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ABSTRACT

The application of the wavelet transform in image processing is
most frequently based on a separable construction. While sim-
ple, such an approach is not capable of capturing properly all 2D
properties in images. In this paper, a new truly separable multi-
directional transform is proposed with a subsampling method based
on lattice theory. Applications are possible in many areas of im-
age processing. Some promising improvements are achieved in
non-linear approximation and denoising of images.

1. INTRODUCTION

The standard 2D wavelet transform in image processing is based
on a separable construction. 2D filtering is performed through
the outer product of two independent 1D filterings in horizon-
tal and vertical directions. This approach is very simple and re-
duces importantly the computational complexity with respect to
non-separable filtering. However, 2D phenomena present in im-
ages contain information in many more orientations other than
only horizontal and vertical directions. Thus, the ability to cap-
ture information in more orientations is desirable.

Several approaches based on non-separable filterings have been
proposed showing promising results [1, 5, 8]. However, the filter
design is much more complex and the computational complexity is
substantially higher. In addition, some of these designs are based
on the continuous domain [12] or interpolates pixels in the discrete
space [9] which may cause problems when applying them in the
image discrete domain.

A new approach proposed in [10], the directional wavelet trans-
form, borrows the simplicity of the normal separable wavelet trans-
form while adding more directions for analysis, and this directly
on discrete data. While the design of multi-directional frames is
pretty straightforward using solutions from computer graphics [2],
the construction of multi-directional bases having good represen-
tation properties presents a more difficult challenge due to the sub-
sampling.

In this paper, we use a lattice theory based method to define
a new convenient directional subsampling method. The proposed
method considers each intersection of the digital lines and cosets
produced by shifted versions of a lattice as independent transform
lines (called co-lines). The transform is still separable and it allows
many (much more than only two) transform directions. Moreover,

the subsampling issue is solved simply and clearly for a general
combination of different angles. It contributes also in an improve-
ment of non-linear approximation of images.

The outline of the paper is as follows. Section 2 reviews the
definition of the multi-directional frames using digital lines. Sec-
tion 3 describes the specific construction based on lattice theory
used in the construction of appropriate multi-directional basis func-
tions. It also introduces the idea of a multi-directional wavelet de-
composition tree convenient for non-linear approximation of im-
ages. Finally, Section 4 shows some improved results in denoising
and promising results in non-linear approximation of images.

2. MULTI-DIRECTIONAL FRAMES

In [10], we used the definition of discrete lines given in [2]:

y[n] = brx[n]c + bbc, r = tan θ,
−π

2
< θ ≤

π

2
, b ∈ R. (1)

This definition guarantees a complete partition of the discrete
space Z2.

The digital lines build a useful background structure for apply-
ing a 1D directional filtering along a certain digital direction result-
ing in a directional transform. The directional transform consists
of a set of 1D basic transforms applied along parallel lines for a
fixed angle. If the basic transforms are orthogonal or tight frames,
it was shown [10] that the directional transform (and an iterated
multi-directional transform as well) leads to a tight frame or an or-
thogonal transform as a special case. The bound is simply the sum
of all basic transform bounds [6].

In particular, a one-directional wavelet transform produces two
subbands, where the high-pass subband does not contain any smo-
oth object along the transform direction. Thus, the multi-directional
wavelet transform can be used as a directional discriminator very
convenient for non-linear approximation. Figure 1 shows an ex-
ample with three transform directions applied on an image that
contains directional objects along the same directions. Some di-
rections are omitted in the resulting subbands depending on the
order of the high-pass directional filtering.

