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Abstract— This paper presents a novel rotation-invariantimage image in the database is to a query image, by comparing their
retrieval scheme based on a transformation of the texture infor- - signatures.
mation via a steerable pyramid. First, we fit the distribution of Typical low-level image features, such as color [1], shape

the subband coefficients using a joint alpha-stable sub-Gaussian . T
model to capture their non-Gaussian behavior. Then, we apply [2] and texture [3], are commonly used in CBIR applications.

a normalization process in order to Gaussianize the coefficients. In this work, we focus on the use déxture information

As a result, the feature extraction step consists of estimating the for image retrieval. Loosely speaking, the class of images
covariances between the normalized pyramid coefficients. The that we commonly caltexture imagesncludes images that
similarity between two distinct texture images is measured by 476 gpatially homogeneous and consist of repeated elements,
minimizing a rotation-invariant version of the Kullback-Leibler . L . . . .
Divergence between their corresponding multivariate Gaussian often SUb]eC_t to spme ran_domlzat'on in their location, S';e'
distributions, where the minimization is performed over a set of color and orientation. Previously developed texture extraction

rotation angles. methods include multi-orientation filter-banks and spatial Ga-

Index Terms— Statistical image retrieval, rotation-invariant  POr filters [4]. The basic assumption for these approaches is
Kullback-Leibler Divergence, steerable model, Fractional Lower- that the energy distribution in the frequency domain identifies

Order Moments, sub-Gaussian distribution. a texture. These retrieval systems use simple norm-based
distances (e.g. Euclidean distance) on the extracted image
|. INTRODUCTION signatures, as a similarity measure.

In this work, we consider the tasks of FE and SM in a
int statistical framework. Thus, in our approach, the FE
becomes a Maximum Likelihood (ML) estimator of the
el parameters fitting the given image data, while the SM
p employs a statistical measure of similarity, such as the
Iback-Leibler Divergence (KLD) [5], between probability
gnsity functions having different model parameters. In this
Fetting, optimal retrieval is asymptotically achieved. Using
tgis statistical approach, a simple extension of the energy-
nisms that extract meaning from this data and characterize sed methods for texture retrieval is to model each texture

information content in a compact and meaningful way is . thi. mflrglrz)al tdhensmesltof tfhe trantsforr]m _cc|>eff_|cu|ants. Th'?}
challenging task. iS motivated by the results of resent physiological researc

Content-based Image Retrieval (CBIR) is a set of techniqu%g humant tetxture perce;f)ttlon, dY]Yf.*“CR ?uggest-thgt :c[wqfhtc;]mo-
for retrieving relevant images from a database on the basisggfﬁous .exllures are OI ed"? i !b'ctl.J 0 f|scr|m|na € 'f ey
automatically-derived features, which accurately specify t fo uce similar marginal distributions ot responses irom a

information content of each image. We can distinguish t ter-bank [6].

major tasks, namely Feature Extraction (FE) and Similarit The development of retrlgval models in a”‘?”s“orm_'dom_a'”
Measurement (SM). In the FE step, a set of features Coné%_based on the observation that often a linear, invertible
tuting the so-called image signaturé is generated after a p (g_nsfqrm restructures the ima}ge,.resulting in a set of transform
processing step (image transformation), to accurately repres%?\?ﬁ'c'ems whhose sttrgctlarebls S|mplte ' :co“;no?el. Fneeal-wr(]) rid
the content of a given image. This set has to be much smaffglAdes are characterized by a set of ‘iealures,, such as
xtures, edges, ridges and lines. For such images, the 2-

in size than the original image, while capturing as much .
g 9 P 9 imensional (2-D) wavelet transform has been shown to be

possible of the image information. During the SM step, / -
distance function is employed which measures how close ea?ﬁ owerful modeling tool, providing a natural arrangement of
the wavelet coefficients into multiscale and oriented subbands
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URING the last decades, information is being gath-

ered and stored at an impressive rate on large digiig
databases. Examples include multimedia databases contaiﬂi(%
audio, images and video. The search of large digital mulfi?
media libraries, unlike the search of conventional text-bas
digital databases, cannot be realized by simply searching t
annotations. Because of the amount of details in multime
data, it is difficult to provide automatic annotation withou
human support. The design of completely automatic mec
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subband coefficients. Until recently, wavelet coefficients havimmework of sub-Gaussian processes, we use the notion of
been modeled either as independent Gaussian variables ocaariation instead of the second-order covariance, in order
jointly Gaussian vectors [10]. However, it has been pointdd extract possible interdependencies between wavelet coef-
out that the wavelet transforms of real-world images tend fwients at different image orientations and scales. The joint
be sparse, resulting in a large number of small coefficients asub-Gaussian modeling preserves the heavy-tailed behavior
a small number of large coefficients [11]. This property is inf the marginal distributions, as well as the strong statistical
conflict with the Gaussian assumption, giving rise to pealdependence across orientations and scales.
and heavy-tailechon-Gaussiarmarginal distributions of the A desirable property in a CBIR system is rotation in-
wavelet subband coefficients [11], [12]. variance. This is a topic that has been previously pursued
Experimental results have proven that emeralized Gaus- by various researchers. Greenspan al. [26] and Haley
sian density(GGD) is a suitable member of the class o&nd Manjunath [27], [28] employed rotation-invariant struc-
non-Gaussian distributions for modeling the marginal behatural features, using autocorrelation and DFT magnitudes, ob-
ior of the wavelet coefficients [11], [13]. Computationallytained via multiresolution Gabor filtering. Recently, a rotation-
tractable image retrieval mechanisms based on a combinatiovariant image retrieval system based on steerable pyramids
of overcomplete wavelet-based texture and color features ara@s proposed by Beferull-Lozaret al. [29]. In this system,
described in [14], where the similarity measure between tlige correlation matrices between several basic orientation
GGD models is based on the Bhattacharrya distance. Recerdlypbands at each level of a wavelet pyramid are chosen as the
the GGD models have been also introduced in a statistiealergy-based texture features. Mao and Jain [30] presented a
framework for texture retrieval in CBIR applications, bymultiresolution simultaneous autoregressive (MR-SAR) model
jointly considering the two problems of FE and SM [15]. where a multivariate rotation-invariant SAR (RISAR) model
In recent work, we showed that successful image processifagintroduced, which is based on the circular autoregressive
algorithms can achieve both superior noise reduction afl@AR) model.
feature preservation if they take into consideration the actualA second category of methods achieving rotation invariance
heavy-tailed behavior of the signal and noise densities [1&icludes the implementation of a Hidden Markov Model
[17]. We demonstrated that successful modeling of subba@dMM) on the subband coefficients of the transformed image.
decompositions of many texture images is achieved by medds and Vetterli [25] derived a steerable rotation-invariant
of symmetric alpha-stablgS«.S) distributions [18], [19], statistical model by enhancing a recently introduced tech-
which very often provide a better fit of the non-Gaussianique on wavelet-domain HMM [24]. Liu and Picard [31]
heavy-tailed distributions, than the generalized Gaussian disploited the effectiveness of theD Wold decomposition
tribution (GGD), thus motivating their use in our CBIR modelof homogeneous random fields, in order to extract features
After extracting theSa.S model parameters, we analyticallythat represent perceptual properties described as “periodicity”,
derived the KLD between twd«.S distributions. Our for- “directionality” and “randomness”.
mulation improved the retrieval performance, resulting in a The above mentioned rotation-invariant CBIR techniques
decreased probability error rate for images with distinct nogan be classified in two classes. The first class includes
Gaussian statistics [20], compared with the GGD model. techniques where the FE step consists of computing rotation-
However, the majority of current approaches does not takevariant texture features, while the SM step consists of
into account the important interdependencies between differapiplying a common similarity function, such as the Euclidean
subbands of a given image, which can be employed in ord#istance and the KLD. The second class includes techniques
to provide a more accurate representation of the texture imagleere the FE step consists of estimating the parameters of
profile. Huang studied the correlation properties of wavelat so-calledsteerable modeblnd then applying a rotation-
transform coefficients at different subbands and resolutiamvariant version of a common similarity function (e.g. KLD),
levels, applying these properties on an image coding schetheing the SM step.
based on neural networks [21]. Portilla and Simoncelli devel- In this paper, we describe a novel technique belonging to
oped an algorithm for synthesizing texture images by settitige second class. First, we design a new steerable model,
different constraints on the correlation between the transfoshich is based on the joint sub-Gaussian modeling of the
coefficients and their magnitudes [22]. coefficients of asteerable pyramidncorporating dependence
The theory of Markov random fields has enabled a neacross orientations and scales. Then, we apply a Gaussianiza-
generation of statistical texture models, in which the fution procedure on the steerable pyramid coefficients, by jointly
model is characterized by statistical interactions within locabnsidering them as samples of a multivariate sub-Gaussian
neighborhoods [23]. Recently, a new framework for statisticdlstribution, viewed as a special case of a Gaussian Scale
signal processing based on wavelet-domain hidden Markbixture (GSM). After the Gaussianization step, we derive
models has been proposed [24], [25]. It provides an attractiga analytical expression for a rotation-invariant version of the
modeling of both the non-Gaussian statistics and the propekiD between multivariate Gaussian densities (including the
of persistence across scales in a wavelet decomposition. rotation angle between textures), avoiding the use of a Monte-
In this paper, we proceed by grouping the wavelet subbafgrlo method, usually employed to approximate the KLD in
coefficients and considering them as samples of a multivaifie non-Gaussian case [25].
ate sub-Gaussiarrandom process, which is characterized by Our system has several advantages with respect to the
the associatedractional lower-order statistics Within the HMM-based methods. First, HMMs require the use of an



