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Abstract

This chapter describes reference analysis, a method to produce Bayesian inferen-
tial statements which only depend on the assumed model and the available data.
Statistical information theory is used to define the reference prior function as a
mathematical description of that situation where data would best dominate prior
knowledge about the quantity of interest. Reference priors are not descriptions of
personal beliefs; they are proposed as formal consensus prior functions to be used as
standards for scientific communication. Reference posteriors are obtained by formal
use of Bayes theorem with a reference prior. Reference prediction is achieved by
integration with a reference posterior. Reference decisions are derived by minimiz-
ing a reference posterior expected loss. An information theory based loss function,
the intrinsic discrepancy, may be used to derive reference procedures for conven-
tional inference problems in scientific investigation, such as point estimation, region
estimation and hypothesis testing.

Key words: Amount of information, Intrinsic discrepancy, Bayesian asymptotics,
Fisher information, Objective priors, Noninformative priors, Jeffreys priors,
Reference priors, Maximum entropy, Consensus priors, Intrinsic statistic, Point
Estimation, Region Estimation, Hypothesis testing,

1 Introduction and notation

This chapter is mainly concerned with statistical inference problems such
as occur in scientific investigation. Those problems are typically solved condi-
tional on the assumption that a particular statistical model is an appropriate
description of the probabilistic mechanism which has generated the data, and
the choice of that model naturally involves an element of subjectivity. It has
become standard practice, however, to describe as “objective” any statistical
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analysis which only depends on the model assumed and the data observed. In
this precise sense (and only in this sense) reference analysis is a method to
produce “objective” Bayesian inference.

Foundational arguments (Savage, 1954; de Finetti, 1970; Bernardo and Smith,
1994) dictate that scientists should elicit a unique (joint) prior distribution
on all unknown elements of the problem on the basis of available informa-
tion, and use Bayes theorem to combine this with the information provided
by the data, encapsulated in the likelihood function. Unfortunately however,
this elicitation is a formidable task, specially in realistic models with many
nuisance parameters which rarely have a simple interpretation. Weakly in-
formative priors have here a role to play as approximations to genuine proper
prior distributions. In this context, the (unfortunately very frequent) näıve
use of simple proper “flat” priors (often a limiting form of a conjugate family)
as presumed “noninformative” priors often hides important unwarranted as-
sumptions which may easily dominate, or even invalidate, the analysis: see e.g.,
Hobert and Casella (1996, 1998), Casella (1996), Palmer and Pettit (1996),
Hadjicostas and Berry (1999) or Berger (2000). The uncritical (ab)use of such
“flat” priors should be strongly discouraged. An appropriate reference prior
(see below) should instead be used. With numerical simulation techniques,
where a proper prior is often needed, a proper approximation to the reference
prior may be employed.

Prior elicitation would be even harder in the important case of scientific
inference, where some sort of consensus on the elicited prior would obviously
be required. A fairly natural candidate for such a consensus prior would be a
“noninformative” prior, where prior knowledge could be argued to be domin-
ated by the information provided by the data. Indeed, scientific investigation
is seldom undertaken unless it is likely to substantially increase knowledge
and, even if the scientist holds strong prior beliefs, the analysis would be most
convincing to the scientific community if done with a consensus prior which is
dominated by the data. Notice that the concept of a “noninformative” prior
is relative to the information provided by the data.

As evidenced by the long list of references which concludes this chapter, there
has been a considerable body of conceptual and theoretical literature devoted
to identifying appropriate procedures for the formulation of “noninformative”
priors. Beginning with the work of Bayes (1763) and Laplace (1825) under the
name of inverse probability, the use of “noninformative” priors became central
to the early statistical literature, which at that time was mainly objective
Bayesian. The obvious limitations of the principle of insufficient reason used
to justify the (by then) ubiquitous uniform priors, motivated the developments
of Fisher and Neyman, which overshadowed Bayesian statistics during the first
half of the 20th century. The work of Jeffreys (1946) prompted a strong revival
of objective Bayesian statistics; the seminal books by Jeffreys (1961), Lindley
(1965), Zellner (1971), Press (1972) and Box and Tiao (1973), demonstrated
that the conventional textbook problems which frequentist statistics were able
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to handle could better be solved from a unifying objective Bayesian perspect-
ive. Gradual realization of the fact that no single “noninformative” prior could
possibly be always appropriate for all inference problems within a given multi-
parameter model (Dawid, Stone and Zidek, 1973; Efron, 1986) suggested that
the long search for a unique “noninformative” prior representing “ignorance”
within a given model was misguided. Instead, efforts concentrated in identi-
fying, for each particular inference problem, a specific (joint) reference prior
on all the unknown elements of the problem which would lead to a (marginal)
reference posterior for the quantity of interest, a posterior which would always
be dominated by the information provided by the data (Bernardo, 1979b).
As will later be described in detail, statistical information theory was used to
provide a precise meaning to this dominance requirement.

