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Rotation-Invariant Texture Retrieval via
Signature Alignment Based on Steerable

Sub-Gaussian Modeling
George Tzagkarakis, Baltasar Beferull-Lozano, Senior Member, IEEE, and Panagiotis Tsakalides, Member, IEEE

Abstract—This paper addresses the construction of a novel
efficient rotation-invariant texture retrieval method that is based
on the alignment in angle of signatures obtained via a steerable
sub-Gaussian model. In our proposed scheme, we first construct a
steerable multivariate sub-Gaussian model, where the fractional
lower-order moments of a given image are associated with those
of its rotated versions. The feature extraction step consists of
estimating the so-called covariations between the orientation
subbands of the corresponding steerable pyramid at the same
or at adjacent decomposition levels and building an appropriate
signature that can be rotated directly without the need of rotating
the image and recalculating the signature. The similarity measure-
ment between two images is performed using a matrix-based norm
that includes a signature alignment in angle between the images
being compared, achieving in this way the desired rotation-invari-
ance property. Our experimental results show how this retrieval
scheme achieves a lower average retrieval error, as compared
to previously proposed methods having a similar computational
complexity, while at the same time being competitive with the best
currently known state-of-the-art retrieval system. In conclusion,
our retrieval method provides the best compromise between
complexity and average retrieval performance.

Index Terms—Fractional lower-order moments (FLOM),
rotation-invariant texture retrieval, steerable multivariate
sub-Gaussian model.

I. INTRODUCTION

I NCREASING accumulation of visual information in large
digital databases has been prominent during the last decades.

To improve the management of these collections, it is necessary
to have effective and precise methods to search and interact with
them. For this purpose, content-based image retrieval (CBIR)
from unannotated image databases has gained an important in-
terest in the research community. CBIR is a set of techniques for
retrieving relevant images on the basis of automatically derived
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features, which accurately specify the information content of a
given image.

There exist several practical examples where a CBIR plays
a major role. Two typical examples are: a) retrieval of images
(through the Internet) that are similar to a given query image
and b) remote satellite sensing of images where only novel im-
ages have to be transmitted and where the novelty is checked on
the earth by performing a comparison between the features of a
query and the features of images contained in a database.

In a typical CBIR system we can distinguish two major tasks,
namely feature extraction (FE) and similarity measurement
(SM). In the FE step, a set of features, constituting the so-called
image signature, is generated after an image transformation, to
accurately represent the content of a given image. In order to
guarantee the computational efficiency of the retrieval process,1
this set has to be much smaller in size than the original image,
while capturing as much as possible the important information
from the image, for the purpose of classification. During the
SM step, a distance-like function is usually employed, which
measures how close a database image is to a given query image,
by measuring the distance between their corresponding signa-
tures. Typical low-level image features such as color [1], shape
[2] and texture [3], are commonly used in CBIR applications.
In this work, we focus on the use of texture information for the
description of image content. Loosely speaking, the class of
texture images includes images that are spatially homogeneous
and consist of repeated elements (image texels), often subject to
some randomization in their location, size, color, and orienta-
tion. However, it is also important to mention that even though
this assumption of homogeneity is done, our experimental
results show that our method also tolerates certain degree of
nonhomogeneity.

The design of retrieval systems in a transform-domain is jus-
tified by the observation that often a linear, invertible transform
results in a set of coefficients whose structure is simpler to model
than the structure of the original image in the pixel-domain. Fea-
tures such as oriented edges, ridges, and lines are prominent in
real-world images. For such images, the 2-D wavelet transform
is a powerful modeling tool, providing a natural arrangement
of the wavelet transform coefficients into multiple scales and
oriented subbands representing the edges in different directions
[4]. In previous studies, the texture information has been mod-
eled using the first or second-order statistics of the coefficients
obtained via a Gabor wavelet transform [5], or an overcomplete

1In other cases, where the encoder and decoder are physically separated,
a reduction in the necessary transmission bandwidth is also a very important
requirement.
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wavelet decomposition constituting a tight frame [6]. Moreover,
until recently, the wavelet coefficients have been modeled ei-
ther as independent Gaussian variables, or as jointly Gaussian
vectors [7].

In the texture retrieval scheme proposed in this work, the
task of FE is considered in a statistical framework. In particular,
the signature of a given image contains the estimations of frac-
tional lower-order moments (FLOMs) between the orientation
subbands at the same or at adjacent decomposition levels. This
is justified by the observation that the wavelet transforms of
real-world images tend to be sparse, that is, they result in a large
number of small amplitude coefficients and a small number
of large amplitude coefficients [8]. This property gives rise to
peaky and heavy-tailed non-Gaussian marginal distributions
of the wavelet subband coefficients, whose statistics are best
described by lower than second-order moments [8], [9], as
opposed to the traditional Gaussian modeling. Then, the SM
step employs an appropriate norm-based distance function that
exploits the heavy-tailed behavior of the distributions of the
transform coefficients.

In a recent work [10], we have shown that an improved de-
scription of the texture information can be achieved if we take
into consideration the actual heavy-tailed behavior of the distri-
bution of transform coefficients, as well as their interdependen-
cies across the subbands at the same or at adjacent decomposi-
tion levels. Our formulation improved the retrieval performance,
resulting in a decreased average retrieval error for images with
distinct non-Gaussian statistics, compared with the previously
used GGD model. Our study in [10] motivated the use of a joint
multivariate distribution model in this work.

On the other hand, the theory of Markov random fields has en-
abled a new generation of statistical texture models, taking into
account possible interdependencies between the transform co-
efficients, in which the full model is characterized by statistical
interactions within local neighborhoods [11]. Similarly, a new
framework for statistical signal processing based on wavelet-
domain Hidden Markov Models was proposed in [12]. It pro-
vides an attractive modeling of both the non-Gaussian statis-
tics and the property of persistence across scales in a wavelet
decomposition.

In this paper, we exploit transform-domain interdependen-
cies by tying up the subband coefficients at adjacent orienta-
tions and/or scales in vectors, which are then considered to be
drawn from a multivariate sub-Gaussian distribution. Within the
sub-Gaussian framework, we use the notion of covariation, that
is, fractional lower-order statistics, instead of the second-order
covariance, in order to describe the interdependencies between
wavelet coefficients at different image orientations and scales.
The joint sub-Gaussian modeling preserves the heavy-tailed be-
havior of the marginal distributions, as well as the strong statis-
tical dependence across orientations and scales.

