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ABSTRACT K Diracs, characterized by a set of time positiofts } /' and
weights{ck},f:’ol. We study the reconstruction quality under quan-
tization that can be improved by introducing two types of oversam-
pling: a) oversampling in frequency, determined by the bandwidth
of the low-pass sampling kernel, and b) oversampling in time, de-
termined by the number of samples in time taken from the acquired
filtered signal.

We achieve high accuracy in the reconstruction by enforcing
s N that the reconstructed signal satisfies three convex sets of con-
types of oversampling, namely, oversampling in frequency and straints which are related to: 1) the sampling kernel, 2) the quan-

?r:/ersamplltng ,'[.n tlrtne. tl_-hgh iﬁcu;ﬂcy IS achlevec: b{‘ enfo;cw)gt tization operation itself and 3) the space of continuous periodic
€ reconstruction 1o sa isfy either three cONvex Sets of constraiNtSqy .o ams ofi Diracs. A signal reconstruction satisfying the three
related to: 1) sampling kernel, 2) quantization and 3) periodic

‘ f Di hich is th id t isieo ; sets is said to providstrongconsistency while if it satisfies only

ts reams o | |trk?1csf_ Wt tlc IS e_g_ sal ko prov It ng c\:/i)/nss- the first two sets it is said to provideeakconsistency. We pro-

encytﬁr only the ;rs t.WO‘ F;YOV.Ithlnwe?h C?nst";;ncy'h. e.prli" pose two reconstruction algorithms achieviwgak consistency

Egﬁ;stéﬁi;e:r? dn?hrgir:(i)rg %r?(emacmes\'/iﬂ;o rlgjscongi:tgnlsyegor and which show experimentally an MSE performance for the time
. : . : ositioné which decreases @3(1/R?R?) andO(1/R? R}), where

these three algorithms, respectively, the experimental MSE perfor b (1/Bi Ky) (1/Ri Ry)

. - "R; and R; are the oversampling ratios in time and frequency, re-
2 p3 2 4
mance for ime positions decreased¥d /R Ry), O(1/ Rt Ry) spectively. We prove that the MSE for these algorithms should

andO(1/R{R}), where R, and Ry are the oversampling ratios  gecrease at least &(1/R?R%). We also propose a reconstruc-
in time and in frequency, respectively. It is also proved theoret- g algorithm achievingstrong consistency for which we show

We consider the problem of A/D conversion for non-bandlimited

signals that have a finite rate of innovation, in particular, the class
of continuous periodic stream of Diracs, characterized by a set of
time positions and weights. Previous research has only consid-
ered the sampling of these signals, ignoring quantization, which
is necessary for any practical application (e.g. UWB, CDMA). In

order to achieve accuracy under quantization, we introduce two

ically that. our reconstruction algorithms satisfyim;gzagconsis- experimentally an MSE performanc¥(1/R? R}).
tency achieve an MSE performance of at leagt / i Ry ). This paper is organized as follows. Section 2 introduces the
class of signals given by continuous-time periodic streams of Diracs.
1. INTRODUCTION Section 3 defines the concepts of oversampling in time and in fre-

guency. Section 4 introducegakconsistency andtrongconsis-
Recent results in sampling theory [1] have shown that there existt€ncy and proposes three reconstruction algorithms, two of them
non-bandlimited signals which can be uniformly sampled at a fi- @chievingweak consistency and the other one achievstgng
nite rate of innovation (finite number of degrees of freedom per Consistency. In Section 5, we prove an upper bound for the MSE
unit time) using an appropriate sampling kernel and then perfectly Performance achieved hyeakconsistency and in Section 6, we
reconstructed. In all this previous research work, it has been as-Present several experimental results.
sumed that no quantization of the samples takes place and thus,
perfect reconstruction can always be achieved. However, the pres- 2. SIGNALS WITH FINITE RATE OF INNOVATION
ence of quantization, which makes perfect reconstruction impos-
sible, is entirely necessary for any practical application involving In [1] it was shown that certain non-bandlimited signals having a
this type of signals, such as CDMA, UWB [2] and sensor field finite number of degrees of freedom per unit of time (finite rate of