Notice that reference priors were not proposed as an approximation to the
scientist’s (unique) personal beliefs, but as a collection of formal consensus
(not necessarily proper) prior functions which could conveniently be used as
standards for scientific communication. As Box and Tiao (1973, p. 23) re-
quired, using a reference prior the scientist employs the jury principle; as the
jury is carefully screened among people with no connection with the case, so
that testimony may be assumed to dominate prior ideas of the members of the
jury, the reference prior is carefully chosen to guarantee that the information
provided by the data will not be overshadowed by the scientist’s prior beliefs.

Reference posteriors are obtained by formal use of Bayes theorem with a ref-
erence prior function. If required, they may be used to provide point or region
estimates, to test hypothesis, or to predict the value of future observations.
This provides a unified set of objective Bayesian solutions to the conventional
problems of scientific inference, objective in the precise sense that those solu-
tions only depend on the assumed model and the observed data.

By restricting the class P of candidate priors, the reference algorithm makes
it possible to incorporate into the analysis any genuine prior knowledge (over
which scientific consensus will presumably exist). From this point of view,
derivation of reference priors may be described as a new, powerful method
for prior elicitation. Moreover, when subjective prior information is actually
specified, the corresponding subjective posterior may be compared with the
reference posterior—hence its name—to assess the relative importance of the
initial opinions in the final inference.

In this chapter, it is assumed that probability distributions may be described
through their probability density functions, and no notational distinction is
made between a random quantity and the particular values that it may take.
Bold italic roman fonts are used for observable random vectors (typically data)
and bold italic greek fonts for unobservable random vectors (typically para-
meters); lower case is used for variables and upper case calligraphic for their
dominion sets. Moreover, the standard mathematical convention of referring
to functions, say fx and gx of x ∈ X , respectively by f(x) and g(x) will be
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used throughout. Thus, the conditional probability density of data x ∈ X
given θ will be represented by either px |θ or p(x |θ), with p(x |θ) ≥ 0 and∫
X p(x |θ) dx = 1, and the posterior distribution of θ ∈ Θ given x will be rep-

resented by either pθ |x or p(θ |x), with p(θ |x) ≥ 0 and
∫
Θ p(θ |x) dθ = 1.

This admittedly imprecise notation will greatly simplify the exposition. If
the random vectors are discrete, these functions naturally become probability
mass functions, and integrals over their values become sums. Density func-
tions of specific distributions are denoted by appropriate names. Thus, if x
is an observable random variable with a normal distribution of mean µ and
variance σ2, its probability density function will be denoted N(x |µ, σ). If the
posterior distribution of µ is Student with location x, scale s, and n−1 degrees
of freedom, its probability density function will be denoted St(µ |x, s, n− 1).

The reference analysis argument is always defined in terms of some paramet-
ric model of the general form M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}, which describes
the conditions under which data have been generated. Thus, data x are as-
sumed to consist of one observation of the random vector x ∈ X , with probab-
ility density p(x |ω) for some ω ∈ Ω. Often, but not necessarily, data will con-
sist of a random sample x = {y1, . . . ,yn} of fixed size n from some distribution
with, say, density p(y |ω), y ∈ Y , in which case p(x |ω) =

∏n
j=1 p(yj |ω) and

X = Yn. In this case, reference priors relative to model M turn out to be the
same as those relative to the simpler model My ≡ {p(y |ω), y ∈ Y , ω ∈ Ω}.

Let θ = θ(ω) ∈ Θ be some vector of interest; without loss of generality, the
assumed model M may be reparametrized in the form

M ≡ { p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ }, (1)

where λ is some vector of nuisance parameters; this is often simply referred to
as “model” p(x |θ, λ). Conditional on the assumed model, all valid Bayesian
inferential statements about the value of θ are encapsulated in its posterior
distribution p(θ |x) ∝ ∫

Λ p(x |θ, λ) p(θ, λ) dλ, which combines the informa-
tion provided by the data x with any other information about θ contained in
the prior density p(θ, λ). Intuitively, the reference prior function for θ, given
model M and a class of candidate priors P , is that (joint) prior πθ(θ, λ |M,P)
which may be expected to have a minimal effect on the posterior inference
about the quantity of interest θ among the class of priors which belong
to P , relative to data which could be obtained from M. The reference prior
πθ(ω |M,P) is specifically designed to be a reasonable consensus prior (within
the class P of priors compatible with assumed prior knowledge) for inferences
about a particular quantity of interest θ = θ(ω), and it is always conditional
to the specific experimental design M ≡ {p(x |ω), x ∈ X , ω ∈ Ω} which is
assumed to have generated the data.

