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Rotation-invariant texture retrieval with
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Abstract— This paper presents a novel rotation-invariant image
retrieval scheme based on a transformation of the texture infor-
mation via a steerable pyramid. First, we fit the distribution of
the subband coefficients using a joint alpha-stable sub-Gaussian
model to capture their non-Gaussian behavior. Then, we apply
a normalization process in order to Gaussianize the coefficients.
As a result, the feature extraction step consists of estimating the
covariances between the normalized pyramid coefficients. The
similarity between two distinct texture images is measured by
minimizing a rotation-invariant version of the Kullback-Leibler
Divergence between their corresponding multivariate Gaussian
distributions, where the minimization is performed over a set of
rotation angles.

Index Terms— Statistical image retrieval, rotation-invariant
Kullback-Leibler Divergence, steerable model, Fractional Lower-
Order Moments, sub-Gaussian distribution.

I. I NTRODUCTION

DURING the last decades, information is being gath-
ered and stored at an impressive rate on large digital

databases. Examples include multimedia databases containing
audio, images and video. The search of large digital multi-
media libraries, unlike the search of conventional text-based
digital databases, cannot be realized by simply searching text
annotations. Because of the amount of details in multimedia
data, it is difficult to provide automatic annotation without
human support. The design of completely automatic mecha-
nisms that extract meaning from this data and characterize the
information content in a compact and meaningful way is a
challenging task.

Content-based Image Retrieval (CBIR) is a set of techniques
for retrieving relevant images from a database on the basis of
automatically-derived features, which accurately specify the
information content of each image. We can distinguish two
major tasks, namely Feature Extraction (FE) and Similarity
Measurement (SM). In the FE step, a set of features consti-
tuting the so-called image signature is generated after a pre-
processing step (image transformation), to accurately represent
the content of a given image. This set has to be much smaller
in size than the original image, while capturing as much as
possible of the image information. During the SM step, a
distance function is employed which measures how close each
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image in the database is to a query image, by comparing their
signatures.

Typical low-level image features, such as color [1], shape
[2] and texture [3], are commonly used in CBIR applications.
In this work, we focus on the use oftexture information
for image retrieval. Loosely speaking, the class of images
that we commonly calltexture imagesincludes images that
are spatially homogeneous and consist of repeated elements,
often subject to some randomization in their location, size,
color and orientation. Previously developed texture extraction
methods include multi-orientation filter-banks and spatial Ga-
bor filters [4]. The basic assumption for these approaches is
that the energy distribution in the frequency domain identifies
a texture. These retrieval systems use simple norm-based
distances (e.g. Euclidean distance) on the extracted image
signatures, as a similarity measure.

In this work, we consider the tasks of FE and SM in a
joint statistical framework. Thus, in our approach, the FE
step becomes a Maximum Likelihood (ML) estimator of the
model parameters fitting the given image data, while the SM
step employs a statistical measure of similarity, such as the
Kullback-Leibler Divergence (KLD) [5], between probability
density functions having different model parameters. In this
setting, optimal retrieval is asymptotically achieved. Using
this statistical approach, a simple extension of the energy-
based methods for texture retrieval is to model each texture
by the marginal densities of the transform coefficients. This
is motivated by the results of resent physiological research
on human texture perception, which suggest that two homo-
geneous textures are often difficult to discriminate if they
produce similar marginal distributions of responses from a
filter-bank [6].

The development of retrieval models in a transform-domain
is based on the observation that often a linear, invertible
transform restructures the image, resulting in a set of transform
coefficients whose structure is simpler to model. Real-world
images are characterized by a set of “features”, such as
textures, edges, ridges and lines. For such images, the 2-
dimensional (2-D) wavelet transform has been shown to be
a powerful modeling tool, providing a natural arrangement of
the wavelet coefficients into multiscale and oriented subbands
representing the horizontal, vertical and diagonal edges [7].
Texture information is modeled using the first or second order
statistics of the coefficients obtained via a Gabor wavelet
transform [8], or an overcomplete wavelet decomposition
constituting a tight frame [9].

On the other hand, considering a statistical framework,
texture is modeled by joint probability densities of wavelet
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subband coefficients. Until recently, wavelet coefficients have
been modeled either as independent Gaussian variables or as
jointly Gaussian vectors [10]. However, it has been pointed
out that the wavelet transforms of real-world images tend to
be sparse, resulting in a large number of small coefficients and
a small number of large coefficients [11]. This property is in
conflict with the Gaussian assumption, giving rise to peaky
and heavy-tailednon-Gaussianmarginal distributions of the
wavelet subband coefficients [11], [12].

Experimental results have proven that thegeneralized Gaus-
sian density(GGD) is a suitable member of the class of
non-Gaussian distributions for modeling the marginal behav-
ior of the wavelet coefficients [11], [13]. Computationally
tractable image retrieval mechanisms based on a combination
of overcomplete wavelet-based texture and color features are
described in [14], where the similarity measure between the
GGD models is based on the Bhattacharrya distance. Recently,
the GGD models have been also introduced in a statistical
framework for texture retrieval in CBIR applications, by
jointly considering the two problems of FE and SM [15].

In recent work, we showed that successful image processing
algorithms can achieve both superior noise reduction and
feature preservation if they take into consideration the actual
heavy-tailed behavior of the signal and noise densities [16],
[17]. We demonstrated that successful modeling of subband
decompositions of many texture images is achieved by means
of symmetric alpha-stable(SαS) distributions [18], [19],
which very often provide a better fit of the non-Gaussian
heavy-tailed distributions, than the generalized Gaussian dis-
tribution (GGD), thus motivating their use in our CBIR model.
After extracting theSαS model parameters, we analytically
derived the KLD between twoSαS distributions. Our for-
mulation improved the retrieval performance, resulting in a
decreased probability error rate for images with distinct non-
Gaussian statistics [20], compared with the GGD model.

However, the majority of current approaches does not take
into account the important interdependencies between different
subbands of a given image, which can be employed in order
to provide a more accurate representation of the texture image
profile. Huang studied the correlation properties of wavelet
transform coefficients at different subbands and resolution
levels, applying these properties on an image coding scheme
based on neural networks [21]. Portilla and Simoncelli devel-
oped an algorithm for synthesizing texture images by setting
different constraints on the correlation between the transform
coefficients and their magnitudes [22].

The theory of Markov random fields has enabled a new
generation of statistical texture models, in which the full
model is characterized by statistical interactions within local
neighborhoods [23]. Recently, a new framework for statistical
signal processing based on wavelet-domain hidden Markov
models has been proposed [24], [25]. It provides an attractive
modeling of both the non-Gaussian statistics and the property
of persistence across scales in a wavelet decomposition.

In this paper, we proceed by grouping the wavelet subband
coefficients and considering them as samples of a multivari-
ate sub-Gaussianrandom process, which is characterized by
the associatedfractional lower-order statistics. Within the

framework of sub-Gaussian processes, we use the notion of
covariation instead of the second-order covariance, in order
to extract possible interdependencies between wavelet coef-
ficients at different image orientations and scales. The joint
sub-Gaussian modeling preserves the heavy-tailed behavior
of the marginal distributions, as well as the strong statistical
dependence across orientations and scales.

A desirable property in a CBIR system is rotation in-
variance. This is a topic that has been previously pursued
by various researchers. Greenspanet. al. [26] and Haley
and Manjunath [27], [28] employed rotation-invariant struc-
tural features, using autocorrelation and DFT magnitudes, ob-
tained via multiresolution Gabor filtering. Recently, a rotation-
invariant image retrieval system based on steerable pyramids
was proposed by Beferull-Lozanoet al. [29]. In this system,
the correlation matrices between several basic orientation
subbands at each level of a wavelet pyramid are chosen as the
energy-based texture features. Mao and Jain [30] presented a
multiresolution simultaneous autoregressive (MR-SAR) model
where a multivariate rotation-invariant SAR (RISAR) model
is introduced, which is based on the circular autoregressive
(CAR) model.

A second category of methods achieving rotation invariance
includes the implementation of a Hidden Markov Model
(HMM) on the subband coefficients of the transformed image.
Do and Vetterli [25] derived a steerable rotation-invariant
statistical model by enhancing a recently introduced tech-
nique on wavelet-domain HMM [24]. Liu and Picard [31]
exploited the effectiveness of the2-D Wold decomposition
of homogeneous random fields, in order to extract features
that represent perceptual properties described as “periodicity”,
“directionality” and “randomness”.

