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Vladan Velisavljević1, Baltasar Beferull-Lozano1, Martin Vetterli1,2, Pier Luigi Dragotti3

1School of C&C Sciences, EPFL, CH-1015 Lausanne, Switzerland, 2EECS Dep., University of California at Berkeley, CA
3Dep. of Electrical and Electronic Engineering, Imperial College, London, UK

ABSTRACT
In spite of the success of the standard wavelet transform (WT) in
image processing, the efficiency of its representation is limited by
the spatial isotropy of its basis functions built in only horizontal
and vertical directions. One-dimensional (1-D) discontinuities in
images (edges and contours), which are very important elements in
visual perception, intersect too many wavelet basis functions and
reduce the sparsity of the representation. To capture efficiently
these anisotropic geometrical structures, a more complex multi-
directional (M-DIR) and anisotropic transform is required. We
present a new lattice-based perfect reconstruction and critically
sampled anisotropic M-DIR WT (with the corresponding basis
functions called directionlets) that retains the separable filtering
and simple filter design from the standard two-dimensional (2-D)
WT and imposes directional vanishing moments (DVM). Further-
more, we show that this novel transform has non-linear approxima-
tion efficiency competitive to the other previously proposed over-
sampled transform constructions.

1. INTRODUCTION
The problem of finding efficient representations of images is a fun-
damental problem in many image processing tasks, such as denois-
ing, compression and feature extraction. An efficient transform-
based representation requires sparsity, that is, a large amount of
information has to be contained in a small portion of transform
coefficients.

The 1-D WT has become very successful in the last decade
because it provides a good multiresolution representation of 1-
D piecewise smooth signals [1]. The application of wavelets to
image processing requires the design of 2-D wavelet filter-banks.
The most common approach is to use 2-D separable filter-banks,
which consist of the direct product of two independent 1-D filter-
banks in the horizontal and vertical directions. Filtering with high-
pass (HP) filters with enough vanishing moments (or zeros at ω =

0) along these two directions leads to a sparse representation of
smooth signals. This method is conceptually simple and has very
low complexity while all the 1-D wavelet theory carries over. These
are the main reasons why it has been adopted in the image com-
pression standard JPEG-2000.

However, the standard 2-D WT fails to provide a compact rep-
resentation of 1-D discontinuities, like edges and contours. These
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Fig. 1. The standard 2-D WT is isotropic. The filtering and subsampling oper-
ations are applied equally in both directions at each scale of the transform. (a) The
corresponding decomposition in frequency. The basis functions obtained in this way
are isotropic at each scale as shown in (b) for Haar and in (c) for biorthogonal ”9-7”
1-D scaling and wavelet functions.

objects are, in general, anisotropic and can have a certain domi-
nant direction different from horizontal or vertical. Many wavelets
intersect the discontinuity yielding many large magnitude coeffi-
cients. The main reason for the inefficiency of the standard 2-D
WT resides in the spatial isotropy of its construction, that is, fil-
tering and subsampling operations are applied the same number
of times across the horizontal and vertical directions at each scale.
As a result, the corresponding basis functions, obtained as direct
products of the 1-D counterparts, are isotropic (Fig. 1).

Thus, to capture properly the geometrical coherence of con-
tours and edges, the basis functions are required (a) to be anisotropic
and (b) to have multi-directional vanishing moments. However,
ensuring an efficient matching between anisotropic oriented basis
functions and objects in images is a non-trivial task. This issue
has already been studied and several adaptive (bandelets [2] and
wedgelets [3, 4]) and non-adaptive (curvelets [5] and contourlets
[6]) methods have been proposed. These methods build dictionar-
ies of anisotropic oriented basis functions that provide a sparse rep-
resentation of edges in images. Furthermore, Candès and Donoho
[5] showed that the key to achieving a good non-linear approxi-
mation (NLA) behavior is the parabolic scaling relation between
the length and width of anisotropic basis functions. On the other
hand, the importance of M-DIR processing has been also empha-
sized in the cortex transform [7], the steerable pyramid [8], and the
associative representation of visual information [9].