By definition, the reference prior πθ(θ, λ |M,P) is “objective”, in the sense
that it is a well-defined mathematical function of the vector of interest θ, the
assumed model M, and the class P of candidate priors, with no additional
subjective elements. By formal use of Bayes theorem and appropriate integ-
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ration (provided the integral is finite), the (joint) reference prior produces a
(marginal) reference posterior for the vector of interest

π(θ |x,M,P) ∝
∫
Λ

p(x |θ, λ) πθ(θ, λ |M,P) dλ, (2)

which could be described as a mathematical expression of the inferential con-
tent of data x with respect to the value of θ, with no additional knowledge
beyond that contained in the assumed statistical model M and the class P of
candidate priors (which may well consist of the class P0 of all suitably regular
priors). To simplify the exposition, the dependence of the reference prior on
both the model and the class of candidate priors is frequently dropped from the
notation, so that πθ(θ, λ) and π(θ |x) are written instead of πθ(θ, λ |M,P)
and π(θ |x,M,P).

The reference prior function πθ(θ, λ) often turns out to be an improper
prior, i.e., a positive function such that

∫
Θ

∫
Λ πθ(θ, λ) dθ dλ diverges and,

hence, cannot be renormalized into a proper density function. Notice that this
is not a problem provided the resulting posterior distribution (2) is proper
for all suitable data. Indeed the declared objective of reference analysis is to
provide appropriate reference posterior distributions; reference prior functions
are merely useful technical devices for a simple computation (via formal use
of Bayes theorem) of reference posterior distributions. For discussions on the
axiomatic foundations which justify the use of improper prior functions, see
Hartigan (1983) and references therein.

In the long quest for objective posterior distributions, several requirements
have emerged which may reasonably be requested as necessary properties of
any proposed solution:

(1) Generality. The procedure should be completely general, i.e., applicable
to any properly defined inference problem, and should produce no unten-
able answers which could be used as counterexamples. In particular, an
objective posterior π(θ |x) must be a proper probability distribution for
any data set x large enough to identify the unknown parameters.

(2) Invariance. Jeffreys (1946), Hartigan (1964), Jaynes (1968), Box and Tiao
(1973, Sec. 1.3), Villegas (1977b, 1990), Dawid (1983), Yang (1995), Datta
and J. K. Ghosh (1995b), Datta and M. Ghosh (1996). For any one-to-one
function φ = φ(θ), the posterior π(φ |x) obtained from the reparamet-
rized model p(x |φ, λ) must be coherent with the posterior π(θ |x) ob-
tained from the original model p(x |θ, λ) in the sense that, for any data
set x ∈ X , π(φ |x) = π(θ |x)| dθ/ dφ|. Moreover, if the model has a
sufficient statistic t = t(x), then the posterior π(θ |x) obtained from the
full model p(x |θ, λ) must be the same as the posterior π(θ | t) obtained
from the equivalent model p(t |θ, λ).
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(3) Consistent marginalization. Stone and Dawid (1972), Dawid, Stone and
Zidek (1973), Dawid (1980). If, for all data x, the posterior π1(θ |x)
obtained from model p(x |θ, λ) is of the form π1(θ |x) = π1(θ | t) for
some statistic t = t(x) whose sampling distribution p(t |θ, λ) = p(t |θ)
only depends on θ, then the posterior π2(θ | t) obtained from the marginal
model p(t |θ) must be the same as the posterior π1(θ | t) obtained from
the original full model.

(4) Consistent sampling properties. Neyman and Scott (1948), Stein (1959),
Dawid and Stone (1972, 1973), Cox and Hinkley (1974, Sec. 2.4.3), Stone
(1976), Lane and Sudderth (1984). The properties under repeated sampling
of the posterior distribution must be consistent with the model. In par-
ticular, the family of posterior distributions {π(θ |xj), xj ∈ X} which
could be obtained by repeated sampling from p(xj |θ, ω) should concen-
trate on a region of Θ which contains the true value of θ.