The above mentioned rotation-invariant CBIR techniques
can be classified in two classes. The first class includes
techniques where the FE step consists of computing rotation-
invariant texture features, while the SM step consists of
applying a common similarity function, such as the Euclidean
distance and the KLD. The second class includes techniques
where the FE step consists of estimating the parameters of
a so-calledsteerable modeland then applying a rotation-
invariant version of a common similarity function (e.g. KLD),
during the SM step.

In this paper, we describe a novel technique belonging to
the second class. First, we design a new steerable model,
which is based on the joint sub-Gaussian modeling of the
coefficients of asteerable pyramidincorporating dependence
across orientations and scales. Then, we apply a Gaussianiza-
tion procedure on the steerable pyramid coefficients, by jointly
considering them as samples of a multivariate sub-Gaussian
distribution, viewed as a special case of a Gaussian Scale
Mixture (GSM). After the Gaussianization step, we derive
an analytical expression for a rotation-invariant version of the
KLD between multivariate Gaussian densities (including the
rotation angle between textures), avoiding the use of a Monte-
Carlo method, usually employed to approximate the KLD in
the non-Gaussian case [25].

Our system has several advantages with respect to the
HMM-based methods. First, HMMs require the use of an
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Expectation-Maximization (EM) algorithm, which in some
cases may not converge, for the estimation of the model
parameters (hidden state variables and statistics of a Gaussian
mixture). On the other hand, our proposed method incorporates
dependence across space, orientations and scales, combined in
an efficient way of estimating the multipliers of the multivari-
ate sub-Gaussian model, which are necessary to perform the
Gaussianization. Besides, by exploiting the statistical depen-
dencies between subbands at adjacent scales, we insert the
same first-order Markovian dependence as in HMMs, but in a
simpler way. Also, for the heavy-tailed modeling we useSαS
distributions, which are often better than GGDs.

The rest of the paper is organized as follows: in section II,
we briefly review the probabilistic setting for a CBIR prob-
lem. In section III, we justify the choice of the multivariate
sub-Gaussian model for the joint modeling of the wavelet
coefficients. In section IV, we develop a rotation-invariant
CBIR system by applying a Gaussianization procedure on the
coefficients of a steerable pyramid. In section V, we apply
our scheme to a set of textures and evaluate the retrieval
performance. Finally, in section VI, we provide conclusions
and directions for future research.

II. STATISTICAL CBIR

Let F denote the feature space and~X = {~x1, . . . , ~xN | ~xi ∈
F , i = 1, . . . , N} be a set ofN independent feature vectors
associated to a query. Also, letS = {1, . . . , K} be the set
of class indicators associated with the image classes in the
database. Denote the probability density function (PDF) of the
query feature vector space bypq(~x) and the PDF of classi ∈ S
by pi(~x). The design of a retrieval system in a probabilistic
framework, consists of finding an appropriate mapg : F 7→
S. These maps constitute the set of similarity functions.

The goal of a probabilistic CBIR system is theminimization
of the probability of retrieval error, that is, the probability
P (g( ~X) 6= s). Hence, if we provide the system with a set of
feature vectors~X drawn from classs, we want to minimize
the probability that the system will return images from a class
g( ~X) different froms. It can be shown [32] that the optimal
similarity function, that is, the one minimizingP (g( ~X) 6= s),
is the Bayes or maximum a-posteriory (MAP) classifier

g∗( ~X) = arg max
i

P (s = i| ~X)

= arg max
i

p( ~X|s = i)P (s = i), (1)

where p( ~X|s = i) is the likelihood for thei-th class and
P (s = i) its prior probability. Under the assumption that all
classes are a-priori equally likely, the MAP classifier reduces
to the ML classifier:

g∗( ~X) = arg max
i

p( ~X|s = i)

i.i.d.= arg max
i

1
N

N∑

j=1

log p(~xj |s = i) . (2)

When the numberN of feature vectors is large, application
of the Weak Law of Large Numbers [33] to (2) results in the

following equation:

g∗( ~X) = arg min
i

∫
pq(~x) log

pq(~x)
pi(~x)

d~x

︸ ︷︷ ︸
D(pq‖pi)

, (3)

where D(pq‖pi) denotes theKullback-Leibler divergenceor
relative entropybetween the two densities,pq(·) andpi(·).

The problem of retrieving the topM images similar to a
given query image, can be formulated as amultiple hypothesis
problem. The query imageIq is represented by a feature data
set, ~X = {x1, . . . , xN}, obtained after a transformation step,
and each image in the database,Ii (i = 1, . . . , C), is assigned
with a hypothesisHi. Therefore, the problem of retrieving
the topM images consists of selecting theM images in the
database that are closer in terms of best hypotheses to the data
~X of the given query image.

Under the assumption that all hypotheses are a-priori
equally likely, the optimum rule resulting in the minimum
probability of retrieval error, is to select the hypotheses with
the highest likelihoods among theC. Thus, the topM matches
correspond to theM hypotheses,Hi1 ,Hi2 , . . . , HiM

for which

p( ~X|Hi1) ≥ · · · ≥ p( ~X|HiM ) ≥ p( ~X|Hi), i /∈ {i1, . . . , iM}.
A computationally efficient implementation of this setting

is to adopt aparametric approach. Then, each conditional
PDF,p( ~X|Hi) is modeled by a member of a family of PDFs,
denoted byp( ~X; θi), whereθi is a set of model parameters
to be specified. In this framework, the extracted signature for
the imageIi is the estimated model parameter̂θi, computed
in the FE step. Then, implementation of (3) gives the optimal
rule for retrieving the topM similar images to the given query
imageIq:

1. Compute the KLDs between the query densityp( ~X; θq)
and the densityp( ~X; θi) associated with imageIi in the
database,∀ i = 1, . . . , C:

D(p( ~X; θq)‖p( ~X; θi)) =
∫

p(x; θq) log
p(x; θq)
p(x; θi)

dx .

(4)
2. Retrieve theM images corresponding to theM smallest

values of the KLD.
The KLD in (4) can be computed using consistent estimators
θ̂q and θ̂i, for the model parameters. The ML estimator is a
consistent estimator [5] and for the query image it gives:

θ̂q = arg max
θ

log p( ~X; θ) . (5)

We can also apply achain rule [33], in order to combine the
KLDs from multiple data sets. This rule states that the KLD
between two joint PDFs,p( ~X, ~Y ) and q( ~X, ~Y ), where ~X, ~Y
are assumed to be independent data sets, is given by

D(p( ~X, ~Y )‖q( ~X, ~Y )) = D(p( ~X)‖q( ~X)) + D(p(~Y )‖q(~Y )).
(6)

III. STATISTICAL MODELING OF WAVELET SUBBAND

COEFFICIENTS VIA JOINT SUB-GAUSSIAN DISTRIBUTIONS

In this section, we introduce the family of multivariate sub-
Gaussian distributions justifying this choice in terms of an
accurate approximation of the marginal and joint densities of
the transform coefficients.
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A. The family of multivariate sub-Gaussian distributions

We first give the definition for the family of univariate sym-
metric alpha-stable (SαS) distributions, before introducing the
family of multivariate sub-Gaussian distributions. TheSαS
distribution is best defined by its characteristic function [34]:

φ(t) = exp(ıδt− γα|t|α), (7)

where α is the characteristic exponent, taking values0 <
α ≤ 2, δ (−∞ < δ < ∞) is the location parameter, andγ
(γ > 0) is thedispersionof the distribution. The characteristic
exponent is a shape parameter, which controls the “thickness”
of the tails of the density function. The smaller theα, the
heavier the tails of theSαS density function. The dispersion
parameter determines the spread of the distribution around its
location parameter, similar to the variance of the Gaussian.
A SαS distribution is calledstandard if δ = 0 and γ = 1.
The notationX ∼ fα(γ, δ) means that the random variable
X follows a SαS distribution with parametersα, γ, δ.

In general, no closed-form expressions exist for mostSαS
density and distribution functions. Two important special
cases ofSαS densities with closed-form expressions are the
Gaussian (α = 2) and the Cauchy (α = 1). Unlike the
Gaussian density which has exponential tails, stable densities
have tails following an algebraic rate of decay (P (X > x) ∼
Cx−α, as x → ∞, whereC is a constant depending on the
model parameters), hence random variables followingSαS
distributions with smallα values are highly impulsive.