3. MULTI-DIRECTIONAL BASES

In designing the multi-directional bases, we need to use the con-
cept of integer lattices. The subsampling procedure will be ex-



Fig. 1. An example of an iterated directional transform with three
directions equal to 00, 450 and 1350.

plained in terms of these lattices.
A full rank integer lattice Λ consists of the set of points ob-

tained by taking linear combinations of two linearly independent
vectors where both the components of the vectors and the coeffi-
cients are integers. Any integer lattice Λ is always a sublattice of
the ordinary cubic integer lattice Z2, that is Λ ⊂ Z2, and can be
represented by a (non-unique) generator matrix:

MΛ =

(

s11 s12

s21 s22

)

=

(

~v1

~v2

)

, (2)

where Λ = {x : x = u1~v1 + u2~v2, ui ∈ Z, i = 1, 2}. An

example with MΛ =

(

2 1
0 1

)

is shown in Figure 2(a).
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Fig. 2. (a) The initial cubic lattice is partitioned in two cosets
of the lattice defined by M1 corresponding to shift vectors ~c0 =
(0, 0) and ~c1 = (1, 1), (b) the subsampled version is given by two
cosets of the lattice defined by M ′′

1 (sublattice of M1) with the
same shift vectors.

It can be shown from lattice theory [4] that given an integer
Λ with a generator matrix having determinant det(MΛ), the cubic
lattice Z2 is partitioned into det(MΛ) cosets BΛ,cj

= Λ + cj ,
where j = 0, . . . , | det(MΛ)| − 1, which are shifted versions of
the sublattice Λ.

In addition, call a set of pixels that belong to a digital line
described by (1) as Lr,b. A co-line is defined as the intersection of
a coset and a digital line:

L̃Λ,cj ,r,b = Lr,b ∩ BΛ,cj
, r ∈ Q. (3)

If MΛ is a generator matrix for Λ, then all the possible genera-
tor matrices for Λ are given by UMΛ where U is a unimodular ma-
trix, that is, a matrix with integer components and | det(U)| = 1.

Although in terms of lattice representation all generator matri-
ces are equivalent, in terms of the way the sampling procedure
is performed, the row vectors of each particular generator ma-
trix can be associated with the digital directions along which the
1D filterings and subsampling will take place. Consider a lattice

Λ1 generated by a matrix MΛ1 =

(

s
(1)
11 s

(1)
12

s
(1)
21 s

(1)
22

)

. The tan-

gent coefficients of the angles are defined as r1 = s
(1)
12 /s

(1)
11 and

r2 = s
(1)
22 /s

(1)
21 .

Now a wavelet transform can be applied along co-lines with
the first slope r1 for all cosets: {L̃Λ1,cj ,r1,b}, where j = 0, . . .
, | detMΛ1 | − 1, b ∈ Z. Subsampling along that direction is done
independently in each coset and the set of points obtained after
the first subsampling consists of a lattice with generator matrix

M ′

Λ1
=

(

2~v1

~v2

)

. Discarding each second sample along each

transform co-line secures a valid subsampling in the sense that per-
fect reconstruction condition is satisfied. The process is continued
in a similar way along the second slope r2 and the final genera-

tor matrix is simply given by M ′′

Λ1
=

(

2~v1

2~v2

)

= 2MΛ1 . The

corresponding lattice Λ′′

1 is clearly a sublattice of the initial one
containing a quarter of the samples. The corresponding example
is shown in Figure 2(b).

The matrix 2MΛ1 produces four times more cosets. However,
only the initial cosets should be kept. The other three-quarters of
the cosets represent the discarded samples.

The next iteration is obtained by using a lattice Λ2 which is in
general a sublattice of Λ′′

1 , that is Λ2 ⊆ Λ′′

1 . This means that any
generator matrix for Λ2 is given by:

MΛ2 = T1 · M
′′

Λ1
, T1 =

(

t
(1)
11 t

(1)
12

t
(1)
21 t

(1)
22

)

, t
(1)
ij ∈ Z. (4)

The new pair of tangent coefficients is: r3 =
t
(1)
11 s

(1)
12 +t

(1)
12 s

(1)
22

t
(1)
11 s

(1)
11 +t

(1)
12 s

(1)
21

and

r4 =
t
(1)
21 s

(1)
12 +t

(1)
22 s

(1)
22

t
(1)
21 s

(1)
11 +t

(1)
22 s

(1)
21

.

