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Abstract

In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of

its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions.

One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual

perception, intersect too many wavelet basis functions and lead to a non-sparse representation. To capture efficiently

these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions,

a more complex multi-directional (M-DIR) and anisotropic transform is required. We present a new lattice-based

perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering

and subsampling and the simplicity of computations and filter design from the standard two-dimensional (2-D) WT.

The corresponding anisotropic basis functions (directionlets) have directional vanishing moments (DVM) along any

two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for

non-linear approximation (NLA) of images, achieving the approximation power O(N−1.55), which is competitive to

the rates achieved by the other oversampled transform constructions.

Index Terms

Wavelets, directionlets, multiresolution, multidirection, geometry, sparse image representation, filter-banks, sepa-

rable filtering, directional vanishing moments

I. INTRODUCTION

The problem of finding efficient representations of images is a fundamental problem in many image processing

tasks, such as denoising, compression and feature extraction. An efficient transform-based representation requires

sparsity, that is, a large amount of information has to be contained in a small portion of transform coefficients.
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Fig. 1. The standard 2-D WT is isotropic. (a) The filtering and subsampling operations are applied equally in both directions at each scale of

the transform. (b) The corresponding decomposition in frequency. The basis functions obtained in this way are isotropic at each scale as shown

in (c) for Haar and in (d) for biorthogonal ”9-7” 1-D scaling and wavelet functions.

(a) (b)

Fig. 2. A simple image with one linear horizontal discontinuity is represented by the two types of basis functions. (a) Isotropic basis functions

generate a large number of significant coefficients around the discontinuity. (b) Anisotropic basis functions trace the discontinuity line and

produce just a few significant coefficients.

The one-dimensional (1-D) WT has become very successful in the last decade because it provides a good

multiresolution representation of 1-D piecewise smooth signals [1], [2]. The application of wavelets to image

processing requires the design of two-dimensional (2-D) wavelet filter-banks. The most common approach is to use

2-D separable filter-banks, which consist of the direct product of two independent 1-D filter-banks in the horizontal

and vertical directions. Filtering with high-pass (HP) filters with enough vanishing moments (or zeros at ω = 0)

along these two directions leads to a sparse representation of smooth signals. This method is conceptually simple

and has very low complexity while all the 1-D wavelet theory carries over. These are the main reasons why it has

been adopted in the image compression standard JPEG-2000 [3]. Some noticeable approaches use non-separable

filter-banks and subsampling (e.g. quinqunx) [4]–[6], but these methods are computationally complex and the design

of the associated 2-D filter-banks is challenging.

However, the standard 2-D WT fails to provide a compact representation in the presence of 1-D discontinuities,

like edges or contours. In fact, many wavelets intersect the discontinuity and this leads to many large magnitude

coefficients. The main reason for the inefficiency of the standard 2-D WT resides in the spatial isotropy of its

construction, that is, filtering and subsampling operations are applied equally along both the horizontal and vertical

directions at each scale (see Fig. 1(a)). As a result, the corresponding filters, obtained as direct products of the 1-D
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counterparts, are isotropic at all scales (Fig. 1(c),(d)).

Contours and edges, as highly anisotropic objects present in images, are characterized by a geometrical coherence

that is not properly captured by the standard isotropic WT. Namely, an anisotropic object generates many large

magnitude wavelet coefficients (Fig. 2(a)).

This motivates us to design anisotropic basis functions that can “match” anisotropic objects (Fig. 2(b)). However,

ensuring an efficient matching between anisotropic basis functions and objects in images is a non-trivial task.

Anisotropic basis functions have already been considered and exploited by adaptive (bandelets [7], [8], wedgelets

[9]–[13], etc.) or non-adaptive (curvelets [14]–[16], contourlets [17], etc.) processing. These methods build dictio-

naries of anisotropic basis functions that provide a sparse representation of edges in images. Furthermore, Candès

and Donoho [14] showed that the parabolic scaling relation between the length and width of basis functions is key

to achieving a good non-linear approximation (NLA) behavior. However, the implemented transforms often require

oversampling, have higher complexity when compared to the standard WT, and require non-separable processing

(convolution) and non-separable filter design. Furthermore, in some of these constructions (like curvelets) the design

of the associated filters is performed in the continuous domain and this makes it difficult to use them directly on

discrete images.

Notice that the standard WT uses only horizontal and vertical directions and the HP filters in this transform have

vanishing moments only along these directions. Since characterization of features in synthetic and natural images

involves many more than these two standard directions, multi-directionality and directional vanishing moments

(DVM) play an important role in pursuing sparse representations. Multi-directionality has also been exploited in

bandelets [7], [8], wedgelets [9]–[13], curvelets [14]–[16], and contourlets [17].

Several other approaches also analyze geometrical structures in images, like polynomial modeling with quadtree

segmentation [18], footprints and edgeprints [19], multiscale transform [20], etc. Apart from the geometrical

representation, several methods apply multi-directional (M-DIR) processing, like steerable pyramids [21], complex

wavelets [22], directional wavelet analysis [23], directional filter-banks [24], [25], brushlets [26], etc. However,

all of them fail to provide a perfect reconstruction and critically sampled separable scheme with a filter design

completely in the discrete domain and with filters having DVM along arbitrary directions.

Our goal is to construct an anisotropic perfect reconstruction and critically sampled transform with HP filters

having DVM, while retaining the simplicity of 1-D processing and filter design from the standard separable 2-

D WT. Our basis construction is based on partitioning the discrete space using integer lattices. We show that our

transform has good approximation properties as compared to the approximation achieved by some other overcomplete

transform constructions [7]–[17] and is superior to the performance of the standard separable 2-D WT having the

same complexity.

The outline of the paper is as follows. We present two constructions of anisotropic transforms in Section II. In

Section III, we explain the inefficiency of the M-DIR transforms built on digital lines in order to motivate the need

for integer lattice-based construction. We also give a review of integer lattices and the new construction of our

skewed anisotropic lattice-based transforms. In Section IV, we explore the asymptotic approximation behavior of
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(a) (b) (c) (d)

Fig. 3. (a) A Piet Mondrian’s (1872 - 1944) painting. This painting inspires the class of images Mondrian(k1,k2). The image is transformed

by the three transforms: (b) standard WT, (c) FSWT, (d) AWT(2,1) with 1-D wavelet filters having enough vanishing moments.

the anisotropic M-DIR transforms. We show that the achievable approximation scaling law is O(N−1.55), where

N is the number of retained coefficients. Finally, we conclude and give the directions of future work in Section V.

II. ANISOTROPIC 2-D WAVELET DECOMPOSITIONS

As explained in Section I, the standard WT produces isotropic basis functions, which fail to provide a sparse

representation of edges and contours. However, a new modified method that we propose retains the 1-D filtering

and subsampling operations and can provide anisotropy, as we show next. In the sequel of this section, we give

two examples of constructions of the anisotropic transforms that still inherit the simplicity of processing and filter

design from the standard WT. Furthermore, these two anisotropic transforms are critically sampled and lead to

perfect reconstruction.

A. Fully Separable Decomposition

Define a simple class of piecewise polynomial images, denoted as Mondrian(k1,k2) and inspired by the

geometrical period of Piet Mondrian1 (Fig. 3(a)) [27].