Reference analysis, introduced by Bernardo (1979b) and further developed
by Berger and Bernardo (1989, 1992a,b,c), appears to be the only available
method to derive objective posterior distributions which satisfy all these de-
siderata. This chapter describes the basic elements of reference analysis, states
its main properties, and provides signposts to the huge related literature.

Section 2 summarizes some necessary concepts of discrepancy and conver-
gence, which are based on information theory. Section 3 provides a formal
definition of reference distributions, and describes their main properties. Sec-
tion 4 describes an integrated approach to point estimation, region estimation,
and hypothesis testing, which is derived from the joint use of reference ana-
lysis and an information-theory based loss function, the intrinsic discrepancy.
Section 5 provides many additional references for further reading on reference
analysis and related topics.

2 Intrinsic discrepancy and expected information

Intuitively, a reference prior for θ is one which maximizes what it is not
known about θ, relative to what could possibly be learnt from repeated ob-
servations from a particular model. More formally, a reference prior for θ is
defined to be one which maximizes—within some class of candidate priors—
the missing information about the quantity of interest θ, defined as a limiting
form of the amount of information about its value which repeated data from
the assumed model could possibly provide. In this section, the notions of dis-
crepancy, convergence, and expected information—which are required to make
these ideas precise—are introduced and illustrated.

Probability theory makes frequent use of divergence measures between prob-
ability distributions. The total variation distance, Hellinger distance, Kullback-
Leibler logarithmic divergence, and Jeffreys logarithmic divergence are fre-
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quently cited; see, for example, Kullback (1968, 1983, 1987), Ibragimov and
Khasminskii (1973), and Gutiérrez-Peña (1992) for precise definitions and
properties. Each of those divergence measures may be used to define a type
of convergence. It has been found, however, that the behaviour of many im-
portant limiting processes, in both probability theory and statistical inference,
is better described in terms of another information-theory related divergence
measure, the intrinsic discrepancy (Bernardo and Rueda, 2002), which is now
defined and illustrated.

Definition 1 (Intrinsic discrepancy) The intrinsic discrepancy δ{p1, p2}
between two probability distributions of a random vector x ∈ X , specified by
their density functions p1(x), x ∈ X 1 ⊂ X , and p2(x), x ∈ X 2 ⊂ X , with
either identical or nested supports, is

δ{p1, p2} = min
{ ∫

X1

p1(x) log
p1(x)

p2(x)
dx,

∫
X2

p2(x) log
p2(x)

p1(x)
dx

}
, (3)

provided one of the integrals (or sums) is finite. The intrinsic discrepancy
between two parametric models for x ∈ X , M1 ≡ {p1(x |ω), x ∈ X 1, ω ∈ Ω}
and M2 ≡ {p2(x |ψ), x ∈ X 2, ψ ∈ Ψ}, is the minimum intrinsic discrepancy
between their elements,

δ{M1,M2} = inf
ω∈Ω, ψ∈Ψ

δ{p1(x |ω), p2(x |ψ)}. (4)

The intrinsic discrepancy is a new element of the class of intrinsic loss
functions defined by Robert (1996); the concept is not related to the concepts
of “intrinsic Bayes factors” and “intrinsic priors” introduced by Berger and
Pericchi (1996), and reviewed in Pericchi (2005).

Notice that, as one would require, the intrinsic discrepancy δ{M1,M2}
between two parametric families of distributions M1 and M2 does not depend
on the particular parametrizations used to describe them. This will be crucial
to guarantee the desired invariance properties of the statistical procedures
described later.

It follows from Definition 1 that the intrinsic discrepancy between two prob-
ability distributions may be written in terms of their two possible Kullback-
Leibler directed divergences as

δ{p2, p1} = min
{

κ{p2 | p1}, κ{p1 | p2}
}

(5)

where (Kullback and Leibler, 1951) the κ{pj | pi}’s are the non-negative in-
variant quantities defined by

κ{pj | pi} =
∫

X i

pi(x) log
pi(x)

pj(x)
dx, with X i ⊆ X j. (6)
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Since κ{pj | pi} is the expected value of the logarithm of the density (or prob-
ability) ratio for pi against pj, when pi is true, it also follows from Definition 1
that, if M1 and M2 describe two alternative models, one of which is assumed
to generate the data, their intrinsic discrepancy δ{M1,M2} is the minimum
expected log-likelihood ratio in favour of the model which generates the data
(the “true” model). This will be important in the interpretation of many of
the results described in this chapter.