Expectation-Maximization (EM) algorithm, which in somefollowing equation:

cases may not converge, for the estimation of the model . _ . pg(T) .
parameters (hidden state variables and statistics of a Gaussian 9" (X) = argmin / Pq(7) log @ dz, 3)
mixture). On the other hand, our proposed method incorporates \ b

dependence across space, orientations and scales, combined in D(pqllp)

an efficient way of estimating the multipliers of the multivariwhere D(p,||p;) denotes theKullback-Leibler divergencer
ate sub-Gaussian model, which are necessary to perform tblative entropybetween the two densitieg, (-) andp;(-).
Gaussianization. Besides, by exploiting the statistical depen-The problem of retrieving the top/ images similar to a
dencies between subbands at adjacent scales, we insertgilien query image, can be formulated amaltiple hypothesis
same first-order Markovian dependence as in HMMs, but inproblem The query imagd,, is represented by a feature data
simpler way. Also, for the heavy-tailed modeling we seS set, X = {z1,...,zN}, Obtained after a transformation step,
distributions, which are often better than GGDs. and each image in the database(i = 1,...,C), is assigned
The rest of the paper is organized as follows: in section With a hypothesisH;. Therefore, the problem of retrieving
we briefly review the probabilistic setting for a CBIR probthe top M images consists of selecting tlié¢ images in the
lem. In section lll, we justify the choice of the multivariatedatabase that are closer in terms of best hypotheses to the data
sub-Gaussian model for the joint modeling of the waveléf of the given query image.
coefficients. In section IV, we develop a rotation-invariant Under the assumption that all hypotheses are a-priori
CBIR system by applying a Gaussianization procedure on tegually likely, the optimum rule resulting in the minimum
coefficients of a steerable pyramid. In section V, we applyrobability of retrieval error, is to select the hypotheses with
our scheme to a set of textures and evaluate the retrietlz highest likelihoods among tii& Thus, the topl/ matches

performance. Finally, in section VI, we provide conclusionsorrespond to thé/ hypothesesH,,, H,,, ..., H;,, for which
and directions for future research. p(R|Hy) > - > p(X|Hiy,) > p(X|H), i ¢ (it .. in)e
A computationally efficient implementation of this setting
Il. STATISTICAL CBIR is to adopt aparametric approach. Then, each conditional
Let F denote the feature space aRd= {71,...,Zn |Z; € PDF, p(X|H;) is modeled by a member of a family of PDFs,
F,i=1,...,N} be a set ofV independent feature vectorsdenoted byp(X;6;), whered; is a set of model parameters
associated to a query. Also, I&t = {1,..., K} be the set 10 be specified. In this framework, the extracted signature for

of class indicators associated with the image classes in the imagel; is the estimated model parameté;, computed
database. Denote the probability density function (PDF) of tifé the FE step. Then, implementation of (3) gives the optimal
query feature vector space py(#) and the PDF of classe S rule for retrieving the topV/ similar images to the given query
by p:(¥). The design of a retrieval system in a probabilistifnage/y: .
framework, consists of finding an appropriate map F — 1. Compute the KLDs between the query density; 6,)

S. These maps constitute the set of similarity functions. and the density(X; 8;) associated with imags in the
The goal of a probabilistic CBIR system is thrénimization databaseyi=1,...,C:

of the probability of retrieval error that is, the probabilit = = x;0

P(g(X) # s). Heynce, if we provide the system vl?/ith a setyof D(p(X;8,)[lp(X; 6:)) = /P(l’; 6,)log W dx

feature vectorsY drawn from classs, we want to minimize 4)

the probability that the system will return images from a class 2. Retrieve thel images corresponding to the smallest

g(X) different froms. It can be shown [32] that the optimal values of the KLD.

similarity function, that is, the one minimizinﬁ(g()?) #s), The KLD in (4) can be computed using consistent estimators
is the Bayes or maximum a-posteriory (MAP) classifier 6, and 6;, for the model parameters. The ML estimator is a
consistent estimator [5] and for the query image it gives:

*(X) = argmax P(s = i|X A S
9(X) I ( %) 0q:argméxxlogp(X;0). (5)

= argmaxp(Xls =i)P(s =), @) We can also apply ahain rule[33], in order to combine the
KLDs from multiple data sets. This rule states that the KLD
etween two joint PDFsp(X,Y) and¢(X,Y), whereX,Y

Sre assumed to be independent data sets, is given by

where p(X|s = i) is the likelihood for thei-th class and
P(s = i) its prior probability. Under the assumption that al
classes are a-priori equally likely, the MAP classifier reduce

to the ML classifier: D(p(X,Y)|lq(X,Y)) = D(p(X)]|q(X)) + D(p(Y)|g(Y)).
. . (6)
*(X) = argmaxp(X|s =1
9°(X) g i p(X] ) IIl. STATISTICAL MODELING OF WAVELET SUBBAND

o 1 & COEFFICIENTS VIAJOINT SUB-GAUSSIAN DISTRIBUTIONS

l'zz'd'arg max — Z logp(Zj|s =1) . (2) . . . . -

i N 4 f J In this section, we introduce the family of multivariate sub-
=

Gaussian distributions justifying this choice in terms of an
When the numbelV of feature vectors is large, applicationaccurate approximation of the marginal and joint densities of
of the Weak Law of Large Numbers [33] to (2) results in théhe transform coefficients.
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A. The family of multivariate sub-Gaussian distributions A multivariate sub-Gaussian distribution, with underlying

We first give the definition for the family of univariate Sym_covariance matrx®, is often denoted byr-SGR). In this

metric alpha-stableja.S) distributions, before introducing thewor_k’ the transfo(;m coefﬂmentz at dt:fferent slubboaingﬁs;are ied
family of multivariate sub-Gaussian distributions. The,s UP in vectors and are assumed to be samples of-8GR)

distribution is best defined by its characteristic function [34fiStribution, which can be viewed as a variance mixture of
aussian processes [36].

B(t) = exp(16t — y*[t]|*), ) It is important to note that covariances do not exist for the

family of Sa.S random variables, due to the lack of finite

where « is the characteristic exponenttaking values0 < variance. Instead, we measure correlation between transform

a < 2,0 (—o0 < § < o00) is thelocation parameterandy  coefficients using a quantity callecbvariation [18], which

(’7 > 0) is thedisperSiomf the distribution. The CharaCteriStiCp|ayS an ana|ogous role fata.S random variables to the one

exponent is a shape parameter, which controls the “thicknegtayed by covariance for Gaussian random variables. X et

of the tails of the denSity function. The smaller the the andY be J0|nt|y SaS random variables with < o < 2, zero

heavier the tails of th&aS denSity function. The disper5i0n|ocation parameters and dispersioybs and Yy respective|y.

parameter determines the spread of the distribution aroundtgen, for all1 < p < «, the covariation ofX with Y is given
location parameter, similar to the variance of the Gaussiagy

A SaS distribution is calledstandardif § = 0 andy = 1. E{XYy<r-1>}
The notationX ~ f.(v, §) means that the random variable (X, Y]a = By Y (10)
X follows a SaS distribution with parameters, ~, 6.