Definition 1: The class Mondrian(k1,k2) contains M × M piecewise polynomial images with k1 horizontal

and k2 vertical discontinuities.

The class Mondrian(k1,k2) is not efficiently represented by the standard WT. The discontinuities lead to too

many nonzero coefficients, as shown in the lemma below and in Fig. 3(b).

Lemma 1: Given an M × M pixel image from the class Mondrian(k1,k2), the number of nonzero transform

coefficients produced by the standard WT with the 1-D wavelets having enough vanishing moments 2 is given by

N = O ((k1 + k2)M) . (1)

1The Dutch painter established neoplasticism and De Stijl in Europe in the beginning of the 20th century. The painting shown in Fig. 3(a)

is from his geometrical period (1930)

2A polynomial of the nth order is annihilated by a wavelet that has at least n + 1 vanishing moments.
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Fig. 4. The FSWT is anisotropic, as the number of 1-D transforms is not equal in the two directions. (a) An example of the transform scheme.

Only 2 steps in each direction are shown. (b) The decomposition in frequency that corresponds to the construction in (a) with 4 steps in each

direction. The anisotropic basis functions obtained from the (c) Haar and (d) biorthogonal ”9-7” 1-D scaling and wavelet functions.

Proof: The three band-pass subbands at the jth (1 ≤ j ≤ log2 M ) level of the standard WT contain

O(k1M/2j +k2), O(k1 +k2M/2j), and O(k1 +k2) nonzero coefficients. The total number of nonzero coefficients

across scales is given by

N =

log2 M
∑

j=1

(

O

(

k1
M

2j
+ k2

)

+ O

(

k1 + k2
M

2j

)

+ O (k1 + k2)

)

= O (2(k1 + k2) log2 M) + O ((k1 + k2)(M − 1)) = O ((k1 + k2)M) .

To improve compactness of the representation of the class Mondrian(k1,k2), we define the fully separable WT

(FSWT). In this transform a full 1-D WT is applied in the horizontal direction (each row of image) and then, on

each output a full 1-D WT is applied in the vertical direction (each column). The decomposition scheme is shown

in Fig. 4(a).

The FSWT provides anisotropic basis functions (Fig. 4(c)) that are better adapted to the anisotropic objects such

as the discontinuities in the class Mondrian(k1,k2). Representation efficiency is strongly improved, as can be seen

in Fig. 3(c) from the resulting sparsity and it is given in Lemma 2.

Lemma 2: Given an M × M pixel image from the class Mondrian(k1,k2), the number of nonzero transform

coefficients produced by the FSWT with the 1-D wavelets having enough vanishing moments is given by

O
(

(k1 + k2) (log2 M)
2
)

. (2)

Proof: Each band-pass subband is indexed by (j1, j2), where j1 determines the number of the horizontal

transforms, whereas j2 enumerates the vertical transforms. The indexes are in the range 1 ≤ j1, j2 ≤ log2 M .

The subband (j1, j2) contains O (k1 + k2) nonzero transform coefficients, therefore, the total number of nonzero

coefficients is given by

N =

log2 M
∑

j1=1

log2 M
∑

j2=1

O (k1 + k2) = O
(

(k1 + k2) (log2 M)
2
)

.
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Fig. 5. The AWT allows for anisotropic iteration of the filtering and subsampling applied on the LP, similarly as in the standard WT. Although

this transform does not improve approximation of the class Mondrian(k1,k2), it provides an efficient approximation tool for more general

classes of images (Section IV). (a) The filtering scheme for the AWT(2,1), where one step of iteration is shown. (b) The decomposition in

frequency. The basis functions obtained from the (c) Haar and (d) biorthogonal ”9-7” 1-D scaling and wavelet functions.

The performance of the FSWT on the class Mondrian(k1,k2), given by (2), is substantially better than the result

of the standard WT, given by (1), namely, there is an exponential improvement in terms of M . The improvement

is a consequence of anisotropy of the basis functions that is matched to the anisotropy of the class. However, the

FSWT performs well only when it is applied on Mondrian-like images, while natural images contain features that

are not well represented by straight (horizontal and vertical) lines.

Notice that if a transformed image contains a curve (or any discontinuity that is not a straight line), then the

FSWT fails, as the number of nonzero coefficients grows exponentially across scales. Intuitively, the failure happens

because the FSWT enforces a higher anisotropy (or elongation of the basis functions) than the one that is required

in order to provide a compact representation of objects in natural images. To overcome this problem, we introduce

next a novel anisotropic transform, which performs better on a larger class of images.

B. Anisotropic Wavelet Decomposition

In the anisotropic WT (AWT) the number of transforms applied along the horizontal and vertical directions is

unequal, that is, there are n1 horizontal and n2 vertical transforms at a scale, where n1 is not necessarily equal

to n2. Then, iteration is continued in the low-pass (LP), like in the standard WT. Such an anisotropic transform

we denote as AWT(n1,n2). The anisotropy ratio ρ = n1/n2 determines elongation of the basis functions of the

AWT(n1,n2). An example of the construction and basis functions is shown in Fig. 5, where the AWT(2,1) is used.

Notice that both the standard WT and the FSWT can be expressed in terms of the AWT. The standard WT

is simply given by AWT(1,1). However, the representation of the FSWT is more complex and it is given as a

concatenation of two AWTs. The first transform is AWT(n1max,0) that produces n1max + 1 subbands and it is

followed by the AWT(0,n2max) applied on each subband. The arguments n1max and n2max determine the maximal

number of transforms in the two directions and depend on the size of the image.

Even though the AWT is not the most appropriate representation for the particular case of Mondrian-like images,
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TABLE I

ORDERS OF APPROXIMATION BY THE STANDARD WT, FSWT AND AWT APPLIED ON THE CLASS MONDRIAN(k1,k2).

Standard WT FSWT AWT

(k1 + k2)M (k1 + k2)(log2 M)2 (k1a + k2/a)M

it improves approximation of more general classes of images, as shown in Section IV. Fig. 3(d) shows the result

of the AWT(2,1) of an image from the class Mondrian(k1,k2). The order of the number of nonzero coefficients

is given by the following lemma.

Lemma 3: Given an M × M pixel image from the class Mondrian(k1,k2), the number of nonzero transform

coefficients produced by the AWT(n1,n2) with 1-D wavelets having enough vanishing moments is given by

O

((

ak1 +
1

a
k2

)

M

)

, where a =
2n2 − 1

2n1 − 1
. (3)

Proof: The number of nonzero coefficients produced at the jth level of the AWT(n1,n2) is given by

n(j) =O(k1 (2n2 − 1)
M

2n1j
+ k1 (2n1 − 1) 2n2

+k2 (2n1 − 1)
M

2n2j
+ k2 (2n2 − 1) 2n1).

The total number of nonzero coefficients across scales is, therefore,

N =

log2 M

max(n1,n2)
∑

j=1

n(j) = O

((

ak1 +
1

a
k2

)

M

)

.

Notice that the result in Lemma 3 is a generalization of the result in Lemma 1. Table I summarizes the orders

of numbers of nonzero coefficients produced by the three transforms applied on the class Mondrian(k1,k2).

The transforms explained in this section are applied in the horizontal and vertical directions only. More general

transforms can be obtained by imposing vanishing moments along different directions. These transforms provide

an efficient representation of more general classes of images, involving more than only the two standard directions,

as shown in the next section.