An important desirable property of a CBIR system is
rotation invariance. Recently, a rotation-invariant texture re-
trieval system based on steerable pyramids was proposed by
Beferull-Lozano et al. [13], where the correlation matrices
between several basic orientation subbands at each level of
a wavelet pyramid are chosen as the energy-based texture
features. Do and Vetterli [14] derived a steerable rotation-in-
variant statistical model for texture description, by enhancing

a technique based on a wavelet-domain hidden Markov model
(HMM) [12]. In our recent work [10], we designed an efficient
rotation-invariant texture retrieval system by applying a joint
sub-Gaussian model on a steerable pyramid decomposition [15]
of the images, followed by a Gaussianization process, resulting
in a set of (modified) pyramid subbands whose coefficients are
almost jointly Gaussian. Then, the SM was carried out by con-
structing a rotation-invariant version of the Kullback–Leibler
divergence (KLD) between multivariate Gaussian density
functions, describing statistically the Gaussianized subbands.

Although the method described in [10] results in an increased
retrieval performance, compared with the previously developed
methods based on second-order statistics, a main drawback
is its computational complexity due to the Gaussianization
procedure, since it involves the use of a sufficiently large
neighborhood for each transform coefficient and repeating
this procedure across all the pyramid. In this work, we pro-
pose a rotation-invariant texture retrieval system with reduced
computational complexity, by constructing directly a steerable
multivariate sub-Gaussian model and by applying a rotation-in-
variant deterministic similarity function based on matrix norms,
similar to the one described in [13]. Our proposed method pro-
vides an average retrieval performance which is superior to the
current state-of-the-art methods with similar complexity (e.g.,
[13] and [14]), while being competitive with the current best
method [10], which has a much higher computational cost.
Following the retrieval method presented in this paper, we avoid
the computational burden introduced by the Gaussianization
procedure during the FE step, while maintaining a very similar
average retrieval error to the one in [10].

The rest of the paper is organized as follows. In Section II, we
develop a rotation-invariant texture retrieval system based on a
steerable multivariate sub-Gaussian model, which exploits the
non-Gaussian behavior of the marginal and joint distributions
of the subband coefficients obtained via a steerable pyramid de-
composition. In Section III, we apply our scheme to a set of
real-world textures in order to evaluate its retrieval performance
and we compare it with the performance of other recently intro-
duced texture retrieval techniques. Finally, we draw several con-
clusions and explore avenues of future research in Section IV.

II. ROTATION-INVARIANCE VIA A STEERABLE MULTIVARIATE

SUB-GAUSSIAN MODEL

A desirable property of any texture retrieval system is rota-
tion invariance. Consider, for instance, the case of a content-
based search over the Internet, where we are interested in re-
trieving images containing the same object with the one of a
given query and the orientation of this object can vary among
the images, or the case of remote satellite sensing, where there
could be different rotated versions of the same area of interest.
Many approaches for texture retrieval make use of transforms
which suffer from rotation and translation variance. The stan-
dard wavelet transform, used in the previously developed re-
trieval methods, belongs in this class of transforms, that is, it
lacks the properties of translation and rotation invariance. This
results in a mismatch of the retrieval process when the image
orientation varies. In fact, the wavelet coefficients of a rotated
version will be completely different, in the sense that they will
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not be simply rotated versions of the wavelet coefficients of its
original version.

A way to overcome this problem is to replace the standard
wavelet transform with a steerable pyramid [15], [16], which is
a linear, multiscale, multiorientation image decomposition pro-
duced by a set of orientation filters, generated by a set of basis
functions (directional derivative operators). Steerable pyramids
are overcomplete and possess the desired properties of rotation
invariance and (approximate) translation invariance.

In this section, we design a texture retrieval technique that
performs an angular alignment between texture images, thus
achieving (indirectly) the rotation-invariance property. This
technique is based on the joint sub-Gaussian modeling of
several coefficients obtained from a steerable pyramid, defining
features that incorporate dependence across orientations and
scales.2 In particular, we construct a steerable model, relating
the fractional lower-order statistics of a rotated image with
those of its original version and then we derive a rotation-in-
variant similarity function. The development of a steerable
model implies extracting features which are “steerable,” that is,
given the features of an image, we should be able to obtain the
features corresponding to the same image rotated at an angle

, without having to re-extract the features from the rotated
image.3

The use of the family of multivariate sub-Gaussian distribu-
tions, as an accurate tool for modeling the heavy-tailed behavior
of the steerable pyramid coefficients, has been justified in [10],
showing that it provides a statistical description that is more
complete to both Gaussian and generalized Gaussian distri-
butions, which have been used in previous texture retrieval
techniques [14]. On the one hand, the oriented subbands of a
steerable pyramid obtained from a texture image exhibit var-
ious degrees of non-Gaussianity both marginally and jointly.
The joint modeling of coefficients at adjacent orientations and
scales via a multivariate sub-Gaussian model is motivated by
several previous studies on their correlation properties [17] and
the fact that the components of a joint sub-Gaussian random
vector, corresponding to these coefficients, are by definition
highly dependent [18].

A. Sub-Gaussian Random Vectors

Before providing the definition of a sub-Gaussian random
vector, we introduce first briefly the family of -Stable distri-
butions. The -Stable distribution is best defined by its charac-
teristic function [19]

(1)
where .
The -Stable distribution is characterized by four parameters:

is the characteristic exponent, taking values ,
is the location parameter, is the

dispersion of the distribution and is the index

2In the following, we will often refer to the “orientation” and “scale” with
their equivalent terms “subband” and “level,” respectively.

3Through the next sections, we consider counter-clockwise rotation.

of skewness. The characteristic exponent is a shape parameter,
which controls the “thickness” of the tails of the density func-
tion. The smaller the , the heavier the tails of the -Stable den-
sity function. The dispersion parameter determines the spread
of the distribution around its location parameter, similar to the
variance of the Gaussian. We will denote -Stable distributions
by and write to indicate that
is a random variable that follows an -Stable distribution with
parameters .

A random variable is said to follow a Symmetric alpha-
Stable distribution if and only if . A
distribution is called standard if and . A
distribution is best defined by its characteristic function given
by the following expression:

(2)

In general, no closed-form expressions exist for most
density and distribution functions. Two important special cases
of densities with closed-form expressions are the Gaussian

and the Cauchy . Unlike the Gaussian density,
which has exponentially decaying tails, stable densities have
tails following an algebraic rate of decay ( ,
as , where is a constant depending on the model pa-
rameters); hence, random variables following distributions
with small values are highly impulsive.

According to the following proposition [18], every
random variable is conditionally Gaussian.

Proposition 1 [18]: Let with
and let . Let be an -stable random
variable with characteristic function in Laplace form

, , i.e.,
, and assume and to

be independent. Then , i.e., the
random variable follows a distribution.