sampling in sensor networks [3]. innovation) can be perfectly reconstructed by sampling them at the
In this work, we introduce the presence of quantization and in- rate of innovation, using sinc or Gaussian sampling kernel.
vestigate Analog-to-Digital (A/D) conversion of non-bandlimited In this work, we consider periodic streams &f Diracs, that

signals with finite rate of innovation, which has not been con- is, z(t) = Zkez crd(t —tr) with periodr, wherety x =t +7
sidered before. Notice that all previous work in A/D conversion andcytx = c, Vk € Z andé(t) denotes a Dirac delta function.
has focused only on bandlimited signals [4]. In this paper, we This signal ha§T—K degrees of freedom per unit of time, since the
focus on the A/D conversion of a continuous periodic stream of

1The extension to other types of signals with finite rate of innovation
This work was supported (in part) by the National Competence Center follows easily from the presented work and it is treated in [5]

in Research on Mobile Information and Communications Systems (NCCR-  2The MSE of the weights can be shown to depend strongly on the MSE

MICS), a center supported by the Swiss National Science Foundation. of the time positions and it is studied in [5]
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Fig. 1. A/D conversion of a periodic stream of Diracs (example with 4 Diracs).

only knowledge we need to determine the signal uniqueliXis
time positions{t };_,' andK weights{cy.}+—,'. This signal can

be perfectly reconstructed by first applying a sinc sampling kernel
hg(t) = Bsinc(Bt) with bandwidth[— Br, Br], thus obtaining
y(t) = z(t) * hp(t), and then taking theV uniform samples
{y(nT)YZ', T = 7/N, such thatBr = 2M +1 > 2K + 1

and the number of samplesié > 2M + 1. The periodic stream

of K Diracsx(t) can be represented through its Fourier series:

N

—1

S2mmt 1 2mmity
t) = I = = T
) Z X[m]e ,  X[m)] - cre (2)
meZ k=0
The uniform samples a@j(t) are given by:
M L -
> X[mle' " where n=0,...,N-1. (2)

m=—M

Taking at leas2K + 1 samples{y,, }2X+! we can first directly
compute the K + 1 Fourier coeff|C|ent§([ | of the signal(¢),

using a simple DFT. Then it can be seen from (1) that each ex-

ponential term{u;, = ! can be annihilated by a first
,27rt .

order FIR filter A, (z) = (1 —e Jf" z~1). Extension of the fil-

.27ty
ter order toK results in a filterd(z) = [, (1 —e ™ 7 271
that annihilates the whole signal. In matrix notation, this can be
represented as:

X[ X[-1] X[-K] A[0]
X[1] X[0] X[—=(K —1)] Al 0
X[K] X[K —1] X[0] AK]

3)

where A[i] is the i-th coefficient of the annihilating polynomial.
Thus, if we are given the K + 1 exact Fourier coefficients, by set-
ting A[0] = 1, we can find the unique solution of (3) which gives
us all the coefficients of the annihilating filter. The roots of the an-
nihilating fiIterA( ), {ur = eI T K )t reveal theKtime po-
sitions {¢1, } ', while the corresponding weightg; };—," can
be directly computed from (1).

All previous steps assume no guantization in amplitude and
hence, no error in the samplésg,, }._;', which ensures the ex-
istence of the previous exact solution. In our work we study A/D

3. OVERSAMPLING IN TIME AND FREQUENCY

We propose two types of oversampling to compensate the error
introduced by quantization. The first one (common method) con-
sists of taking more samples gft), so thatN > 2M + 1. This
introduces aroversampling in timevhich is measured by ratio
Ry = 21v11V

Notice that we can also perform another additional type of
oversampling by extending the bandwidth of the sampling kernel
to be greater than the rate of innovation, or equivalexdlyy+1 >
2K + 1. We denote this type of oversampling@asersampling in
frequencywith oversampling raticR ; = é;‘fﬂ

Therefore, the number of samplesis = (2M + 1)R; =
(2K + 1)Ry R, which means thalV increases linearly with both
oversampling schemes. Both types of oversampling are accuracy-
enhancing, as itis shown theoretically in Section 5 and experimen-
tally in Section 6.

