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ABSTRACT

Most compression algorithms developed to date aim at
achieving the best perceptual quality of the decoded me-
dia for the given rate. In this paper we consider several
scenarios where the end user of the compressed data is
not a human viewer or listener, but rather a known clas-
sifier or recognizer. Drawing from applications in speech
recognition and image classification, as well as from
simple examples, we discuss the new requirements that
are imposed on the encoders under these circumstances.
Our goal is to motivate the importance, and describe
the associated design challenges, of achieving compres-
sion optimized for classification/recognition, rather than
perceptual quality.

1 INTRODUCTION AND OUTLINE

Compression of multimedia data is an active research
area and has led to the development of a series of
standards such as JPEG or MPEG. In this paper, we
will argue that novel compression techniques may be
needed if the goal is to minimize the loss in recog-
nition/classification performance due to compression,
rather than minimizing the impact of coding on percep-
tual quality, which is the typical objective of standard
techniques. We consider two example scenarios, namely,
(i) wireless access to multimedia applications and (ii)
storage and content based retrieval of multimedia data,
in order to motivate the research described in this paper.
In Section 2 we show that remote access to multimedia
applications (e.g., those involving speech recognition)
leads to distributed recognition/classification scenarios,
where data is to be compressed before being transmit-
ted in order to be processed by a remote recognition
engine. An example is provided in the context of dis-
tributed speech recognition (Section 2.1) and the dif-
ficulties of designing compression for such distributed
applications are illustrated with a simple example (Sec-
tion 2.2). Then, in Section 3 we consider compression
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needs for multimedia databases. Given that context
based retrieval needs to be supported, we motivate the
potential benefits of non-traditional transforms, such as
steerable decompositions (see Section 3.1). We then pro-
vide a simple example to demonstrate that a separate
encoding of classification features can be useful in this
application (see Section 3.2).

2 DISTRIBUTED CLASSIFICATION

Wireless access to multimedia applications is limited by
both power and bandwidth, so that compression is re-
quired before data is transmitted and computation at
the mobile terminal should be kept at a minimum. Con-
sider a scenario where a user is interacting with a remote
application that employs speech recognition. Using a
full fledged recognition engine at the transmitter may be
too complex and instead it may be preferable to trans-
mit compressed speech and have the recognition tasks
performed remotely, a technique known as distributed
speech recognition. In a distributed classification appli-
cation, since encoder and classifier are physically apart,
the classifier has to operate on decoded data. Thus, ide-
ally, the encoder aims at quantizing more finely what-
ever information is more important for classification.
This task is made difficult because, as seen in the speech
case, the recognition engine tends to operate on larger
dimensional data than the quantizer (e.g., a sequence
of speech frames vs. individual frequency components.)
We illustrate this problem by discussing a simple exam-
ple where scalar quantization is used along with a vector
based classifier.

2.1 Distributed speech recognition

We consider a scheme for distributed automatic speech
recognition, where a Hidden Markov Model (HMM)
based speech recognition system with a Mel Frequency
Cepstral Coefficients (MFCC)[3] front end is used in the
evaluation, and our goal is to achieve the best recog-
nition performance for the given rate. At the client
or mobile device the MFCCs are extracted from the
speech and encoded with an algorithm [1] involving
scalar quantization, linear prediction [4] and coefficient



pruning. Other approaches have been proposed (e.g.,
[5, 4]) that compress MFCCs but we have shown that
good recognition performance can be achieved with sim-
ple coding techniques (i.e., no vector quantization) at
low rates, while providing scalability, which will enable
graceful degradation in recognition performance under
time varying channel conditions.

The MFCCs are extracted after applying overlapping
Hamming windows to the speech signal. Therefore we
use one-step prediction so that each MFCC is predicted
from the same MFCC in the previous frame. We then
apply a simple uniform scalar quantization (USQ) to
the prediction errors. Rate scalability can be achieved
either through increases of the quantization stepsize, or
through explicit pruning of certain coefficients (i.e., by
only sending a subset of the MFCCs). Huffman coding
is used to represent the quantization indices. Counting
the cost of the MFCC computation (and without any
significant code optimization) our approach is 3 times
faster than applying the recognition algorithm itself.
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Figure 1: Recognition Performance for the USQ coder with
different quantization stepsizes. The scalability of the en-
coders can be seen by the bitrate/recognition performance
tradeoff.