Proof: In order to prove that the random variable fol-
lows a distribution, we have to show that its characteristic
function has the form of (2). For any real , we have that the
characteristic function of is given by

that is, the characteristic function of is written in the form of
(2), which means that follows a distribution with char-
acteristic exponent and dispersion parameter . The identity

follows from the fact that , and, thus, its
characteristic function is written in the form of (2), while iden-
tity follows directly from the assumption about the charac-
teristic function in Laplace form for , by setting .
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In particular, this implies that if is a zero-mean Gaussian
random variable (i.e., ) and if is a posi-
tive -stable random variable independent of , then

, i.e., is a random variable. Since
[18],4 then any

random variable can be generated as the
product of an -stable random variable , given by Proposi-
tion 1 for , and a zero-mean Gaussian random variable
with variance equal to .

As mentioned above, in our method we are interested in ex-
tracting possible interdependencies between pyramid subband
coefficients at the same or at adjacent decomposition level.
For this purpose, we construct a joint (multivariate) statistical
model for the different subbands. A natural way to design
this model is to use the result of Proposition 1, that is, that
every random variable is conditionally Gaussian. Thus,
extending the univariate model (used in our previous work
[20]) to a joint (multivariate) model with components
(viewed as conditionally Gaussian random variables), leads
to the use of the so-called sub-Gaussian random vector,
defined as follows5 [18].

Definition 1: A vector is called a sub-Gaussian
random vector (in ) with underlying Gaussian vector
iff it can be written in the form , where
is a positive -stable random variable with parameters

and
is a zero-mean Gaussian random vector, independent of , with
covariance matrix .

A multivariate sub-Gaussian distribution, with underlying co-
variance matrix , is often denoted by , where the
parameter is the characteristic exponent, controlling the heav-
iness of the tails of the marginal sub-Gaussian distributions.
According to Proposition 1, the marginal distributions of the
components of a sub-Gaussian vector belong to the family of

distributions, namely, the th component of a sub-Gaussian
vector , (where is the
variance of the th component of the underlying Gaussian vector

). As it is described later in this section, following our ap-
proach, the subband coefficients at adjacent orientations and/or
scales, are tied up in vectors which are assumed to be samples
of an distribution. This assumption is also justified
in [10].

B. Estimation of Covariation

Since second-order moments do not exist for the family
of sub-Gaussian random variables, a quantity called co-
variation, which plays an analogous role for sub-Gaussian
random variables to the one played by covariance in Gaussian
random variables, has been proposed [18]. Let and be
joint sub-Gaussian random variables (representing the coeffi-
cients belonging to two different subbands for instance) with

, zero location parameters and
dispersions and ( in general), respectively.

4 denotes that is a Gaussian random variable with mean
and variance .

5In the following, instead of saying sub-Gaussian variable/vector/dis-
tribution, we simply use the term sub-Gaussian variable/vector/distribution.

Then, for all , the covariation of with is given
by

(3)

In the above expression, we use the notation
, for any real number and

. The covariation coefficient of with is defined by

(4)

From (4), we observe that we can find an estimation of
by multiplying an estimated value of and an

estimated value of . Since , an estimation
of can be obtained via the Maximum Likelihood (ML)
estimation of the characteristic exponent and the dispersion
parameter . In the following, we estimate the model param-
eters using the consistent ML Nolan’s method described
in [21], which gives reliable estimates (where the reliability
can be evaluated through simulations) and provides the tightest
possible confidence intervals. On the other hand, the value
of can be estimated directly from (4) by replacing the
expectations with sample means, yielding the FLOM estimator
[22]

(5)

where , , is a set of independent observa-
tions. Our choice of the FLOM estimator is based on its robust-
ness against changes of and also on the fact that it is very
simple and inexpensive to compute.

Let the vectors constitute a set of in-
dependent realizations of an distribution, where

, . The FLOM co-
variation estimator between the th and th components of the
sub-Gaussian vector is defined by

(6)

where the characteristic exponent and dispersion parameter
are estimated from the set using Nolan’s ML

estimator. We define the estimated covariation matrix to be
the matrix with elements . We can then esti-
mate the elements of the underlying covariance matrix,

, using the following estimators that we provide in [10]:

(7)

which are both consistent and asymptotically normal.6

6An estimator (where is the sample size) is a consistent estimator for
a parameter if: i) is asymptotically unbiased (i.e., )
and ii) its asymptotic variance goes to 0 (i.e., ).
An estimator is asymptotically normal if its asymptotic distribu-
tion is a Gaussian with mean and variance (i.e.,

).
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Notice that the estimation of covariations and consequently
the estimation of the covariation matrices, requires the speci-
fication of the parameter . In [10], we describe a procedure
to compute the optimal as a function of the (estimated) char-
acteristic exponent by finding the value of that minimizes
the standard deviation of the covariation estimator (6). For this
purpose, we studied the influence of the parameter on the per-
formance of this estimator via Monte-Carlo simulations, for dif-
ferent values of . As a general conclusion, the simulations
showed that the FLOM covariation estimator approximates ac-
curately the true covariation value and the corresponding value
of the optimal increases as the characteristic exponent in-
creases. For instance, when 1.1, 1.2, 1.3, 1.4, 1.5, the simu-
lations gave the optimal values to be equal to 0.56, 0.57, 0.59,
0.66, and 0.68, respectively.

C. Design of the Steerable Sub-Gaussian Model

A steerable pyramid provides a representation that consists
of decomposition levels, where in each level there are
orientation subbands; thus, in total, there are subbands.
In the following, assume for convenience that the coefficients
of an th-level subband, with dimension , are arranged
in a row vector by grouping them row-wise. Let
and denote the sampled correlation matrices, with elements
given by the correlations between pairs of subbands, at a given
decomposition level , of the original image and its rotated
version at an angle , , respectively. That is, if we denote by

, the coefficients of the subbands corre-
sponding to the orientations , placed at
the spatial location and level ,
then, . The ele-
ments of are defined similarly.

The following proposition states that and are equiva-
lent matrices.

Proposition 2 [10], [13]: The relationship between the sam-
pled correlation matrices and is given by

(8)

where

...
...

...
...

(9)
with being a set of steering func-
tions. In our work, the basic angles are taken to
be equispaced, which makes an orthogonal matrix for any
angle , i.e., , and, thus, in this par-
ticular case, and become orthogonally equivalent.7 It can
be easily shown that the above proposition also holds if we con-
sider the sample covariance matrices between the subbands
of a given level and the subbands of another level .