4. CONSISTENT RECONSTRUCTION

In the reconstruction process, we enforce the concept of consistent
reconstruction. The idea of consistent reconstruction is to exploit
all the knowledge from both tha priori properties of the origi-
nal signal and the information provided by the quantization pro-
cess, that is, the quantization bins to which the original samples
{yn} = belong. Thus, we want to find a reconstruction which
is consistent with all the knowledge we have. Itis clear that (on
average) a consistent reconstruction will provide better reconstruc-
tion accuracy than a non-consistent reconstruction. We first define
all the properties that a reconstruction should satisfy in order to
be consistent. Each property defines a set of signals and requiring
satisfaction of a certain property is equivalent to requiring mem-
bership in a certain set of signals. The fact that all properties are
satisfied by the original signal ensures that the corresponding sets
have a nonempty intersection.

The first set of constrainS; is defined by the quantization op-
eration which is a deterministic operation. The samglgs} >
are quantized by a uniform quantizer, thati§, = Q(yn) =
A(lyn/A] + 1/2) where A is the quantization stepsize. Let
I, = Aly(t)/A] andc,, = [In, I, + A). The sequencéy? } V-1
gives us information about the intervals in which all samples lie,
namely,y, € c,. The set of these intervals i¥-dimensional

cube and then foy = [yo,...,yn—1]7 andy? = Q(y) =
e, ..., y%_,]" it holds that:
yEeQ (),

conversion for these signals and we consider the operation of quan-as well as all the signals which have samples’ amplitudes within

tization (see Fig.(1)) performed on the samp!gg}ﬁf;ol. An ir-
reversible loss of information presented by the quantization error
in amplitude, introduced in the samplég, }\ -, makes the ex-
act recovery of:(t) no longer possible. As explained in Section 3,
oversampling is used to overcome this problem.

the same quantization intervals.

The second set of constrai¥s comes from the observation
that the signaj(¢) is periodic and bandlimited. Létg denote the
set of continuous-time periodic signals which are bandlimited to
[-Bm, Brl.



POF}/—\% %@ F’@ the left-hand-side matrix has now a si¥ex L with K < L < M
andL is the filter order. Notice that here we make use of the over-
(@) (b) (© sampling in frequency by making the order of the filter larger than
Fig. 2. Algorithms: a)Small-loop; b)Whole-loop; c)Whole&Small-loop. K. The solution is found by using the Total Least Squares (TLS)

) ) ] ) method [6] which can be shown to be equivalent to performing an
By enforcing the previous two sets of constrains we define the orthogonal (convex) projection in the vector space of polynomi-

concept ofweak consistencgs follows. als of orderL. Thus, in this case the resulting annihilating filter
Definition 1 A reconstructioni () satisfies weak consistency if ~ProvidesL roots andi’ of them are "correct” roots while the ad-
and only if it is obtained from g(¢) that satisfies the following: ditional . — K roots are created artificially by the method. There
1. §(t) is a bandlimited signalj(t) € V. are several ways to decide what are the positions of the "correct”
2. the sample$y,, })—; lie in the same quantization bins as roots. We propose two methods:
the original onegy,, } '}, or equivalentlyg € Q" (y9). 1. ChooseK roots that are closest to the unit circle. This is
. . . ) the common solution used for the retrieval of sinusoids in
In order to imposaveakconsistency we define the following two noise [6]
projections.

o , 2. Perform two steps:
Projection P; : For every estimatg’,, 3. = Pi(g%) is ob-

tained as: (a) Compute roots without increasing the filter order.
1. if g, € Q' (yd) then takeg,t' = g, (b) Compute roots increasing the filter order and choose
2. else, takg’™! equal to the bound of the quantization inter- the roots that are the closest to the roots in (a).
val Q7' (y2) closest taj%.
Projection P. : Given an estimatg’ (t), the new estimatg’™* (t) = Notice that by increasing the filter order, extraneous roots can
P, (4" (t)) is obtained by low-pass filteringf (¢), that isj*** (t) = be very close to the unit circle and the first method might fail. The
G4 (t) * hp(t). second method does not have this problem and thus, it is the one

we use in our experiments.