In general, no closed-form expressions exist for ms
density and distribution functions. Two important special

g where for any real number anda > 0 we use the notation

2%, z>0
cases ofSa.S densities with closed-form expressions are the <> _ ) ~0
Gaussian ¢ = 2) and the Cauchyd = 1). Unlike the R =
Gaussian density which has exponential tails, stable densities —(=2)*, z<0.

have tails following an algebraic rate of decay(' > x) ~  The covariation coefficienof X with Y, is defined by
Cx~? as xz — oo, whereC' is a constant depending on the

model parameters), hence random variables followsfagS Ay = (X, Y] E{XYy<r-'>} (11)
distributions with smallx values are highly impulsive. [ '

Y.Y]le — E{|YI}
An important characteristic of non-Gaussin.S distribu-  Note the asymmetric nature of the covariation and the co-

tions is the non-existence of second-order moments. Instegg.~tion coefficient. as opposed to the usual second-order
all moments of ordep less thamy do exist and are called the ;o hents '

Fractional Lower Order Moment&~LOM’s). In particular, the Consider the sub-Gaussian random vecir= A2 G

FLOM's of a_SO‘S random variableX ~ fu(y, 6 = 0), are  hereG — (G, Gy, ..., G,) the underlying Gaussian vector
given by [18]: with covariance matribR. Then, the covariations between the

E{| X[} = (C(p, o) _7)11 C 0<p<a, @) components of, [X;, X;]« 4,5 =1,...,n, are given by [18]:
o (a=2)
where Cij = [Xi, Xjla =272 [R];; [R];;% - (12)
| 2P+1F<l’2i1)r(_§> r(1-2) Note thatc;; = c;; only if [R];; = [R];;. During the FE step,
(C(p, a))" = = — = . it is necessary to estimate the covariations from the transform
aﬁF(—g) cos(5p)T'(1 = p) coefficients of the images. In the next section, we describe

(9) how this estimation is performed.
The Sa.S model parameter&y, ) can be estimated using the
consistent Maximum Likelihood (ML) method described b3é Estimation of covariations
Nolan [35], which gives reliable estimates and provides the

tightest confidence intervals. By applying (8) onY” we have
Extending theSa.S model to heavy-tailed random vectors By PP
leads to thamultivariate sub-GaussiafaS distributiont [18]. vy = ({C|‘(|}; ) (13)
b,
Definition 1 Any vector X distributed as X = A/2G, Let the vectors{ X!, X2,..., XN} constitute a set ofV
where A is a positive 5-stable random variable and: = jndependent realizations of am-SGR) distribution, where
(G1,Gs,...,G,) is a zero-mean Gaussian random vectorgk — (Xk Xk ... XF), k=1,...,N. Now, observe that

independer_wt of4, with covariance_matrixR, is called_ a we can find an estimation dfX, Y], by multiplying an esti-
sub-GaussianSa.5' random vector (inR™) with underlying  mated value of\xy and the ML estimation ofy-. The value
Gaussian vectot. of Axy is estimated via th&ractional Lower Order Moment
1 — . . _ (FLOM) Estimator[37], which is very simple and computa-
In the following, instead of saying sub-Gaussign.S variable / vector _. v effici . dditi bei bi d d .
| distribution, we simply use the term sub-Gaussian variable / vectortlpna ye. !Clem’ In addition to _elng un 'aS? and consistent.
distribution. For two jointly Sa.S random variablesX, Y with o > 1, and



. ‘ TABLE |

PERFORMANCE OF THE COVARIATION ESTIMATOR
[ o [ &EOM(p) | True [X,Y]a |
11| -1.9158  (p=0.56) -1.916
%) (0.1397)
< 12| -1.8203  (p=057) -1.8254
€ (0.1390)
a 1.3 -1.755 (p=0.59)|  -1.7476
g (0.1481)
g 14| -16814  (p=0.66)] -1.6821
@ (0.1234)
15| -16201  (p=0.68)] -1.6285
(0.1218)
1.7 | -15533  (p=0.76)] -1.5561
) I I I I I I I I I (0.1062)
) 02 04 06 08 ’:1) 12 14 16 18 2 5 ENT (p=091) NI
(0.0886)
Fig. 1.  Curves representing the standard deviation of the covariation 2 -1.5301 (p=2) -1.532
estimation as a function of the paramegefor the ¢¥'“°M estimator. (0.0668)

a set ofindependenbbservationg X1, Y1), ..., (X,,Y,), the
FLOM estimator is defined as follows: 1,2} are real coefficielnts. The tru1e>covariation Xfwith Y
Ny v p—1 o : is [X,Y]a = a1a5%7'7 + b1b5°7'7. We generatedV =
Arrom = Zi:lX%'}?"p izgn(y’). (14) 5000 independen% samples df and V and calculated the
i Yl covariation estimator by means of (15) for different valuep of
Thus, the covariation estimator between the components oinghe rangg0, 2]. We ranK = 1000 Monte-Carlo simulations

sub-Gaussian vectox is given by: for different values ofa € (1,2]. We randomly selected,
N kil o - without loss of generality, the coefficient values to pe equal
FLOM _ D one1 X 1X Slgn(Xj),ya (15) 0@ = 0324 = ~245. b = 17, = 0.44. Fig. 1
i v |)§ﬂp Xs? displays the standard deviation of the estimatot " (p) as

a function of the parameter and for different values of.

whgre thedd'Sp?gS'gWXj can be estimated using the ML Table | shows results on the performance of the estimator.

estlmator,_ escribed in [3_5]' _ ) . We include the mean of the estimator, the standard deviation in
We define thecovar_lat_lon matrix C, the r_natnx ha"'”g_ parentheses and the valueypofor which the smallest standard

as elements the covariations. Then, the estimated g’\’a”atquﬂ/iation is achieved by the estimator. We also note that we

matrix C, is the matrix with element{C|;; = ¢;; _ obtained similar experimental results for different values of
these covariations are estimated from the data, we can es““?ﬁl?coefﬁcients{ ai, by, i=1,2}
19 19 - ) .

the elementdR];; of the underlying covariance matrifg, .
sRliy ying B In our proposed CBIR system, we need to estimate the

using (12): covariations between the components of the sub-Gaussian
. o oA 2 . o [C}ij vectors, which are special cases%f.S random variables. We
Rlj; = (22 [Clij) "> Rl =2 — @2 (16) repeated the above Monte-Carlo simulations using two sub-
Rl Gaussian random variable§, = AY/2Gx, Y = AY/2Gy.

which are consistent and asymptotically normal, that is, tfy definition, X and Y’ can be viewed asSa.S random
distribution of the above estimators tends to a normal distiariables with dispersionx andyy, respectively. We generate
bution, as the number of observatioiNstends to infinity. a sample of a sub-Gaussian random variable by first generating
Notice that the estimation of covariations and consequengysampled drawn from aS, >((cos Z2)?/, 1, 0) distribution
the estimation of the covariation matrices, requires the spé@fd then by generating a samygledrawn from a zero-mean
ification of the parametelp_ We Compute the Opt|mab Gaussian distribution with Variané}.é/2, which is viewed as a
as a function of the characteristic exponent by finding S2(7, 0, 0) variable (withy = vx or v = vy depending on
the value ofp that minimizes the standard deviation of th&hether the Gaussian pait corresponds to the variable or
estimator, for different values af > 1. For this purpose, we Y, respectively).
studied the influence of the parameteon the performance Fig. 2 displays the curves representing the standard devia-
of the covariation estimator given by (15) via Monte-Carltion of the ' LOM covariation estimator as a function mffor
simulations. two values ofo and25 pairs of dispersion§yx, ~yy ), with the
We generated two redla.S (1 < a < 2) random variables, dispersions ranging in the intervid, 3.5), which corresponds
X = aU+bV,Y = aU + bV, whereU and V are to the dispersions estimated from the wavelet subbands of
independent, standar$h.S random variables anfli;, b;, i = some selected images used in our experiments (obtained from
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Standard Deviation [dB]
Standard Deviation [dB]

@ (b)

Fig. 2. Curves representing the standard deviation of the covariation estimation as a function of the pardoneier= 1.2, 1.5 and 25 dispersion pairs

(vx, vy), using thec?’LOM estimator.

the USC, SIPI databa&ecf. Fig. 7). wavelet coefficients of texture images and, as an example, we
For eacha, we observe that all the curves are minimizedhow results on modeling data obtained by applying standard
in a common interval on the-axis, and actually the optimal 2-D, orthogonal, discrete wavelet transform (DWT) on real
values forp are close to each other. We repeated the procedtesture images. Similar results are obtained when using other
for o = 1:0.05 : 2 and for a giveny;, we defined the optimal types of wavelet transforms, such as a steerable wavelet trans-
p; as the mean of the optimal values of its corresponding form, which is more convenient to achieve rotation invariance.
25 curves, corresponding to th# pairs of dispersions. In  The 2-D orthogonal DWT expands an image using a certain
section V, we use the values, shown in Table II, for the optimbhsis, whose elements are scaled and translated versions of
p as a function of. This table is used as a lookup table ira single prototype filter. In particular, the DWT decomposes
order to find the optimap for every1l < o < 2 by linearly images in dyadic scales, providing at each resolution level one
interpolating these values. low-pass subband approximation and three spatially oriented
wavelet subbands. There are interesting properties of the
TABLE Il wavelet transform [7] that justify its use in CBIR systems:
OPTIMAL p PARAMETER AS A FUNCTION OF THE CHARACTERISTIC LOCB.”ty (image content is localized in both Space and fre-
EXPONENTa. guency),multiresolution(image is decomposed at a nested set
of dyadic scales), anddge detectiorfwavelet filters operate