Figure 1 summarizes our experiments performed on
the TI46-Word digit database with HTK2.1. Details on
the experimental setup can be found in [1]. The recog-
nition performance for digit database when unquantized
MFCCs were used was 99.79%. From Figure 1, it can
be observed that the USQ technique, achieves recogni-
tion performance of 98.74% at a bitrate of 1.02 kbps We
observe that the degradation with respect to the base-
line in recognition performance is small, while there are
substantial savings in the bitrate, with respect to using
a standard coder. For example, using a MELP speech
encoder at 2.4 kbps we achieved 98.85% recognition per-
formance. Figure 1 also shows how scalable recognition
performance can be achieved as the rate is reduced.

2.2 Coding for distributed classification

The previous section has given an example of how recog-
nition performance of compressed data can be improved
if the coding algorithm is designed to aim at recogni-
tion inaccuracy, rather than quantization distortion. In

this section we provide a simple example of how one
can operate an encoder while putting different empha-
sis on classification or distortion. It should be noted
that previous work has considered the joint design of
an encoder and a classifier where the system produces
for each input a quantization index and a classification
label [6, 7]. Here we consider a different problem, i.e.,
we encode the data first, and classification is applied
separately. Moreover, we assume that we have no con-
trol over the classifier, while [6, 7] both design quantizer
and classifier. Our task is further complicated because
we consider cases (such as the one in the previous sec-
tion) where a simple quantizer (e.g., scalar quantizers)
needs to operate in conjunction with complex classifiers
(e.g., based on vectors).

We consider an example where a two-dimensional
classifier operates with data that has been scalar quan-
tized separately in each dimension, i.e., the classifier
takes as input vectors of quantized values. Our goal
is then to design the scalar quantizers such that they
the least effect on the classification performance for a
given quantization distortion. However, since classifica-
tion is vector-based and the quantizers are scalar we do
not have exact knowledge of the effect of quantization
design on classification. To address this we have devel-
oped a technique where scalar quantizer design in one
dimension incorporates a measure of the average mis-
classification incurred over all the possible values taken
by the other component of the vector.
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Figure 2: Quantization bins when the proposed algorithm
is used to design the scalar quantizers. The diagonal line is
the Bayes classifier boundary and the circles are the average
values of the two Gaussian sources.

Results of our experiments are shown in Figs. 2 and 3
where a 2 dimensional classifier is used to separate two
2D Gaussian sources having same variance but different
mean and where scalar quantization is used indepen-
dently in each dimension. The best Bayes classifier for
this data will assign an input vector to the class if the
distance between the input and the mean of the class
is minimal. Thus the classification boundary will be a
line perpendicular to the line joining the mean of the two
classes (see Fig. 2). We apply our design to both a scalar
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Figure 3: Trade-off between reduction in misclassification
percentage and SNR for SQ and SSQ.

quantizer and to a sequential scalar quantizer (SSQ) [8],
which provides lower distortion and lower classification
error.

As can be seen in Fig. 2, our design selects smaller
quantization bin sizes close to the optimal classification
boundary. Asin [6] the relative importance of distortion
and misclassification is controlled by a Lagrange multi-
plier. This is illustrated in Fig. 3 where the various
achievable points represent the distortion and classifi-
cation performance for a fixed number of reproduction
levels. As can be seen the best distortion performance
corresponds to the worst classification performance.

3 CONTENT BASED RETRIEVAL

The second application we consider is content-based ac-
cess to databases containing large amounts of multime-
dia data, where text-based indexing is not sufficient and
we assume content features are available. Consider for
example an image database, where, obviously, images
are stored in a compressed format. Assume a user, re-
motely or locally, sends a query to the database. This
query is based on the image content (e.g., color con-
tent, presence of a specific texture, etc.) and thus the
content of each of the images in the database will have
to be analyzed. One could decompress each of the im-
ages to extract the relevant features but that would be
clearly impractical. A popular alternative is to extract
the feature information from the compressed domain.
This approach is certainly simpler but it has two ma-
jor drawbacks. First, not all features of interest may
be extracted from the compressed domain (e.g., due to
the fact that images are broken into blocks in a DCT
based coder.) A second drawback is that the amount of
data to be manipulated is still large (even after compres-
sion) and therefore disk I/O may become a significant
overhead. Here we consider two alternative approaches
based on (i) using alternative transforms that can pre-
serve features of interest and (ii) storing and compress-
ing the feature vectors required by each class of queries.