The intrinsic discrepancy is obviously symmetric. It is non-negative, vanishes
if (and only if) p1(x) = p2(x) almost everywhere, and it is invariant under
one-to-one transformations of x. Moreover, if p1(x) and p2(x) have strictly
nested supports, one of the two directed divergences will not be finite, but
their intrinsic discrepancy is still defined, and reduces to the other directed
divergence. Thus, if X i ⊂ X j, then δ{pi, pj} = δ{pj, pi} = κ{pj | pi}.

The intrinsic discrepancy is information additive. Thus, if x consists of n
independent observations, so that x = {y1, . . . ,yn} and pi(x) =

∏n
j=1 qi(yj),

then δ{p1, p2} = n δ{q1, q2}. This statistically important additive property is
essentially unique to logarithmic discrepancies; it is basically a consequence
of the fact that the joint density of independent random quantities is the
product of their marginals, and the logarithm is the only analytic function
which transforms products into sums.

Example 1 Intrinsic discrepancy between Binomial distributions. The
intrinsic discrepancy δ{θ1, θ2 |n} between the two Binomial distributions

Figure 1 Intrinsic discrepancy between Bernoulli variables.
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with common value for n, p1(r) = Bi(r |n, θ1) and p2(r) = Bi(r |n, θ2), is

δ{p1, p2}= δ{θ1, θ2 |n} = n δ1{θ1, θ2}, (7)

δ1{θ1, θ2}= min[ κ{θ1 | θ2}, κ{θ2 | θ1} ]

κ(θi | θj) = θj log[θj/θi] + (1 − θj) log[(1 − θj)/(1 − θi)],

where δ1{θ1, θ2} (represented in the left panel of Figure 1) is the intrinsic
discrepancy δ{q1, q2} between the corresponding Bernoulli distributions,
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qi(y) = θy
i (1−θi)

1−y, y ∈ {0, 1}. It may be appreciated that, specially near
the extremes, the behaviour of the intrinsic discrepancy is rather different
from that of the conventional quadratic loss c (θ1 − θ2)

2 (represented in
the right panel of Figure 1 with c chosen to preserve the vertical scale).

As a direct consequence of the information-theoretical interpretation of
the Kullback-Leibler directed divergences (Kullback, 1968, Ch. 1), the in-
trinsic discrepancy δ{p1, p2} is a measure, in natural information units or nits
(Boulton and Wallace, 1970), of the minimum amount of expected informa-
tion, in Shannon (1948) sense, required to discriminate between p1 and p2.
If base 2 logarithms were used instead of natural logarithms, the intrinsic
discrepancy would be measured in binary units of information (bits).

The quadratic loss �{θ1, θ2} = (θ1 − θ2)
2, often (over)used in statistical in-

ference as measure of the discrepancy between two distributions p(x | θ1) and
p(x | θ2) of the same parametric family {p(x | θ), θ ∈ Θ}, heavily depends on
the parametrization chosen. As a consequence, the corresponding point estim-
ate, the posterior expectation is not coherent under one-to-one transforma-
tions of the parameter. For instance, under quadratic loss, the “best” estim-
ate of the logarithm of some positive physical magnitude is not the logarithm
of the “best” estimate of such magnitude, a situation hardly acceptable by
the scientific community. In sharp contrast to conventional loss functions, the
intrinsic discrepancy is invariant under one-to-one reparametrizations. Some
important consequences of this fact are summarized below.

Let M ≡ {p(x |θ), x ∈ X , θ ∈ Θ} be a family of probability densities,
with no nuisance parameters, and let θ̃ ∈ Θ be a possible point estimate of
the quantity of interest θ. The intrinsic discrepancy δ{θ̃, θ} = δ{px | θ̃, px |θ}
between the estimated model and the true model measures, as a function
of θ, the loss which would be suffered if model p(x | θ̃) were used as a proxy
for model p(x |θ). Notice that this directly measures how different the two
models are, as opposed to measuring how different their labels are, which is
what conventional loss functions—like the quadratic loss—typically do. As
a consequence, the resulting discrepancy measure is independent of the par-
ticular parametrization used; indeed, δ{θ̃, θ} provides a natural, invariant
loss function for estimation, the intrinsic loss. The intrinsic estimate is that
value θ∗ which minimizes d(θ̃ |x) =

∫
Θ δ{θ̃, θ} p(θ |x) dθ, the posterior ex-

pected intrinsic loss, among all θ̃ ∈ Θ. Since δ{θ̃, θ} is invariant under re-
parametrization, the intrinsic estimate of any one-to-one transformation of θ,
φ = φ(θ), is simply φ∗ = φ(θ∗) (Bernardo and Juárez, 2003).