An important characteristic of non-GaussianSαS distribu-
tions is the non-existence of second-order moments. Instead,
all moments of orderp less thanα do exist and are called the
Fractional Lower Order Moments(FLOM’s). In particular, the
FLOM’s of a SαS random variableX ∼ fα(γ, δ = 0), are
given by [18]:

E{|X|p} =
(
C(p, α) · γ)p

, 0 < p < α, (8)

where

(
C(p, α)

)p =
2p+1Γ

(
p+1
2

)
Γ
(
− p

α

)

α
√

π Γ
(
−p

2

) =
Γ
(
1− p

α

)

cos
(

π
2 p

)
Γ(1− p)

.

(9)
TheSαS model parameters(α, γ) can be estimated using the
consistent Maximum Likelihood (ML) method described by
Nolan [35], which gives reliable estimates and provides the
tightest confidence intervals.

Extending theSαS model to heavy-tailed random vectors
leads to themultivariate sub-GaussianSαS distribution1 [18].

Definition 1 Any vector ~X distributed as ~X = A1/2 ~G,
where A is a positive α

2 -stable random variable and~G =
(G1, G2, . . . , Gn) is a zero-mean Gaussian random vector,
independent ofA, with covariance matrixR, is called a
sub-GaussianSαS random vector (inRn) with underlying
Gaussian vector~G.

1In the following, instead of saying sub-GaussianSαS variable / vector
/ distribution, we simply use the term sub-Gaussian variable / vector /
distribution.

A multivariate sub-Gaussian distribution, with underlying
covariance matrixR, is often denoted byα-SG(R). In this
work, the transform coefficients at different subbands are tied
up in vectors and are assumed to be samples of anα-SG(R)
distribution, which can be viewed as a variance mixture of
Gaussian processes [36].

It is important to note that covariances do not exist for the
family of SαS random variables, due to the lack of finite
variance. Instead, we measure correlation between transform
coefficients using a quantity calledcovariation [18], which
plays an analogous role forSαS random variables to the one
played by covariance for Gaussian random variables. LetX
andY be jointly SαS random variables with1 < α ≤ 2, zero
location parameters and dispersionsγX and γY respectively.
Then, for all1 < p < α, the covariation ofX with Y is given
by

[X, Y ]α =
E{XY <p−1>}

E{|Y |p} γα
Y , (10)

where for any real numberz anda ≥ 0 we use the notation

z<a> =





za, z > 0
0, z = 0
−(−z)a, z < 0.

The covariation coefficientof X with Y , is defined by

λXY =
[X,Y ]α
[Y, Y ]α

=
E{XY <p−1>}

E{|Y |p} . (11)

Note the asymmetric nature of the covariation and the co-
variation coefficient, as opposed to the usual second-order
moments.

Consider the sub-Gaussian random vector~X = A1/2 ~G,
where ~G = (G1, G2, . . . , Gn) the underlying Gaussian vector
with covariance matrixR. Then, the covariations between the
components of~X, [Xi, Xj ]α i, j = 1, . . . , n, are given by [18]:

cij = [Xi, Xj ]α = 2−
α
2 [R]ij [R]

(α−2)
2

jj . (12)

Note thatcij = cji only if [R]ii = [R]jj . During the FE step,
it is necessary to estimate the covariations from the transform
coefficients of the images. In the next section, we describe
how this estimation is performed.

B. Estimation of covariations

By applying (8) onY we have

γY =

(
E{|Y |p})1/p

C(p, α)
. (13)

Let the vectors{ ~X1, ~X2, . . . , ~XN} constitute a set ofN
independent realizations of anα-SG(R) distribution, where
~Xk = (Xk

1 , Xk
2 , . . . , Xk

n), k = 1, . . . , N . Now, observe that
we can find an estimation of[X,Y ]α by multiplying an esti-
mated value ofλXY and the ML estimation ofγY . The value
of λXY is estimated via theFractional Lower Order Moment
(FLOM) Estimator [37], which is very simple and computa-
tionally efficient, in addition to being unbiased and consistent.
For two jointly SαS random variablesX,Y with α > 1, and
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Fig. 1. Curves representing the standard deviation of the covariation
estimation as a function of the parameterp for the ĉFLOM estimator.

a set ofindependentobservations(X1, Y1), . . . , (Xn, Yn), the
FLOM estimator is defined as follows:

λ̂FLOM =
∑n

i=1 Xi|Yi|p−1 sign(Yi)∑n
i=1 |Yi|p . (14)

Thus, the covariation estimator between the components of a
sub-Gaussian vector~X is given by:

ĉFLOM
ij =

∑N
k=1

~Xk
i | ~Xk

j |p−1 sign( ~Xk
j )

∑N
k=1 | ~Xk

j |p
γα

Xj
, (15)

where the dispersionγXj can be estimated using the ML
estimator, described in [35].

We define thecovariation matrix C, the matrix having
as elements the covariations. Then, the estimated covariation
matrix Ĉ, is the matrix with elements[Ĉ ]ij = ĉFLOM

ij . Once
these covariations are estimated from the data, we can estimate
the elements[R]ij of the underlying covariance matrix,R,
using (12):

[R̂]jj =
(
2

α
2 [Ĉ]jj

) 2
α , [R̂]ij = 2

α
2

[Ĉ]ij

[R̂]
(α−2)

2
jj

, (16)

which are consistent and asymptotically normal, that is, the
distribution of the above estimators tends to a normal distri-
bution, as the number of observationsN tends to infinity.

Notice that the estimation of covariations and consequently
the estimation of the covariation matrices, requires the spec-
ification of the parameterp. We compute the optimalp
as a function of the characteristic exponentα, by finding
the value ofp that minimizes the standard deviation of the
estimator, for different values ofα > 1. For this purpose, we
studied the influence of the parameterp on the performance
of the covariation estimator given by (15) via Monte-Carlo
simulations.

We generated two realSαS (1 < α ≤ 2) random variables,
X = a1U + b1V , Y = a2U + b2V , where U and V are
independent, standardSαS random variables and{ai, bi, i =

TABLE I

PERFORMANCE OF THE COVARIATION ESTIMATOR.

α ĉFLOM (p) True [X, Y ]α

1.1 -1.9158 (p=0.56) -1.916

(0.1397)

1.2 -1.8203 (p=0.57) -1.8254

(0.1390)

1.3 -1.755 (p=0.59) -1.7476

(0.1481)

1.4 -1.6814 (p=0.66) -1.6821

(0.1234)

1.5 -1.6201 (p=0.68) -1.6285

(0.1218)

1.7 -1.5533 (p=0.76) -1.5561

(0.1062)

1.9 -1.5109 (p=0.91) -1.5288

(0.0886)

2 -1.5301 (p=2) -1.532

(0.0668)

1, 2} are real coefficients. The true covariation ofX with Y
is [X,Y ]α = a1a

<α−1>
2 + b1b

<α−1>
2 . We generatedN =

5000 independent samples ofU and V and calculated the
covariation estimator by means of (15) for different values ofp
in the range(0, 2]. We ranK = 1000 Monte-Carlo simulations
for different values ofα ∈ (1, 2]. We randomly selected,
without loss of generality, the coefficient values to be equal
to a1 = 0.32, a2 = −2.45, b1 = −1.7, b2 = 0.44. Fig. 1
displays the standard deviation of the estimatorĉFLOM (p) as
a function of the parameterp and for different values ofα.

Table I shows results on the performance of the estimator.
We include the mean of the estimator, the standard deviation in
parentheses and the value ofp for which the smallest standard
deviation is achieved by the estimator. We also note that we
obtained similar experimental results for different values of
the coefficients{ai, bi, i = 1, 2}.

In our proposed CBIR system, we need to estimate the
covariations between the components of the sub-Gaussian
vectors, which are special cases ofSαS random variables. We
repeated the above Monte-Carlo simulations using two sub-
Gaussian random variables,X = A1/2GX , Y = A1/2GY .
By definition, X and Y can be viewed asSαS random
variables with dispersionγX andγY , respectively. We generate
a sample of a sub-Gaussian random variable by first generating
a sampleA drawn from aSα/2((cos πα

4 )2/α, 1, 0) distribution
and then by generating a sampleG drawn from a zero-mean
Gaussian distribution with variance2γ2, which is viewed as a
S2(γ, 0, 0) variable (withγ = γX or γ = γY depending on
whether the Gaussian partG corresponds to the variableX or
Y , respectively).