O{ Opgzslp 1%5 Opg:;glp as local edge detectors). Becau_se of these properties, the
1.05 0.54 155 071 wavelet transforms of real-world images tend to be sparse,
11 056 16 072 resulting in a large number of small magnitude coefficients
115 057 1.65 074 and a small number of large magnitude coefficients. In our
12 058 17 076 modeling, we employ all the subbands except the low-pass
125| 059 1751 079 residual, since it does not present this sparsity behavior, but
13 0.61 18 0.81 an average of the original image. Importantly, this property is
1.35 0.62 1.85 0.84 in conflict with the Gaussian assumption, giving rise to peaky
1.4 0.64 1.9 0.88 and heavy-tailechon-Gaussiarmarginal distributions of the
1.45 0.66 1.95 0.93 wavelet subband coefficients, which leads us to use joint sub-
2 0.8 Gaussian distributions.

In our proposed retrieval scheme, we proceed by using a
statistical model that captures both wavelet subband marginal
distributions and inter-subband correlations. Various exper-
C. Joint sub-Gaussian modeling of wavelet coefficients  imental results have shown the importance of the cross-

In this Section' we JUStlfy the selection of the fam”y of Subcorrelation of each subband with other orientations at the
Gaussian distributions as a statistical modeling tool for tif@me decomposition level in characterizing the texture infor-

mation [38].
2http://sipi.usc.edu/services/database Our joint modeling is performed by tying up the wavelet



coefficients at the same or adjacent spatial locations, leveispend on the decomposition level. In particular, they become
and subbands, to form a sub-Gaussian vector. This modelinigler as the level increases since the number of samples used
of the subband coefficients preserves the heavy-tailed behav@r estimating theSaS parameters gets smaller because of
of their marginal distributions. Notice that the componenthie subsampling that takes place between scales. This table
of a sub-Gaussian vector are highly dependent, as illustratddo demonstrates that the coefficients of different subbands
in [18], and this makes the joint sub-Gaussian model apprard decomposition levels exhibit various degrees of non-
priate for capturing the cross-dependencies between differ&@dussianity, with values af varying betweerD.9 (close to
subbands, since around features, such as edges and linesCtnechy) and (close to Gaussian).
wavelet coefficients at all subbands are dependent in the sense
that they have high probability of being significant.
NeXt, we assess the eﬁectiveness Gcﬁg density fUnCtion SaS MODELING OF WAVELET SUBBAND COEFFICIENTS OF TEXTURE
fOI’ the approximation Of the empirical density Of the SubbandlMAGES FROM THEVISTEX DATABASE, USING DAUBECHIES' 4 FILTER
coefficients, near the mode and on the tails. In our dat%ND 3 DECOMPOSITION LEVELS ML PARAMETER ESTIMATES AND95%
modeling, the statistical fitting proceeds in two steps: first, we CONFIDENCE INTERVALS FOR THE CHARACTERISTIC EXPONENT:.

TABLE Il

assess whether the data deviate from the normal distribution Image Subbands
and we determine if they have heavy tails by employing |ace Horizontal Vertical Diagonal
normal probability plots [39]. Then, we check if the data is in ovol 1
the stable domaln of attraction by estimating the cha_racterlstlc Bark10 | 1601£ 0061 | 1.684% 0058 | L681L 0.057
exponenta _d|rectly_ from the data and by _p_rowghng th_e Brick.1 1.614=+ 0.056 | 1.577+ 0.056 | 1.896+ 0.031
related confidence mt_ervals. As a fl_thher stgblllty diagnostics, Buildings.4 | 1.681% 0.039 | 1.684% 0.047 | 1601L 0,046
we employ the amplitude probability density (APD) curves . i 6 50001 0.007 | 1.270% 0.053 | 1.322% 0.055
(P(]X] > z)) that give a good indication of whether tisexS Fabric.10 | 1.229+ 0.057 | 1.367+ 0.058 | 1.175+ 0.054
flt' matches the data near the mode and on the tails of the  uers6 T 176 £ 0041 | 1.701% 0.024 | 1.986 L 0.025
distribution. Food.9 | 1.626+ 0.061 | 1.339+ 0.055 | 1.386+ 0.056
A - Grass.l | 1.879+ 0.047 | 1.853+ 0.053 | 1.791+ 0.055
10° _Amplitude Probability Curves Metal.4 | 1.320+ 0.057 | 1.228+ 0.054 | 1.402+ 0.059
-+ Empirical APD Stone.3 | 1.591+ 0.054 | 1.688+ 0.049 | 1.746+ 0.050
N - EESD Level 2
e Bark.10 | 1.855+ 0.097 | 1.858+ 0.110 | 1.850+ 0.107
107 O ] Brick.1 1.311+ 0.105 | 1.539+ 0.103 | 1.8504+ 0.101
RN Buildings.4 | 0.921+ 0.089 | 1.186+ 0.119 | 1.1514 0.098
LY Fabric.0 | 2.000+ 0.006 | 1.171+ 0.099 | 1.349+ 0.114
T . ~XL Fabric.10 | 1.677+ 0.120 | 1.611+ 0.115 | 1.557+ 0.114
z 0 7 g Flowers.6 | 1.334-+ 0.097 | 1.4244 0.100 | 1.900+ 0.057
RIS Food.9 | 1.990+ 7.7e-8 | 1.465+ 0.107 | 1.750+ 0.101
hD Grass.l | 1.921+ 0.073 | 1.858=+ 0.099 | 1.990+ 0.073
0L | Metal.4 | 1.680+ 0.121 | 1.5054+ 0.119 | 1.690+ 0.119
Stone.3 | 1.869+ 0.083 | 1.509+ 0.103 | 1.658+ 0.117
Level 3
Bark.10 | 1.723+ 0.225 | 2.000+ 0.162 | 1.7924+ 0.248
107 01 02 03 07 o8 e or Brick.1 1.2274+ 0.242 | 1.368+ 0.204 | 1.990+ 0.219
Data amplitude , x Buildings.4 | 1.220+ 0.201 | 2.000+ 0.109 | 1.014+ 0.181
Fabric.0 | 2.000+ 0.097 | 1.498+ 0.246 | 1.874+ 0.167
Fig. 3. Modeling of the horizontal subband at the first level of decomposition  Fabric.10 | 1.8654 0.205 | 2.000+ 0.103 | 1.904+ 0.184
of the Flpwers.6imag_e with theSa_S and the GGD depicted [n s_,oliq and Flowers.6 | 1.643+ 0.222 | 1.573+ 0210 | 1.851+ 0211
dashed lines, respectively. The estimated parameters fdditedistribution
have the valuea = 1.76, v = 0.08 while the GGD has parametetis= 0.11 Food.9 2.000+ 0.005 | 1.677+ 0.222 | 1.990+ 0.245
and 3 = 1.02. The dotted line denotes the empirical APD. Grass.1 2.000+ 0.375 | 1.862+ 0.177 | 2.000+ 0.241
Metal.4 | 1.787+ 0.217 | 1.888+ 0.145 | 1.863+ 0.182
Fig. 3 compares th€aS and GGD fits for a selected sub- Stone.3 | 2.000+ 0.096 | 1.278+ 0.223 | 1.500+ 0.226

band of a certain image. Clearly, tt%.S density is superior
to the GGD, following more closely both the mode and the

tail of the empirical APD, than the exponentially decaying !V: ROTATION-INVARIANT CBIR WITH GAUSSIANIZED

GGD. Table Ill shows the ML estimates of the characteristic STEERABLE PYRAMIDS

exponenta together with the correspondir@p% confidence  The property of rotation invariance is very desirable in
intervals, for a set of0 textures (real-world12 x 512 natural a texture retrieval system. An important problem with the
scene images) obtained from the MIT Vision Texture (VisTexgtandard wavelet transform is that it lacks the translation and
database, decomposed3idevels using Daubechied’ (‘db4’) rotation invariant properties. This results in a mismatch of the
filters [40]. It can be observed that the confidence intervalstrieval process when the image orientation varies. In fact, the
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wavelet coefficients of the rotated image will be completelywhere
different, in the sense that they will not be simply rotated fi(pr—0) fo(dr—0) -+ fr(p1—0)
versions of the wavelet coefficients of its original version. fi(de —0) foda—8) - fr(ds—6)

