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Abstract — Recent results in sampling theory [1] showed

that perfect reconstruction of non-bandlimited signals

with finite rate of innovation can be achieved perform-

ing uniform sampling at or above the rate of innovation.

We study analog-to-digital (A/D) conversion of these sig-

nals, introducing two types of ovrsampling and consistent

reconstruction.

In this work, we consider periodic streams of K Diracs, that
is, x(t) =

∑
k∈Z ckδ(t − tk) =

∑
m∈Z X[m]ej(2πmt)/τ with

X[m] = 1
τ

∑K−1

k=0
cke−j(2πmtk)/τ and period τ , where tk+K =

tk + τ , ck+K = ck, ∀k ∈ Z and δ(t) denotes a Dirac delta
function. The signal has 2K/τ degrees of freedom per unit
of time. Time positions {tk}K−1

k=0 and weights {ck}K−1
k=0 can

be perfectly reconstructed by first applying a sinc sampling
kernel hB(t) = Bsinc(Bt) with bandwidth [−Bπ, Bπ], thus
obtaining y(t) = x(t) ∗ hB(t), and then taking the N ≥ 2M +

1 uniform samples yn =
∑M

m=−M
X[m]ej2πmnT/τ with T =

τ/N , such that Bτ = 2M + 1 ≥ 2K + 1. After computing
2K + 1 Fourier coefficients from yn, we apply annihilating
filter method. From the roots of annihilating filter {uk =
e−j2πtk/τ}K−1

k=0 we get the K time positions {tk}K−1
k=0 , while

the weights {ck}K−1
k=0 can then be directly computed.

We overcome the error in amplitude of the samples
{yn}K−1

k=0 , introduced due to the quantization, by performing
two types of oversampling. The first one, oversampling in
time, consists of taking more samples of y(t) than necessary,
so that N > 2M +1, with oversampling ratio Rt = N/2M +1.
In the second one, oversampling in frequency, we extend the
bandwidth B = 2M + 1 so that it is greater than the rate
of innovation, that is, M > K, with oversampling ratio
Rf = (2M + 1)/(2K + 1).

We also introduce the concept of consistent reconstruction
for these types of signals. The idea is to exploit all the a
priori knowledge of the original signal and the quantization
process itself. We first define the three sets of constraints on
which we have to project. Set S1 is defined by the quantiza-
tion operation and consists of the quantization bins in which
the samples {yn}N−1

n=0 lie. Set S2 is the set of continuous-
time periodic signals bandlimited to [−Bπ, Bπ] to which y(t)
belongs.

Based on this, satisfying these two sets we provide a first
level of accuracy, weak consistency, which we achieve by iter-
ating projections P1 and P2.

Def. 1 A reconstruction x̂(t) satisfies weak consistency (WC)
iff it is obtained from a signal ŷ(t) such that: a) the samples
{ŷn}N−1

n=0 lie in the same quantization bins as the original ones,
{ŷn}N−1

n=0 ∈ S2, b) ŷ(t) ∈ S1.

Proj.P1 : For every estimate ŷi
n, ŷi+1

n = P1(ŷi
n) is given by:

a) ŷi+1
n = ŷi

n if ŷi
n ∈ S1, 2) else, ŷi+1

n is set to the bound of
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Figure 1: Dependence of MSE(t, t̂) on the factors Rt and Rf .

the quantization interval in S1 closest to ŷi
n.

Proj.P2 : Given an estimate ŷi(t), the new estimate ŷi+1(t) =
P2(ŷi(t)) is obtained by low-pass filtering ŷi(t), that is
ŷi+1(t) = ŷi(t)∗hB(t). The particular structure of the signal
x(t) defines the third set which, together with previous two
sets, is used to enforce a stronger sense of consistency. The
Set S3 is the set of Fourier coefficients that originate from a
periodic stream of Diracs, X[m] = 1

τ

∑K−1

k=0
cke−j2πmtk/τ .

Def. 2 A reconstruction x̂(t) satisfies strong consistency (SC)
iff: a) it satisfies weak consistency, b) ŷn = hb(t) ∗ x̂(t)|nT

where x̂(t) is a periodic stream of K Diracs.
Proj.P3 : Given a set of estimated Fourier coefficients
X̂

i
, the projection P3 provides {(t̂i+1

k , ĉi+1
k )}K−1

k=0 and a

set of Fourier coefficients X̂
i+1

such that X̂i+1[m] =
1
τ

∑K−1

k=0
ĉi+1
k e−j2πmt̂i+1

k
/τ .

Theorem 1 Given x(t), for any reconstruction x̂(t) obtained
using P3 and which satisfies WC, there exist ξ ≥ 1 such that
if Rt, Rf ≥ ξ, there is a constant c > 0 which depends only on
x(t) and not on Rt and Rf , and MSE(t, t̂) ≤ c

R3
f

R2
t

. (see [3])
For the method that achieve SC the experimental results

show, a performance of MSE(t, t̂) = O(1/R2
t R

5
f ) for time

positions (Fig. 1), with parameters: K = 2, τ = 10, tk ∈
(0, τ ], ck ∈ [−1, 1].

We also compare two types of encoding, the traditional
one, pulse-code modulation encoding (PCM) and the alterna-
tive one, based on threshold crossing encoding (TC) [2], and
investigate in the dependence of the bit rate on the oversam-
pling factors Rt and Rf , and the quantization step size ∆.
The following table, shows the theoretical results for the bit
rate and also both theoretical and experimental results for the
MSE of time positions.

Bit rate (b) MSE-WC MSE-SC

O(log2 Rt) O(1/R2
t
) O(1/R2

t
)

TC O(Rf log2 Rf ) O(1/R3
f
) O(1/R5

f
)

O(1/∆) O(∆2) O(∆2)
O(Rt) O(1/R2

t
) O(1/R2

t
)

PCM O(Rf log2 Rf ) O(1/R3
f
) O(1/R5

f
)

O(log2(1/∆)) O(∆2) O(∆2)

Notice that oversampling in time provide the error-rate dependence
(O(2−2αb)) that can be obtain by decreasing the step size (O(2−2βb)).
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[3] I. Jovanović and B. Beferull-Lozano, ”Oversampled A/D Conver-
sion of Non-Bandlimited Signals with Finite Rate of Innovation”,
To be submitted to IEEE Trans. on Signal Proc.