3.1 Steerable transforms

If certain features of interest are not preserved by stan-
dard critically sampled transforms such as the discrete
wavelet transform it is possible to consider overcomplete
transforms instead. As an example we consider the
use of steerable representations in applications where
it is necessary to extract many different features and
therefore selectivity in orientation, rotation-invariance
and approximate shift-invariance are desirable. Since
these properties are not available with critically sampled
transforms our goal is to define compression algorithms
for steerable decompositions. While steerable decompo-
sitions are overcomplete and thus increase the amount of
data to be compressed, they also present some proper-
ties that can be exploited for more efficient compression.
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Figure 4: Energy localization in angle. Observe that with
angular oversampling the same energy is concentrated in
fewer coefficients

A filter (or function) h(z,y) is called steerable if trans-
formed versions of this filter can be expressed using
linear combinations of a fixed set of basis filters. Fol-
lowing the analytical approach to steerability developed
mainly by Freeman and Adelson [9] and later extended
by Simoncelli [10], one can design filters, with certain
restricted analytical forms, which are polar separable in
the Fourier domain and where the steerable basis filters
are steered versions of the steerable filter itself.

Thus, if a filter H(w,,w,) is polar separable in the
Fourier domain, then H(ws,wy) = B(r)G(¢), and
steerability of H(wg,wy) is equivalent to shiftability of
G(¢). Given G(¢), one can find a set of N angles
do,P1,...,0n_1 and a set of N interpolation functions
{bo(9),b1(¢@),...,b~n_1(¢)} such that the following is
satisfied:

N-1

Glg—a)=> by(a)G(¢ - ¢n) Va (1)

n=0

This enables one to, starting with N basis steerable fil-
ters or angles, derive filtered values at any other an-
gular position. This can be useful for classification but
results in a significant oversampling factor, e.g., approx-
imately % when using a recursive pyramidal structure



on the radial part [2]. We have shown that angular over-
sampling (i.e., using more angles than the minimum N
required for reconstruction) results in increased energy
localization. This is illustrated in Figure 4 where we can
see that as the oversampling increases the number of co-
efficients needed to achieve a given PSNR decrease. Our
ongoing work aims at exploiting this and other proper-
ties to provide an efficient coding for steerable trans-
forms (refer to [2] for further details).

3.2 Compression of texture features

In content-based image/video retrieval systems, multi-
ple visual features such as texture, color, shape and mo-
tion are extracted automatically and used as indexing
keys. When databases become large it may be imprac-
tical to extract these features on the fly from the com-
pressed images. In this section we show a simple ex-
ample that demonstrates that storing the feature set in
compressed format along with the image and video data
can lead to significant reductions in processing time,
without reduction in classification performance.

To illustrate this idea, in our experiments we com-
pare the performance of the various techniques using
the wavelet based texture classification technique of [11],
with 10 512x512 texture images from the Brodatz’s tex-
ture album. As test images, we used randomly selected
smaller subimages of the original texture images. Four-
level Dyadic wavelet decomposition is performed on the
sample images using a 16-tap Daubechies filter. The
feature vector for a given image is composed of the av-
eraged absolute energy of each wavelet subband, i.e.,
each component of the vector corresponds to one sub-
band [11]. We use the simplified Mahalanobis distance
to compare feature vectors [11].
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Figure 5: Comparison of classification performance using
different quantization approaches.

We designed scalar quantizers to encode feature vec-
tors, i.e., the set of average energies in each subband.
We compare quantizers that have been optimized based
on the training set with uniform quantizers where the
same stepsize is used for each of the elements of the
feature vector. In both cases 4 bits per subband are
used. The efficiency of this approach can be observed

Figure 5 where we see that the same classification rate
can be achieved with close to three orders of magnitude
fewer bits than with SPTHT [12]. This indicates that
it may be advantageous to store these compressed fea-
tures separately and to use them directly in the query
process, instead of extracting the feature vectors from
the compressed images.
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