However, the implemented transforms often require oversam-
pling, have higher complexity when compared to the standard WT,
and require non-separable convolution and filter design. Further-
more, in some of these constructions (like curvelets) the design of
the associated filters is performed in the continuous domain and
this makes it difficult to use them directly on discrete images.

Several other approaches also analyze geometrical structures
in images, like polynomial modeling with quadtree segmentation
[10] and footprints and edgeprints [11]. However, all of them fail
to provide a perfect reconstruction and critically sampled separa-
ble scheme while keeping a filter design completely in the discrete
domain and with filters having DVM along arbitrary directions.
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Fig. 2. The lattice Λ is determined by the generator matrix MΛ = [d1,d2]
T .

1-D filtering is applied on the pixels aligned with the vector d1 = [1, 1], that is,
along 45◦. The pixels retained after the subsampling belong to the lattice Λ′

⊂ Λ
determined by the generator matrix M

Λ′ = [2d1,d2]
T . Filtering and subsampling

are applied separately in two cosets, determined by the shift vectors s0 and s1.

Our goal is to construct an anisotropic perfect reconstruction
and critically sampled basis functions with DVM, which we call
directionlets, while retaining the simplicity of 1-D processing and
filter design from the standard separable 2-D WT. Our basis con-
struction uses the concept of integer lattices [12]. We show that
our transform has good approximation properties as compared to
the approximation achieved by the other overcomplete transform
constructions and is superior to the performance of the standard
separable 2-D WT while having the same complexity.

The outline of the paper is as follows. We give a review of in-
teger lattices in Section 2. This concept is used in the construction
of our skewed anisotropic lattice-based transforms, as presented in
Section 3. In Section 4 we show that the achievable asymptotic
approximation power using the skewed anisotropic transforms is
O(N−1.55). Finally, we conclude in Section 5.

2. REVIEW OF LATTICE-BASED FILTERING
A full-rank integer lattice Λ consists of the points obtained as lin-
ear combinations of two linearly independent vectors, where both
the components of the vectors and the coefficients are integers
[12]. Any integer lattice Λ is a sublattice of the cubic integer lat-
tice

� 2, that is, Λ ⊂ � 2. The lattice Λ can be represented by a
non-unique generator matrix

MΛ =

�
a1 b1

a2 b2 � =

�
d1

d2 � , where a1, a2, b1, b2 ∈ �
. (1)

Recall that the cubic lattice
� 2 can be partitioned into | det(MΛ)|

cosets of the lattice Λ [12], where each coset is determined by the
shift vector sk, for k = 0, 1, . . . , | det(MΛ)| − 1. Now we apply
the 1-D WT (i.e. the 1-D filtering and subsampling operations) on
the pixels aligned with the vector d1. After subsampling, the re-
tained points belong to the sublattice Λ′ of the lattice Λ (Λ′ ⊂ Λ)
with the corresponding generator matrix given by (see Fig. 2) [13]

MΛ′ = Ds · MΛ =

�
2d1

d2 � ,Ds =

�
2 0
0 1 � .

Notice that both filtering and subsampling are applied in each
of the cosets separately. This property allows for an efficient itera-
tion of the transforms, as explained in [13, 14]. Furthermore, each
filtering operation is purely 1-D. We call the direction along the
first vector d1 (with the slope r1 = b1/a1), the transform direc-
tion. Similarly, the direction along the second vector d2 we call
the alignment direction.

