ2

(2K + 1)2R2
t R

2
f

O(R2
f ) = O

(

1

R2
t

)

. (18)

Here,y and ŷ are any two signals inS1 ∩ S2.

APPENDIX II

PROOF OFTHEOREM 2

The annihilating filter method with oversampling in time and infrequency is the classical high-order

Yule-Walker system (HOYW)[12]. In order to prove Theorem 2, we go through the two main steps:

1) We first show how the estimation accuracy is effected by:

a) the number of YW equations, or equivalently, the oversampling in frequencyRf ;

b) the model order, or equivalently, the filter order L.

For this purpose, we use a common singular value decomposition (SVD)-based HOYW procedure.

2) Then, we use the known result that the TLS-based HOYW method andthe SVD-based HOYW

method are asymptotically equivalent.

SVD-based method finds the rank-K (K being the number of Diracs) best approximation̂HK in the

Frobenious norm sense and obtains the following solution:

ĤK â = −ĥ

â = −(ĤK)†ĥ

where(·)† denotes the Moore-Penrose pseudoinverse of(·). In general, the matrix̂H has full rank being

equal to min(L, M) and (Ĥ)† does not approach(H)† which has rankK, even for the case whenM

increases without bound. In contrast to(Ĥ)†, the pseudoinverse(ĤK)† → (H)† as the error inX̂[m]

becomes smaller. This is a crucial property that is necessaryfor reducing the error in the estimates.

Suppose thata are the exact coefficients of the annihilating filter polynomial. Then, the following

analysis holds:

â − a = −(ĤK)†ĥ − a

= −(ĤK)†(ĥ + Ĥa − Ĥa) − a

= −(ĤK)†(ĥ + Ĥa) + [(ĤK)†Ĥ − I]a

= −(ĤK)†ξ + [(ĤK)†Ĥ − I]a (19)
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where

ξ = ĥ + Ĥa = [ ĥ Ĥ ]





1

a



 .

First, we show what is the relationship between the matrixPa = (â − a)(â − a)T , associated to the

annihilating filter coefficients and the matrixPt = (t̂ − t)(t̂ − t)T , associated to the time positions.

The angular positions of the roots of the annihilating filter give us the estimates of the time positions.

Assuming that the roots are sufficiently close to the unit circle, so that the first approximation of the

Taylor series expansion corresponding to the time positions holds, it can be shown [12] that:

t̂k − tk =
1

2π
Re

{

βk − jαk

α2
k + β2

k

uk
T (â − a)

}

with uk = [u−1
k u−2

k . . . u−L
k ]T or, in matrix form,

t̂ − t =
1

2π
Re{FG(â − a)}. (20)

Therefore:

Pt = (t̂ − t)(t̂ − t)T =
1

4π2
Re{FG(â − a)}Re{(â − a)T GT F T },

where:

αk = [ cos (2πtk) 2 cos (4πtk) . . . L cos (2Lπtk) ]a,

βk = [ sin (2πtk) 2 sin (4πtk) . . . L sin (2Lπtk) ]a,

F =











β1−jα1

α2

1
+β2

1

0

...

0 βK−jαK

α2

K+β2

K











, G =











u−1
0 . . . u−L

0
...

...

u−1
K−1 . . . u−L

K−1











.

Applying the same arguments as in [22], where a similar expression is found for the complex sinusoids

in noise, it can be shown that:

Pt =
1

4π2
Re{FG(â − a)}Re{(â − a)T GT F T } =

1

2

1

4π2
Re{FGPaGHF H} (21)

where(·)H denotes Hermitian transpose.

Unfortunately, it appears difficult to derive an explicit expression for the matrixPa for the various

choices ofL, because the vectora changes itself withL. However, it is possible to obtain a compact

formula for Pt that is:

Pt =
1

2

1

4π2
Re{FGH†ξξHH†HGHF H} (22)
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and investigate the influence ofM andL on the estimation accuracy. For the proof of (22) we refer to

[12], and its references, where the related problem of estimating sinusoids in noise, is studied.

Now, we show that the order of magnitude ofP t is O
(

1
R2

t R3

f

)

for sufficiently largeM and whenL

is of the order ofM . First, notice thatH can be factorized as follows:

H =
K−1
∑

k=0

ck











u−1
k . . . u−L

k
...

...

uM
k . . . uM−L

k











=











1 . . . 1
...

...

uM
0 . . . uM

K−1





















c0 0

. ..