III. LATTICE-BASED SKEWED WAVELET TRANSFORMS

Several transform constructions that lead to anisotropic basis functions have been presented in Section II. However,

all the constructions, including the standard WT, use only horizontal and vertical directions. Notice also that the

HP filters in these transforms have vanishing moments only along these two directions. Here, we present the novel

lattice-based transform, which exploits multi-directionality and retains the simplicity of computations and filter

design from the standard WT.

In the continuation, we explain the problem of approximation of directions in the discrete space
� 2 and we

introduce the concept of directional interaction. Then, we propose a new lattice-based method that allows for a

generalization of the transform constructions from Section II to include separable (1-D) filtering and subsampling
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across multiple directions, not only horizontal and vertical. We also give the polyphase analysis of the lattice-based

transforms.

A. Digitalization of Directions

To apply a discrete transform in the discrete space
� 2 in a certain direction, we need to define the pixels that

approximate the chosen direction. This problem has been considered in computer graphics in the 1960’s [28] as

well as in [29], [30].

Recall that the set of points (x, y) ∈ � 2 represents a continuous line with the slope r and intercept b if the

following equality is satisfied:

y = rx + b. (4)

The discrete approximation of (4) is called digital line L(r, n). To preserve critical sampling in the transform,

given a slope r, every pixel belongs to one and only one digital line L(r, n). In that case, we say that, given a

slope r, the set of digital lines {L(r, n) : n ∈ � }, partitions the discrete space
� 2.

The definitions of digital lines proposed in [28]–[30] are similar and here we give the definition that is a variation

of the one given in [28]. We show also below that such digital lines partition the discrete space
� 2.

Definition 2: Given a rational slope r, the digital line L(r, n), where n ∈ �
, is defined as the set of pixels (i, j)

such that

j = drie + n, ∀i ∈ �
, for |r| ≤ 1, or

i = dj/re + n, ∀j ∈ �
, for |r| > 1. (5)

Lemma 4: Given a rational slope r, the set of digital lines {L(r, n) : n ∈ � } partitions the discrete space
� 2.

Proof: We give the proof only for the case |r| ≤ 1, since similar arguments are used otherwise.

For each pixel (i, j) ∈ � 2, we can find the intercept n = j − drie such that the pixel belongs to the digital line

L(r, n). Furthermore, from (5) it follows that this intercept is unique. Therefore, the digital lines L(r, n), ∀n ∈ �
,

partitions the discrete space
� 2.

The concept of digital lines is useful for overcomplete M-DIR representation. However, in the sequel, we show

why digital lines do not provide an efficient framework when transforms are applied in different directions and

critical sampling is enforced.

B. Directional Interaction

To explain the problem of directional interaction, let us first generalize the class Mondrian allowing for more

directions. The class S-Mondrian consists of the skewed Mondrian-like images along two directions with the

rational slopes r1 = b1/a1 and r2 = b2/a2, where a1, a2, b1, and b2 are integers. To simplify notation, the two

slopes are jointly denoted by the matrix

M(r1, r2) =





a1 b1

a2 b2



 .
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(a) (b) (c) (d)

Fig. 6. (a) An example of an image from the class S-Mondrian(M(r1, r2),k1,k2), for M = [v1,v2]T , where v1 = [1, 1] and v2 = [−1, 1].

The image is transformed using (b) S-WT, (c) S-FSWT, and (d) S-AWT(MΛ,2,1) (directionlets), where all the transforms are built on the lattice

Λ determined by the generator matrix MΛ = M(r1, r2).

Definition 3: The class S-Mondrian(M(r1, r2),k1,k2) contains M × M piecewise polynomial images with

k1 and k2 discontinuities along the digital lines L(r1, n) and L(r2, n), respectively, where n ∈ �
, r1 = b1/a1,

r2 = b2/a2, and a1, a2, b1, b2 ∈ �
.

Notice that the class Mondrian(k1,k2) is a special case of the larger class S-Mondrian(M(r1, r2),k1,k2)

when M(r1, r2) is the identity matrix. An example of an image from the class S-Mondrian(M(r1, r2),k1,k2)

is shown in Fig. 6(a). Notice also that only the lines with rational slopes are used in the class S-Mondrian.

However, in spite of this constraint, a wealth of directions is still available, as we will explain in Section III-C.

To provide a sparse representation of the class S-Mondrian(M(r1, r2),k1,k2) and following the ideas from

Section II, we apply a 1-D WT along the digital lines L(r1, n), for n ∈ �
. The transform produces two types of

nonzero coefficients, that is, the coefficients corresponding to the discontinuities with the slopes r1 and r2.

Since the HP filter has vanishing moments along digital lines with the slope r1, the coefficients along this

direction are annihilated in the HP subband, whereas the coefficients along the second direction with the slope

r2 are retained in both subbands. However, after subsampling, unlike in the case of the standard directions, the

coefficients along the second direction are not aligned, that is, they cannot be represented in the form of digital

lines with the slope r2. Therefore, the following 1-D WT applied along the digital lines with the slope r2 does not

annihilate the coefficients along the second direction and, hence, it yields a non-sparse representation. We call this

phenomenon directional interaction. An example is shown in Fig. 7. The following lemma formalizes the previous

result.

Lemma 5: Given a 1-D WT applied along the set of digital lines {L(r1, n) : n ∈ � } on an image from the class

S-Mondrian(M(r1, r2),k1,k2), the transform coefficients that correspond to the discontinuities with the slope r2

are not aligned, that is, they cannot be clustered in the digital lines L(r2, n), n ∈ �
.

Proof: Recall from Definition 2 that the digital line L(r1, n), where |r1| ≤ 1, contains the pixels (i, j) such

that, for each i ∈ �
, j = dr1ie+n. Similarly, for |r1| > 1, the digital line L(r1, n) contains the pixels (i, j), where

December 23, 2004 DRAFT
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MΛ
2 1–

3 2
=

L
2
3
--- n, 

 

L
1
2
---– n, 

 

HP filtering
across -1/2

Fig. 7. A 1-D WT is applied on an image from the class S-Mondrian(M(−1/2, 2/3),1,1) along the digital lines L(−1/2, n). The HP

filtering annihilates the digital line with the slope −1/2. However, the nonzero coefficients produced by the other line with the slope 2/3 are

not aligned in the digital lines L(2/3, n). This is called directional interaction. Although the transform along digital lines is efficient when

applied in oversampled schemes, it fails to provide a systematic subsampling method when critical sampling is enforced.

i = dj/r1e + n.

To satisfy the perfect reconstruction condition, each digital line L(r1, n) is subsampled by retaining either even

or odd pixels. The set of retained pixels is thus given by

S = {(i, j) : i = 2k + ε(n), j = n + dr1ie, ∀n, k ∈ � }, for |r1| ≤ 1, or

S = {(i, j) : j = 2k + ε(n), i = n + dj/r1e, ∀n, k ∈ � }, for |r1| > 1.

Here ε(n) ∈ {0, 1} determines the subsampling case in the digital line with intercept n.

Now, we distinguish four cases depending on the values of the slopes r1 and r2. Without loss of generality, we

focus only on the two cases, which are (a) |r1| ≤ 1, |r2| ≤ 1 and (b) |r1| ≤ 1, |r2| > 1. The other cases can be

obtained by symmetry.