Fig. 2 displays the curves representing the standard devia-
tion of theFLOM covariation estimator as a function ofp, for
two values ofα and25 pairs of dispersions(γX , γY ), with the
dispersions ranging in the interval(0, 3.5), which corresponds
to the dispersions estimated from the wavelet subbands of
some selected images used in our experiments (obtained from
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Fig. 2. Curves representing the standard deviation of the covariation estimation as a function of the parameterp for α = 1.2, 1.5 and25 dispersion pairs
(γX , γY ), using thêcFLOM estimator.

the USC, SIPI database2, cf. Fig. 7).
For eachα, we observe that all the curves are minimized

in a common interval on thep-axis, and actually the optimal
values forp are close to each other. We repeated the procedure
for α = 1 : 0.05 : 2 and for a givenαi, we defined the optimal
pi as the mean of the optimalp values of its corresponding
25 curves, corresponding to the25 pairs of dispersions. In
section V, we use the values, shown in Table II, for the optimal
p as a function ofα. This table is used as a lookup table in
order to find the optimalp for every 1 < α ≤ 2 by linearly
interpolating these values.

TABLE II

OPTIMAL p PARAMETER AS A FUNCTION OF THE CHARACTERISTIC

EXPONENTα.

α Optimal p α Optimal p

1 0.52 1.5 0.69

1.05 0.54 1.55 0.71

1.1 0.56 1.6 0.72

1.15 0.57 1.65 0.74

1.2 0.58 1.7 0.76

1.25 0.59 1.75 0.79

1.3 0.61 1.8 0.81

1.35 0.62 1.85 0.84

1.4 0.64 1.9 0.88

1.45 0.66 1.95 0.93

2 0.8

C. Joint sub-Gaussian modeling of wavelet coefficients

In this section, we justify the selection of the family of sub-
Gaussian distributions as a statistical modeling tool for the

2http://sipi.usc.edu/services/database

wavelet coefficients of texture images and, as an example, we
show results on modeling data obtained by applying standard
2-D, orthogonal, discrete wavelet transform (DWT) on real
texture images. Similar results are obtained when using other
types of wavelet transforms, such as a steerable wavelet trans-
form, which is more convenient to achieve rotation invariance.

The 2-D orthogonal DWT expands an image using a certain
basis, whose elements are scaled and translated versions of
a single prototype filter. In particular, the DWT decomposes
images in dyadic scales, providing at each resolution level one
low-pass subband approximation and three spatially oriented
wavelet subbands. There are interesting properties of the
wavelet transform [7] that justify its use in CBIR systems:
Locality (image content is localized in both space and fre-
quency),multiresolution(image is decomposed at a nested set
of dyadic scales), andedge detection(wavelet filters operate
as local edge detectors). Because of these properties, the
wavelet transforms of real-world images tend to be sparse,
resulting in a large number of small magnitude coefficients
and a small number of large magnitude coefficients. In our
modeling, we employ all the subbands except the low-pass
residual, since it does not present this sparsity behavior, but
an average of the original image. Importantly, this property is
in conflict with the Gaussian assumption, giving rise to peaky
and heavy-tailednon-Gaussianmarginal distributions of the
wavelet subband coefficients, which leads us to use joint sub-
Gaussian distributions.

In our proposed retrieval scheme, we proceed by using a
statistical model that captures both wavelet subband marginal
distributions and inter-subband correlations. Various exper-
imental results have shown the importance of the cross-
correlation of each subband with other orientations at the
same decomposition level in characterizing the texture infor-
mation [38].

Our joint modeling is performed by tying up the wavelet
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coefficients at the same or adjacent spatial locations, levels
and subbands, to form a sub-Gaussian vector. This modeling
of the subband coefficients preserves the heavy-tailed behavior
of their marginal distributions. Notice that the components
of a sub-Gaussian vector are highly dependent, as illustrated
in [18], and this makes the joint sub-Gaussian model appro-
priate for capturing the cross-dependencies between different
subbands, since around features, such as edges and lines, the
wavelet coefficients at all subbands are dependent in the sense
that they have high probability of being significant.

Next, we assess the effectiveness of aSαS density function
for the approximation of the empirical density of the subband
coefficients, near the mode and on the tails. In our data
modeling, the statistical fitting proceeds in two steps: first, we
assess whether the data deviate from the normal distribution
and we determine if they have heavy tails by employing
normal probability plots [39]. Then, we check if the data is in
the stable domain of attraction by estimating the characteristic
exponent α directly from the data and by providing the
related confidence intervals. As a further stability diagnostics,
we employ the amplitude probability density (APD) curves
(P (|X| > x)) that give a good indication of whether theSαS
fit matches the data near the mode and on the tails of the
distribution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10
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Fig. 3. Modeling of the horizontal subband at the first level of decomposition
of the Flowers.6 image with theSαS and the GGD depicted in solid and
dashed lines, respectively. The estimated parameters for theSαS distribution
have the valuesα = 1.76, γ = 0.08 while the GGD has parametersα = 0.11
andβ = 1.02. The dotted line denotes the empirical APD.

Fig. 3 compares theSαS and GGD fits for a selected sub-
band of a certain image. Clearly, theSαS density is superior
to the GGD, following more closely both the mode and the
tail of the empirical APD, than the exponentially decaying
GGD. Table III shows the ML estimates of the characteristic
exponentα together with the corresponding95% confidence
intervals, for a set of10 textures (real-world512×512 natural
scene images) obtained from the MIT Vision Texture (VisTex)
database, decomposed in3-levels using Daubechies’4 (’db4’)
filters [40]. It can be observed that the confidence intervals

depend on the decomposition level. In particular, they become
wider as the level increases since the number of samples used
for estimating theSαS parameters gets smaller because of
the subsampling that takes place between scales. This table
also demonstrates that the coefficients of different subbands
and decomposition levels exhibit various degrees of non-
Gaussianity, with values ofα varying between0.9 (close to
Cauchy) and2 (close to Gaussian).

TABLE III

SαS MODELING OF WAVELET SUBBAND COEFFICIENTS OF TEXTURE

IMAGES FROM THE V ISTEX DATABASE, USING DAUBECHIES’ 4 FILTER

AND 3 DECOMPOSITION LEVELS. ML PARAMETER ESTIMATES AND95%

CONFIDENCE INTERVALS FOR THE CHARACTERISTIC EXPONENTα.

Image Subbands

IMAGE Horizontal Vertical Diagonal

Level 1

Bark.10 1.601± 0.061 1.684± 0.058 1.681± 0.057

Brick.1 1.614± 0.056 1.577± 0.056 1.896± 0.031

Buildings.4 1.681± 0.039 1.684± 0.047 1.601± 0.046

Fabric.0 2.000± 0.007 1.270± 0.053 1.322± 0.055

Fabric.10 1.229± 0.057 1.367± 0.058 1.175± 0.054

Flowers.6 1.76± 0.041 1.701± 0.044 1.986± 0.025

Food.9 1.626± 0.061 1.339± 0.055 1.386± 0.056

Grass.1 1.879± 0.047 1.853± 0.053 1.791± 0.055

Metal.4 1.320± 0.057 1.228± 0.054 1.402± 0.059

Stone.3 1.591± 0.054 1.688± 0.049 1.746± 0.050

Level 2

Bark.10 1.855± 0.097 1.858± 0.110 1.850± 0.107

Brick.1 1.311± 0.105 1.539± 0.103 1.850± 0.101

Buildings.4 0.921± 0.089 1.186± 0.119 1.151± 0.098

Fabric.0 2.000± 0.006 1.171± 0.099 1.349± 0.114

Fabric.10 1.677± 0.120 1.611± 0.115 1.557± 0.114

Flowers.6 1.334± 0.097 1.424± 0.100 1.900± 0.057

Food.9 1.990± 7.7e-8 1.465± 0.107 1.750± 0.101

Grass.1 1.921± 0.073 1.858± 0.099 1.990± 0.073

Metal.4 1.680± 0.121 1.505± 0.119 1.690± 0.119

Stone.3 1.869± 0.083 1.509± 0.103 1.658± 0.117

Level 3

Bark.10 1.723± 0.225 2.000± 0.162 1.792± 0.248

Brick.1 1.227± 0.242 1.368± 0.204 1.990± 0.219

Buildings.4 1.220± 0.201 2.000± 0.109 1.014± 0.181

Fabric.0 2.000± 0.097 1.498± 0.246 1.874± 0.167

Fabric.10 1.865± 0.205 2.000± 0.103 1.904± 0.184

Flowers.6 1.643± 0.222 1.573± 0.210 1.851± 0.211

Food.9 2.000± 0.005 1.677± 0.222 1.990± 0.245

Grass.1 2.000± 0.375 1.862± 0.177 2.000± 0.241

Metal.4 1.787± 0.217 1.888± 0.145 1.863± 0.182

Stone.3 2.000± 0.096 1.278± 0.223 1.500± 0.226

IV. ROTATION-INVARIANT CBIR WITH GAUSSIANIZED

STEERABLE PYRAMIDS

The property of rotation invariance is very desirable in
a texture retrieval system. An important problem with the
standard wavelet transform is that it lacks the translation and
rotation invariant properties. This results in a mismatch of the
retrieval process when the image orientation varies. In fact, the
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wavelet coefficients of the rotated image will be completely
different, in the sense that they will not be simply rotated
versions of the wavelet coefficients of its original version.