A way to overcome this problem is to replace the standardf(0) = . . .
wavelet transform with a steerable pyramid [41], [42], which o o oo
is a linear multi-scale, multi-orientation image decomposition fi(gs—0) folps—0) -+ [fi(ds—0) "
produced by a set of orientation filters, generated by a set )
of basis functions (directional derivative operators). Steerable proof: The proof of Proposition 1 follows easily by direct
pyramids are overcomplete and possess the desired propegiiiputation and making use of the properties of the steering
of rotation invariance and (approximate) translation invariancmnctions{ f:(0)}. ™

In this section, we design a rotation-invariant CBIR tech- In our work, theJ basic angles are taken to be equispaced,
nique, which is based on the joint sub-Gaussian modelimghich makesF(#) an orthogonal matrix for any, i.e.,
of a steerable pyramid coefficients, incorporating dependerké(9) = F~1(¢) (= F(—6)), and thus, in this cas®' and
across space, angles and scales. In particular, we construgt/abecome orthogonally equivalent.
steerable model, relating the fractional lower-order statisticsUnder a joint sub-Gaussian assumption, the coefficients of
of a rotated image with that of its original version, and thethe J basic orientations (subbands) at a given lévele
apply a Gaussianization process on the steerable modelrydeled as joint sub-Gaussian vectersSGR!), with R/
employing the local statistical behavior of the coefficientgienoting the underlying covariance matrix corresponding to
which are grouped into appropriate spatial neighborhoodke subbands at thi¢h-level.
The similarity measurement between two images is performedThe pyramid coefficients at a given subband are assumed
by deriving a rotation-invariant similarity function, whichto follow a sub-Gaussian marginal distribution. So, the coeffi-
effectively performs angular alignment between the imagescients corresponding to the basic orientatignat level! can

be expressed as:

Cl(xka¢i> = \/chG(xk’agbi)? 1= 17 ceey J7 (20)

whereck, (z, ¢;) is the Gaussian part of the SGR') vector.

In the case of a database containing images along Withom (17), the transform coefficient at levelat any angles
rotated versions of them, we are interested in finding featurgs

A. Steerability of the pyramid subband coefficients

which are as “steerable” as possible, that is, given the features J
of an image oriented at an angle we should be able to . _ _ i) )
obtain thegfeatures correspondigg to the same image rotatedC (5, ¢) ;fl((b)(\/z Cc(xk’@))
at an angled, without having to re-extract the features from J
the rotated image =AY fid)e(an, di) = VAcg(ax, 9)(21)
Let ¢!(zy, ¢) represent the value of a transform coefficient i=1
at a spatial locationr;, (k = 1,...,N), orientation¢ and  Notice that (21) shows that the pyramid subband coefficients
level I (I = 1,...,L). In a steerable pyramid withl basic of a rotated image at an angleare also sub-Gaussian random

orientations (subbands), at each levelgiven the J basic variables with the same characteristic exponent as that one
coefficients X| = [ (zk, 1), ¢ (zk, ¢2), ..., ¢ (zx, ¢1)]", the  of the corresponding subbands of the original (non-rotated)
transform coefficient! (., ¢) for any anglep is given by [29]: image, and with a Gaussian part which is the rotated version
of the original Gaussian part at the same angld herefore,
. J . it can be seen that if one is able to estimate accurately
¢ (zk, 9) = Zfi(¢)c (@h,01) Vo, 1=1..L (A7) e multiplier v/A, it would be possible to normalize the
=1 coefficientsc! (z, ¢) dividing them by+/A, and work with

where{ f1(6), f2(6), ... f1(¢)} is the set of steering func- e Gaussianized coefficients, («y,, ¢). This is convenient
tions. because, as it will become clearer later, it is easier to use

Let R! and R} denote the sampled correlation matrice appropriate and simple (analytical) similarity functions with

with elements given by the correlations between pairs%oe Gaussianized coefficients.
y In order to accurately estimate the multiplid;, we con-

subbands (at a given decomposition ledelof the original . . . .
imagel and its rotated versiofy, respectively. The following sider de.pende'nce across or'ler.ltatlons, scales and space, which
proposition [29] establishes the relation betwd&®hand R results in-an |_mpr0ved_ s_tatlstlcal mode_l for n_atural IMages.
%" We achieve this by defining an appropriate neighborhood for
each coefficient, which is then modeled as a sub-Gaussian
Proposition 1 ([29]) The matricesR}, and R! are related as random vector. This joint sub-Gaussian modeling is followed
follows: by a Gaussianization procedure, which results in a steerable
. T pyramid whose coefficients are jointly Gaussian (Gaussianized
Ry =F(0)R'F (0), (18)  steerable pyramid).
There are several reasons that justify the Gaussianization
3Through the next sections, we consider counter-clockwise rotation. ~ Step:



a) the normalized transform domain can be well modsaussian distribution. The probability density &f condi-
eled statistically, using only second-order covariancéi®ned onA is given by:
between pairs of subbands, RT(AR)-1% /9

b) the similarity measurement can be performed using an p(X|A4) = exp(—X" (AR) /2)
analytical expression for the KLD between two multi- (2m)P/2 |AR|1/2
variate Gaussian distributions, avoiding computationallgrom (23), it can be seen that the ML estimator for the
complex methods, such as the Monte-Carlo method, multiplier A is

¢) the normalized pyramid allows to perform easily steer- . L XTR1X
ability in the feature space. AX) = —F—, (24)

(23)

where the estimator is explicitly written as a function of
b)_f to emphasize the assumption of locality. This simplifies
the computational procedure for the Gaussianization of the
steerable pyramid subband coefficients, as we assume that
The dependencies between the coefficients forming a certgie multipliers associated with different neighborhoods are
neighborhood, including in general coefficients located atestimated independently, even though the neighborhoods are
small spatial region and at different orientations and scaleserlapping.
can be modeled using a homogeneous random field with @dn our implementation, we estimate, as explained in sec-
spatially changing variance. This requirement can be realizédn 111-B, the underlying covariance matriR" ?, correspond-
by modulating the vector of coefficients constituting the neigling to the basic orientatiog; at thelth-level, by employing the
borhood (node of the field) with a hidden scaling randomeighborhoods of all coefficients (or a subset of them, which

B. Variance-adaptive local modeling using multivariate su
Gaussian distributions

variable (multiplier), as follows: is computationally efficient, at the cost of a reduced estimation
accuracy) at the given orientationth, k=1,...,N). This
X4 VaAg (22) procedure has the advantage of resulting in a computationally

efficient way to estimate the hidden multipliet and nor-
where G is a zero-mean Gaussian random vector ahgs Malize the subband coefficients. Also, our technique avoids
positive scalar variable independent@f(< denotes equality the use of a Gaussian Mixture Model (GMM), as in other
in distribution). A vectorX that can be written like this, is said@Pproaches [25], which requires complicated Expectation-
to follow a Gaussian Scale Mixture (GSM) distribution [43]Maximization algorithms to estimate the multipliers, nested in
Notice that when the multiplietd is drawn from aSaS @ Markovian manner. We must also note that the multipliers

distribution, this is exactly the case of a multivariatesub- N [25] are discrete, whereas in our model they vary in a
Gaussian model. continuous fashion.

Two basic assumptions are made in order to reduce theoUmmarizing, the steps of our Gaussianization method are:
dimensionality of these models: (i) the probability structure 1. Decompose the given image infolevels and.J orien-

is definedlocally. In particular, the probability density of tations per level, via a steerable pyramid.
a coefficient when conditioned on the rest of neighbors, is 2. For each decomposition levgll =1,..., L:
independent of the coefficients outside the neighborhood, (i) ~ For each orientatiom;, i = 1,...,J, at thel-th level:
all such neighborhoods obey the same distributispafial i) Estimate the covariance matrRR" * using (16).
homogeneity ii) For each coefficient!(zy, ¢:), k=1,...,K:
The construction of a global probabilistic model for images, « Construct the corresponding neighborhodfd’.
based on these local descriptions, needs the specification of a « Estimate the multiplierd, *(X, *) using (24).
neighborhood structuréor each subband coefficient, and the « Compute the normalized coefficieftzy,, ¢;) =

distribution of the multiplierswhich we have already specified ; T

that it is a member of the family oSS distributions. We < (x’“(bf)/\/ A o

extract the interdependencies between coefficients at differER®M (24), it is obvious that the estimation accuracy for the
orientations, levels and spatial positions, by utilizing thefPultiplier depends on the accurate estimation of the underlying
joint a-sub-Gaussian statistics: Le’f’,ﬂl denote a generic covariance matriR’ ? and the neighborhood structure.
P-dimensional neighborhood of the coefficietitzy,, ¢;) at

the spatial positionzy, (k = 1,..., K), orientationg; (i = D. Computation of inter-level covariations