(a) Assume that L(r2, m) ∈ S. It follows that ε(n) is equal to the parity of i, that is, ε(n) = i mod 2, for each

i ∈ �
. It also follows that n = m + dr2ie − dr1ie. These two equations cannot be both satisfied in general.

Thus, L(r2, m) cannot belong to the set of retained pixels S.

(b) Assume again that L(r2, m) ∈ S. From the definition of the digital line it follows that i = dj/r2e + m, for

each j ∈ �
. It also follows from the property of the set S that ε(n) = i mod 2 and n = j−dr1me+dr1j/r2e.

These three equations cannot hold at the same time, therefore L(r2, m) /∈ S.

Notice also that the concept of digital lines does not provide a systematic rule for subsampling in the case of

iteration of the filtering and subsampling along the directions with the slopes r1 and r2 when critical sampling is

enforced. To overcome the directional interaction and to propose an organized iterated subsampling method we use

the concept of integer lattices.
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VELISAVLJEVIĆ et al.: DIRECTIONLETS 11

CL 0 0,[ ]
1
2
--- n, 

 

CL 0 1,[ ]
1
2
--- n, 

 

MΛ
2 1

1– 1
=

CL 1 1,[ ]
1
2
--- n, 

 

r1
1
2
---=

det MΛ( ) 3=

Fig. 8. The intersections between the 3 cosets of the lattice Λ given by the generator matrix MΛ and the digital lines L(r1 = 1/2, n), where

n ∈ � , are the co-lines CL[0,0](1/2, n), CL[0,1](1/2, n), and CL[1,1](1/2, n).

MΛ
1 1

1– 1
=

s0 0 0=

s1 0 1=
MΛ′

2 2

1– 1
=

Fig. 9. The lattice Λ is determined by the generator matrix MΛ. 1-D Filtering is applied along the co-lines {CLsk
(r1, n) : n ∈ � , k =

0, 1, . . . , |det(MΛ)| − 1}, where the slope r1 corresponds to the vector [1, 1], that is, along 45◦. The pixels retained after the subsampling

belong to the lattice Λ′ ⊂ Λ determined by the generator matrix MΛ′ . Notice that filtering and subsampling are applied separately in two

cosets, determined by the shift vectors s0 and s1.

C. Lattice-based Filtering and Subsampling

Instead of applying a transform along digital lines, we propose a novel method that is based on integer lattices

[31]. We also prove that the lattice-based transforms can avoid directional interaction and are capable of providing

the same order of approximation for the class S-Mondrian as the FSWT achieves for the class Mondrian.

A full-rank integer lattice Λ consists of the points obtained as linear combinations of two linearly independent

vectors, where both the components of the vectors and the coefficients are integers. Any integer lattice Λ is a

sublattice of the cubic integer lattice
� 2, that is, Λ ⊂ � 2. The lattice Λ can be represented by a non-unique

generator matrix

MΛ =





a1 b1

a2 b2



 =





d1

d2



 , where a1, a2, b1, b2 ∈ �
. (6)

Recall that the cubic lattice
� 2 can be partitioned into | det(MΛ)| cosets of the lattice Λ [31], where each coset is

determined by the shift vector sk, for k = 0, 1, . . . , | det(MΛ)|− 1. Therefore, the lattice Λ with the corresponding

generator matrix MΛ given by (6), partitions each digital line L(r1 = b1/a1, n) into co-lines. Notice that a co-line

is simply the intersection between a coset and a digital line. Similarly, the digital line L(r2 = b2/a2, n) is also

partitioned into the corresponding co-lines (Fig. 8).
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We denote as CLsk
(r1, n) the co-line obtained as the intersection between the kth coset of the lattice Λ and the

digital line L(r1 = b1/a1, n). Notice that the co-line CLsk
(r1, n) consists of the pixels {c1d1 + c2d2 + sk : ∀c1 ∈

�
, fixed c2 ∈ � }, where n = dc2(b2 − r1a2) + sk,2 − r1sk,1e and sk = [sk,1, sk,2].

Now we apply the 1-D WT (including the 1-D both filtering and subsampling operations) along the co-lines

{CLsk
(r1, n) : n ∈ �

, k = 0, 1, . . . , | det(MΛ)| − 1} (see also [32]). Notice that both filtering and subsampling

are applied in each of the cosets separately. Furthermore, each filtering operation is purely 1-D. After subsampling,

the retained points belong to the sublattice Λ′ of the lattice Λ (Λ′ ⊂ Λ) with the corresponding generator matrix

given by (Fig. 9)

MΛ′ = Ds ·MΛ =





2d1

d2



 .

Here, Ds is the horizontal subsampling operator, that is,

Ds =





2 0

0 1



 .

We call the direction along the first vector d1 (with the slope r1 = b1/a1), the transform direction. Similarly,

the direction along the second vector d2 we call the alignment direction.

Therefore, since the filtering and subsampling are applied in each coset separately, the pixels retained after the

subsampling are clustered in co-lines along the alignment direction. This property is crucial to avoid directional

interaction.

Lemma 6: Given a 1-D WT applied along the set of co-lines {CLsk
(r1, n) : n ∈ �

, k = 0, 1, . . . , | det(MΛ)|−1}
on an image from the class S-Mondrian(M(r1, r2),k1,k2), the transform coefficients that correspond to the

discontinuities with the slope r2 are aligned, that is, they can be clustered in the co-lines CLsk
(r2, n), n ∈ �

.

Proof: Recall that the co-line CLsk
(r1, n) consists of the pixels {(i, j) : i = c1a1 + c2a2 + sk,1, j =

c1b1 + c2b2 + sk,2, ∀c1 ∈ �
, fixed c2 ∈ � }. After the subsampling, the retained pixels belong to the lattice

Λ′ and, thus, the corresponding co-lines consist of the pixels (i, j) such that i = c1 · 2a1 + c2a2 + sk,1 and

j = c1 · 2b1 + c2b2 + sk,2 for each c1 ∈ �
and a fixed c2 ∈ �

.

Notice that the co-lines CLsk
(r2, n) with the other slope r2 that correspond to the lattice Λ′ consist of the same

pixels. Therefore all the retained pixels are aligned in the direction with the slope r2.

Combining lattices with the different constructions given in Section II, we build skewed wavelet transforms.

D. Skewed Wavelet Transforms

The transforms defined in Section II (the standard WT, FSWT, and AWT) are inefficient when applied on the class

S-Mondrian(M(r1, r2),k1,k2), unless M(r1, r2) is the identity matrix. Since the directions of the transforms and

discontinuities in images are not matched, the transforms fail to provide a compact representation. The following

lemma gives the orders of approximation that can be achieved by the three transforms with the standard directions.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. The basis functions obtained by the skewed transforms using the Haar 1-D scaling and wavelet functions: (a) S-WT, (b) S-FSWT,

(c) S-AWT(MΛ,2,1) (directionlets). The same, but with the biorthogonal ”9-7” 1-D scaling and wavelet functions: (d) S-WT, (e) S-FSWT, (f)

S-AWT(MΛ,2,1) (directionlets). In all cases MΛ = [d1,d2]T , where d1 = [1, 1], and d2 = [−1, 1]. The DVMs are imposed along the

vectors d1 and d2, that is, along 45◦ and −45◦.