7Given a matrix which depends on an angle , we use the notations
and interchangeably. Following this convention, we always have that

.

Let denote
the vector containing the basic coefficients at the spatial lo-
cation and level . Under a
joint sub-Gaussian assumption (this has been justified previ-
ously in [10], where it has been found that it gives the best
statistical fitting of the marginal and joint distributions of the
pyramid subband coefficients), the vectors are modeled as
joint sub-Gaussian vectors , with denoting the
underlying covariance matrix corresponding to the subbands at
the th level. Under this assumption, the pyramid coefficients at
each subband follow a sub-Gaussian marginal distribution, and,
thus, the th-level coefficient at spatial location and at any
angle can be expressed as

(10)

which means that the pyramid subband coefficients of a ro-
tated image at an angle , are also sub-Gaussian random vari-
ables with the same characteristic exponent as that of the cor-
responding subbands of the original (nonrotated) image, and
having a Gaussian part which is the rotated version of the orig-
inal Gaussian part at the same angle . This is important be-
cause it motivates clearly the construction of a steerable statis-
tical model.

Let and denote the covariation matrices with elements
that are the estimated covariations between pairs of orientation
subbands at the th decomposition level of the original image

and its rotated version , respectively. For instance, the
element (that is, the estimated covariation between the
th-level subbands corresponding to the orientations , )

is obtained from (6) by replacing , with ,
, respectively, for . The elements of

are computed similarly from the subband coefficients of the
rotated image .

Notice that the relation between the covariation matrix
and the associated underlying covariance matrix is given by
(7). This relation is also valid between the elements of the co-
variation matrix of the rotated image and the elements of
the corresponding underlying covariance matrix . Thus, by
inverting (7) and expressing the elements of as a function of
the elements of , we have

(11)

Taking into account that Proposition 2 holds for each th-level,
the replacement of and with and , respectively
in (8), and its combination with (11), yields the following
proposition.

Proposition 3: Suppose that is the
signature obtained from a multivariate sub-Gaussian modeling
of a steerable pyramid for a given homogeneous texture image

. Then, the corresponding signature for the rotated version
of that texture by an angle is where

(12)
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...
...

...
...

(13)

... (14)

where is the th-level underlying covariance matrix, cor-
responding to the multivariate sub-Gaussian modeling of the
original image. The notations and represent element-
by-element multiplication and element-by-element involution,8
respectively, while is a row vector containing the
main diagonal of the square matrix . The dimension of all
the above matrices equals , where is the number of basic
orientations at each decomposition level.

Proof: The proof follows by replacing and with
and , respectively in (8), and combining the resulting expres-
sion with (11).

The above proposition states that the signature constitutes
a valid set of steerable features, since the matrices

, corresponding to the rotated image , can be ob-
tained directly from the corresponding matrices of its orig-
inal version. Even though we assume in Proposition 3 that the
texture images are homogeneous, as our experimental results
show in Section III, our model tolerates a certain degree of
nonhomogeneity.9

D. Feature Extraction

Under the multivariate sub-Gaussian modeling of the steer-
able pyramid subbands, at a given decomposition level, the FE
step consists of estimating the covariation matrix at each
decomposition level. Thus, for a given image decomposed in

levels, we denote by the signature given by the set of es-
timated covariation matrices

(15)

where is equal to the covariation between the th and the
th subbands at the th pyramid level (notice that a predeter-

mined enumeration for the orientation subbands at each level is
assumed, in our case from left to right). The total size of this
signature equals , due to the assymetric nature of the
covariation (cf. (3)), that is, in general.

The signature contains only the cross-orientation depen-
dence at a given decomposition level. We may also consider
the cross-level dependence by estimating the covariation ma-
trices between consecutive levels (this is basically equivalent to

8 .
9Further future work could involve using our technique locally together with

some segmentation.

a first-order Markovian dependence used in a HMM). In this
case, the signature of an image is the following:

(16)

where denotes the covariation matrix between the
subbands at level and the subbands at level . In partic-
ular, the element is equal to the covariation of the
th subband at level with the th subband at the next coarser

level , that is, using (6), we have

(17)

where the parameters are estimated from the set of the th
subband coefficients at level , ,
using Nolan’s ML estimator.

Proposition 3 also holds for , by replacing the matrix
by , whose element is equal to the

underlying covariance of the th subband at level with the th
subband at the next coarser level . Thus, we also have

(18)

...
...

...

(19)

and the matrix is defined as in (14).
Notice that the estimation of , between subbands

at consecutive pyramid levels, requires that the two subbands
have the same number of coefficients. On one hand, by applying
the standard steerable pyramid decomposition [16] with sub-
sampling between consecutive levels, the subband coefficients
at adjacent levels are associated in terms of a quad-tree structure,
where a coefficient at the coarser level is associated with four
coefficients at the same subband of the previous finer level. On
the other hand, a Fourier-domain implementation of the steer-
able pyramid can be used instead, simply by multiplying the
DFT of the image with the DFT of the filter (without subsam-
pling) and then taking the inverse DFT to obtain the subband
coefficients, resulting in subbands with equal size at all decom-
position levels (one could use also upsampling of filters without
subsampling, but the DFT satisfies more exactly the perfect re-
construction property of the filter bank, since there is no aliasing
at all). Then, for a given subband coefficient , the co-
efficient at the same spatial location of the next coarser level is
simply denoted by . Because of these reasons, in the
implementation of our texture retrieval scheme, we construct the
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steerable pyramids using the Fourier-domain approach, without
subsampling between adjacent levels.10

Obviously, the signature contains more information than
the signature , since it exploits not only the interorientation
but also the interlevel dependencies. On the other hand, using

results in an increased computational complexity, since its
size equals

E. Similarity Measurement

In this section, we describe the construction of a similarity
function, which performs an angular alignment in the feature
space when comparing two image textures. Although our con-
struction has similarities with the one presented in [13], the main
difference is that we use an accurate stochastic model which
is much more complete than in [13]. Moreover, as we show in
Sections II-F and III, our method provides the best compromise
between average retrieval performance and computational com-
plexity, as compared to other previously proposed approaches.

Given two images and , let and be the set of orienta-
tion subbands at the th decomposition level and ,
be the set of orientation subbands at two adjacent levels and

, following a certain predetermined order, modeled by mul-
tivariate sub-Gaussian distributions with covariation matrices

, , and , , respectively. We define the
distance between the th levels of the two images as

(20)

Similarly, the distance between two corresponding sets of sub-
bands at adjacent levels is given by

(21)

In the above expressions, in principle, could be any of
the common matrix norms. However, in our method, we choose
the Frobenius norm, which gives an indication of the “matrix
amplitude.”