1,...,J) and levell (I = 1,...,L). This neighborhood is

The multiplier estimation, as well as the construction of an
supposed to be drawn of anSGR') random vector. P

image signature which we describe later on, may require the
involvement of coefficients or the computation of covariations
C. Gaussianization of the multivariate sub-Gaussian modePEf‘tWeen subbgr_lds at different levels. Using the standard pyra-
mid decomposition, we move from levEto the next coarser

An important property of a GSM model is that the probdevel (I + 1) by subsampling the output of a low-pass filter.
bility density of a P-dimensional GSM vectoX is Gaussian As a result, the subbands at et 1)-th level arel /4 in size
when conditioned omd. Combining this property with (22), than those of thé-th level (since we are dealing with images),
it is clear that the normalized vectdf /v/A follows a joint which is undesired since the covariation estimation includes
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TABLE IV
NEIGHBORHOOD SHAPES USED IN THE MEASUREMENT OF THEAUSSIANIZATION PERFORMANCE

Index Neighborhood Structure Size (P)
for a givencl (zy, ¢;)
1] (L) BRU{Lo)li=1..,J j#ik1U(+1,¢:):1 [ J+9
2 (L) AU )li=1,....Jj#i} 1 J+8
3 (1, ¢:): (3x3) 9
4 (I, ¢;): 4 (cross shape (c.s.)) 5
5 (i) ds)U{l,d)li=1,....J,j#i}:1U(+1,¢;) 1 J+5
6 (I, ¢9i): 4 (cs)u{(l,p)li=1,...,J,5#i}: 1 J+4
7 (1,§i): 4 €SIV {(Ldy)li = 1,...,J, j #i}: 4 (c5) 5(J +1)
U(l+1,¢;):4(cs)
(1) BXBYU{(L,pj)li=1,...,J,j#i}:1U ((+1,¢;): 1 J+25
9 (I, ¢:): BXBYU{l, )i =1,...,J, j#i}: 1 J+24
10 (1,¢:): (5%5) 25

1) (1, ¢:): X, means that X is the neighborhood at the lel/aind orientationp;, centered at the coefficient (xy, #;).
2) {(L,py)li=1,...,J, 4 #i}: Y, means that for each one of the r¢st— 1) orientations at level, Y is the neighborhood centered at the coefficient

Cl(xkvgbj)rj =1,.. ~7J7 .] 7£ ..
3) (I+1,¢:): Z, means that Z is the neighborhood at the next lower lévell and orientationp; centered at the corresponding spatial location.

summations between vectors of equal length. Subsampling/e also use this approach for the estimation of the covariations
good for compression and for saving memory and complexibetween subbands at tkamedecomposition level.

when performing the decomposition. However, subsampling

introduces some aliasing, which is not good for extracting Neighborhood construction

features. There are two ways to avoid this: There is a trade-off between the computational complexit
a) Instead of subsampling the output of the filters, we can P piextty

: o . and the neighborhood size. This can be seen from (24),
upsample the filters and perform the filtering without subsam- : S _

X ) o - — . where the estimated stable multiplier depends on the inverse
pling their outputs. In addition to avoiding aliasing, it allows : . . ;

- f the underlying covariance matriR. The computational
us also to keep the same number of coefficients across scales Lo : .
. . o . complexity increases as the neighborhood sizéncreases,
which favors the computation of covariation matrices across : : i
Since the complexity to estimat® and to calculate its

scales. . _1 S . ;
b) Usina Fourier d in filteri imolv b ltilvi inverse,R™", depends on its dimensioP(x P). It is clear

) Using Fourier domain filtering, simply by multip Y9 that is not computationally feasible to construct all possible

thE. DFE O.f the im;g_le_ Withb th_e ?FT (z)fbthed filterﬁ_and the eighborhoods for each subband coefficient in order to select
taking the inverse to o tain the su and coe icients. Vyg, optimal neighborhood, because of the large amount of
follow the frequency-domain approach since, although bo mbinations

implementations should give approximately the same values1n this section, we examine the performance of our Gaus-

the frequency-domain implementation is more exact as it do&anization procedure with respect to different neighborhoods,

not suffer from the finite-length constraint that is imposed Yking also into consideration the computational limitations.

the f||t_ers for the C(_)nvo_lutlon. . .. For this purpose, we implement the Gaussianization process
Besides, the estimation of covariation assumes two jomt%ing the neighborhoods shown in Table IV.

sub-Gaussian random variables, i.e., with equal characteristig 5 given subband coefficiedt(z,, ¢;), the formation of

. . o) 1)
exponent values. The values of estimated from the different o e of the above neighborhoods requires the inclusion of co-
orientation subbands using a steerable pyramid without Syficients at the same spatial location of the subbands but at the
sampling, are close to each other but not equal. This proble,; coarser scale. In order to associate coefficients between
is overcome by making use of the asymmetry in the definitiafyizcent levels, we use the frequency-domain implementation

of the covariation: of the steerable pyramid, without subsampling the output of
« from (15), we observe that the frgeparameter affects the filters, as described in section IV-D. In this case, it results
the second variable (as an exponent), in subbands with equal size at all decomposition levels. Then,
« the intuitive idea is to use the estimated characteristice coefficient at the corresponding spatial location of the next
exponent,, corresponding to the second variable (sulioarser subband is simply'+) (zy,, ¢;).
band) in order to estimate the covariation: for instance, in We tested the performance of our Gaussianization procedure
order to estimatéX, Y], we first estimater fromY and with respect to the neighborhood structure, by implementing
then assume thaX follows a distribution with the same it on a set of5, randomly selected textures of siz&2 x 512
«, while in order to estimatéy, X|, we estimatex from from the Brodatz database with the following code numbers:
X and then assume thatalso follows a distribution with 1.1.1.01, 2.1.1.04, 3.1.1.08, 4.1.2.08, 5. 1.5.04, along with
that o. This procedure exploits the differences betweetheir rotations a0, 60, 90 and 120 degrees. We applied &
the subbands, regarding their distribution. level pyramid decomposition with orientations per level, thus
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level. Because of the strong dependence across scales and
orientations, we may obtain a better (more complete) signature
by considering in addition the across levels dependence as
expressed by the covariance matrices between consecutive
levels. In this case, the signature of an imafeis the
following:

03 q

0.25

0.2+
I8 ={z},. . =txl—2  sE=h o (27)

0.15

where Elﬁ(”l) denotes the (in generalsymmetriy covari-
ance matrix corresponding to the subbands at levedsd
(14 1). In particular, the elemerﬂzlf(l“)]ij is equal to the
covariance of the-th subband at levelwith the j-th subband
at the next lower levell + 1). The enhanced signatugf
contains more texture-specific information than the signature
Neigh;mhoodemdex ! s ° ©  S9Y9 at the cost of an increased computational complexity, since
its size equals

Fig. 4. Histogram of the neighborhood indices in terms of resulting in the J(J + 1)
best Gaussianization performance for a se8@j subbands. size(Sgg) —

Relative Frequency

0.1

0.05

1 2 3 4

J(J+1)
;LT
Notice that, although neighborhodd, which does not in-
obtaining a total 0B00 subbands. After the Gaussianizationg|ude dependencies across levels, was best for Gaussianization,
at each subband, we calculated the relative entrap¥/X regarding the design of a retrieval scheme, the dependence

between the histogram (witth6 bins) and the Gaussian PDFacross orientations and levels is very useful in extracting a
fitting the normalized subband coefficients, as a fraction of thgore accurate profile of the texture information.

histogram entropy i{):

(L-1).