Lemma 7: Given an M × M pixel image from the class S-Mondrian(M(r1, r2),k1,k2), where M(r1, r2) is

not the identity matrix, the standard WT, FSWT, and AWT with 1-D wavelets having enough vanishing moments

provide O((k1 + k2)M) nonzero transform coefficients.

Proof: The subbands produced by the FSWT are indexed by (j1, j2), where 1 ≤ j1, j2 ≤ log2 M . Each

subband contains O(k1M/2j1 + k2M/2j2) nonzero coefficients. The total number is given by

N =

log2 M
∑

j1=1

log2 M
∑

j2=1

O

(

k1
M

2j1
+ k2

M

2j2

)

= O ((k1 + k2)M) .

Notice that the standard WT, as a special case of the AWT, has the same behavior. Thus, we give the proof only

for the AWT. The AWT(n1,n2) produces 2n1+n2 − 1 band-pass and HP subbands at each scale j. Each of these

subbands contain n(j) = O((2n1+n2 − 1)M(2−n1j + 2−n2j)) nonzero coefficients. Therefore, the total number of

nonzero coefficients is given by
log2 M

max(n1,n2)
∑

j=1

n(j) = O ((k1 + k2)M) .

Using integer lattices we define the three new transforms, which are skewed versions of the standard WT, FSWT,

and AWT. Given a lattice Λ, the skewed transforms are applied along co-lines in the transform and alignment

directions of the lattice Λ, retaining the same decompositions from their counterparts. Thus, following the notation

introduced in Section II-B, we denote as S-AWT(MΛ,n1,n2) the skewed anisotropic transform built on the lattice

Λ that has n1 and n2 transforms in one iteration step along the transform and alignment directions, respectively.
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We call the basis functions of the S-AWT directionlets since they are anisotropic and have a specific direction.

Similarly, we denote the skewed standard WT as S-WT and the skewed FSWT as S-FSWT. The corresponding

basis functions are shown in Fig. 10 for the directions along the vectors d1 = [1, 1] and d2 = [−1, 1]. Notice that

the skewed transforms are applied in all cosets of the lattice Λ separately.

The basis functions of the skewed transforms have DVM in any two directions with rational slopes. Recall that

the Lth order DVM along the direction with a rational slope r1 = b1/a1 is equivalent to requiring the z-transform of

a basis function to have a factor (1− z−a1
1 z−b1

2 )L [17], [33]. The following lemma gives the number and directions

of the DVM in directionlets.

Lemma 8: Assume that the directionlets of the S-AWT(MΛ,n1,n2) are obtained using a 1-D wavelet with L

vanishing moments. Then, at each scale of the iteration, there are:

(a) 2n1 − 1 directionlets with the Lth order DVM along the transform direction of the lattice Λ,

(b) 2n2 − 1 directionlets with the Lth order DVM along the alignment direction of the lattice Λ, and

(c) (2n1 − 1)(2n2 − 1) directionlets with the Lth order DVM along both directions.

Proof: Recall first from [33] that 1-D filtering using the filter H(z) along the transform direction of the lattice Λ

is equivalent to filtering in the 2-D discrete space using H(za1
1 zb1

2 ). Similarly, filtering along the alignment direction

of the lattice Λ is equivalent to filtering in the 2-D discrete space using H(za2
1 zb2

2 ). Since the 1-D HP filter has L

vanishing moments, its z-transform has a factor (1 − z−1)L. Therefore, the HP filtering along the transform and

alignment directions uses the equivalent filters with the factors (1−z−a1
1 z−b1

2 )L and (1−z−a2
1 z−b2

2 )L, respectively,

in the z-transforms.

Filtering using the 1-D two-channel filter-bank along two directions in the construction of the S-AWT (see Fig.

5(a)) yields (a) 2n1 − 1 subbands with HP filtering along only the transform direction, (b) 2n2 − 1 subbands with

HP filtering along only the alignment direction, and (c) (2n1 − 1)(2n2 − 1) subbands with HP filtering along both

directions. Thus, the statement of the lemma follows directly.

Efficiency of representation of the class S-Mondrian(M(r1, r2),k1,k2) by the three skewed transforms depends

on matching between the directions of discontinuities and the directions used in these transforms. If these directions

are matched, then the orders of nonzero coefficients are equal to the orders calculated in Section II (see Table I).

Otherwise, they are given by the result in Lemma 7. The following lemma formalizes this statement. The proof is

omitted since it uses the same arguments of Lemmas 1 to 3.

Lemma 9: Given an M × M pixel image from the class S-Mondrian(M(r1, r2),k1,k2), the S-WT, S-FSWT,

and S-AWT(MΛ,n1,n2) with 1-D wavelets having enough vanishing moments, built on the lattice Λ determined

by the generator matrix MΛ = M(r1, r2), give O((k1 + k2)M), O((k1 + k2)(log2 M)2), and O((k1a + k2/a)M)

nonzero coefficients, respectively. Here, a = (2n2 − 1)/(2n1 − 1).

The transforms of the image shown in Fig. 6(a) are given in Fig. 6(b)-(d). The applied transforms are S-WT,

S-FSWT, and S-AWT(MΛ,2,1), where M(r1, r2) = MΛ. Table II summarizes the orders of nonzero coefficients

in the case of both matched and mismatched directions.
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TABLE II

ORDERS OF APPROXIMATION BY THE S-WT, S-FSWT AND S-AWT (DIRECTIONLETS) BUILT ON THE LATTICE Λ DETERMINED BY MΛ

APPLIED ON THE CLASS S-MONDRIAN(M(r1, r2),k1,k2).

MΛ = M(r1, r2) MΛ 6= M(r1, r2)

S-WT (k1 + k2)M (k1 + k2)M

S-FSWT (k1 + k2)(log2 M)2 (k1 + k2)M

S-AWT (k1a + k2/a)M (k1 + k2)M

2

2z
y0

y1

x
Hp

H00 z( ) H01 z( )

H10 z( ) H11 z( )
=Hp

2

2

H1 z( )

H0 z( )
y0

y1

x
polyphase
transform

Fig. 11. A 1-D filter-bank (H0(z),H1(z)) with the subsampling factor 2 is represented in the polyphase domain with the corresponding

polyphase components H00(z), H01(z), H10(z), and H11(z).

Notice that the lattice-based method allows for a more general construction of M-DIR transforms using more than

two directions in an arbitrary order. These M-DIR transforms and properties of the corresponding basis functions

[32] are out of the scope of this paper and left for future work.

E. Polyphase Representation

Filtering and subsampling across lattices, as explained in Section III-C, can be efficiently represented in the

polyphase domain. Recall first that a two-channel 1-D filter-bank (H0(z), H1(z)) followed by a subsampler by the

factor 2 can be given in terms of the polyphase components as [2]

H0(z) = H00

(

z2
)

+ zH01

(

z2
)

and

H1(z) = H10

(

z2
)

+ zH11

(

z2
)

.

Here, H00, H01, H10, and H11 are the polyphase components of the filters H0(z) and H1(z) that correspond to

even and odd samples of the impulse response, respectively. Such a polyphase representation is shown in Fig. 11.