We define the overall distance between images and , de-
composed in levels, to be equal to the following sum:

(22)

Note that, if the texture information is represented by the sig-
nature , the overall distance is simply obtained from (22) by
omitting the second sum, which corresponds to the interlevel

10For small-size images, the construction of a pyramid using subsampling
results in a decreased performance of the covariation estimator (6) due to the
very small number of samples of the subbands at the coarsest levels. For large-
size images, we can employ a pyramid decomposition using subsampling in
order to reduce the computational complexity, while maintaining the accuracy
of the covariation estimator by decomposing the images in, at most, three or
four levels. Then, the element could be computed, for instance,
by averaging each subband coefficient at the th level with its associated
four coefficients at the finer th level.

dependencies. Thus, in the following, we assume that the tex-
ture information is represented by the enhanced signature ,
resulting in a more general expression, which includes the ex-
pression corresponding to the signature as a special case. No-
tice that the above distance is not a rotation-invariant distance
because it does not take into account any relative angle.

In our problem, we deal with databases that may contain ro-
tated versions of a given image. Notice that Proposition 3 gives a
relation of equivalence between and , as well as between

and , where is the th-level covariation
matrix and is the covariation matrix between levels
and , of image rotated counter clockwise by an angle ,
which we denote by . Next, we construct a rotation-invariant
retrieval system by defining another distance that involves an
angular alignment. We call this distance a “rotation-invariant”
distance.

Consider to be the query image, which is supposed to be
a potentially rotated version of an original image in the data-
base, , where is a counter-clockwise rotation of
by an angle . In a real application, the value of the angle
is unknown. Thus, the rotation-invariant distance between the
th levels of and ( and , respectively) is defined as the

minimum of , where the minimization is taken over
a set of possible rotations. It follows that it is necessary to
perform an angular alignment by finding the optimum angle
minimizing . The notation means the th level of
a clockwise rotated version of by an angle .

By using Proposition 3, replacing by , the overall ro-
tation-invariant distance between and is given by the fol-
lowing definition.

Definition 2: Let and be the signatures of
two given texture images and , respectively. The rotation-
invariant distance between and , where is the
query, is defined as follows:

(23)

where the matrix is given by the following proposition:
Proposition 4: Under the steerable multivariate sub-Gaussian

model, the matrix is equal to

where

For any square matrix , the operators and are de-
fined as

... (24)
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... (25)

where is the th-level underlying covariance matrix corre-
sponding to the multivariate sub-Gaussian model of image and

denotes a row vector formed from the main diag-
onal of the square matrix .

Proof: The proof of the above proposition follows by in-
verting (12) and expressing as a function of . Then, the
covariation matrix , associated with the clockwise rotated
version of , corresponds to the matrix and, similarly,
corresponds to the th-level covariation matrix of the original
(nonrotated) signature of image , which is assumed to be a ro-
tated version of the query .

The above proposition follows also similarly for the matrices
, replacing by and by , that

is

where

The dimension of all the above matrices equals , where
is the number of orientations at each decomposition level.

Moreover, notice that during the actual numerical implemen-
tation of the operators and , each element of the
vector is rised to a different estimated , that is,
the values of estimated from each of the various different ori-
entation subbands are close to each other but not exactly equal
in practice. On the other hand, our estimation of covariation
assumes that we have two joint sub-Gaussian random variables,
that is, with equal characteristic exponent values. We use the
following strategy: first, we observe that from (6), the free
parameter, which depends on the characteristic exponent ,
affects the second variable (as an exponent), that is, we should
use the estimated characteristic exponent , corresponding to
the second variable (orientation subband), in order to estimate
the covariation. For instance, in order to estimate ,
we first estimate from and then assume that follows
a distribution with the same . This is consistent with the
definition of covariation.

The intuition behind this similarity function is as follows:
consider to be the query image and to be an image in a
database. In the SM step, we measure the closeness of and

by computing the distance between their signatures. As we
may have a database of images along with rotated versions of
them, we assume that the given query may be in general a
potentially rotated version of . Thus, the signature of image ,

, corresponds to our steerable model

for an arbitrary angle . Before measuring the similarity be-
tween and we have to align their corresponding signatures,
that is, to rotate clockwise the signature of to align it with

Fig. 1. (a) Bark physically rotated at 30 and 120 ; (b) for .
Notice that the minimum is achieved for approximately , which is the
exact relative angle between the two texture samples.

the signature of . This clockwise rotation is expressed by the
terms and . Since we do not know a priori the
angle that gives the best alignment, we have to search over a
set of possible rotations by minimizing over .

Notice that when and are in fact two rotated versions
of the same image, the angle , for which the minimum is
achieved in (23), should be close to their exact relative angle,
that is, the angle one needs to rotate clockwise the image in
order to get . Thus, one way to evaluate the performance of
the above rotation-invariant similarity function (23), is to verify
whether the estimated angle is actually close to the real rela-
tive angle between two physically rotated versions of the same
image. Besides, this functionality may be also useful on its own
for many practical applications where there is a need to find
out approximately this relative angle. Fig. 1 illustrates this by
showing the function given by (23), for the Bark tex-
ture sample obtained from the Brodatz database.

The rotation-invariance property of the similarity function
(23) is also illustrated in Fig. 2, where the query image (Bark)
and the database image (Water and Leather) belong to dif-
ferent texture classes. Each curve in Fig. 2 corresponds to the
distance (as a function of ), that is, the distance
between the four versions of the Bark image [original
and three rotated versions (30 , 60 , 120 )] and the original
Water image rotated clockwise at several angles . Sim-
ilarly, each curve in Fig. 2 corresponds to the distance between
the same four versions of the Bark image and the clockwise rota-
tions, at several angles , of the rotated version of Leather
image at 90 . It is clear that these curves are approximately
shifted versions of each other, which shows (experimentally) the
rotation-invariance property of the proposed similarity function
(23). However, the expression of this similarity function is quite
complicated and norm-dependent, and, thus, it is difficult to pro-
vide an analytical expression for the optimal angle , that is,
the angle that achieves the minimum in (23). As we can also see
in both cases of Fig. 2, the curve corresponding to the version
of Bark rotated at has a higher amplitude than the
other three curves. This is due to the nonhomogeneous nature
of the Bark texture image. Besides, both of the higher ampli-
tude curves seem to have a similar peak-to-peak range. How-
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Fig. 2. Distance , as a function of , between four versions of Bark
(original and three physically rotated at , 60 , 120 ) and
(a) the original image Water; (b) the image Leather rotated at 90 .

ever, it is important to note that this higher amplitude does not
affect the rotation invariance property since the same phenom-
enon will appear when comparing the query texture image to the
various texture images of the different classes. Notice also how
in Fig. 2, all the curves corresponding to the Water texture are
located vertically at lower positions than the same curves corre-
sponding to the Leather texture (Fig. 2).

