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ABSTRACT

This paper presents a new rotation-invariant image retrieval
method, which extends a recently introduced classification
technique based on steerable wavelet transforms. In the
proposed procedure, the feature extraction step consists of
estimating the covariations (lower-order cross-correlations)
between the wavelet subband coefficients, which are mod-
eled as sub-Gaussian random vectors. The similarity mea-
surement is carried out first by employing norms calculating
the distance between the covariation matrices representing
two distinct images and second by evaluating the Kullback-
Leibler Distance (KLD) between their corresponding Sub-
Gaussian distributions. We provide analytical expressions
relating the sub-Gaussian features corresponding to a ro-
tated image from the features of the original image. Fi-
nally, we relate the employed optimal lower-order correla-
tion (p ≤ 2) to the degree of non-Gaussianity of the wavelet
coefficients, and we demonstrate the effectiveness of our
method using real texture images.

1. INTRODUCTION

During the last decades, digital images are being gathered
and stored at an explosive rate on large digital informa-
tion databases. This fact gives rise to the important issue
of effectively and precisely searching and interacting with
these collections. The purpose of an efficient content-based
information retrieval system is to bring back all the rele-
vant images from a specific database, given a user query.
It goes without saying that retrieving images from unanno-
tated database based on their visual content is a challenging
problem.

In a typical Content-Based Image Retrieval (CBIR) sys-
tem, we can distinguish two major tasks: Feature Extrac-
tion (FE) and Similarity Measurement (SM). In the FE
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step, a set of features, constituting the so-called image sig-
nature, is generated to accurately represent the content of
a given image. This set has to be much smaller in size than
the original image while capturing as much as possible of
the image information. During the SM step, a distance
function is employed, which measures how close to a query
image each image in the database is, in order to retrieve the
”most relevant” images.

In the present work, texture information is used as a
feature for representing the content of an image. Recently,
Do and Vetterli applied a statistical framework in a wavelet-
based texture retrieval application, by jointly considering
the two problems of FE and SM [1]. In their approach, the
FE step becomes an ML estimator for the model parameters
of the wavelet coefficients in each subband, where they were
independently modeled by a generalized Gaussian density
(GGD). Then, the SM step computes the Kullback-Leibler
distance between the model parameters.

In recent work, we have shown that successful modeling
of the wavelet subband coefficients is achieved by taking
into consideration the actual heavy-tailed behavior of their
marginal densities [2]. Specifically, we have shown that the
subband decompositions of many texture images have non-
Gaussian statistics that are best described by families of
distributions with algebraic tails, such as the Symmetric
Alpha-Stable (SαS). After extracting the SαS model pa-
rameters, we analytically derived and employed the KLD
as the distance measure between two SαS distributions.
Our formulation improved the retrieving performance of the
system, resulting in a decreased probability error rate for
images with distinct non-Gaussian statistics.

However, both approaches in [1] and [2] do not take
into account the possible interdependencies between differ-
ent subbands (or equivalently orientations) of a given image,
which can be employed in order to provide a more accurate
representation of the texture image profile. Huang stud-
ied the correlation properties of wavelet transform coeffi-
cients at different subbands and resolution levels applying
these properties on an image coding scheme based on neu-



ral networks [3]. Portilla and Simoncelli developed an al-
gorithm for synthesizing texture images by setting different
constraints on the correlation between the raw coefficients,
their magnitudes, and other statistics [4].

Recently, a rotation-invariant image retrieval system
based on steerable pyramids was proposed by Beferull-Lozano
et al. [5]. In this system, the correlation matrices between
the basic orientations at each level of the pyramid are cho-
sen as the energy-based texture features. It is proven that
the correlation matrix of a fixed level of the original im-
age is equivalent to the corresponding correlation matrix of
a rotated version of the same image. Taking this relation
into account, the similarity measure between two images is
defined as the minimum Frobenius norm, over all possible
rotations θ, of the difference between the correlation matrix
of the original (query) image and that of each image in the
database.