The posterior expected loss function d(θ̃ |x) may further be used to define
posterior intrinsic p-credible regions Rp = {θ̃; d(θ̃ |x) < d∗

p}, where d∗
p is

chosen such that Pr[θ ∈ Rp |x] = p. In contrast to conventional highest
posterior density (HPD) credible regions, which do not remain HPD under
one-to-one transformations of θ, these lowest posterior loss (LPL) credible
regions remain LPL under those transformations.
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Similarly, if θ0 is a parameter value of special interest, the intrinsic dis-
crepancy δ{θ0, θ} = δ{px |θ0 , px |θ} provides, as a function of θ, a meas-
ure of how far the particular density p(x |θ0) (often referred to as the null
model) is from the assumed model p(x |θ), suggesting a natural invariant
loss function for precise hypothesis testing. The null model p(x |θ0) will be
rejected if the corresponding posterior expected loss (called the intrinsic stat-
istic) d(θ0 |x) =

∫
Θ δ{θ0, θ} p(θ |x) dθ, is too large. As one should surely

require, for any one-to-one transformation φ = φ(θ), testing whether of not
data are compatible with θ = θ0 yields precisely the same result as testing
φ = φ0 = φ(θ0) (Bernardo and Rueda, 2002).

These ideas, extended to include the possible presence of nuisance paramet-
ers, will be further analyzed in Section 4.

Definition 2 (Intrinsic convergence) A sequence of probability distribu-
tions specified by their density functions {pi(x)}∞i=1 is said to converge intrins-
ically to a probability distribution with density p(x) whenever the sequence of
their intrinsic discrepancies {δ(pi, p)}∞i=1 converges to zero.

Example 2 Poisson approximation to a Binomial distribution. The in-
trinsic discrepancy between a Binomial distribution with probability func-
tion Bi(r |n, θ) and its Poisson approximation Po(r |nθ), is

δ{Bi, Po |n, θ} =
n∑

r=0

Bi(r |n, θ) log
Bi(r |n, θ)

Po(r |nθ)
,

since the second sum in Definition 1 diverges. It may easily be verified
that limn→∞ δ{Bi, Po |n, λ/n} = 0 and limθ→0 δ{Bi, Po |λ/θ, θ} = 0; thus,
as one would expect from standard probability theory, the sequences of
Binomials Bi(r |n, λ/n) and Bi(r |λ/θi, θi) both intrinsically converge to
a Poisson Po(r |λ) when n → ∞ and θi → 0, respectively.

Figure 2 Intrinsic discrepancy δ{Bi,Po |n, θ} between a Binomial Bi(r |n, θ)
and a Poisson Po(r |nθ) as a function of θ, for n = 1, 3, 5 and ∞.
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However, if one is interest in approximatiing a Binomial Bi(r |n, θ) by a
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Poisson Po(r |nθ) the rôles of n and θ are far from similar: the important
condition for the Poisson approximation to the Binomial to work is that
the value of θ must be small, while the value of n is largely irrelevant.
Indeed, (see Figure 2), limθ→0 δ{Bi, Po |n, θ} = 0, for all n > 0, but
limn→∞ δ{Bi, Po |n, θ} = 1

2 [−θ− log(1− θ)] for all θ > 0. Thus, arbitrarily
good approximations are possible with any n, provided θ is sufficiently
small. However, for fixed θ, the quality of the approximation cannot im-
prove over a certain limit, no matter how large n might be. For example,
δ{Bi, Po | 3, 0.05} = 0.00074 and δ{Bi, Po | 5000, 0.05} = 0.00065, both
yielding an expected log-probability ratio of about 0.0007. Thus, for all
n ≥ 3 the Binomial distribution Bi(r |n, 0.05) is quite well approximated
by the Poisson distribution Po(r | 0.05n), and the quality of the approx-
imation is very much the same for any value n.

Many standard approximations in probability theory may benefit from an
analysis similar to that of Example 2. For instance, the sequence of Student
distributions {St(x |µ, σ, ν)}∞ν=1 converges intrinsically to the normal distribu-
tion N(x |µ, σ) with the same location and scale parameters, and the discrep-
ancy δ(ν) = δ{St(x |µ, σ, ν), N(x |µ, σ)} (which only depends on the degrees
of freedom ν) is smaller than 0.001 when ν > 40. Thus approximating a Stu-
dent with more than 40 degrees of freedom by a normal yields an expected
log-density ratio smaller than 0.001, suggesting quite a good approximation.

As mentioned before, a reference prior is often an improper prior function.
Justification of its use as a formal prior in Bayes theorem to obtain a reference
posterior necessitates proving that the reference posterior thus obtained is an
appropriate limit of a sequence of posteriors obtained from proper priors.