If | det(T1)| = 1, then Λ2 = Λ′′

1 and sampling along the
digital lines with slopes r3 and r4 results simply in a different
resampling of Λ′′

1 , which we call redirection step. After the new
subsampling, we will obtain simply Λ′′

2 = 2Λ′′

1 .
If the resampling is not unimodular, (4) yields more cosets.

Then, each coset that survived the previous subsampling step is
divided into | det T1| new cosets.

In total there are | det MΛ2 |/4 cosets that are to be processed
independently in the second step. The step involves two 1D filter-
ings and subsamplings equivalently as in the first step, but along
the new angles.

The iteration can be continued in a similar way as many times
as desired. The redirection step can always be applied on a sub-
sampled version of the initial generator matrix MΛ1 . Indeed, con-
sider the change from M ′′

Λ2
to MΛ3 . We have that:

MΛ3 = C · M ′′

Λ2
= 2C · MΛ2 = 4C · T1 · MΛ1 = T2 · 4MΛ1 ,

where C is an integer matrix and T2 = C · T1. In general the
following holds:

MΛi+1 = Ti · 2
iMΛ1 . (5)



The tangent coefficients after each change are given by:

r2i−1 =
t
(i)
11 s

(1)
12 + t

(i)
12 s

(1)
22

t
(i)
11 s

(1)
11 + t

(i)
12 s

(1)
21

, r2i =
t
(i)
21 s

(1)
12 + t

(i)
22 s

(1)
22

t
(i)
21 s

(1)
11 + t

(i)
22 s

(1)
21

. (6)

Using a concatenation of unimodular redirection steps is desir-
able in non-linear approximation of images as described in Section
4.2, but this constrains the choice of directions because we need to
have that:

| detTi| = |t
(i)
11 t

(i)
22 − t

(i)
12 t

(i)
21 | = 1. (7)

However (6) and (7) together still allow a number of directions to
be used. The following proposition gives the good approximation
property of our construction.

Proposition: Let {MΛi
}K

i=1 be generator matrices of a set
of lattices {Λi}

K
i=1 which satisfy the nesting property explained

above. If 1D filterings and subsamplings are applied along the
directions contained in the matrices {MΛi

}K
i=1, then: a) perfect

reconstruction can be achieved and b) concatenated operations
of filtering and subsampling along the different directions do not
create directional interaction, that is, the samples that are kept at
each iteration are aligned along the next filtering and subsampling
directions.

This avoidance of directional interaction is the crucial property
to achieve good non-linear approximation.

4. APPLICATIONS

4.1. Denoising of Images

Thresholding of the multi-directional frame coefficients led to pro-
mising results in denoising of images [10]. We present a compar-
ison of the two standard denoising algorithms with their multi-
directional counterparts in Figure 3 applied on several test images.

The first standard denoising method uses the undecimated wa-
velet transform [7]. The multi-directional undecimated wavelet
transform is an extension of the standard transform using the multi-
directional frame expansion along a set of 30 uniformly chosen di-
rections. Thresholding of the multi-directional frame coefficients
provides outperforming results comparing with the standard me-
thod.

The second standard method is shift-invariant cycle-spinning
denoising introduced by Coifman and Donoho [3]. The multi-
direct-ional shift-invariant method uses the standard but along the
same set of 30 directions. The results are again improved compar-
ing with the previous ones.

4.2. Non-linear Approximation of Images

Non-linear approximation is more efficient if a smaller number of
significant coefficients is generated, i.e. if the energy of a signal
is concentrated in a smaller number of coefficients. The standard
wavelet transform along horizontal and vertical directions is not
efficient if the analyzed image contains other directions. However,
the multi-directional bases may adapt their orientation to match
the dominant directions in an image. The multi-directional non-
linear approximation uses the multi-directional transform of an
image and approximates it by keeping a certain fixed number of
the largest coefficients.