In the present work, we proceed by considering the
wavelet subband coefficients at each decomposition level
as samples of a sub-Gaussian random process. The sub-
Gaussian model and the associated fractional lower-order
statistics have been used in the past to develop data-adaptive
algorithms for signal detection in impulsive interference [6,
7]. Within the framework of sub-Gaussian processes, we
use the notion of covariation, instead of the second-order
correlation, in order to extract possible interdependencies
between wavelet coefficients at different image orientations.
We derive analytical expressions for the relation between
the covariation matrices of the original and the rotated im-
ages to directly obtain the features of the rotated image,
given the features of the original image.

2. JOINT MODELING OF WAVELET
SUBBAND COEFFICIENTS

In our data modeling study, we used textures (real-world
512 × 512 natural scene images) obtained from the MIT
Vision Texture (VisTex) and the Brodatz databases. We
divided each image into 16 128 × 128 subimages and we
employed three levels of decomposition. The statistical fit-
ting of the marginal distribution of each subband proceeds
in two steps: First, we assess whether the data deviate
from the normal distribution and we determine if they have
heavy tails by employing normal probability plots. Then,
we check if the data is in the stable domain of attraction
by estimating the characteristic exponent, α, directly from
the data and by providing the related confidence intervals.
As further stability diagnostics, we employ the amplitude
probability density (APD) curves (P (|X| > x)) that give a
good indication of whether the SαS fit matches the data
near the mode and on the tails of the distribution.

In this paper, we extract the interdependencies between
pairs of subbands at each decomposition level by utilizing
their joint statistics. For this purpose, we construct the vec-
tor with each component corresponding to a subband and
we consider it as a sample of a so-called α-sub-Gaussian
process (α-SG(R)), which is a variance mixture of a Gaus-
sian process, defined as follows:

Definition: Let {G(t), t ∈ T} be a Gaussian process with

covariance function R(u,v) and A ∼ Sα/2((cos πα
4

)2/α, 1, 0)

be a positive α
2
-stable random variable where α < 2. As-

sume that the random variable A is independent of {G(t), t ∈
T}. The SαS process {X(t) = A1/2G(t), t ∈ T} is a
sub-Gaussian process with an underlying Gaussian process
{G(t), t ∈ T}.

The finite dimensional projections, (X(t1), ..., X(td)),
d ≥ 1, are α-SG(R) random vectors with underlying co-
variance matrix R. For example, in the standard 2-D DWT
with 3 subbands (H: horizontal, V: vertical, D: diagonal) we

define these vectors as ~X = [XH , XV , XD]T . Then, for the
subbands at a specific level, we assume that the vectors
~Xk = [XH,k, XV,k, XD,k]T , k = 1, ..., N , are samples taken
from an α-SG(R) process where N is the number of pixels
of each of the subbands and the subscript k goes through
all the spatial locations of the subband.

The notion of covariance between two random variables
plays an important role in the second-order moment the-
ory. However, covariances do not exist for the family of
SαS random variables, due to the lack of finite variance.
Instead, a quantity called covariation, which under certain
constraints plays an analogous role for SαS random vari-
ables to the one played by covariance for Gaussian random
variables, has been proposed [8]. Let X and Y be jointly
SαS random variables with α > 1, zero location parameters
and dispersions γX and γY respectively. The covariation of
X with Y is defined by [8]

[X, Y ]α =
E{XY <p−1>}

E{|Y |p} γY (1)

where for any complex number z and a ≥ 0 we use the
notation z<a> = |z|a−1z̄, with z̄ denoting complex conju-
gation. We note that the covariation is defined in terms of
the so-called fractional lower order moments (FLOM’s) of
a SαS random variable Y ,

E{|Y |p} =
(
c(p, α) · γY

)p
, 0 < p < α , (2)

where

c(p, α) =
2p+1Γ

(
p+1
2

)
Γ
(
− p

α

)

α
√

π Γ
(
− p

2

) .

3. FEATURE EXTRACTION

3.1. Case without rotations

In the FE stage of the proposed method we proceed in two
steps: first we estimate the characteristic exponent of the
sub-Gaussian process. This value can be estimated on the
basis of the observation that each component in the sub-
Gaussian vector is a SαS random variable of the same
characteristic exponent α as the vector [8]. For instance,
in the case described before we could estimate the α pa-
rameter from the first components of each sub-Gaussian
vector, i.e. from the set {XH,k}k=1,...,N containing the
wavelet coefficients of the Horizontal subband (the previous
observation indicates that under the sub-Gaussian assump-
tion, the estimation could be realized using any of the sets
{XV,k}k=1,...,N , {XD,k}k=1,...,N ).