3. SKEWED ANISOTROPIC WAVELET TRANSFORMS
As explained in Section 1 the standard WT produces isotropic ba-
sis functions with vanishing moments along horizontal and vertical
directions, which fail to provide a sparse representation of edges
and contours oriented in any other direction. However, a new mod-
ified method that we propose retains the 1-D filtering and subsam-
pling operations and can provide both anisotropy and DVM, as
we show next. We propose a construction of the anisotropic trans-
forms with DVM along any two directions with rational slopes that
still inherits the simplicity of processing and filter design from the
standard 2-D WT. Furthermore, these anisotropic M-DIR trans-
forms are critically sampled and lead to perfect reconstruction.

Using integer lattices we define the new transforms, which are
called skewed anisotropic wavelet transforms (S-AWT). Given a
lattice Λ, the S-AWT consists of the 1-D transforms applied along
the transform and alignment directions of the lattice Λ. We de-
note as S-AWT(MΛ,n1,n2) the skewed anisotropic transform that
has n1 and n2 transforms in one iteration steps along the trans-
form and alignment directions, respectively. The anisotropy ratio
ρ = n1/n2 determines the elongation of the basis functions of the
S-AWT(MΛ,n1,n2). We call the basis functions of the S-AWT
directionlets since they are anisotropic and have a specific orien-
tation. An example of the anisotropic construction and frequency
decomposition for S-AWT(MΛ,2,1) are schematically shown in
Fig. 3(a) and (b). The corresponding directionlets are shown in
Fig. 3(c) and (d). Notice that the S-AWT(MΛ,n1,n2) is applied
in all cosets of the lattice Λ separately. Notice also that the stan-
dard 2-D WT is equivalent to the S-AWT(I,1,1), where I is the
identity matrix. Directionlets have DVM in any two directions
with rational slopes.1 The following proposition gives the number
and directions of the DVM in directionlets. For reasons of lack of
space, the proof is omitted here and can be found in [14].

Proposition 1 Assume that the directionlets of the S-AWT(MΛ,n1,
n2) are obtained using a 1-D wavelet with L vanishing moments.
Then, at each scale of the iteration, there are:

(a) 2n1 − 1 directionlets with Lth order DVM along the trans-
form direction of the lattice Λ,

(b) 2n2 − 1 directionlets with Lth order DVM along the align-
ment direction of the lattice Λ, and

(c) (2n1 −1)(2n2 −1) directionlets with Lth order DVM along
both directions.

The S-AWT improves the efficiency of representation of images
that contains anisotropic structures in different directions as ex-
plained in the sequel.

4. NON-LINEAR APPROXIMATION
The main task of approximation is to represent a signal by a sub-
set of transform coefficients, whereas the rest of them is set to
zero. We distinguish between linear approximation and NLA. In
the first, the indices of the retained coefficients are fixed, whereas
in the latter, they are adapted to the signal. The mean-square error
(MSE) of approximation is given by ‖x− x̂‖2 = ‖y− ŷ‖2, where
y is an orthogonal transformed version of x. Compression using
orthogonal transforms is, roughly speaking, an extension of NLA

1Recall that an Lth order DVM along the direction with a rational slope
r = b/a is equivalent to requiring the z-transform of a basis function to
have a factor (1− z−a

1 z−b
2 )L.
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Fig. 3. The S-AWT allows for an anisotropic iteration of the filtering and subsam-
pling operations applied along the transform and alignment directions of the lattice
Λ. The transform is iterated on the low-pass, similarly as in the standard 2-D WT. (a)
The filtering scheme for the S-AWT(MΛ,2,1). One iteration step is shown. (b) The
decomposition in frequency for two iterations. The basis functions obtained from the
(c) Haar and (d) biorthogonal ”9-7” 1-D scaling and wavelet functions.

that consists of (a) approximation, (b) indexing the retained coef-
ficients, and (c) quantization of the coefficients.2 Thus, the MSE
in this case is affected by two factors: (a) truncation error due to
NLA and (b) quantization error.