A way to overcome this problem is to replace the standard
wavelet transform with a steerable pyramid [41], [42], which
is a linear multi-scale, multi-orientation image decomposition
produced by a set of orientation filters, generated by a set
of basis functions (directional derivative operators). Steerable
pyramids are overcomplete and possess the desired properties
of rotation invariance and (approximate) translation invariance.

In this section, we design a rotation-invariant CBIR tech-
nique, which is based on the joint sub-Gaussian modeling
of a steerable pyramid coefficients, incorporating dependence
across space, angles and scales. In particular, we construct a
steerable model, relating the fractional lower-order statistics
of a rotated image with that of its original version, and then
apply a Gaussianization process on the steerable model by
employing the local statistical behavior of the coefficients,
which are grouped into appropriate spatial neighborhoods.
The similarity measurement between two images is performed
by deriving a rotation-invariant similarity function, which
effectively performs angular alignment between the images.

A. Steerability of the pyramid subband coefficients

In the case of a database containing images along with
rotated versions of them, we are interested in finding features
which are as “steerable” as possible, that is, given the features
of an image oriented at an angleφ, we should be able to
obtain the features corresponding to the same image rotated
at an angleθ, without having to re-extract the features from
the rotated image3.

Let cl(xk, φ) represent the value of a transform coefficient
at a spatial locationxk (k = 1, . . . , N), orientationφ and
level l (l = 1, . . . , L). In a steerable pyramid withJ basic
orientations (subbands), at each levell, given the J basic
coefficientsX l

k = [cl(xk, φ1), cl(xk, φ2), ..., cl(xk, φJ)]T , the
transform coefficientcl(xk, φ) for any angleφ is given by [29]:

cl(xk, φ) =
J∑

i=1

fi(φ)cl(xk, φi) ∀ φ, l = 1, ..., L (17)

where{f1(φ), f2(φ), ..., fJ(φ)} is the set ofJ steering func-
tions.

Let Rl and Rl
θ denote the sampled correlation matrices,

with elements given by the correlations between pairs of
subbands (at a given decomposition levell) of the original
imageI and its rotated versionIθ, respectively. The following
proposition [29] establishes the relation betweenRl andRl

θ.

Proposition 1 ([29]) The matricesRl
θ andRl are related as

follows:

Rl
θ = F(θ)RlFT (θ), (18)

3Through the next sections, we consider counter-clockwise rotation.

where

F(θ) =




f1(φ1 − θ) f2(φ1 − θ) · · · fJ (φ1 − θ)
f1(φ2 − θ) f2(φ2 − θ) · · · fJ (φ2 − θ)

...
...

...
...

f1(φJ − θ) f2(φJ − θ) · · · fJ(φJ − θ)


 .

(19)

Proof: The proof of Proposition 1 follows easily by direct
computation and making use of the properties of the steering
functions{fi(θ)}.

In our work, theJ basic angles are taken to be equispaced,
which makesF(θ) an orthogonal matrix for anyθ, i.e.,
FT (θ) = F−1(θ) (= F(−θ)), and thus, in this case,Rl and
Rl

θ become orthogonally equivalent.
Under a joint sub-Gaussian assumption, the coefficients of

the J basic orientations (subbands) at a given levell are
modeled as joint sub-Gaussian vectorsα-SG(Rl), with Rl

denoting the underlying covariance matrix corresponding to
the subbands at thelth-level.

The pyramid coefficients at a given subband are assumed
to follow a sub-Gaussian marginal distribution. So, the coeffi-
cients corresponding to the basic orientationφi at level l can
be expressed as:

cl(xk, φi) =
√

A cl
G(xk, φi), i = 1, ..., J, (20)

wherecl
G(xk, φi) is the Gaussian part of theα-SG(Rl) vector.

From (17), the transform coefficient at levell, at any angleφ
is:

cl(xk, φ) =
J∑

i=1

fi(φ)
(√

A cl
G(xk, φi)

)

=
√

A

J∑

i=1

fi(φ)cl
G(xk, φi) =

√
Acl

G(xk, φ).(21)

Notice that (21) shows that the pyramid subband coefficients
of a rotated image at an angleφ, are also sub-Gaussian random
variables with the same characteristic exponent as that one
of the corresponding subbands of the original (non-rotated)
image, and with a Gaussian part which is the rotated version
of the original Gaussian part at the same angleφ. Therefore,
it can be seen that if one is able to estimate accurately
the multiplier

√
A, it would be possible to normalize the

coefficientscl(xk, φ) dividing them by
√

A, and work with
the Gaussianized coefficientscl

G(xk, φ). This is convenient
because, as it will become clearer later, it is easier to use
appropriate and simple (analytical) similarity functions with
the Gaussianized coefficients.

In order to accurately estimate the multiplierA, we con-
sider dependence across orientations, scales and space, which
results in an improved statistical model for natural images.
We achieve this by defining an appropriate neighborhood for
each coefficient, which is then modeled as a sub-Gaussian
random vector. This joint sub-Gaussian modeling is followed
by a Gaussianization procedure, which results in a steerable
pyramid whose coefficients are jointly Gaussian (Gaussianized
steerable pyramid).

There are several reasons that justify the Gaussianization
step:
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a) the normalized transform domain can be well mod-
eled statistically, using only second-order covariances
between pairs of subbands,

b) the similarity measurement can be performed using an
analytical expression for the KLD between two multi-
variate Gaussian distributions, avoiding computationally
complex methods, such as the Monte-Carlo method,

c) the normalized pyramid allows to perform easily steer-
ability in the feature space.

B. Variance-adaptive local modeling using multivariate sub-
Gaussian distributions

The dependencies between the coefficients forming a certain
neighborhood, including in general coefficients located at a
small spatial region and at different orientations and scales,
can be modeled using a homogeneous random field with a
spatially changing variance. This requirement can be realized
by modulating the vector of coefficients constituting the neigh-
borhood (node of the field) with a hidden scaling random
variable (multiplier), as follows:

~X
d=
√

A ~G (22)

where ~G is a zero-mean Gaussian random vector andA a
positive scalar variable independent of~G (

d= denotes equality
in distribution). A vector~X that can be written like this, is said
to follow a Gaussian Scale Mixture (GSM) distribution [43].
Notice that when the multiplierA is drawn from aSαS
distribution, this is exactly the case of a multivariateα-sub-
Gaussian model.

Two basic assumptions are made in order to reduce the
dimensionality of these models: (i) the probability structure
is defined locally. In particular, the probability density of
a coefficient when conditioned on the rest of neighbors, is
independent of the coefficients outside the neighborhood, (ii)
all such neighborhoods obey the same distribution (spatial
homogeneity).

The construction of a global probabilistic model for images,
based on these local descriptions, needs the specification of a
neighborhood structurefor each subband coefficient, and the
distribution of the multipliers, which we have already specified
that it is a member of the family ofSαS distributions. We
extract the interdependencies between coefficients at different
orientations, levels and spatial positions, by utilizing their
joint α-sub-Gaussian statistics: Let~X l, i

k denote a generic
P -dimensional neighborhood of the coefficientcl(xk, φi) at
the spatial positionxk (k = 1, . . . ,K), orientationφi (i =
1, . . . , J) and level l (l = 1, . . . , L). This neighborhood is
supposed to be drawn of anα-SG(Rl) random vector.