The second step of the proposed method consists of the
estimation of the covariation matrix C, with elements the
covariations between the components of the α-SG(R) vec-
tors, and the estimation of the underlying covariance matrix
R, corresponding to the Gaussian part of the α-SG(R) vec-
tors. In the case of 3 subbands at each level, we consider the

previously defined vectors ~Xk = [XH,k, XV,k, XD,k]T }k=1,...,N

as independent realizations of an α-SG(R) process. Solv-
ing (2) with respect to γY , substituting in (1) and replacing
the expectation operators, E{·}, with the sample means, we
can estimate the elements Cmn = [Xm, Xn]α of the covaria-
tion matrix C as follows (for convenience we set X1 = XH ,
X2 = XV , X3 = XD):

Ĉmn = (c(p, α))
−α

p

[ 1

N

N∑

k=1

Xk
m(Xk

n)<p−1>
][ 1

N

N∑

k=1

|Xk
n|p

] α
p
−1

(3)
A second covariation estimator is obtained by replacing

the expectation operators in (1) with the sample means and
using an ML estimator for γY :

ĈFLOM
mn =

∑N
k=1 Xk

m |Xk
n|p−1 sign(Xk

n)∑N
k=1 |Xk

n|p
γα

Xn
(4)

The estimation of the covariations requires the specifi-
cation of the arbitrary parameter p. We compute the op-
timal p as a function of the characteristic exponent α, by
computing the value of p that minimizes the standard devi-
ation of the estimators for different values of α > 1. For this
purpose we studied the influence of the p parameter to the
performance of the estimators given by (3), (4) via Monte-
Carlo simulations. We generated two real SαS (1 < α ≤ 2)
random variables, X and Y , as follows:

X = a1U + b1V

Y = a2U + b2V ,

where U and V are independent, standard (γU = γV =
1) SαS random variables and {ai, bi, i = 1, 2} are real
coefficients. We randomly selected these coefficients to be
equal to

[
a1 b1

a2 b2

]
=

[
0.32 −1.7
−2.45 0.44

]
.

We generated N = 5000 independent samples of U and V
and calculated the covariation estimator by means of (3),
(4) for different values of p in the range (0, 2]. We ran
K = 1000 Monte-Carlo simulations for different values of
α ∈ (1, 2], comparing the performance of the above two
covariation estimators. Figure 1 displays the standard de-
viation of the estimator ĈFLOM (p) as a function of the
parameter p and for different values of α.

Table 1 shows comparative results on the performance
of the two estimators. We include the mean of the estima-
tors, the standard deviation in parentheses and the value of
p for which the smallest standard deviation is achieved by
the estimators. We observe that, in general, the two esti-
mators have comparable performance, with the ĈFLOM (p)
estimator resulting in a smaller standard deviation for most
of the values of α. This comparative performance of the co-
variation estimators is also similar when other values of the

True

α Ĉ(p) ĈFLOM (p) [X, Y ]α

1.1 -1.9129 -1.9158 (p=0.56) -1.916
(0.1604) (0.1397)

1.2 -1.8211 -1.8203 (p=0.57) -1.8254
(0.1607) (0.1390)

1.3 -1.7476 -1.755 (p=0.59) -1.7476
(0.1476) (0.1481)

1.4 -1.6913 -1.6814 (p=0.66) -1.6821
(0.1472) (0.1234)

1.5 -1.6292 -1.6201 (p=0.68) -1.6285
(0.1354) (0.1218)

1.7 -1.5614 -1.5533 (p=0.76) -1.5561
(0.1156) (0.1062)

1.9 -1.5252 -1.5109 (p=0.91) -1.5288
(0.0954) (0.0886)

2 -1.5324 -1.5301 (p=2) -1.532
(0.0640) (0.0668)

Table 1. Performance of the covariation estimators.
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Fig. 1. Curves representing the standard deviation of the
covariation estimation as a function of the parameter p for
the ĈFLOM estimator.

coefficients {ai, bi, i = 1, 2} are used. Thus, in our experi-
mental evaluations we will rely on this estimator.