AH S22 h(xy) 10g(2§§:;) 25) G. Similarity Measurement
H = — S22 h(ay) log(h(xy)) In recent work [29], a Gaussian assumption for the marginal

and joint distributions of the steerable pyramid coefficients
results in a deterministic rotation-invariant similarity measure,

_the k-th bin, as e_.\stlmated from the_ hlstogram, andr,) .R}etween two images and@. If we use the signaturég, this
is the corresponding value of the fitting Gaussian PDF wi : )
easure takes the following form:

parameters estimated from the normalized coefficients. THE

best choice for the neighborhood structure corresponds to the L

smallest fractionAH/H. D(I1,Q) = min > IE; - F(=0)ZLFT (-0)] +
Fig. 4 displays the histogram of the neighborhood indices =1

where h(xy) is the probability density of the center, of

(cf. Table IV), for the 300 subbands. The vertical axis is & i T

the relative frequency of each neighborhood shape (horizontal + IS - F(-0)Sg TET(-0)] | (28)

axis), whose selection resulted in the smallest fraction (25) for =1

the above subbands. For the given set of textures, the choideere||-|| denotes any of the common matrix norms (however,

of the 10-th neighborhood shape results in the best Gaussiangood choice is the Frobenius norm, which gives an indication

ization performance for most of the pyramid subbands.  of the “matrix amplitude”). If the texture information is
represented by the signatu®¥, the similarity function is

E Feature Extraction modified by omitting the second sum, which corresponds to

After the normalization procedure, the marginal and joiﬁpter-level dependencies. -
In our method, we construct and employ a novel statistical

statistics of the coefficients at adjacent spatial positions, orien;[ ton-i ant similarity funci After the G L
tations and levels are close to the Gaussian distribution. ThER 2 on-invariant simiiarity tunction. er the Laussianiza-

to extract the features, we simply compute theJ covariance tlonhp:jocedure h.?s b(laen Ia_ppllr:ad, we m?del the d|str|l:|1|ut|on of
matrix at each decomposition level. each decomposition level in the case of uskfg as well as

Thus, for a given image/, decomposed in_ levels, a thg JOE; d|st.r|but|on tlmtt_atwgetn (é)nsequtlvg Ievils |,\r)| tgeDca_T_ﬁ of
possible signaturé&? is given by the set of thé, covariance usingog, using a muttivariate >aussian densi y (Mv ) €
L similarity between two images is measured by employing the
matrices: ; . .
G el w2 L KLD between MvGDs. Consider the case in which the texture
I— 8% ={3;,%7,...,2/} (26) . . . . . .
information of each image is expressed using the signature
whereX!, is the covariance matrix of theth decomposition S¢, that is, each decomposition level, as well as each pair of
level. Due to the symmetric property of the covariance matriadjacent decomposition levels, is associated with a covariance
the total size of the above signature equaltie(SY) = matrix.
@ - L. The signatureSY contains only the across ori- Given two images/ and @, let I', Q' be the set of ori-
entation, second-order dependence at a given decompositatation subbands at theth decomposition level and’+1,
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Q"'+ be the set of orientation subbands at two adjacent levelgramids for two given homogeneous texturesdQ, respec-

[ and ! + 1, following zero-mean MvGDs with covariancetively. The rotation-invariant KLD between the two textures
matrices 2}, ,, and 2}, 557!, respectively. The takes the following form:

KLD between two corresponding levels is given by [5]: ~

1

D(IMQY = = (tr(=h(=L) ' =) —In |ZL(ZL) 7). (29 L

(I'l@) 2(7“( 1( Q) )—In|2;( Q) |) (29) :gnig% Ztr(ElIFT(G)(ZlQ)le(@))—F
In the same way, the KLD between two corresponding pairs c =1

of adjacent levels is given by: L1 - 1
) + ) tr(Zh TIFT(O) (S5 TIFO) | - J(L - 5~
D(IMHLQl Yy = - (tr(zzﬁz+1(21—>l+1)71 - =1
2 ! Q 1 [L L—1
- mESEEET ) @) [z (5 (=) 1) + 3 1n(2rl+1<zgl+1>1|>] .
=1 =1
We define the overall KLD between imagés(@ to be equal (35)

to the following sum: N )
Proof: The proof of Proposition 2 follows by direct

computation, after the substitution of (33) in (34). [ ]
If we employ the signaturé¢ instead ofsgg, the derivation
of the KLD between two distinct texturdsand @ is straight-
In our problem, we deal with image databases whiggrward by implementing the above proposition, omitting the

may contain rotated versions of a given image. Notice thglms which contain the covariance matricels™ El—’l+1
from (18), it follows that:

D(I)|Q) = ZD I'eQh + Z D(I'=H|@ =Y. (31)

=1 =1

and replacing L — %) with £

=y, = FOZLFT(9), 5, = F(O)Z, T FT(9), Notice that when/ andQ are two rotated versions of the

(32) same image, the angl for which the minimum is achieved

wherelee is thel-th level covariance matrix anﬁ:é;“r1 is in (35) should be close to the exact relative angle between
the covariance matrix between levélandl + 1, of a rotated I and Q, that is, the angle one needs to clockwise rotate
version of image at an angled, Q. in order to getQ. Thus, a way to evaluate the performance

Consider to be the query image an@ = Q, to be of the above rotation-invariant KLD, is to verify whether the
a counter-clockwise rotation, by an angle of the original estimated anglé* is actually close to the real relative angle
image( in the database. In a real application, of course, tiigtween two physically rotated versions of the same image.
value of ¢ is unknown. Thus, the distance between titn Besides, it may also be useful on its own for many practical
levels of I and @ (I' and @', respectively) is defined as theapplications to find out approximately this relative angle.
minimum KLD between/! and@' ,, where the minimization Fig. 5(b) illustrates this by showing the functidn(1||Q)(0)
is over a set of possible rotatio® and thus, it is necessarygiven by (35) for theBark texture sample obtained from the
to perform an angular alignment by finding the optiméim Brodatz database.
The notationQ)_, means a clockwise rotation of image By
noticing thatElQ =F(— G)El FT(—6) and substituting (32)
into (29), we obtain that the KLD between th¢h level of an
image and a clockwise rotation of imag@ by an angled
(I' and @' ,, respectively), is given by:

D(GLy) = 3 [tr(SYET (6)(S) " F(6) ~ 1) -

~ m(IBh(=5) ) (33)

Similarly, we obtain the KLD between two corresponding # ‘
pairs of adjacent levelsD(I'~*1|Q';™), by replacing
the covariance matricex!, EIQ with the covariance matri- B ey

ces T Egl“, respectively. Finally, the overall KLD @ (b)
betweenl and (@ is defined as:

Fig. 5. (a)Bark physically rotated a80 and 120 degrees, (b)D(1]|Q)(0)
L—1 for J = 4. Notice that the minimum is achieved f6tf = 90 degrees, which

(IHQ mm (Z D IZHQl ) Z D(Il_’HlHQl:ng) 7is the exact relative angle between the two texture samples.

=1
(34 It is also important to note that, in our implementation the

which results in the following proposition: steering functions have only odd harmonics, which oscillate at
some finite speed. Thus, the number of local minima of (35),

Proposition 2 Let S¢(I) and S¢(Q) be the signatures cor- as a function of), can be at most equal to twice the number

responding to the normalized coefficients of the steeralé independent harmonics (which happens to be equal to the



number of basic harmonics). In addition, the distance betwe §
any two consecutive local minima is lower bounded making |
possible to search for them in a few non-overlapping angul
intervals [44], which is useful in order to speed up the sear ¥
for the optimal angley*. '

V. EXPERIMENTAL RESULTS

In order to evaluate the efficiency of our overall CBIF
system, we apply it on a set @8, 512 x 512 texture images
obtained from USC SIPI database (cf. Fig. 7). Each of the
was physically rotated &0, 60, 90 and120 degrees, resulting g
in a set of65 texture samples. Then, the texture image datas Sy
is formed by dividing each image intdé, 256 x 256 non- _
overlapping subimages constructing a database with a total §#%%
4 x 65 = 260 textures. We implemented &level steerable [
pyramid decomposition witlhy = 4 basic orientationsg; =
0, oo = w/4, p3 = ©/2, ¢4 = 3w /4, which means that the
steering functions are [42]:

e
I '."J!. |
'I 1
L

f1(0) = %[cos(@) +cos(30)] , f2(0) = f1 (% _ 9) ,

T 3T Fig. 7. Texture images from the VisTex database, from left to right and top
f3(0) = f1 (— - 9) , @) =fil— -0 . to bottom: 1) Bark, 2) Brick, 3) Bubbles, 4) Grass, 5) Leather, 6) Pigskin, 7)
2 4 Raffia, 8) Sand, 9) Straw, 10) Water, 11) Weave, 12) Wood, 13) Wool.
The histogram of the estimated characteristic exponent values
for the 260 textures is shown in Fig. 6. We observe that only

18% of the textures exhibit Gaussian statistics. obtained by minimizing the Frobenius norm of the differences
between the corresponding covariance matrices ([29]) after the
02 Gaussianization procedure, as well as with the performance

obtained by minimizing the corresponding Frobenius norm
between sample correlation matrices (Gaussian assumption)