Theorem 1 Consider a model M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}. If π(ω) is a
strictly positive improper prior, {Ωi}∞i=1 is an increasing sequence of subsets of
the parameter space which converges to Ω and such that

∫
Ωi

π(ω) dω < ∞, and
πi(ω) is the renormalized proper density obtained by restricting π(ω) to Ωi,
then, for any data set x ∈ X , the sequence of the corresponding posteriors
{πi(ω |x)}∞i=1 converges intrinsically to the posterior π(ω |x) ∝ p(x |ω) π(ω)
obtained by formal use of Bayes theorem with the improper prior π(ω).

However, to avoid possible pathologies, a stronger form of convergence is
needed; for a sequence of proper priors {πi}∞i=1 to converge to a (possibly im-
proper) prior function π, it will further be required that the predicted intrinsic
discrepancy between the corresponding posteriors converges to zero. For a
motivating example, see Berger and Bernardo (1992c, p. 43), where the model

{
p(x | θ) = 1

3 , x ∈ {[ θ
2 ], 2θ, 2θ + 1}, θ ∈ {1, 2, . . .}

}
,

where [u] denotes the integer part of u (and [12 ] is separately defined as 1),
originally proposed by Fraser, Monette and Ng (1985), is reanalysed.
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Definition 3 (Permissible prior function) A positive function π(ω) is an
permissible prior function for model M ≡ {p(x |ω), x ∈ X , ω ∈ Ω} if for all
x ∈ X one has

∫
Ω p(x |ω) π(ω) dω < ∞, and for some increasing sequence

{Ωi}∞i=1 of subsets of Ω, such that limi→∞ Ωi = Ω, and
∫
Ωi

π(ω) dω < ∞,

lim
i→∞

∫
X

pi(x) δ{πi(ω |x), π(ω |x)} dx = 0,

where πi(ω) is the renormalized restriction of π(ω) to Ωi, πi(ω |x) is the cor-
responding posterior, pi(x) =

∫
Ωi

p(x |ω) πi(ω) dω is the corresponding pre-
dictive, and π(ω |x) ∝ p(x |ω) π(ω).

In words, π(ω) is a permissible prior function for model M if it always
yields proper posteriors, and the sequence of the predicted intrinsic discrepan-
cies between the corresponding posterior π(ω |x) and its renormalized restric-
tions to Ωi converges to zero for some suitable approximating sequence of the
parameter space. All proper priors are permissible in the sense of Definition 3,
but improper priors may or may not be permissible, even if they seem to be
arbitrarily close to proper priors.

Example 3 Exponential model. Let x = {x1, . . . , xn} be a random sample
from p(x | θ) = θe−θ x, θ > 0, so that p(x | θ) = θne−θ t, with sufficient
statistic t =

∑n
j=1 xj. Consider a positive function π(θ) ∝ θ−1, so that

π(θ | t) ∝ θn−1e−θ t, a gamma density Ga(θ |n, t), which is a proper dis-
tribution for all possible data sets. Take now some sequence of pairs of
positive real numbers {ai, bi}, with ai < bi, and let Θi = (ai, bi); the in-
trinsic discrepancy between π(θ | t) and its renormalized restriction to Θi,
denoted πi(θ | t), is δi(n, t) = κ{π(θ | t) |πi(θ | t)} = log [ci(n, t)], where
ci(n, t) = Γ(n)/{Γ(n, ai t)−Γ(n, bi t)}. The renormalized restriction of π(θ)
to Θi is πi(θ) = θ−1/ log[bi/ai], and the corresponding (prior) predictive
of t is pi(t |n) = c−1

i (n, t) t−1/ log[bi/ai]. It may be verified that, for all
n ≥ 1, the expected intrinsic discrepancy

∫ ∞
0 pi(t |n) δi(n, t) dt converges

to zero as i → ∞. Hence, all positive functions of the form π(θ) ∝ θ−1 are
permissible priors for the parameter of an exponential model.

Example 4 Mixture model. Let x = {x1, . . . , xn} be a random sample
from M ≡ {1

2N(x | θ, 1) + 1
2N(x | 0, 1), x ∈ IR, θ ∈ IR}. It is easily verified

that the likelihood function p(x | θ) =
∏n

j=1 p(xj | θ) is always bounded
below by a strictly positive function of x. Hence,

∫ ∞
−∞ p(x | θ) dθ = ∞

for all x, and the “natural” objective uniform prior function π(θ) = 1 is
obviously not permissible, although it may be pointwise arbitrarily well
approximated by a sequence of proper “flat” priors.