For a given αk, we repeated the simulations for differ-
ent pairs of (γU , γV ) and we defined the optimal p value
associated with αk as the mean of the optimal p values cor-
responding to each (γU , γV ) pair.

Then, we can estimate the elements Rmn of the under-
lying covariance matrix using the relation

Cmn = 2−
α
2 RmnR

α−2
2

nn (5)

resulting in the following estimators

R̂nn =
[
2

α
2 Ĉnn

] 2
α , R̂mn = 2

α
2

Ĉmn

R̂
α−2

2
nn

, (6)

which are consistent and asymptotically normal.



3.2. Case with rotations

In the case of a database containing images along with ro-
tated versions of them, we are interested in finding features
which are as ”steerable” as possible, that is given the fea-
tures of an image oriented at an angle φ, we should be
able to obtain the features corresponding to the same im-
age rotated at an angle θ, without having to re-extract the
features after the rotation.

Let c(xk, φ) represent the value of a transform coeffi-
cient at a spatial location xk and orientation φ. In a steer-
able pyramid with J basic orientations (subbands) and L
levels, at each level l, given the J basic coefficients

{cl(xk, φ1), c
l(xk, φ2), ..., c

l(xk, φJ)}
the transform coefficient cl(xk, φ) for any angle φ is given
by [5]:

cl(xk, φ) =

J∑
i=1

fi(φ)cl(xk, φi) ∀φ, l = 1, ..., L (7)

where {f1(φ), f2(φ), ..., fJ(φ)} is the set of J steering func-
tions.

Under the sub-Gaussian assumption, the J basic coeffi-
cients at a level l can be expressed as:

cl(xk, φi) = A1/2cl
G(xk, φi), i = 1, ..., J (8)

where cl
G(xk, φi) is the Gaussian part of the α-SG(R) vec-

tor. From (7) the transform coefficient at any angle φ is
given by:

cl(xk, φ) = A1/2
J∑

i=1

fi(φ)cl
G(xk, φi) (9)

= A1/2cl
G(xk, φ) (10)

(10) shows that the transform coefficients of a rotated im-
age at an angle φ are also sub-Gaussian random variables
with the same characteristic exponent with that of the orig-
inal image, and a Gaussian part which corresponds to the
same angle φ. Let R, Rθ denote the underlying covariance
matrices of the original image and its rotation at an angle
θ, respectively. Proposition 1 in [5] indicates that R and
Rθ are equivalent matrices, i.e., they can be written in the
form:

Rθ = A(θ)RAT (θ) (11)

where

A(θ) =




f1(φ1 − θ) f2(φ1 − θ) · · · fJ(φ1 − θ)
f1(φ2 − θ) f2(φ2 − θ) · · · fJ(φ2 − θ)

...
...

...
...

f1(φJ − θ) f2(φJ − θ) · · · fJ(φJ − θ)




(5) gives the relation between the elements of the covaria-
tion matrix Cθ of the rotated image and the corresponding
elements of the underlying covariance matrix Rθ:

[Cθ]mn = 2−
α
2 [Rθ]mn([Rθ]nn)

α−2
2 (12)

By employing (11), (12) and after some manipulation the

relation between the estimated covariation matrix Ĉ of the

original image and the corresponding estimated matrix Ĉθ

of its rotated version is given by:

Ĉθ = M. ∗D(M), (13)

where
M = A(θ)Ĉ′AT (θ),

Ĉ′ =




Ĉ11

Ĉ
(α−2)/α
11

Ĉ12

Ĉ
(α−2)/α
22

· · · Ĉ1J

Ĉ
(α−2)/α
JJ

...
...

...
...

ĈJ1

Ĉ
(α−2)/α
11

ĈJ2

Ĉ
(α−2)/α
22

· · · ĈJJ

Ĉ
(α−2)/α
JJ




,

D(M) =



{diag(M)}. ∧ (

α−2
2

)
...

{diag(M)}. ∧ (
α−2

2

)


 , (14)

with (.∗), (.∧) denoting element-by-element multiplication
and element-by-element involution, respectively, and diag(M)
is a row vector containing the main diagonal of the square
matrix M . Notice also that the dimension of all the above
matrices is equal to J × J .