0.18

oer without applying the Gaussianization step.
014} Table V shows the performance in average percentages of
g retrieving relevant images in the tdg matches. Comparing
;g; 0.121-
L o1if TABLE V
.f'zj AVERAGE RETRIEVAL RATE (%) IN THE TOP 16 MATCHES.
:75 0.08
0.06} Methods
Neighborhood| Non-Gaussianized SY SY
o0 Index & & &
002 Frobenius (28) | Frobenius (28)| KLD (35)
. ‘ ‘ e | 1 88.62 89.26 94.01
1 11 12 13 14 15 16 17 18 19 2 Methods
Characteristic Exponent Neighborhood| Non-Gaussianized s¢ s¢
Fig. 6. Histogram of the estimated values for the characteristic expament, Index & & &
for the set 0f260 texture images of siz856 x 256. Frobenius (28) | Frobenius (28)| KLD (35)
10 88.62 95.40 95.62

In the following illustration, the query is anyone of the non-
overlapping256 x 256 subimages corresponding to the origthe average retrieval rates corresponding to the first two meth-
inal, non-rotated set of images. The relevant images for eamiis of the table, we conclude that the fractional lower-order
query are defined as the othe subimages corresponding tostatistics provide better approximations of the joint statistics
the rotated versions of the same original image. between coefficients at adjacent orientations and scales, than

We evaluate the performance of the retrieval scheme whittte second order moments. Of course, both methods employ
employs the signature§Y and Sg as the set of extractedthe covariance matrices between pairs of subbands, but in
features, containing intra- and inter-scale dependencies dhé first scheme (Non-Gaussianized & Frobenius) we estimate
the rotation-invariant KLD as the similarity measure. W¢he sample covariances using the raw subband coefficients
compare the performance of this retrieval scheme with thatthout Gaussianization, while in the second scherS€ (
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(or Sg) & Frobenius) the covariances are estimated afténe different “objects” contained in a picture can be viewed
the implementation of the Gaussianization procedure, whiels local intensity variations.
exploits lower-order moments, since the estimation is basedRegarding the task of similarity measurement between two
on covariations. The comparison between the retrieval ratesdidtinct images, we weighted the contribution of inter-level
the second and third methods, verifies the fact that a statistidebendencies in the same way as the intra-level ones, resulting
similarity function (KLD) is preferable than a deterministidn an overall similarity function that is written as a sum of
one (Frobenius norm), for the same set of extracted featurgartial distances. We could further improve the power of the
As shown in Table V, the use of thB)-th neighborhood similarity measure by considering some kind of chain rule for
type combined with the enhanced signatlﬂg, results in the KLD between two images [5].
an improved retrieval performance with respect to the otherin section IV, we evaluated the performance of a Gaus-
combinations. This is consistent with the above analysis, sinsi@nization procedure applied on the subband coefficients of
the 10-th neighborhood type results in the best Gaussianizatiarsteerable pyramid. For this purpose, we preserved the same
performance for most of th800 constructed subbands andheighborhood type across subbands, for every image in the
since the enhanced signature contains more texture-spedaititabase. Obviously, it is computationally unfeasible to check
information than theSY signature. We can also observe thahe Gaussianization performance for all possible neighborhood
by choosing the 0-th neighborhood type, the average retrievébrmations. However, we expect an improved Gaussianization
rate using the rotation-invariant Frobenius norm (28) is veperformance and consequently better retrieval performance, by
close to the rate corresponding to the rotation-invariant KLperforming some reduced complexity adaptation of the optimal
This is due to the improved Gaussianization performanaegighborhood type across subbands and images.
compared with that corresponding to the first neighborhood
type, which results in an increased performance of the Frobe-
nius norm that is best suited for Gaussian distributions. How-
ever, the statistical similarity function (KLD) remains superior;y; ;. aspiey, M. Flickner, J. Hafner, D. Lee, W. Niblack, and D. Petkovic,

than the deterministic Frobenius norm. “The query by image content (gbic) system,”"Rmoceedings of the 1995
ACM SIGMOD Interl. Conf. on Management of datslew York, U.S.),
pp. 475—, ACM Press, 1995.
[2] S. Belongie, J. Malik, and J. Puzicha, “Matching shapés,Interna-
VI. CONCLUSIONS ANDFUTURE WORK tional Conference on Computer Vision, Vancouver, Canad®1.

; : ; PR i8] B. Manjunath, J. R. Ohm, V. Vasudevan, and A. Yamada, “Color and
In this paper, we studied the deSIQn of a rotation mva”an[tg texture descriptors|EEE Trans. Circuits and Syst. Video Teclol. 11,

CBIR system based on a multivariate sub-GaussignsS) pp. 703-715, June 2001.
modeling of the coefficients of a steerable wavelet decompd4] J. Malik and P. Perona, “Preattentive texture discrimination with early
sition. We exploited the variance adaptation of the coeﬁicieng vision mechanisms Journal of Optical Soc. Amvol. 7, no. 5.

. . . . . ] S. Kullback,Information Theory and Statisticover, 1997.
in small regions at different orientation subbands and levelgs) 3. r. Bergen and E. H. Adelson, “Theories of visual texture perception,”

by applying a Gaussianization procedure. Then, the FE step in Spatial Vision(D. R. Ed., ed.), CRC press, 1991.
consists of simply estimating second-order moments betwedf] S- Mallat,A Wavelet Tour of Signal Processingcademic Press, 1998.

ientati bbands at th d at adi t | TES% P. Wu, B. S. Manjunath, S. Newsam, and H. D. Shin, “A texture
orientation subbands & € same and at adjacent [evels. I descriptor for browsing and similarity retrievalignal Processing:

process takes also into account the actual heavy-tailed behavior image Communicatignvol. 16, pp. 33-43, 2000.
of the Coefﬁcients7 represented by the fractional |Ower_orddp] M. Unser, “Texture classification and segmentation using wavelet

_— L . . frames,” IEEE Trans. on Image Processingol. 4, pp. 1549-1560,
statistics (covariations) between pairs of subbands. We achieve v ember 1995.

rotation invariance by constructing an appropriate rotatiopo] M. K. Mihcak, |. Kozintsev, K. Ramchandran, and P. Moulin, “Low-
invariant version of the KLD between zero-mean multivari- complexity image denoising based on statistical modeling of wavelet

ate Gaussian densities. The experimental results showed an gggﬁifg’ggs’"'EEE Signal Processing Lettgrsol. 6, no. 12, pp. 300~

increased average retrieval performance in comparison With] s. G. Mallat, “A theory for multiresolution signal decomposition: the
the performance of previous methods based on second-order wavelet representation/EEE Trans. Pattern Anal. Machine Intell.

S . . . _vol. 11, pp. 674-692, July 1989.
statistics estimated dlrectly from the orlgmal subband CO%&Z] E. P. Simoncelli, “Statistical models for images: Compression, restora-

ficients, without implementing the Gaussianization. We also "~ tion and synthesis,” iB1st Asilomar Conf on Signals, Systems and
conclude that a statistical similarity function, such as KLD, is  Computers(Pacific Grove, CA), pp. 673-678, IEEE Computer Society,

et ; 1997.
preferable than the deterministic Frobenius norm. S. G. Chang, B. Yu, and M. Vetterli, “Lossy compression and wavelet

NN . [13]
Future research directions, which could further result in " thresholding for image denoisinggubmitted to IEEE Trans. Image
an improved retrieval system with decreased probability of Processing

retrieval error, are the following: first of all, the main assum 14] S. Liapis and G. Tziritas, “Color and texture image retrieval using chro-
! ) ! maticity histograms and wavelet frame$ZEE Trans. on Multimedia

tion throughout the present work was the stationary behavior o). 6, pp. 676-686, Oct. 2004.
of texture content. That is, we assumed that the distributi@¥®] M. N. Do and M. Vetterli, “Wavelet-based texture retrieval using gen-

of the subband coefficients, which is closely related with the eralized Gauss_ian density and Kullback-Leibler distantfeE Trans.
e . . . . e Image Processingvol. 11, pp. 146-158, Feb. 2002.
texture-specific information, is invariable within each subbanflg; a. Achim, A. Bezerianos, and P. Tsakalides, “Novel Bayesian multiscale

Instead, we could consider mon-stationary approach by method for speckle removal in medical ultrasound imag&gE Trans.
ermitting alocally adapteddistribution, that is, by spatiall Med. Imag, vol. 20, pp. 772783, Aug. 2001.

pd . gh h y .p. d the di y p yé]f%] A. Achim, P. Tsakalides, and A. Bezerianos, “SAR image denoising

a aptlng.t e characteristic e>_<ponent an t e 'Sp¢r3|_0n par_ ~ via Bayesian wavelet shrinkage based on heavy-tailed modeliB§E

eters. This can also be used in segmentation applications, since Trans. Geosc. and Rem. Senal. 41, pp. 1773-1784, Aug. 2003.
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