Similarly, we can find the equivalent polyphase components of a 2-D filter-bank (H0(z), H1(z)), where z =

(z1, z2), applied in the lattice-based method, as explained in Section III-C. Recall that the filters H0(z) and H1(z)

used in this method are purely 1-D filters, that is, H0(z) = H0(z1) and H1(z) = H1(z1). To illustrate this polyphase

decomposition, we consider the particular example with the lattice Λ determined by the generator matrix

MΛ =





1 1

−1 1



 ,

as shown in Fig. 9. Recall that the lattice-based filtering and subsampling are applied in each coset of the lattice

Λ separately. Thus, the equivalent scheme has two sections, which are (a) separation into two cosets and (b) 1-D
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H1 z1( )

H0 z1( )
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DS

M

H1 z1( )

H0 z1( )
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Mz2
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y0′

y1′

y1″

y0″

M 1 1

1– 1
= DS

2 0

0 1
=

separation into cosets
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subsampling

Λ

Λ

Λ

(a)

DS MΛ⋅

DS MΛ⋅

DS MΛ⋅

DS MΛ⋅

z2

z1 z2⋅

z1 z2
2⋅

y0′

y1′

y1″

y0″

x
Hp

H00 z1( ) H01 z1( ) 0 0

H10 z1( ) H11 z1( ) 0 0

0 0 H00 z1( ) H01 z1( )

0 0 H10 z1( ) H11 z1( )

=Hp

(b)

Fig. 12. (a) The 2-D two-channel filter-bank applied in the example shown in Fig. 9. Filtering and subsampling are applied in 2 cosets

separately. (b) Equivalent polyphase representation contains 4 components. The polyphase transform Hp is block-diagonal.

filtering and subsampling in the transform direction (Fig. 12(a)). Notice that filtering in the transform direction is

performed as horizontal filtering preceded by rotation by the generator matrix MΛ.

Since the total subsampling rate is | det(Ds ·MΛ)| = 4, the polyphase representation of such a filter-bank consists

of 4 polyphase components. The equivalent polyphase representation is shown in Fig. 12(b), where the polyphase

transform Hp is block-diagonal, that is,

Hp =

















H00(z1) H01(z1) 0 0

H10(z1) H11(z1) 0 0

0 0 H00(z1) H01(z1)

0 0 H10(z1) H11(z1)

















.

Notice that the block-diagonal polyphase transform is a consequence of the separable transforms applied across

cosets. This property allows for a simple filter design and computational efficiency in the polyphase domain.

IV. NON-LINEAR APPROXIMATION AND COMPRESSION

The main task of approximation is to represent a signal by a portion of transform coefficients, whereas the rest of

them is set to zero. The transform can be critically sampled (bases) or oversampled (frames). The approximation with

N retained transform coefficients is also called N-term approximation. We distinguish between linear approximation

and NLA. In the first, the indexes of the retained coefficients are fixed, whereas in the latter, they are adapted to

the signal.

Owing to truncation of the coefficients, the approximating signal does not match exactly the original signal. The

quality of the approximation is commonly measured in terms of mean-square error (MSE), that is, for a signal x

and its N -term approximation x̂N , the MSE is given by ‖x− x̂N‖2. Notice that, given a signal x and its transform

y = Fx, where F is a tight frame or an orthogonal basis, we have the following inequality

‖x− x̂N‖2 ≤ 1

A
‖y − ŷN‖2, (7)
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where ŷN corresponds to the truncated version of y with N retained coefficients and A is the frame bound of F

(for more details see Appendix I). Equality in (7) holds if the transform F is an orthogonal basis.

The optimal strategy to minimize the MSE in the orthogonal case is to retain the largest-magnitude transform

coefficients [34]. Notice that the MSE decays as the number of approximants N grows.

Compression using orthogonal transforms is an extension of NLA that consists of (a) approximation, (b) indexing

the retained coefficients, and (c) quantization of the coefficients.3 Thus, the MSE (in this case also called distortion)

is affected by the two factors: (a) truncation error due to NLA and (b) quantization error.

The asymptotic rate of decay of the MSE, as N tends to infinity, is a fundamental approximation property of the

transform used in NLA. This value allows us to compare approximation performance of different transforms. The

higher is rate of decay, the more efficient the transform is. Similarly, the rate of decay in compression is defined

as the asymptotic behavior of the distortion D, as the bitrate R tends to infinity (this is frequently called R-D

behavior).

Mallat [34] and DeVore [37] showed that for a C2 smooth 2-D signal f(x1, x2) away from a C2 discontinuity

curve4 (which we call C2/C2 signal) the lower bound of the MSE is given by O(N−2).

Notice that the standard WT is far from optimal since its rate of decay is O(N−1) [1], [34]. Some other adaptive

or non-adaptive methods have been shown to improve substantially the approximation power. Curvelets [14]–[16]

and contourlets [17] can achieve the rate O(N−2(log N)3), which is nearly optimal. Furthermore, bandelets [7], [8]

and wedgelets [9]–[13] have been shown to perform indeed optimally. However, notice that none of these methods

is based on critically sampled filter-banks that are very convenient for compression. Furthermore, a complex non-

separable processing is sometimes required.

As we showed in Section II and III, anisotropy and multi-directionality improve the approximation power of the

WT while keeping separability, simplicity, and critical sampling. However, the S-FSWT cannot yield a high rate of

decay since it fails to provide a sparse representation of C2/C2 images. On the other hand, the S-AWT is capable

of producing a compact representation, but it is still very sensitive to the choice of the transform and alignment

directions.

Synthetic (including also C2/C2) and natural images have geometrical features that vary over the space. Di-

rectionality, thus, can be considered as a local characteristic, defined in a small neighborhood. This implies the

necessity for spatial segmentation as a way of partitioning an image into smaller segments with one or a few

dominant directions per segment.

The S-AWT is applied on a segmented image, where the transform and alignment directions are chosen inde-

pendently in each segment. The transform outperforms the standard WT in both approximation and compression

rate of decay of the MSE (i.e. distortion). The following theorem gives the rate of decay for C2/C2 images.

Theorem 1: Given a 2-D C2/C2 function f(x1, x2) and α = (
√

17− 1)/2 ≈ 1.562,

3Some algorithms merge quantization and NLA into a single operation producing an embedded bitstream, like zero-trees [35] or SPIHT [36].

4C2 smoothness of both 1-D and 2-D functions means that the functions are twice continuously differentiable.
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Fig. 13. (a) An image from the class C2/C2 is approximated using the standard WT and the S-AWT(Λ,3,2). (b) The decay of the MSE is

faster in the case of the S-AWT(Λ,3,2).

(a) the N -term approximation by the S-AWT using spatial segmentation achieves

MSE = ‖f − f̂N‖2 = O
(

N−α
)

.

In that case the optimal anisotropy ratio is ρ∗ = α.

(b) Compression by the S-AWT, using spatial segmentation and using R bits for encoding, can achieve the distortion

D given by

D = O
(

R−α
)

.

The proof of the theorem is given in Appendix II.

Notice that an anisotropic segmentation is allowed here, that is, an image is partitioned into vertical strips (see

the proof of Theorem 1). In particular, when the optimal anisotropy ratio ρ∗ = α is used, the segmentation does not

improve the approximation power. However, in reality, because of the discreteness of the transform, this anisotropy

ratio cannot be achieved. Notice that the S-AWT(Λ,3,2) approximates well the optimal transform, in which case

segmentation does improve the result. Then, the optimal number of segmentation levels s grows slowly with the

number of approximants N , as s = (log2 N)/51. The achievable rate of decay of the MSE is O(N−1.55).