The asymptotic rate of decay of the MSE, as N tends to in-
finity, is a very important approximation property of the transform
used in NLA and compression. Mallat [15] showed that for a C2

smooth 2-D signal f(x1, x2) away from a C2 discontinuity curve3

(which we call a C2/C2 signal) the lower bound of the achiev-
able MSE for any approach in construction is given by O(N−2).
Notice that the standard WT is far from optimal since its rate
of decay is O(N−1) [15]. Some other adaptive or non-adaptive
methods have been shown to improve substantially the approxima-
tion power. Curvelets [5] and contourlets [6] can achieve the rate
O((log N)3N−2), which is nearly optimal. Furthermore, ban-
delets [2] and wedgelets [3, 4] have been shown to perform indeed
optimally. However, notice that none of these methods is based on
critically sampled filter-banks that are very convenient for com-
pression. Furthermore, in some cases, a complex non-separable
processing is required.

4.1. Anisotropic Spatial Segmentation
The approximation efficiency of directionlets is sensitive to the
choice of the transform and alignment directions. However, notice
that synthetic (including also C2/C2) and natural images have ge-
ometrical features whose orientations vary over space. Direction-
ality, thus, can be considered as a local characteristic defined in
a small neighborhood. This implies the necessity for spatial seg-
mentation as a way of partitioning an image into smaller segments
with only one or a few dominant directions per segment.

2Some algorithms merge quantization and NLA into a single operation
producing an embedded bitstream.

3C2 smoothness of both 1-D and 2-D functions means that the func-
tions are twice continuously differentiable.
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Fig. 4. The curve in the C2/C2 2-D function f(x1, x2) can be locally approxi-
mated by a quadratic polynomial y(x) = ax2+bx+c. The E-type directionlets in-
tersect the curve and have a slower decay of magnitudes across scales than the S-type
directionlets, which correspond to the smooth regions. (a) The E-type directionlets
lie within the strip along the slope r. (b) The width of the strip ∆d is minimized for
r = a + b.
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Fig. 5. Anisotropic segmentation partitions the unit square into 2s equally wide
vertical strips. The equivalent curvature is reduced in each segment by the factor 22s.
Since there are 2s segments that intersect the discontinuity, the total number of the E-
type directionlets is reduced by 2s. At the same time, the total number of the S-type
coefficients is increased by the same factor.

Now, recall that a C2 curve can be locally represented by
the Taylor series expansion, that is, by a quadratic polynomial
y(x) = ax2 + bx + c, where a and b are related to the second
and first derivative of the curve (curvature and linear component),
respectively. Without loss of generality, we assume that the C2

discontinuity curve is Horizon [3] on the unit square [0, 1]2.
Since the smooth regions of the function f(x1, x2) are C2,

assume that the 1-D filters used in the S-AWT(MΛ,n1,n2) are
orthogonal and have at least two vanishing moments. Let the
transform be applied along the class of straight lines defined by
{y(x) = rx + d : d ∈ � }. Here, the slope r determines the
transform direction, whereas the alignment direction is vertical.

The directionlets that intersect the discontinuity curve are called
E-type. The number of the E-type directionlets at the scale j is
given by Ne(j) = O(2n2j∆d). Here, ∆d is the width of the strip
along the transform direction that contains the curve (see Fig. 4).
Notice that an increment in the scale index j is equivalent to an it-
eration step to a finer scale. It can be easily seen that the transform
direction with the slope r = a + b minimizes the width ∆d (and,
thereof, Ne(j)) on the unit square yielding ∆d = a/2.

An anisotropic spatial segmentation partitions the unit square
into vertical strips using the dyadic rule, that is, there are 2s ver-
tical strips at the sth level of segmentation, where the width of
each strip is 2−s (see Fig. 5). The equivalent curvature in each
segment is now reduced and given by a · 2−2s. The optimal trans-
form direction is chosen for each segment independently. Notice
that the total number of the E-type directionlets is reduced, that
is, it is given by the sum across all the segments and it is equal to
Ne(j, s) = O(a/2 · 2n2j−s).