0 cK−1





















u−1
0 . . . u−L

0
...

...

u−1
K−1 . . . u−L

K−1











= SCG. (23)

Since all these matrices are of full rank, we can use standard results on the Moore-Penrose pseudoin-

verse together with (23), to show that:

H† = GH(GGH)−1C−1(SHS)−1SH . (24)

Inserting (24) in (22) we obtain that:

P t =
1

4π2
Re{FC−1(SHS)−1SHξξHS(SHS)−1C−1F H} (25)

In the next steps of the proof, we analyze in detail the different terms involvingP t in (25). We examine

the order of each term and use the notationg = diag[O(f1(q))] + O(f2(q)) to denote that matrixg has

diagonal elements of the orderO(f1(q)) and off-diagonal elements of the orderO(f2(q)) while f1(q)

andf2(q) are any two functions ofq. For evaluating the order of some terms we also need the following

standard result [23] :

1

M s+1

M
∑

m=1

mse−jm(ω−ω) =







O(1) for ω = ω ands ≥ 0

O(1/L) − jO(1/L) for ω 6= ω ands ≥ 0
(26)

1) C = diag[O(1)] and consequentlyC−1 = diag[O(1)], sinceC depends only on the signalx(t)

and has no dependence onM or L.

2) 1
LGGH =diag[O(1)]+O(1/L)−jO(1/L) and consequently

(

1
LGGH

)−1
=diag[O(1)]+O(1/L)−

jO(1/L), which can be verified by direct multiplication using (26).

3) 1
MSHS=diag[O(1)]+O(1)−jO(1/M) and consequently

(

1
MSHS

)−1
=diag[O(1)]+O(1)−jO(1/M),

which can be verified again by direct multiplication since thematrix S has a similar structure as

GH .

4) LF =diag[O(1/L)+jO(1)] and consequently(LF )−1 =diag[O(1/L)+jO(1)]
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From the definition ofαk, we have that:

1

L
α0 =

1

L
[ cos 2πt0 · · · L cos L2πt0 ]A

=
1

L
[ cos 2πt0 · · · L cos L2πt0 ](−H†h)

=
1

L2
[ cos 2πt0 · · · Lcos L2πt0 ]GH

(

1

L
GGH

)−1

C−1

(

1

M
SHS

)−1( 1

M
SHh

)

. (27)

Next, by multiplying the corresponding matrices, it can also be verified, by direct computation,

that:

1
L2 [ cos (2πt0) · · · L cos (2Lπt0) ]GH =

= [ O(1) − jO(1/L) O(1/L) − jO(1/L) · · · O(1/L) − jO(1/L) ].
(28)

For the last part in (27) we get that:

1

M
SHh =











u0
0 . . . u0

K−1
...

...

uM
0 . . . uM

K−1











H 









1
τ

∑K−1
k=0 cku

0
k

...

1
τ

∑K−1
k=0 cku

M
k











=
1

M











∑M
m=0

∑K−1
k=0 cku

m
k u−m

0

...
∑M

m=0

∑K−1
k=0 cku

m
k u−m

K−1











.

The term on the right hand-side of the previous equation has the following order:

1

M

M
∑

m=0

K−1
∑

k=0

cku
m
k u−m

r =
1

M

K−1
∑

k=0

ck +
1

M

M
∑

m=1

K−1
∑

k=0

cke
−j 2π

τ
m(tk−tr)

=
1

M

K−1
∑

k=0

ck +
1

M

M
∑

m=1

cr +
1

M

M
∑

m=1

K−1
∑

k=0,k 6=r

e−j 2π

τ
m(tk−tr)

= O(1/M) + O(1) +
K−1
∑

k=0,k 6=r

ck(O(1/M) + jO(1/M))

= O(1) + jO(1/M)

and therefore
1

M
SHh = [O(1) + jO(1/M)]K×1. (29)

Putting together the results from previous steps and substituting (28) and (29) in (27) and assuming

that L andM are of the same order, we can conclude that:

1

L
α0 = O(1) + jO(1/L). (30)

Similarly:

1
L2 [ sin (2πt0) · · · L sin (2Lπt0) ]GT =

= [ O(1/L) − jO(1) O(1/L) − jO(1/L) · · · O(1/L) − jO(1/L) ],
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obtaining forβ0 that:
1

L
β0 = O(1/L) + jO(1).