Although this rate is slower than the ones obtained in [9]–[17], we want to emphasize that the S-AWT(Λ,3,2)

is critically sampled and uses only separable processing. This is important for compression because, in the case

of orthogonal 1-D filter-banks, the Lagrangian-based algorithms still can be applied, making it easier to have very

good compression algorithms.

Recall also from Section III-C that the S-AWT(Λ,3,2) is applied in the | det(MΛ)| cosets separately. The separate

filtering and subsampling in the cosets affect the order of decay of the MSE, but only up to a constant factor, thus,

the rate of decay remains the same.

Fig. 13 illustrates the gain obtained by NLA using the S-AWT(Λ,3,2) applied on an image from the class C 2/C2

when compared to the results of NLA using the standard WT.

Notice that a set of S-AWT built using more transform directions and applied on the whole image (without
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spatial segmentation) yields an overcomplete representation, that is, a tight frame. Here, each directionlet is still

critically sampled, but overcompleteness is caused by a concatenation of directionlets along more directions (similar

to overcompleteness of curvelets). Following the arguments given in [14], [17], we conclude that the best transform

in the overcomplete case is S-AWT(Λ,2,1) with the vertical alignment direction, since the size of the corresponding

directionlets satisfies the parabolic scaling law. However, unlike in [17], where the minimal distance between two

transform directions is halved each two scales, here the processing in each direction is made in parallel branches

and the number of transform directions must remain the same across scales. Since the redundancy factor is equal to

the number of transform directions, the minimal distance between two directions cannot be arbitrarily small. Thus,

the overcomplete directionlets do not provide a good asymptotic order of approximation.

However, this oversampled method is still applicable in practice, when a discrete image is processed. In that case

the number of transform scales is finite and upper bounded. The minimal distance between transform directions

determines the redundancy factor. Then, the required number of directionlets is used from the beginning and remains

the same across scales.

V. CONCLUSION AND FUTURE WORK

We have proposed novel anisotropic transforms for images that use separable filtering in many directions, not

only horizontal and vertical. The associated basis functions, called directionlets, have DVM along any two directions

with rational slopes. These transforms retain the computational efficiency and the simplicity of filter design from

the standard WT. Still, multi-directionality and anisotropy overcome the weakness of the standard WT in presence

of edges and contours, that is, they allow for sparser representations of these directional anisotropic features.

The NLA power of directionlets is substantially superior to that of the standard WT providing an order of decay

of the MSE equal to O(N−1.55) for the C2/C2 class of images. Even though this decay is slower than the one

provided by the other schemes, the directionlets allow critical sampling. This is important for applications in image

compression in the case of orthogonal 1-D filter-banks since the Lagrangian optimization can be implemented

straightforwardly. For instance, the performance of the compression algorithm based on spatial-frequency quantiza-

tion (SFQ) [38], [39] can be improved by replacing the standard WT with directionlets and allowing for adaptation

of the transform and alignment directions and segmentation. This is left for a forthcoming paper.

The directionlets built on digital lines using the 1-D oversampled transforms yield overcomplete tight frames

(tightness is trivial as it follows from the tightness of the oversampled 1-D wavelet transforms). We distinguish

this shift-invariant oversampling and the oversampling in directions as explained in Section IV. The redundant

oversampled directionlets provide a promising framework for image denoising since they can efficiently capture

geometrical structures in images [40]. An adaptive denoising algorithm that enforces coherence in images across

space, scales, and directions is considered in future work.
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APPENDIX I

RELATION BETWEEN THE MSE IN THE ORIGINAL AND TRANSFORM DOMAINS

Assume that, given a frame F ∈ � m×n , the vector y ∈ � m is defined as y = Fx for any x ∈ � n . Here m ≥ n.

Recall that the inverse transform is given by x = (FT F)−1FT ·y [34]. Recall also that if the frame F is tight then

‖y‖2
2 = A‖x‖2

2, where A is called the frame bound. Then, it also holds that

FT · F = AIn, (8)

where In is the n×n identity matrix. In that case, the inverse transform is simplified and it is given by x = A−1FT ·y.

Now, assume that a non-linear operator (e. g. NLA, thresholding, etc.) T : � m → � m is applied on y yielding

ŷ, that is, ŷ = T (y). It holds that x̂ = (FT F)−1FT · ŷ.

The MSE in the original domain is defined as MSEx = ‖x − x̂‖2
2 and, similarly, the MSE in the transform

domain is given by MSEy = ‖y − ŷ‖2
2. Assuming that the frame F is tight we can write

‖x− x̂‖2
2 = ‖ 1

A
FT (y − ŷ) ‖2

2 ≤ 1

A2
‖FT ‖2

2 · ‖y − ŷ‖2
2,

where equality holds when F is orthogonal.

The squared norm ‖FT ‖2
2 of the transposed frame FT is defined as the maximal modulus of the eigenvalues of

F · FT [41]. To compute the squared norm ‖FT ‖2
2 we recall that, following the singular value decomposition, the

frame F can be represented as [41]

F = U ·Σ ·VT ,

where U ∈ � m×m and V ∈ � n×n are unitary matrices and Σ ∈ � m×n is given by

Σ = diag (σ1, σ2, . . . , σn) .

Now, from (8) it follows that

FT · F = VΣT UT · UΣVT = ΣT ·Σ = diag
(

σ2
1 , σ

2
2 , . . . , σ2

n

)

= AIn (9)

and, thus, σ2
1 = σ2

2 = . . . = σ2
n = A.

Similarly, it follows that

F · FT = Σ · ΣT = diag
(

σ2
1 , σ2

2 , . . . , σ2
n, 0, 0, . . . , 0

)

= diag (A, A, . . . , A, 0, 0, . . . , 0) . (10)

Therefore, we conclude from (9) and (10) that ‖FT ‖2
2 = ‖F‖2

2 = A. Hence, the MSE in the original and transform

domains are related as

‖x − x̂‖2
2 ≤ 1

A
‖y − ŷ‖2

2.
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Fig. 14. The 2-D function f(x1, x2) is C2 smooth on the unit square away from a C2 discontinuity curve. The curve can be locally

approximated by a quadratic polynomial y(x) = ax2 + bx+c. The E-type transform coefficients intersect the curve and have a slower decay of

magnitudes across scales than the S-type coefficients, which correspond to the smooth regions. (a) The S-AWT produces the E-type coefficients

within the strip along the slope r. (b) The width of the strip ∆d is minimized for r = a + b.

APPENDIX II

PROOF OF THEOREM 1

Recall first that a C2 curve can be locally represented by the Taylor series expansion, that is, by a quadratic

polynomial

y(x) = ax2 + bx + c, (11)

where a and b are related to the second and first derivative of the curve (curvature and linear component), respectively.

Without loss of generality, we assume that the C2 discontinuity curve is Horizon [9] on the unit square [0, 1]2.

Since the smooth regions of the function f(x1, x2) are C2, assume that the 1-D filters used in the S-AWT are

orthogonal and have at least two vanishing moments. Let the transform be applied along the class of straight lines

defined by

{y(x) = rx + d : d ∈ � }. (12)

Here, the slope r determines the transform direction, whereas the alignment direction is vertical. Equalizing (11)

and (12) we can write

d(x) = ax2 + (b − r)x + c.