The directionlets, which do not intersect the discontinuity curve
are called S-type. The number of S-type directionlets in a segment
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Fig. 6. (a) An image from the class C2/C2 is approximated using the standard
2-D WT and the S-AWT(Λ,3,2). (b) The decay of the MSE is faster in the case of
the S-AWT(Λ,3,2).

is given by Ns(j) = 2(n1+n2)j+s − Ne(j). The total number of
S-type directionlets is given by the sum across all the segments,
that is, Ns(j, s) = O(2(n1+n2)j+s − a/2 · 2n2j−s).
4.2. Approximation Power
The S-AWT applied on a segmented image with the optimal trans-
form direction in each segment outperforms the standard 2-D WT
in both approximation and compression rate of decay of the MSE.
The following theorem gives the rate of decay for C2/C2 images.
For reasons of lack of space, we give only the key ideas of the
proof (see [14] for the full proof).

Theorem 1 Given a 2-D C2/C2 function f(x1, x2) and α =
(
√

17 − 1)/2 ≈ 1.562,

(a) NLA by the S-AWT using spatial segmentation and N trans-
form coefficients achieves

MSE = ‖f − f̂N‖2 = O � N−α � .
In that case the optimal anisotropy ratio is ρ∗ = α.

(b) Compression by the S-AWT using spatial segmentation and
R bits for encoding achieves

MSE = O � R−α � .

To approximate the function f(x1, x2), we keep all the coeffi-
cients with the magnitudes larger or equal to 2−m, where m ≥ 0,
that is, (a) the E-type directionlets at the scales 0 ≤ j ≤ 2m/(n1+
n2) and (b) the S-type directionlets at the scales 0 ≤ j ≤ 2m/n3 ,
where n3 > n1 + n2 [14]. Assuming that the number of seg-
mentation levels is given by s = ηm, where η ≥ 0, it can be
shown [14] that optimality is achieved for the anisotropy ratio
ρ∗ = n1/n2 = α and the segmentation rate η∗ = 0. In that
case, MSE= O(N−α).

For the compression application, it can be shown that the total
number of encoding bits is given by R(m) = O(2αm/2) [14].
The MSE generated by quantization is given by O(N · 2−2m).

Therefore, the total MSE is equal to O(2−α2m/2)= O(R−α) [14].
Notice that the optimal anisotropy ratio is irrational and, thus,

cannot be achieved. However, the S-AWT(Λ,3,2) approximates
well the optimal transform, in which case the number of segmen-
tation levels s is defined as s = (log2 N)/51. The achievable rate
of decay of the MSE is O(N−1.55). Although this rate is slower
than the ones obtained in [2]-[6], we want to emphasize that the
S-AWT(Λ,3,2) is critically sampled and uses only separable pro-
cessing. This is important for compression because, in the case of
orthogonal 1-D filter-banks, the Lagrangian-based algorithms still
can be applied, making it easier to have very good compression
algorithms. Fig. 6 illustrates the gain obtained by NLA using the
S-AWT(Λ,3,2) applied on a C2/C2 image when compared to the
results of NLA using the standard WT.

5. CONCLUSION
We proposed novel anisotropic transforms for images that use sep-
arable filtering in many directions, not only horizontal and vertical.
The associated basis functions, called directionlets, have DVM
along any two directions with rational slopes. These transforms re-
tain the computational efficiency and the simplicity of filter design
from the standard WT. Still, multi-directionality and anisotropy
overcome the weakness of the standard WT in the presence of
edges and contours, that is, they allow for sparser representations
of these directional anisotropic features. The NLA power of di-
rectionlets is substantially superior to that of the standard WT pro-
viding an order of decay of the MSE equal to O(N−1.55) for the
C2/C2 class of images. Even though this decay is slower than the
one provided by some other schemes, the directionlets allow criti-
cal sampling. This is important for applications in image compres-
sion in the case of orthogonal 1-D filter-banks since Lagrangian
optimization can be implemented in a straightforward manner.
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