If there was no quantization and the estimaét(m)}2__,,
coefficients were the exact ones then the chosen roots would all lie
on the unit circle. However, since there is a quantization error then

jection P> may not always give a reconstruction such that after h ; . he obtained h it circl
re-sampling and re-quantization it lies in the same quantizationt e next step Is to project the obtaine rqgf to the unit circle get-

bins as the original one. This is enforced applying projecfitan ting the estimated unit-norm roofs, = e’ = and from which
which is convex. Notice that sinc1 and S» are convex sets  we directly estimate the time positiofié; } ~_,. Then, using (1)
and P, and P, are convex projections, the Theorem of alternat- we estimate the weight§é, }7—,. The whole process including
ing projections on convex sets (POCS) [6] can be applied. Startingthe TLS projection, extracting the correct roots and estimating the
from the quantized samplégd }2—}, by iterating the projections  time positions and weights, can be seen as the third projeEton
P; and P, it is ensured that we will reach a reconstruction that _
belongs to the intersectiofi; N S2. Since we are interested in  Projection Ps : Given a set of estimated Fourier coefficiefs,

reconstructingt(¢), after finding a reconstructiofi(t) that satis- the projectionPs provides{(f.™*, 1)} X~ 1 and a set of Fourier
fiesweak consistencyve use the annihilating filter based method N it » .y 2mmiit?
explained in Section 2. The process is illustrated in Fig.2(a). coefficientsX " suchthatX*![m] = 1 i{:ol gle VT
So far, we have not made use of the knowledge about the par-
ticular structure of the signal(¢), namely, the fact that(t) is a As argued in [5], for large enougR; andR, this projection is
periodic stream of K Diracs. We define our third set of constraints i '
S3 based on this information. Thgs is the set of Fourier coef-
ficients that originate from a periodic stream of DiradSm] =
Ly ewe 92 mER/T This third setSs is used in order to en-
force a stronger sense of consistency, which westadhg consis-
tencyand is defined as follows.

ProjectionP-, which is obtained by applying a pseudoinverse
operation, is an orthogonal projection and thus, it is a convex pro-
jection, which means that it finds the closest signalin. Pro-

convex in the sense thaf o are the closest Fourier coefficients
to X'. Therefore, by applying iterated projectio#s, P- and
P53 on the corresponding sef;, Sz and Ss we converge to a
reconstruction that lies in the intersectih N Sz N S3. We call
this algorithm theVhole-loopalgorithm (Fig. 2(b)).

As an extension of th&mall-loopalgorithm we propose a
Definition 2 A reconstructioni:(¢) satisfies strong consistency if ~Whole& Small-loomlgorithm (Fig.2(c)) where after reachingzak

and only if: consistency and obtaining the reconstructid), we re-process
1. it satisfies weak consistency Z(t) and re-quantizg(¢) checking whether its digital representa-
2. §jn = hy(t) * &(t)|nr Whered(t) is a periodic stream of< tion is exactly the same as the one corresponding to the original
Diracs. signal. This is equivalent to achievirgirongconsistency. How-

ever, because of the order in which the projections are applied,
this third algorithm is not guaranteed to converge to a reconstruc-
tion satisfyingstrongconsistency (onlyveakone) and we stop the

The concept otrongconsistency adds a third property in addition
to the two properties defined byeakconsistency, that requires
estim.atingA of time position.s and wgights and chegking whether algorithm after some predefined number of iterations. On the con-
th.e signaly (t) cAan be ODIti'ng by flltgrlng a periodic stream of trary, the convergence of th@&mall-loopis theoretically ensured
Diracs, namelyz(t) = >} —g érd(t — tx). (POCS) while our experimental results shows thstrangconsis-

From the estimated coefficienfs{' (m)},/__,;, we estimate  tent reconstruction, using/hole-loopalgorithm, can be also ap-
the time positions{tk}fgo1 using a generalized form of (3) where  proached within a finite number of iterations.