4. SIMILARITY MEASUREMENT

4.1. Case without rotations

In the FE step, we represent the texture information of an
image using the covariation matrix for each decomposition
level. A way to measure the distance between two corre-
sponding levels of two distinct images, is to take a matrix
norm of the difference of the two covariation matrices. In
the similarity measurement step, the overall distance be-
tween two images I1, I2 is given as the sum of the distances
between the corresponding decomposition levels:

D(I1, I2) =

L∑

l=1

‖Cl
I1 −Cl

I2‖ (15)

where L is the number of decomposition levels and ‖·‖ may
be anyone of the commonly used matrix norms.

Another way to measure the similarity between two im-
ages, is to proceed as in [2] by computing the KLD between
the normalized multivariate characteristic functions corre-
sponding to the α-SG(R) process at each decomposition
level. This is an issue that we are currently studying.

4.2. Case with rotations

In the case that we permit a database containing rotated
versions of the original images, one way to measure the
similarity between the images is to proceed as in [5]. Then,
the distance between two images I1, I2 is defined as:

D(I1, I2) = min
θ

L∑

l=1

‖Cl
I1 − C̃l

I2‖ (16)

where
C̃l

I2 = 2−α/2 · (R̃l
I2 .∗D(R̃l

I2)
)

,

with
R̃l

I2 = A(−θ)Rl
I2A

T (−θ) ,



and

Rl
I2 = 2 · (Cl

I2 .∗ D̄(Cl
I2)

)
.

The operator D̄(M) is equal to D(M).∧(−2/α), where D(·)
is defined in (14). As before, all the above matrices are of
dimension J×J . The rotation-invariant Frobenius distance
defined in (16) is derived by solving (13) with respect to Ĉ.
As we may have a database of images along with rotated
versions of them, we assume that I2 is a counter-clockwise
rotation of the given query I1. So, the signature of image I2

contains the estimated covariation matrices of the steerable
model corresponding to I2, given by (13).

The meaning of this similarity function is that before
measuring the similarity between I1 and I2 we have to align
them, that is, to rotate clockwise the signature of I2. This
clockwise rotation is expressed by the term C̃l

I2 . Since we
do not know the angle which gives the best alignment, we
have to search over a set of possible rotations and this is
expressed by the minimization operation over θ. When I1,
I2 are two rotated versions of the same image, the angle θo

for which the minimum is achieved in (16) must be close
to the relative angle between I1 and I2.

5. EXPERIMENTAL RESULTS

In order to evaluate the efficiency, the proposed retrieval
scheme was applied on a set of 10, 512×512 texture images.
Each of them was physically rotated at 30, 60, 90 and 120
degrees, resulting in a set of 65 texture samples. Then,
we divided each image into 4, 256 × 256 non-overlapping
subimages constructing a database with a total of 4× 50 =
200 textures. We implemented a 3-level steerable pyramid
decomposition, by employing the following oriented basis
(steering) functions:

f1(θ) =
1

2
[cos(θ) + cos(3θ)] f2(θ) = f1

(π

4
− θ

)

f3(θ) = f1

(π

2
− θ

)
f4(θ) = f1

(
3π

4
− θ

)

with basic angles φ1 = 0, φ2 = π/4, φ3 = π/2, φ4 = 3π/4,
resulting in 4 oriented subbands at each level.

In this setup, the query is anyone of the subimages cor-
responding to the original, non-rotated images. The rel-
evant images for each query are defined as the other 16
subimages corresponding to the rotated versions of the same
original image. Figure 2 shows the average percentages of
retrieving relevant subimages as a function of the number of
top matches using the proposed steerable model, compared
with the model that uses the covariance matrices as the ex-
tracted features together with the corresponding rotation-
invariant version of the Frobenius norm [5]. The average
retrieval rate of the proposed method is equal to 93%, while
the corresponding rate for the method that makes a Gaus-
sian assumption is equal to 83.75%.

As a conclusion, the proposed rotation-invariant retrieval
scheme that takes into account the true heavy-tailed behav-
ior of the marginal distribution of the pyramid subband
coefficients and employs a joint sub-Gaussian model ex-
ploiting the high dependence across subbands, results in an
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Fig. 2. Retrieval performance according to the number of
top matches considered.

increased performance and a faster convergence rate com-
pared with the rotation-invariant model that makes a Gaus-
sian assumption for the joint distribution by computing 2nd

order correlations.
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