The transform coefficients of the S-AWT that intersect the discontinuity curve are called E-type coefficients. The

number of the E-type coefficients at the scale j is given by N
(0)
e (j) = O(2n2j∆d). Here, n2 is the number of

transforms applied along the vertical direction, ∆d = max0≤x≤1 d(x) − min0≤x≤1 d(x) is the width of the strip

along the transform direction that contains the curve (see Fig. 14), and zero in the superscript of N
(0)
e (j) denotes

that no segmentation has been applied yet. The transform direction with the slope

r = a + b (13)
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Fig. 15. Anisotropic segmentation partitions the unit square into 2s equally wide vertical strips. After rescaling, the curvature parameter a is

reduced in each segment by the factor 22s. Since there are 2s segments that intersect the discontinuity, the total number of the E-type transform

coefficients is reduced by 2s. At the same time, the total number of the S-type coefficients is increased by the same factor.

minimizes the width ∆d (and, thereof, N
(0)
e (j)) on the unit square. In that case the number of the E-type coefficients

is given by

N (0)
e (j) = O

(a

2
2n2j

)

.

Notice that an increment in the scale index j is equivalent to a step to a finer scale.

The transform coefficients of the S-AWT, which do not intersect the discontinuity curve are called S-type

coefficients. The number of the S-type coefficients depends on the number of transforms n1 and n2 at a scale

along the transform and vertical directions, respectively, as

N (0)
s (j) = 2(n1+n2)j − N (0)

e (j) = O
(

2(n1+n2)j − a

2
2n2j

)

.

An anisotropic spatial segmentation is applied on the unit square. It partitions the unit square into vertical strips

using the dyadic rule, that is, there are 2s vertical strips at the sth level of segmentation, where the width of each is

2−s (Fig. 15). The optimal transform direction, according to (13), is chosen for each segment independently. Since

each segment is rescaled again to the unit square, the number of the E-type transform coefficients in a segment is

reduced and is given by

O
(a

2
2n2j · 2−2s

)

.

The total number of the E-type coefficients is given by the sum across all the segments, that is,

Ne(j, s) =

2s−1
∑

k=0

O
(a

2
2n2j−2s

)

= O
(a

2
2n2j−s

)

. (14)

Similarly, the total number of the S-type coefficients is given by

Ns(j, s) =

2s−1
∑

k=0

O
(

2(n1+n2)j − a

2
2n2j−2s

)

= O
(

2(n1+n2)j+s − a

2
2n2j−s

)

. (15)

Notice that the exact number of the two types of coefficients given by (14) and (15) depends on the length of the

1-D filters used in the transform. However, the dependence is only up to a constant and, thus, the order of growth

of these numbers across scales remains the same.

DRAFT December 23, 2004
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The magnitudes |we(j)| of the E-type coefficients decay across scales as O(2−(n1+n2)j/2). The S-type coefficients

correspond to the smooth regions of the function f(x1, x2) and their magnitudes |ws(j)| are upper bounded by

O(2−n3j/2). Notice that, since the 1-D HP filters have vanishing moments, the decay of the magnitudes of the

S-type coefficients is faster than the one of the E-type coefficients, that is, n3 > n1 + n2.

We estimate n3 considering that the applied 1-D wavelets have at least two vanishing moments. It is shown in

[34] that, the decay of the magnitudes |ws(j)| in a smooth region after two consecutive transforms with alternated

transform directions is 2−3. Therefore, the decay rate n3 is given by

n3 = 6 · min (n1, n2) + |n2 − n1| =

{

n1 + 5n2, n1 ≥ n2

5n1 + n2, n1 ≤ n2

. (16)

To approximate the function f(x1, x2), we keep all the coefficients with the magnitudes larger or equal to the

threshold 2−m, where m ≥ 0, and discard (set to zero) the others. The retained coefficients can be divided into

two groups:

(1) The E-type coefficients at the scales 0 ≤ j ≤ 2m/(n1 + n2),

(2) The S-type coefficients at the scales 0 ≤ j ≤ 2m/n3.

From (14), (15) and decays of the magnitudes across scales, we compute the order of the total number of retained

coefficients N(m, s) and the MSE. The number N(m, s) is the sum of the retained E and S-type coefficients:

N(m, s) =

2m/(n1+n2)
∑

j=0

Ne(j, s) +

2m/n3
∑

j=0

Ns(j, s)

= O
(

2
2n2

n1+n2
m−s

)

+ O

(

2
2(n1+n2)

n3
m+s

)

. (17)

The MSE is given by

MSE(m, s) =

∞
∑

j=2m/(n1+n2)+1

Ne(j, s)|we(j)|2 +

∞
∑

j=2m/n3+1

Ns(j, s)|ws(j)|2

= O
(

2
−

2n1
n1+n2

m−s
)

+ O

(

2
−

2(n3−n1−n2)
n3

m+s

)

. (18)

Assuming that the number of segmentation levels depends on the exponent m of the threshold as s = ηm, where

the segmentation rate η ≥ 0, we distinguish the two cases, as follows:

(1) The terms in (17) and (18) produced by the E-type coefficients dominate, in which case we have

η ≤ η∗ =
n2

n1 + n2
− n1 + n2

n3

and the MSE decays as

MSE = O
(

N−e1
)

, where e1 =
2n1 + η(n1 + n2)

2n2 − η(n1 + n2)
.

(2) The terms in (17) and (18) produced by the S-type coefficients dominate, that is, η ≥ η∗ and

MSE = O
(

N−e2
)

, where e2 =
2(n3 − n1 − n2) − ηn3

2(n1 + n2) + ηn3
.
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Plugging (16) in the relations above and knowing that the segmentation rate η is a non-negative value, we obtain

the maximal decay rate MSE= O(N−α), with α = (
√

17 − 1)/2 ≈ 1.562. The optimal rate is attained for the

anisotropy ratio ρ∗ = n1/n2 = α ≈ 1.562 and the segmentation rate η∗ = 0.

For the compression application, the retained coefficients have to be indexed and quantized. Each of these

operations carries a cost in terms of the required bits and the MSE (or distortion).

The N retained S-AWT coefficients are organized in an embedded tree-structure, similar to the structures produced

by the standard WT and exploited in the other compression algorithms (zero-trees [35], SPIHT [36], SFQ [38],

[39]).

The main difference between the tree-structures of the standard WT and S-AWT is in the number of descendants

of each transform coefficient. While this number is fixed in the first, it depends on the number of transforms applied

at each scale in the latter. However, the S-AWT tree-structure allows also for indexing the retained coefficients using

approximately 1 bit per transform coefficient.

The variable length coding scheme allocates l bits to encode coefficients with magnitudes in the interval (2l−1−m,

2l−m]. Thus, using (17) and the optimal choice for n1, n2, n3, and η, the total number of encoding bits R is given

by

R(m) = N(m, 0) +

∞
∑

l=1

l2
α
2 (m+1−l) = O

(

2
α
2 m

)

. (19)

The distortion D consists of the two components: (a) the MSE made by truncation of small coefficients in

approximation given by (18), and (b) distortion made by quantization of the retained coefficients. The second

component is given by N · 2−2m and, thus, the total distortion is

D(m) = MSE(m, 0) + N(m, 0) · 2−2m = O
(

2−
α2

2 m
)

. (20)

The R-D behavior follows from (19) and (20) and it is given by

D(R) = O
(

R−α
)

.
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