If we represent the texture information using the signature
instead of , the distance between two images and is mea-
sured using (23), by taking only the first summands. More-
over, under a Gaussian assumption (Gaussian signature), (23)
can be simplified and takes the following form [13]:

(26)

where, in this case, denotes the matrix with elements being
the covariances between pairs of subbands at the th pyramid
level.

It is also important to notice that, in the proposed retrieval
method, we achieve rotation invariance through alignment
in angle between signatures extracted using a steerable
sub-Gaussian model and not by calculating a fixed set of rota-
tion-invariant features valid for all images of the same class,
namely, the set of images that are rotated versions of each other.

The latter approach would involve diagonalizing matrices and
extracting eigenvalues, as in [14] for instance, which has an
important complexity.

F. Computational Complexity

As mentioned before, one of the goals of this paper is
to design a new texture retrieval system that provides the
best compromise between complexity and average retrieval
performance. In this section, we compare the computational
complexity of the retrieval technique proposed in this work,
with the complexity of three other rotation-invariant texture
retrieval methods that have been proposed before and which, to
the best of our knowledge, represent the current state-of-the-art.

1) M1 [13]: This method makes a Gaussian assumption for
the statistics of the pyramid coefficients and uses a rotation-
invariant similarity function based on the Frobenius norm
of differences between covariance matrices.

2) M2 [10]: In contrast with M1, this retrieval scheme as-
sumes that the marginal and joint statistics of the pyramid
coefficients are best described using members of the
family of and multivariate sub-Gaussian distribu-
tions. Then, it applies a Gaussianization procedure that
consists in extracting the signature of each texture image
based on second-order statistics, followed by a rotation-in-
variant version of the KLD to measure the similarity.

3) M3 [14]: This method is the best current representative
within the category of rotation-invariant texture retrieval
methods that are based on the statistical fitting of the steer-
able pyramid coefficients using an HMM.

The retrieval method proposed in this paper, as we similarity
measurement (SM). On the other hand, method M2 has one
more additional component, which consists of a Gaussianiza-
tion procedure applied before the FE step, adding, therefore,
more complexity to the whole retrieval process. In the subse-
quent analysis, the computational cost is expressed as a function
of the number of operations required, where an “operation” is
defined as the pair consisting of a multiplication between two
numbers and a summation .

Let denote the dimension of the original image, which
is decomposed via an -level steerable pyramid with basic
orientations and to be equal to the neighborhood size that is
used during the Gaussianization process in method M2. In ad-
dition, let denote the number of matrices contained in the
selected signature, which varies depending on whether we ex-
ploit only intralevel, or both intra- and interlevel dependencies,
that is, or .

First, we compare the complexity of the FE step for the four
methods, including our proposed retrieval system. Using the
above notation, the computational cost of the FE step of our
method is approximately equal to , where
is the approximate cost for the computation of the covariation
between a pair of subbands using the FLOM covariation esti-
mator of (6). Assuming that the steerable pyramid is constructed
without subsampling between consecutive levels, the constant in
the function is small, at the order of 2.

Regarding methods M1 and M2, the cost of extracting the sig-
nature of an image is of order , since
both methods estimate covariances between pairs of subbands,
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which requires approximately the same order of numerical oper-
ations as the estimation of covariations (the constant in the
function is of order 1). In addition, the covariance matrices are
symmetric, in contrast to the covariation matrices, and, thus, in
methods M1 and M2, we have to estimate ele-
ments per matrix, instead of covariations for each matrix of
the signature of the texture retrieval scheme proposed in this
work. Taking into consideration that in practice the value of
is usually 3 or 4 and does not depend on the image size, we can
conclude that the computational cost of the FE step of our pro-
posed method is very close to the cost of
methods M1 and M2 .

Finally, the cost of the FE step for the HMM-based method
M3 is difficult to be estimated with precision, since it employs
the expectation maximization (EM) algorithm using the ML cri-
terion [12] to estimate the model parameters, and, thus, it may
not even converge in some cases. In order to give a rough esti-
mation of the computational cost of method M3 we argue as fol-
lows. The FE step consists of estimating hidden states
and eigenvalues corresponding to the covari-
ance matrices (each one of dimension ) of the Gaussian
densities used in the model. The Expectation step of the EM
algorithm is particularly difficult in this case because of the in-
creased interplay between the states. Besides, for an HMM, the
complexity of each iteration of EM is linear in the number of
observations, that is, the number of subband coefficients in this
case. Since method M3 constructs a steerable pyramid by sub-
sampling between adjacent levels, the total number of wavelet
coefficients for an -level pyramid with orientations per level
is equal to . The total number of model param-
eters to be estimated is equal to ,
where is the total number of covariances due
to the symmetry of the covariance matrices. Notice that an
additional computational cost is required to perform the eigen-
value decomposition of the covariance matrices in order to ob-
tain their eigenvalues. However, we consider this specific cost
to be negligible (as compared to the rest of costs), since in
practice the value of is at most 3 or 4, and, thus, the di-
mension of the covariance matrices is very low. Therefore, the
computational cost of the FE step of method M3 is of order

, where the constant in
the notation depends on the number of iterations required
for the EM algorithm to converge.

As a general conclusion, with respect to the computational
cost of the FE step of the four methods, the cost of our pro-
posed retrieval technique is approximately equal to the costs
of methods M1 and M2, whereas taking into account the usual
practical values of and , which are usually set to at most 3 or
4, we can conclude that the corresponding cost of method M3
is comparable with the costs of the other three methods only if
the EM algorithm converges in very few iterations. For instance,
for and the EM algorithm should converge in no
more than 5 iterations. Unfortunately, such a fast convergence
is not guaranteed a priori, making in practice the FE step of
method M3 more computationally expensive, in general, than
the FE step of the other three methods.