5. THEORETICAL PERFORMANCE OF |
OVERSAMPLING
LetX = [X[-M],...,X[M]]" andgivenX andX , MSE(X,X) =% | » * . . 4 ey
SM_ . 1X[m] — X[m]|*. Inthe next Theorem, we show that £ | “——*—. . | £~
the MSE for the weak-sense consistent reconstruction does not de £- =
pend on the number of Fourier coefficients, or equivalently, onthe | ——
oversampling in frequenci s while it does depend on the number
of samples taken above the Niquist rate/@f), which corresponds T w0 T N G
to the oversampling in time;. (@) (b)
. Lo . Fig. 3. Small-loop algorithm. Dependence of accuracy on oversampling
Theorem 1 Given the periodic stream of Diracs(t) and corre- in frequencyR ;: a) MSE of Fourier coefficients; b) MSE of time positions.
spondingy(t) which has2M + 1 (M > K) Fourier coefficients
X, there exists anV, such that ifN > N,, there is a constant
¢ > 0 which depends only on(t) and not onR; and Ry, such R
that for any weak-sense consistent reconstructi@f) with corre- - ook N
spondingg(t) that has coefficientX , the following holds: % Loiope yr? §'55'°~““’R‘2
MSEX.X) < o \
Proof: see [5]. ' . , e
This Theorem states that even if we estimate more and more - .
Fourier coefficients (increasing;) while keepingR; constant, e I S By wvere:
the upper bound oM/ SE(X, X') remains the same. Clearly, (@) (b)
since we estimate the time positions from Fourier coefficients, the Fig. 4. Small-loop algorithm. Dependence of accuracy on oversampling
number of coefficients as well a&/ SE(X, X) directly impact in time R;: a) MSE of Fourier coefficients; b) MSE of time positions.
the accuracy. Using more Fourier coefficients, which involves
increasingRy, intuitively improves the time positions estimates. L RET
Notice also thatM SE(X, X) will decrease as we increasd I oy . ;
and thereforeM SE(t,t) = Y ;' [tx — fx|* will decrease as  X{ -
we increase bottk; and R;. g " & Jsiope 1R
k] S5 =
Theorem 2 Givenz(t), for any reconstructiort(¢) obtained us- “lslope VR g
ing Ps and which satisfies weak consistency, there existl and
b > 1such thatifR; > a and Ry > b, there is a constant’ > 0 x omconsisentrecin R-1 I~
which depends only on(¢) and not onR; and R, such that the s rs | loa(R) * T ey
following holds: . ¢ _ (@) (b)
MSE(t,t) < =375 4) Fig. 5. Whole-loop algorithm. Dependence of accuracy on oversampling
Rth in frequencyR ;. a) MSE of Fourier coefficients; b) MSE of time positions.

Proof: see [5].

Theorem 2 describes the advantages that both types of over-
sampling provide for time position estimation. It can be seen that . x * Kook
increasingR s, we reduce the MSE faster than increasitg

T slope 1/R:‘

6. EXPERIMENTAL RESULTS

In this section, we show experimental results for the three algo-
rithms illustrated in Fig.(2), with parameter& = 2, = = 10,

log(MSE(X'X))
log(MSE(t't))

-5 —A— consistent recon.
tr € (0,7], e € [—1,1]. The positions and the weights are ” | ]
randomly chosen from the corresponding intervals and the results 09(R) Iog(R)
are the average over 100 signals. For the "Small-loop” case, our (@) (b)

numerical results confirm Theorems 1 and 2, with a performance Fig- 6. Whole&Small-loop algorithm. Dependence of accuracyron

of O(l/RfR?c) (Fig.(3) and Fig.(4)). The other two algorithms a) MSE of Fourier coefficients; b) MSE of time positions.

provide a performance @(1/323?) (Fig.(5)) andO(l/RfR‘}) [3] P.Ishwar, A. Kumar, and K. Ramchandran, “Distributed sampling for
(Fig.(6)), respectively. A clear outperformance over non-consistent dense sensor networks: a bit-conservation principle,” IPSN, 2003.

reconstructions (quantization followed B, and P3) is observed. [4] N. T. Thao and M. Vetterli, “Deterministic analysis of oversampled
A/ D conversion and decoding improvement based on consistent esti-

mates,” Trans. on Signal Proc., vol. 42, no. 3, pp. 519-531, 1994.
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