C. Gaussianization of the multivariate sub-Gaussian model

An important property of a GSM model is that the proba-
bility density of aP -dimensional GSM vector~X is Gaussian
when conditioned onA. Combining this property with (22),
it is clear that the normalized vector~X/

√
A follows a joint

Gaussian distribution. The probability density of~X condi-
tioned onA is given by:

p( ~X|A) =
exp(− ~XT (AR)−1 ~X/2)

(2π)P/2 |AR|1/2
. (23)

From (23), it can be seen that the ML estimator for the
multiplier A is

Â( ~X) =
~XT R−1 ~X

P
, (24)

where the estimator is explicitly written as a function of
~X to emphasize the assumption of locality. This simplifies
the computational procedure for the Gaussianization of the
steerable pyramid subband coefficients, as we assume that
the multipliers associated with different neighborhoods are
estimated independently, even though the neighborhoods are
overlapping.

In our implementation, we estimate, as explained in sec-
tion III-B, the underlying covariance matrixRl, i, correspond-
ing to the basic orientationφi at thelth-level, by employing the
neighborhoods of all coefficients (or a subset of them, which
is computationally efficient, at the cost of a reduced estimation
accuracy) at the given orientation (~X l, i

k , k = 1, . . . , N ). This
procedure has the advantage of resulting in a computationally
efficient way to estimate the hidden multiplierA and nor-
malize the subband coefficients. Also, our technique avoids
the use of a Gaussian Mixture Model (GMM), as in other
approaches [25], which requires complicated Expectation-
Maximization algorithms to estimate the multipliers, nested in
a Markovian manner. We must also note that the multipliers
in [25] are discrete, whereas in our model they vary in a
continuous fashion.

Summarizing, the steps of our Gaussianization method are:

1. Decompose the given image intoL levels andJ orien-
tations per level, via a steerable pyramid.

2. For each decomposition levell, l = 1, . . . , L:
For each orientationφi, i = 1, . . . , J , at thel-th level:

i) Estimate the covariance matrixRl, i using (16).
ii) For each coefficientcl(xk, φi), k = 1, . . . , K:

• Construct the corresponding neighborhood~X l, i
k .

• Estimate the multiplierÂl, i
k ( ~X l, i

k ) using (24).
• Compute the normalized coefficientc̃l(xk, φi) =

cl(xk, φi)/
√

Âl, i
k .

From (24), it is obvious that the estimation accuracy for the
multiplier depends on the accurate estimation of the underlying
covariance matrixRl, i and the neighborhood structure.

D. Computation of inter-level covariations

The multiplier estimation, as well as the construction of an
image signature which we describe later on, may require the
involvement of coefficients or the computation of covariations
between subbands at different levels. Using the standard pyra-
mid decomposition, we move from levell to the next coarser
level (l + 1) by subsampling the output of a low-pass filter.
As a result, the subbands at the(l+1)-th level are1/4 in size
than those of thel-th level (since we are dealing with images),
which is undesired since the covariation estimation includes
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TABLE IV

NEIGHBORHOOD SHAPES USED IN THE MEASUREMENT OF THEGAUSSIANIZATION PERFORMANCE.

Index Neighborhood Structure Size (P )

for a givencl(xk, φi)

1 (l, φi): (3x3) ∪ {(l, φj)|j = 1, . . . , J, j 6= i}: 1 ∪ (l + 1, φi): 1 J + 9

2 (l, φi): (3x3) ∪ {(l, φj)|j = 1, . . . , J, j 6= i}: 1 J + 8

3 (l, φi): (3x3) 9

4 (l, φi): 4 (cross shape (c.s.)) 5

5 (l, φi): 4 (c.s.)∪ {(l, φj)|j = 1, . . . , J, j 6= i}: 1 ∪ (l + 1, φi): 1 J + 5

6 (l, φi): 4 (c.s.)∪ {(l, φj)|j = 1, . . . , J, j 6= i}: 1 J + 4

7 (l, φi): 4 (c.s.)∪ {(l, φj)|j = 1, . . . , J, j 6= i}: 4 (c.s.) 5(J + 1)

∪ (l + 1, φi): 4 (c.s.)

8 (l, φi): (5x5) ∪ {(l, φj)|j = 1, . . . , J, j 6= i}: 1 ∪ (l + 1, φi): 1 J + 25

9 (l, φi): (5x5) ∪ {(l, φj)|j = 1, . . . , J, j 6= i}: 1 J + 24

10 (l, φi): (5x5) 25

1) (l, φi): X, means that X is the neighborhood at the levell and orientationφi, centered at the coefficientcl(xk, φi).
2) {(l, φj)|j = 1, . . . , J, j 6= i}: Y, means that for each one of the rest(J − 1) orientations at levell, Y is the neighborhood centered at the coefficient

cl(xk, φj),  = 1, . . . , J, j 6= i.
3) (l + 1, φi): Z, means that Z is the neighborhood at the next lower levell + 1 and orientationφi centered at the corresponding spatial location.

summations between vectors of equal length. Subsampling is
good for compression and for saving memory and complexity
when performing the decomposition. However, subsampling
introduces some aliasing, which is not good for extracting
features. There are two ways to avoid this:
a) Instead of subsampling the output of the filters, we can
upsample the filters and perform the filtering without subsam-
pling their outputs. In addition to avoiding aliasing, it allows
us also to keep the same number of coefficients across scales,
which favors the computation of covariation matrices across
scales.
b) Using Fourier domain filtering, simply by multiplying
the DFT of the image with the DFT of the filter and then
taking the inverse DFT to obtain the subband coefficients. We
follow the frequency-domain approach since, although both
implementations should give approximately the same values,
the frequency-domain implementation is more exact as it does
not suffer from the finite-length constraint that is imposed on
the filters for the convolution.

Besides, the estimation of covariation assumes two jointly
sub-Gaussian random variables, i.e., with equal characteristic
exponent values. The values ofα, estimated from the different
orientation subbands using a steerable pyramid without sub-
sampling, are close to each other but not equal. This problem
is overcome by making use of the asymmetry in the definition
of the covariation:

• from (15), we observe that the freep parameter affects
the second variable (as an exponent),

• the intuitive idea is to use the estimated characteristic
exponent,α, corresponding to the second variable (sub-
band) in order to estimate the covariation: for instance, in
order to estimate[X,Y ]α we first estimateα from Y and
then assume thatX follows a distribution with the same
α, while in order to estimate[Y,X]α we estimateα from
X and then assume thatY also follows a distribution with
that α. This procedure exploits the differences between
the subbands, regarding their distribution.

We also use this approach for the estimation of the covariations
between subbands at thesamedecomposition level.

E. Neighborhood construction

There is a trade-off between the computational complexity
and the neighborhood size. This can be seen from (24),
where the estimated stable multiplier depends on the inverse
of the underlying covariance matrixR. The computational
complexity increases as the neighborhood sizeP increases,
since the complexity to estimateR and to calculate its
inverse,R−1, depends on its dimension (P × P ). It is clear
that is not computationally feasible to construct all possible
neighborhoods for each subband coefficient in order to select
the optimal neighborhood, because of the large amount of
combinations.

In this section, we examine the performance of our Gaus-
sianization procedure with respect to different neighborhoods,
taking also into consideration the computational limitations.
For this purpose, we implement the Gaussianization process
using the neighborhoods shown in Table IV.

For a given subband coefficientcl(xk, φi), the formation of
some of the above neighborhoods requires the inclusion of co-
efficients at the same spatial location of the subbands but at the
next coarser scale. In order to associate coefficients between
adjacent levels, we use the frequency-domain implementation
of the steerable pyramid, without subsampling the output of
the filters, as described in section IV-D. In this case, it results
in subbands with equal size at all decomposition levels. Then,
the coefficient at the corresponding spatial location of the next
coarser subband is simplyc(l+1)(xk, φi).