Regarding the SM step, the approach proposed in this work as
well as the techniques M1 and M2, all apply Newton’s method

to minimize a rotation-invariant similarity function. The com-
putational cost for performing the minimization in these three
methods is basically the same, due to the high smoothness of
the corresponding expressions inside the operator in (23),
as functions of . It is also important to note that, when the
steering functions have only odd harmonics (as in our case), they
oscillate at some finite speed, which implies an upper bound
on the slope of these curves. Thus, it can be readily verified
that the number of local minima of the rotation-invariant sim-
ilarity functions in the texture retrieval method proposed here,
as well as in M1 and M2, as a function of , can be at most
equal to twice the number of independent harmonics (which
happens to be equal to the number of basic harmonics). In ad-
dition, the distance between any two consecutive local minima
is lower bounded making it possible to search for them in a few
nonoverlapping angular intervals. In particular, the application
of Newton’s method in these three retrieval schemes converges
very rapidly in practice, namely, in, at most, five iterations in
each interval (using the middle of each interval as the initial
point).

The similarity function proposed in this work, re-
quires for each iteration (during the minimization) about

operations. The corresponding cost of
each iteration for method M1 is equal to ,
while method M2 requires about , where

denotes the number of operations for the computation of
the determinant of a matrix (see [10] and [13] for more
details). Using an LU decomposition of a matrix, the
determinant is computed in operations; thus, in practical
applications, the value of is small, since the value of is
small, usually 3 or 4. Finally, the HMM-based method
M3, uses Monte-Carlo simulations to evaluate the integral
of the KLD, which, for the experimental setup described in
the following section, consists of about 64 iterations [14]. In
each iteration, data are randomly generated from the query
model as trees of wavelet coefficients, and then its likelihood is
computed against a candidate model. Thus, the computational
cost of each iteration is proportional to the number of subband
coefficients, making the SM step of method M3 much more
computationally expensive than the corresponding costs of the
other three methods, which depend only on the parameters of
the steerable pyramid , which are much smaller than the
dimension of the images .

Note that in the above analysis, the computational cost of each
method during the SM step, except for method M3, is expressed
only as a function of and . This is because of the fact that
the computational cost for the estimation of the matrices con-
stituting the signature of each method, which depends on ,
was taken into account during the analysis for the computational
complexity of the FE step, and, thus, the signature size that de-
termines the computational cost depends only on and , since
these matrices are already available during the SM.

Moreover, it is very important to take also into account that
method M2 applies a Gaussianization process, in addition to the
FE and SM steps, which adds a significant computational cost
that is approximately equal to

, where is the number
of operations for the inversion of a matrix.
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE RETRIEVAL SCHEMES

• : Gaussian assumption for the statistics of the pyramid coefficients; Frobenius norm-based similarity function of differences between covariance

matrices.

: multivariate sub-Gaussian assumption for the statistics of the pyramid coefficients + Gaussianization; rotation-invariant version of the KLD

between multivariate Gaussians as a similarity function.

: HMM-based statistical fitting of the pyramid coefficients.

• : the dimension of the original image.

• : number of steerable pyramid levels.

• : number of basic orientations per level.

• : number of matrices contained in the selected signature ( or ).

• : neighborhood size that is used during the Gaussianization process.

• : number of operations for the computation of the determinant of a matrix.

• : number of iterations for the minimization of the similarity function.

• and s.t.

After all this analysis, we conclude the following.
• The texture retrieval method proposed in this work has a

slightly increased complexity than method M1; however,
as we show in the next section of the experimental results,
our method results in a better retrieval performance.

• The similarity function of our method is less complex than
the similarity function designed in method M2 after the
Gaussianization process; on the other hand, the experi-
mental results presented in the following section, show an
increased retrieval performance of method M2 compared
with the performance of our proposed method.

• Finally, as we analyzed above, the computational costs
of the FE and SM steps of our method are in general
lower than the corresponding costs of method M3, while
achieving a comparable retrieval performance, as our
experimental results show in the next section.

Thus, the above observations indicate that the texture retrieval
method proposed in this work provides the best compromise
among all other methods, in the sense of keeping a reduced com-
plexity and offering a competitive retrieval performance. Table I
summarizes the computational costs of our proposed method
and those of methods M1, M2, and M3.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our overall tex-
ture retrieval system and compare it with the performance of the
three methods M1, M2, and M3, presented in Section II-F.

In order to evaluate the retrieval effectiveness of our method
and perform the comparison with the other methods, we apply
the same experimental setup as in [10] and [14]. In particular,
the image database consists of 13, 512 512 Brodatz texture

Fig. 3. Texture images from the VisTex database, from left to right and top to
bottom: 1) bark, 2) brick, 3) bubbles, 4) grass, 5) leather, 6) pigskin, 7) raffia,
8) sand, 9) straw, 10) water, 11) weave, 12) wood, 13) wool.

images obtained from the USC SIPI database11 (cf. Fig. 3). Each
of them was physically rotated at 30 , 60 , and 120 , before
being digitized. Then, the texture image dataset was formed by
taking four nonoverlapping 128 128 subimages each from the
original images at 0 , 30 , 60 , and 120 . Thus, the dataset used
in the retrieval experiments contains 208 images that come from
13 texture classes.

11http://www.sipi.usc.edu/services/database.



TZAGKARAKIS et al.: ROTATION-INVARIANT TEXTURE RETRIEVAL VIA SIGNATURE ALIGNMENT BASED ON STEERABLE SUB-GAUSSIAN MODELING 1223

Fig. 4. Histogram of the estimated values for the characteristic exponent, ,
for the set of 208 texture images of size 128 128.

The selection of the steerable-pyramid parameters, namely,
the number of scales and orientations, affects the performance
of the retrieval system. In particular, the set of scales captures
a specific band of frequency components from an image, while
the set of orientations is used to extract directional features. By
construction, each subband at a given scale and orientation cor-
responds to a distinct filter. However, the more scales and ori-
entations, or equivalently, the more filters we use, does not nec-
essarily result in an increased retrieval performance. An expla-
nation for this behavior is that the more filters we use, the more
detailed and redundant the representation of a given image is.
Thus, this may not result in a better retrieval performance, since
similar features may be captured by the different filters when
they are applied on distinct images. On the other hand, as it was
analyzed before, the computational complexity of our proposed
method increases, when the number of scales and orientations
increases. For these reasons, and trying to compromise a high re-
trieval performance with a reduced computational cost, we im-
plemented a three-level steerable pyramid decomposition with

basic orientations, , , which means that
the steering functions are [15]

The histogram of the estimated characteristic exponent
values for the 208 textures is shown in Fig. 4. We observe that
only 28% of the textures exhibit very strong Gaussian statistics,
corresponding to values equal to 2, which belong mainly to
pyramid subband coefficients of images 4, 5, and 9. Table II
shows the average value of , over all the pyramid subbands,
for each texture class. We observe that images 4, 5, and 9 are
exactly those images whose average value of is closest to 2,
compared to the remaining images.