The same procedure can be used to evaluate the order of{αk, βk} for k ≥ 0, obtaining:

1

L
αk = O(1) + jO(1/L) and

1

L
βk = O(1/L) + jO(1).

This leads to the conclusion thatLF = diag[O(1/L) + jO(1)].

5) SHξξHS = MSE(X, X̂)O(L) = MSE(Y2, Ŷ2) for M ≥ L

The key point is that first we can split matrixξξH into two terms, one depending only onRt, and

the other one depending only onM andL, or equivalently, onRf , assuming thatL is also of the

order ofM . Following similar arguments as in [12], the matrixξξH can be rewritten as:

ξξH = MSE(Y2, Ŷ2)A∗AT ,

where(·)∗ denotes conjugation of(·) and

A =











1 a1 · · · aL 0

... .. . .. .

0 1 a1 · · · aL











(M+1|M+L+1)

Thus, it follows that:

SHξξHS = MSE(Y2, Ŷ2)SHA∗AT S.

In order to obtain an insight on the order ofSHξξHS, we compute the explicit form for the case

of one Dirac and describe how to generalize the result for thecase ofK Diracs.

For K = 1, we have that:

S =
(

u0
0 u1

0 · · · uM
0

)T
, SHS = M + 1, GGH = L,

a = −H†c0

















u0
0

u1
0

...

uM
0

















= −GH(GGH)−1C−1(SHS)−1SHSc0 = −
1

L











u1
0

...

uL
0










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Then, for the case whereM ≥ L, we have that:

AT S =











































1

− 1
Lu0 0
...

.. .

− 1
LuL

0

1

.. . − 1
Lu0

0
...

− 1
LuL

0



























































u0
0

u1
0

...

uM
0

















=























































1

u0

(

1 − 1
L

)

...

uL−1
0

(

1 − L−1
L

)

0
...

0

−uM+1
0

L
L

...

−uM+L
0

1
L























































and

SHA∗AT S = 1 +

(

1 −
1

L

)2

+ · · · +

(

1 −
L − 1

L

)2

+ 1 +

(

L − 1

L

)2

+ · · · +

(

1

L

)

=
2

L2

L
∑

i=0

i2 =
(L + 1)(2L + 1)

3L
.

Now, noticing that the coefficients of the annihilating filter have the following form:

a = −H†S











c0

...

cK−1











= −(GH(GGH)−1C−1(SHS)−1SH)S











c0

...

cK−1











(31)

= −GH(GGH)−1











1
...

1











= −
1

L

















∑K−1
k=0 u1

k + O(1/L)
∑K−1

k=0 u2
k + O(1/L)

...
∑K−1

k=0 uL
k + O(1/L)

















(32)

then, by doing the same steps as for the case of one Dirac, we get that the diagonal elements of

SHA∗AT S are of the order O(L), or equivalently:

1

L
(·)ii =

1

L
( u0

i u−1
i · · · u−M

i
)A∗AT

















u0
i

u1
i

...

uM
i

















= O(1) + O(1/L).
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For the off-diagonal elements, taking into account the specific structure ofA∗AT that follows from

(31), we have:

|
1

L
(·)ij | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

L
( u0

i u−1
i · · · u−M

i
)A∗AT

















u0
j

u1
j

...

uM
j

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
1

L
(·)ii = O(1) + O(1/L).

This upper bound is sufficient for us and we do not have to search for tighter bounds. Thus:

SHA∗AT S = O(L) (33)

Finally, we can calculate the order of the matrixPt as follows:

P t =
1

2

1

4π2

1

L2M2
Re

{

(LF )C−1

(

1

M
ST S

)−1
(

ST ξξT S
)

(

1

M
ST S

)−1

C−1(LF )H

}

=
1

2

1

4π2

L

L2M2
MSE(Y2, Ŷ2)[O(1) + jO(1)]K×K

=
1

LM2
d1(y, ŷ)[O(1) + jO(1)]K×K (34)

ChangingL = M = O(Rf ) in (34) and using the result from Theorem 1 fory ∈ S1 ∩S2 we get

that:

P t = O

(

1

R2
t R

3
f

)

.

The final results follows from [24], where it is shown that the results derived for the Yule-Walker

system and the least square solution has asymptotically thesame behavior as the total least square

solution. Therefore,

d3(y, ŷ) = MSE(t, t̂) =
K
∑

i=1

(Pt)ii = O

(

1

R2
t R

3
f

)

. (35)
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