We tested the performance of our Gaussianization procedure
with respect to the neighborhood structure, by implementing
it on a set of5, randomly selected textures of size512× 512
from the Brodatz database with the following code numbers:
1. 1.1.01, 2. 1.1.04, 3. 1.1.08, 4. 1.2.08, 5. 1.5.04, along with
their rotations at30, 60, 90 and120 degrees. We applied a3-
level pyramid decomposition with4 orientations per level, thus
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Fig. 4. Histogram of the neighborhood indices in terms of resulting in the
best Gaussianization performance for a set of300 subbands.

obtaining a total of300 subbands. After the Gaussianization,
at each subband, we calculated the relative entropy (∆H)
between the histogram (with256 bins) and the Gaussian PDF
fitting the normalized subband coefficients, as a fraction of the
histogram entropy (H):

∆H

H
=

∑256
k=1 h(xk) log

(h(xk)
g(xk)

)

−∑256
k=1 h(xk) log(h(xk))

, (25)

where h(xk) is the probability density of the centerxk of
the k-th bin, as estimated from the histogram, andg(xk)
is the corresponding value of the fitting Gaussian PDF with
parameters estimated from the normalized coefficients. The
best choice for the neighborhood structure corresponds to the
smallest fraction∆H/H.

Fig. 4 displays the histogram of the neighborhood indices
(cf. Table IV), for the 300 subbands. The vertical axis is
the relative frequency of each neighborhood shape (horizontal
axis), whose selection resulted in the smallest fraction (25) for
the above subbands. For the given set of textures, the choice
of the 10-th neighborhood shape results in the best Gaussian-
ization performance for most of the pyramid subbands.

F. Feature Extraction

After the normalization procedure, the marginal and joint
statistics of the coefficients at adjacent spatial positions, orien-
tations and levels are close to the Gaussian distribution. Then,
to extract the features, we simply compute theJ×J covariance
matrix at each decomposition level.

Thus, for a given imageI, decomposed inL levels, a
possible signatureSG is given by the set of theL covariance
matrices:

I 7→ SG = {Σ1
I ,Σ

2
I , . . . ,Σ

L
I }, (26)

whereΣl
I is the covariance matrix of thel-th decomposition

level. Due to the symmetric property of the covariance matrix,
the total size of the above signature equals:size(SG) =
J(J+1)

2 · L. The signatureSG contains only the across ori-
entation, second-order dependence at a given decomposition

level. Because of the strong dependence across scales and
orientations, we may obtain a better (more complete) signature
by considering in addition the across levels dependence as
expressed by the covariance matrices between consecutive
levels. In this case, the signature of an imageI is the
following:

I 7→ SGE = {Σ1
I , . . . ,Σ

L
I ,Σ1→2

I , . . . ,Σ(L−1)→L
I }, (27)

whereΣl→(l+1)
I denotes the (in generalasymmetric) covari-

ance matrix corresponding to the subbands at levelsl and
(l + 1). In particular, the element[Σl→(l+1)

I ]ij is equal to the
covariance of thei-th subband at levell with the j-th subband
at the next lower level(l + 1). The enhanced signatureSGE
contains more texture-specific information than the signature
SG at the cost of an increased computational complexity, since
its size equals

size(SGE ) =
J(J + 1)

2
· L +

J(J + 1)
2

· (L− 1) .

Notice that, although neighborhood10, which does not in-
clude dependencies across levels, was best for Gaussianization,
regarding the design of a retrieval scheme, the dependence
across orientations and levels is very useful in extracting a
more accurate profile of the texture information.

G. Similarity Measurement

In recent work [29], a Gaussian assumption for the marginal
and joint distributions of the steerable pyramid coefficients
results in a deterministic rotation-invariant similarity measure,
between two imagesI andQ. If we use the signatureSGE , this
measure takes the following form:

D(I, Q) = min
θ

[
L∑

l=1

‖Σl
I − F(−θ)Σl

QFT (−θ)‖+

+
L−1∑

l=1

‖Σl→l+1
I − F(−θ)Σl→l+1

Q FT (−θ)‖
]
,(28)

where‖·‖ denotes any of the common matrix norms (however,
a good choice is the Frobenius norm, which gives an indication
of the “matrix amplitude”). If the texture information is
represented by the signatureSG , the similarity function is
modified by omitting the second sum, which corresponds to
inter-level dependencies.

In our method, we construct and employ a novel statistical
rotation-invariant similarity function. After the Gaussianiza-
tion procedure has been applied, we model the distribution of
each decomposition level in the case of usingSG , as well as
the joint distribution between consecutive levels in the case of
usingSGE , using a multivariate Gaussian density (MvGD). The
similarity between two images is measured by employing the
KLD between MvGDs. Consider the case in which the texture
information of each image is expressed using the signature
SGE , that is, each decomposition level, as well as each pair of
adjacent decomposition levels, is associated with a covariance
matrix.

Given two imagesI and Q, let I l, Ql be the set of ori-
entation subbands at thel-th decomposition level andI l, l+1,
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Ql, l+1 be the set of orientation subbands at two adjacent levels
l and l + 1, following zero-mean MvGDs with covariance
matricesΣl

I , Σl
Q, and Σl→l+1

I , Σl→l+1
Q , respectively. The

KLD between two corresponding levels is given by [5]:

D(I l‖Ql) =
1
2

(
tr(Σl

I(Σ
l
Q)−1−I)−ln |Σl

I(Σ
l
Q)−1|

)
. (29)

In the same way, the KLD between two corresponding pairs
of adjacent levels is given by:

D(I l, l+1‖Ql, l+1) =
1
2

(
tr(Σl→l+1

I (Σl→l+1
Q )−1 − I)−

− ln |Σl→l+1
I (Σl→l+1

Q )−1|
)
. (30)

We define the overall KLD between imagesI, Q to be equal
to the following sum:

D(I‖Q) =
L∑

l=1

D(I l‖Ql) +
L−1∑

l=1

D(I l→l+1‖Ql→l+1). (31)

In our problem, we deal with image databases which
may contain rotated versions of a given image. Notice that
from (18), it follows that:

Σl
Qθ

= F(θ)Σl
QFT (θ) , Σl→l+1

Qθ
= F(θ)Σl→l+1

Q FT (θ),
(32)

whereΣl
Qθ

is the l-th level covariance matrix andΣl→l+1
Qθ

is
the covariance matrix between levelsl and l + 1, of a rotated
version of imageQ at an angleθ, Qθ.

ConsiderI to be the query image and̃Q = Qφ to be
a counter-clockwise rotation, by an angleφ, of the original
imageQ in the database. In a real application, of course, the
value of φ is unknown. Thus, the distance between thel-th
levels of I and Q̃ (I l and Q̃l, respectively) is defined as the
minimum KLD betweenI l andQ̃l

−θ, where the minimization
is over a set of possible rotationsΘ, and thus, it is necessary
to perform an angular alignment by finding the optimumθ∗.
The notationQ̃−θ means a clockwise rotation of imagẽQ. By
noticing thatΣl

Q̃−θ
= F(−θ)Σl

Q̃
FT (−θ) and substituting (32)

into (29), we obtain that the KLD between thel-th level of an
imageI and a clockwise rotation of imagẽQ by an angleθ
(I l and Q̃l

−θ, respectively), is given by:

D(I l‖Q̃l
−θ) =

1
2

[
tr

(
Σl

IF
T (θ)(Σl

Q̃
)−1F(θ)− I

)−

− ln(|Σl
I ||(Σl

Q̃
)−1|)

]
. (33)

Similarly, we obtain the KLD between two corresponding
pairs of adjacent levels,D(I l→l+1‖Q̃l→l+1

−θ ), by replacing
the covariance matricesΣl

I , Σl
Q̃

with the covariance matri-

cesΣl→l+1
I , Σl→l+1

Q̃
, respectively. Finally, the overall KLD

betweenI and Q̃ is defined as:

D(I‖Q̃) = min
θ∈Θ

(
L∑

l=1

D(I l‖Q̃l
−θ) +

L−1∑

l=1

D(I l→l+1‖Q̃l→l+1
−θ )

)
,

(34)
which results in the following proposition:

Proposition 2 Let SGE (I) and SGE (Q̃) be the signatures cor-
responding to the normalized coefficients of the steerable

pyramids for two given homogeneous texturesI andQ̃, respec-
tively. The rotation-invariant KLD between the two textures
takes the following form:

D = D(I‖Q̃)

= min
θ∈Θ

1
2

[
L∑

l=1

tr
(
Σl

IF
T (θ)(Σl

Q̃
)−1F(θ)

)
+

+
L−1∑

l=1

tr
(
Σl→l+1

I FT (θ)(Σl→l+1

Q̃
)−1F(θ)

)
]
− J(L− 1

2
)−

− 1
2

[
L∑

l=1

ln(|Σl
I(Σ

l
Q̃

)−1|) +
L−1∑

l=1

ln(|Σl→l+1
I (Σl→l+1

Q̃
)−1|)

]
.