In the following, the query is any of the nonoverlapping
128 128 subimages in the image dataset. The relevant images
for each query are defined as the other 15 subimages from the
same original 512 512 image. The retrieval performance is
evaluated in terms of the percentage of relevant images among
the top 15 retrieved images.

First, we evaluate the performance of the steerable multi-
variate sub-Gaussian model combined with the rotation-in-

TABLE II
AVERAGE VALUE OF , OVER ALL THE PYRAMID

SUBBANDS, FOR EACH TEXTURE CLASS

Fig. 5. Average percentages (%) of correct retrieval rate for each individual
texture class.

variant version of the Frobenius distance, which is proposed
in this work. As mentioned before, the signature , containing
the estimated covariation matrices between pairs of subbands
at the same decomposition level, is a subset of the enhanced
signature given by (16). Thus, we extract the signature
from each texture sample and then, the similarity measurement
for the simpler case of using signature is given from (23) by
simply using only the first matrices of . For the 3-level
pyramid decomposition that we apply, the signatures and
contain 3 and 5 matrices, respectively.

Fig. 5 shows the average percentages of correct retrieval rates
for each one of the 13 selected texture classes, for the Gaussian
signature of size equal to 3, which contains the sample covari-
ance matrices between pairs of subbands at the same level, com-
bined with the corresponding similarity function (26) (method
M1) and the sub-Gaussian signatures and , combined with
the similarity function (23). We observe that the Gaussian model
is better only for 3 classes (4, 5, 9), which are exactly those with
the greatest portion of characteristic exponent values (basically)
equal to 2. Even for values of that are slightly smaller than 2,
our method provides already a superior performance. The expla-
nation for the decreased performance of our proposed method
in the Gaussian case is that the steerable sub-Gaussian model,
described in Proposition 3, loses some of its intrinsic informa-
tion, since the exponents in (12) tend
to zero as tends to 2 (Gaussian case), which tends to cause
numerical instability.

Regarding our proposed method, we observe that the en-
hanced signature results in only a slightly better retrieval
performance than the signature . Although one could have
expected to have a higher increase on the average retrieval rate
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TABLE III
AVERAGE RETRIEVAL RATE (%) IN THE TOP 15 MATCHES, FOR THE SUBSET OF
160 (128 128) TEXTURES WITH HEAVY-TAILED MARGINAL DISTRIBUTIONS

OF THE PYRAMID SUBBANDS

when using instead of , this does not happen because
there is not a strong correlation between subbands at adjacent
levels for the particular set of textures. This can be verified
by examining the off-diagonal elements of the ma-
trices, which have relatively small amplitudes compared with
the corresponding elements of the matrices. Due to the
increased computational complexity, the enhanced signature
should be employed only when a stronger interscale correlation
is present.12

In order to focus on the non-Gaussian case (the usual case
found also in practice in natural images), we omit the three
classes with the strong Gaussian behavior and repeat the above
experiment for the remaining set of 10 original, nonrotated tex-
tures (thus, giving 160 nonoverlapping subimages). Table III
shows the corresponding average retrieval rates for the subset
of 10 texture classes, for the Gaussian signature of size equal to
3, which contains the sample covariance matrices between pairs
of subbands at the same level, combined with the corresponding
similarity function (26) (method M1) and the sub-Gaussian sig-
natures and , combined with the similarity function (23).
As expected, there is a significant improvement of the average
retrieval performance when the pyramid coefficients follow a
distinct heavy-tailed non-Gaussian distribution.

Fig. 6 shows the average retrieval rates for each individual
texture class, of the HMM-based method M3, the method M2
that applies a Gaussianization process on the pyramid coeffi-
cients and the method proposed in this work using the enhanced
signature . It is clear that, for the texture classes whose mar-
ginal and joint distributions between the subband coefficients
present a heavy-tailed non-Gaussian behavior, our proposed tex-
ture retrieval method outperforms the method based on HMMs
(which, in addition, has a larger computational cost in practice),
while at the same time maintaining a high retrieval performance,
which is comparable to the performance of the method M2,
which applies a Gaussianization step before feature extraction.
Again, we observe that only for the classes 4, 5, and 9, whose
marginal distribution of each subband is close to a Gaussian,
the rotation-invariant method proposed in this work results in
the lowest retrieval performance among the three methods com-
pared in this figure.

Even though, for the set of texture images that we use in
our experiments, the retrieval performance of the method M2 is
slightly better than the performance of the method proposed in
this work, as mentioned in Section II-F, notice also that it has a

12To the best of our knowledge, there does not exist electronic databases con-
taining rotated versions of texture images, other than the one we use here.

Fig. 6. Average percentages (%) of correct retrieval rate for each individual
texture class.

substantially higher computational complexity due to the Gaus-
sianization procedure. Thus, in the case of a retrieval system
with limited computational resources, the implementation of the
rotation-invariant scheme proposed here preserves a high re-
trieval efficiency, while keeping a reasonably low complexity.

In conclusion, our method provides an average retrieval
performance that is: a) superior to the method M1, while
keeping a similar complexity, b) superior to the method M3,
while keeping at the same time even a lower complexity,
c) competitive (slightly inferior) with the method M2, which
has a substantially higher computational complexity.

IV. CONCLUSION

In this paper, we described the design of a rotation-invariant
texture retrieval system that exploits the non-Gaussian heavy-
tailed behavior of the distributions of the subband coefficients,
representing the texture information via a steerable pyramid. In
particular, we constructed a steerable multivariate sub-Gaussian
model, which relates the fractional lower-order statistics of a ro-
tated image with those of its original version. We performed the
similarity measurement between two images by inverting this
model, which is equivalent to performing a signature alignment
in angle, and minimizing a rotation-invariant similarity function
based on the Frobenius matrix norm.

The motivation for the development of the proposed ro-
tation-invariant texture retrieval system was the increased
computational complexity of our recently introduced method
[10], which includes a Gaussianization step before extracting
the image signatures, combined with the implementation of
a rotation-invariant version of the KLD between multivariate
Gaussian densities. We illustrated that, when the marginal and
joint distributions of the subband coefficients are heavy-tailed
(the usual case encountered in practice with natural images),
the proposed steerable sub-Gaussian model achieves a high
retrieval performance, while maintaining a sufficiently lower
computational complexity.

A future research direction for the improvement of the re-
trieval performance of the retrieval method proposed in this
work, is to study the construction of a rotation-invariant statis-
tical similarity measure, such as the KLD, between multivariate
sub-Gaussian distributions, to be used instead of a deterministic
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norm-based measure. Additional future work could involve ex-
tension to nonhomogeneous textures by using segmentation.
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