A well known fact from 1D wavelet theory [11] is that a smo-
oth object can be represented by O (log2 N) significant coeffi-
cients, where N is the length of the signal. In the multi-directional
analysis this holds for each transform line or co-line if more cosets
are used. Therefore distributing a line on more co-lines decreases
the efficiency of approximation because more significant coeffi-
cients are produced. That is why a unimodular chain is preferable.

In order to reach the best approximation power we propose
an iterative decomposition tree that involves multi-directionality.
Consider an image containing a set of directions. Each directional
wavelet filtering step results in a low-pass subband that contains
the same directions as in the input and the high-pass one that anni-
hilates the information along the transform direction. The size of
both subbands is a half of the input size. The target depth of the
iteration is either to eliminate all present directions or to decrease
maximally the size of the subbands. It can be shown that the or-
der of the approximation is close to O

(

logD
2 N

)

, where N is a
characteristic size of the image and D is the number of dominant
directions in the image. A possible realization of a tree is shown
in Figure 4 where three directions are used and the maximal depth
of the tree is four.

A comparison between the multi-directional approximation and
the standard one is made on three test images. The multi-directional
method uses a wavelet decomposition along 00, 450 , 900 and 1350

with the corresponding multi-directional bases. Some of them are
shown in Figure 5. The results of the approximation are shown in
Figure 6 proving the superiority of our approach.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach of multi-directional
subsampling based on lattice theory that leads to the construction
of good discrete multi-directional wavelet bases. The method is
simple yet effective and provides a sparse representation of piece-
wise smooth images containing information along a set of orien-
tations. Applications of the method are possible in many areas
of image processing and we show promising results in non-linear
approximation and denoising of images. Future research will be
focused on denoising based on local thresholding of the wavelet
coefficients rather than global and on design of non-separable fil-
ters that annihilate directional information along certain directions.

6. REFERENCES

[1] R. H. Bamberger and M. J. T. Smith. A filter bank for the directional
decomposition of images: Theory and design. IEEE Signal Proc.,
pages 882–893, April 1992.

[2] J. E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems Journal, 4(1):25–30, 1965.

[3] R. Coifman and D. L. Donoho. Translation-invariant denoising. In
Springer-Verlag, editor, Wavelets and Statistics, Springer Lecture
Notes in Statistics 103, pages 125–140. New York, USA, 1994.

[4] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and
groups. Springer-Verlag, 1998.

[5] M. N. Do. Directional Multiresolution Image Representations. PhD
thesis, Audio-Visual Laboratory, EPFL, October 2001.
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[10] V. Velisavljević, P. L. Dragotti, and M. Vetterli. Directional wavelet
transforms and frames. Proceedings IEEE International Conference
on Image Processing, 3:589–592, September 2002.

[11] M. Vetterli. Wavelets, approximation, and compression. IEEE Signal
Processing Magazine, 18(5):59–73, September 2001.

[12] R. A. Zuidwijk. Directional and time-scale wavelet analysis. SIAM
Journal on Mathematical Analysis, 31(2):416–430, 2000.

d1 d2 d3 d1

d1

d3 d1

d1

d2 d3 d2

d2

d3 d3

d1,d2
d3

d1,d2
d3

d1,d2
d3

d1,d2
d3

d2,d3 d1,d3 d1,d2

d2,d3 d2,d3

d1,d3

d1

d2d3

d3

0

di

H1(di) |2

|2H0(di)

LF

HF

LF

HF
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Fig. 5. Some multi-directional scaling functions for an iteration
of 450 and 1350 . (a,b) An equal number of 450 and 1350 steps,
(c) more steps along 450, (d) more steps along 1350.
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Fig. 6. Comparison between the standard (the dotted line) and the
multi-directional (the full line) non-linear approximation of im-
ages applied on three test images: (a) Cameraman, (b) Barbara,
(c) Lena.