(35)

Proof: The proof of Proposition 2 follows by direct
computation, after the substitution of (33) in (34).

If we employ the signatureSG instead ofSGE , the derivation
of the KLD between two distinct texturesI andQ̃ is straight-
forward by implementing the above proposition, omitting the
terms which contain the covariance matricesΣl→l+1

I , Σl→l+1

Q̃

and replacing(L− 1
2 ) with L

2 .
Notice that whenI and Q̃ are two rotated versions of the

same image, the angleθ∗ for which the minimum is achieved
in (35) should be close to the exact relative angle between
I and Q̃, that is, the angle one needs to clockwise rotateI
in order to getQ̃. Thus, a way to evaluate the performance
of the above rotation-invariant KLD, is to verify whether the
estimated angleθ∗ is actually close to the real relative angle
between two physically rotated versions of the same image.
Besides, it may also be useful on its own for many practical
applications to find out approximately this relative angle.
Fig. 5(b) illustrates this by showing the functionD(I‖Q)(θ)
given by (35) for theBark texture sample obtained from the
Brodatz database.
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Fig. 5. (a)Bark physically rotated at30 and120 degrees, (b)D(I‖Q)(θ)
for J = 4. Notice that the minimum is achieved forθ∗ = 90 degrees, which
is the exact relative angle between the two texture samples.

It is also important to note that, in our implementation the
steering functions have only odd harmonics, which oscillate at
some finite speed. Thus, the number of local minima of (35),
as a function ofθ, can be at most equal to twice the number
of independent harmonics (which happens to be equal to the
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number of basic harmonics). In addition, the distance between
any two consecutive local minima is lower bounded making it
possible to search for them in a few non-overlapping angular
intervals [44], which is useful in order to speed up the search
for the optimal angleθ∗.

V. EXPERIMENTAL RESULTS

In order to evaluate the efficiency of our overall CBIR
system, we apply it on a set of13, 512× 512 texture images
obtained from USC SIPI database (cf. Fig. 7). Each of them
was physically rotated at30, 60, 90 and120 degrees, resulting
in a set of65 texture samples. Then, the texture image dataset
is formed by dividing each image into4, 256 × 256 non-
overlapping subimages constructing a database with a total of
4 × 65 = 260 textures. We implemented a3-level steerable
pyramid decomposition withJ = 4 basic orientations,φ1 =
0, φ2 = π/4, φ3 = π/2, φ4 = 3π/4, which means that the
steering functions are [42]:

f1(θ) =
1
2
[cos(θ) + cos(3θ)] , f2(θ) = f1

(π

4
− θ

)
,

f3(θ) = f1

(π

2
− θ

)
, f4(θ) = f1

(
3π

4
− θ

)
.

The histogram of the estimated characteristic exponent values
for the 260 textures is shown in Fig. 6. We observe that only
18% of the textures exhibit Gaussian statistics.
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Fig. 6. Histogram of the estimated values for the characteristic exponent,α,
for the set of260 texture images of size256× 256.

In the following illustration, the query is anyone of the non-
overlapping256 × 256 subimages corresponding to the orig-
inal, non-rotated set of images. The relevant images for each
query are defined as the other16 subimages corresponding to
the rotated versions of the same original image.

We evaluate the performance of the retrieval scheme which
employs the signaturesSG and SGE as the set of extracted
features, containing intra- and inter-scale dependencies and
the rotation-invariant KLD as the similarity measure. We
compare the performance of this retrieval scheme with that

Fig. 7. Texture images from the VisTex database, from left to right and top
to bottom: 1) Bark, 2) Brick, 3) Bubbles, 4) Grass, 5) Leather, 6) Pigskin, 7)
Raffia, 8) Sand, 9) Straw, 10) Water, 11) Weave, 12) Wood, 13) Wool.

obtained by minimizing the Frobenius norm of the differences
between the corresponding covariance matrices ([29]) after the
Gaussianization procedure, as well as with the performance
obtained by minimizing the corresponding Frobenius norm
between sample correlation matrices (Gaussian assumption)
without applying the Gaussianization step.

Table V shows the performance in average percentages of
retrieving relevant images in the top16 matches. Comparing

TABLE V

AVERAGE RETRIEVAL RATE (%) IN THE TOP 16 MATCHES.

Methods

Neighborhood Non-Gaussianized SG SG
Index & & &

Frobenius (28) Frobenius (28) KLD (35)

1 88.62 89.26 94.01

Methods

Neighborhood Non-Gaussianized SGE SGE
Index & & &

Frobenius (28) Frobenius (28) KLD (35)

10 88.62 95.40 95.62

the average retrieval rates corresponding to the first two meth-
ods of the table, we conclude that the fractional lower-order
statistics provide better approximations of the joint statistics
between coefficients at adjacent orientations and scales, than
the second order moments. Of course, both methods employ
the covariance matrices between pairs of subbands, but in
the first scheme (Non-Gaussianized & Frobenius) we estimate
the sample covariances using the raw subband coefficients
without Gaussianization, while in the second scheme (SG
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(or SGE ) & Frobenius) the covariances are estimated after
the implementation of the Gaussianization procedure, which
exploits lower-order moments, since the estimation is based
on covariations. The comparison between the retrieval rates of
the second and third methods, verifies the fact that a statistical
similarity function (KLD) is preferable than a deterministic
one (Frobenius norm), for the same set of extracted features.

As shown in Table V, the use of the10-th neighborhood
type combined with the enhanced signatureSGE , results in
an improved retrieval performance with respect to the other
combinations. This is consistent with the above analysis, since
the10-th neighborhood type results in the best Gaussianization
performance for most of the300 constructed subbands and
since the enhanced signature contains more texture-specific
information than theSG signature. We can also observe that
by choosing the10-th neighborhood type, the average retrieval
rate using the rotation-invariant Frobenius norm (28) is very
close to the rate corresponding to the rotation-invariant KLD.
This is due to the improved Gaussianization performance,
compared with that corresponding to the first neighborhood
type, which results in an increased performance of the Frobe-
nius norm that is best suited for Gaussian distributions. How-
ever, the statistical similarity function (KLD) remains superior
than the deterministic Frobenius norm.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we studied the design of a rotation-invariant
CBIR system based on a multivariate sub-Gaussian (SαS)
modeling of the coefficients of a steerable wavelet decompo-
sition. We exploited the variance adaptation of the coefficients
in small regions at different orientation subbands and levels,
by applying a Gaussianization procedure. Then, the FE step
consists of simply estimating second-order moments between
orientation subbands at the same and at adjacent levels. This
process takes also into account the actual heavy-tailed behavior
of the coefficients, represented by the fractional lower-order
statistics (covariations) between pairs of subbands. We achieve
rotation invariance by constructing an appropriate rotation-
invariant version of the KLD between zero-mean multivari-
ate Gaussian densities. The experimental results showed an
increased average retrieval performance in comparison with
the performance of previous methods based on second-order
statistics estimated directly from the original subband coef-
ficients, without implementing the Gaussianization. We also
conclude that a statistical similarity function, such as KLD, is
preferable than the deterministic Frobenius norm.

Future research directions, which could further result in
an improved retrieval system with decreased probability of
retrieval error, are the following: first of all, the main assump-
tion throughout the present work was the stationary behavior
of texture content. That is, we assumed that the distribution
of the subband coefficients, which is closely related with the
texture-specific information, is invariable within each subband.
Instead, we could consider anon-stationary approach by
permitting alocally adapteddistribution, that is, by spatially
adapting the characteristic exponent and the dispersion param-
eters. This can also be used in segmentation applications, since

the different “objects” contained in a picture can be viewed
as local intensity variations.

Regarding the task of similarity measurement between two
distinct images, we weighted the contribution of inter-level
dependencies in the same way as the intra-level ones, resulting
in an overall similarity function that is written as a sum of
partial distances. We could further improve the power of the
similarity measure by considering some kind of chain rule for
the KLD between two images [5].

In section IV, we evaluated the performance of a Gaus-
sianization procedure applied on the subband coefficients of
a steerable pyramid. For this purpose, we preserved the same
neighborhood type across subbands, for every image in the
database. Obviously, it is computationally unfeasible to check
the Gaussianization performance for all possible neighborhood
formations. However, we expect an improved Gaussianization
performance and consequently better retrieval performance, by
performing some reduced complexity adaptation of the optimal
neighborhood type across subbands and images.
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