Definition 4 (Intrinsic association) The intrinsic association αxy between
two random vectors x ∈ X and y ∈ Y with joint density p(x, y) and marginals
p(x) and p(y) is the intrinsic discrepancy αxy = δ{px y, pxpy} between their
joint density and the product of their marginals. The intrinsic coefficient of
association ρ2

x y = 1 − exp{−2αx y} rescales the intrinsic association to [0, 1].
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The intrinsic association is a non-negative invariant measure of association
between two random vectors, which vanishes if they are independent, and
tends to infinity as y and x approach a functional relationship. If their joint
distribution is bivariate normal, then αx y = −1

2 log(1 − ρ2), and ρ2
x y = ρ2,

the square of their coefficient of correlation ρ.

The concept of intrinsic association extends that of mutual information; see
e.g., Cover and Thomas (1991), and references therein. Important differences
arise in the context of contingency tables, where both x and y are discrete
random variables which may only take a finite number of different values.

Definition 5 (Expected intrinsic information) The expected intrinsic in-
formation I{pω |M} from one observation of M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}
about the value of ω ∈ Ω when the prior density is p(ω), is the intrinsic asso-
ciation αxω = δ{px ω, px pω} between x and ω, where p(x, ω) = p(x |ω) p(ω),
and p(x) =

∫
Ω p(x |ω) p(ω) dω.

For a fixed model M, the expected intrinsic information I{pω |M} is a
concave, positive functional of the prior p(ω). Under appropriate regular-
ity conditions, in particular when data consists of a large random sample
x = {y1, . . . ,yn} from some model {p(y |ω), y ∈ Y , ω ∈ Ω}, one has

∫ ∫
X×Ω

[p(x)p(ω) + p(x, ω)] log
p(x) p(ω)

p(x, ω)
dx dω ≥ 0 (8)

so that κ{px pω | px ω} ≤ κ{px ω | px pω}. If this is the case,

I{pω |M}= δ{px ω, px pω} = κ{px pω | px ω}

=
∫ ∫

X×Ω
p(x, ω) log

p(x, ω)

p(x) p(ω)
dx dω (9)

=
∫
Ω

p(ω)
∫

X
p(x |ω) log

p(ω |x)

p(ω)
dx dω (10)

= H[pω] −
∫

X
p(x) H[pω |x] dx, (11)

where H[pω] = − ∫
Ω p(ω) log p(ω) dω is the entropy of pω, and the expected

intrinsic information reduces to the Shannon’s expected information (Shan-
non, 1948; Lindley, 1956; Stone, 1959; de Waal and Groenewald, 1989; Clarke
and Barron, 1990).

For any fixed model M, the expected intrinsic information I{pω |M} meas-
ures, as a functional of the prior pω, the amount of information about the
value of ω which one observation x ∈ X may be expected to provide. The
stronger the prior knowledge described by pω, the smaller the information the
data may be expected to provide; conversely, weak initial knowledge about
ω will correspond to large expected information from the data. This is the
intuitive basis for the definition of a reference prior.
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3 Reference distributions

Let x be one observation from model M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}, and
let θ = θ(ω) ∈ Θ be some vector of interest, whose posterior distribution is
required. Notice that x represents the complete available data; often, but not
always, this will consist of a random sample x = {y1, . . . ,yn} of fixed size n
from some simpler model. Let P be the class of candidate priors for ω, defined
as those sufficiently regular priors which are compatible with whatever agreed
“objective” initial information about the value of ω one is willing to assume.
A permissible prior function πθ(ω |M,P) is desired which may be expected
to have a minimal effect (in a sense to be made precise) among all priors in P ,
on the posterior inferences about θ = θ(ω) which could be derived given data
generated from M. This will be named a reference prior function of ω for the
quantity of interest θ, relative to model M and class P of candidate priors, and
will be denoted by πθ(ω |M,P). The reference prior function πθ(ω |M,P)
will then be used as a formal prior density to derive the required reference
posterior distribution of the quantity of interest, π(θ |x,M,P), via Bayes
theorem and the required probability operations.

This section contains the definition and basic properties of reference dis-
tributions. The ideas are first formalized in one-parameter models, and then
extended to multiparameter situations. Special attention is devoted to restric-
ted reference distributions, where the class of candidate priors P consists of
those which satisfy some set of assumed conditions. This provides a continuous
collection of solutions, ranging from situations with no assumed prior informa-
tion on the quantity of interest, when P is the class P0 of all sufficiently regular
priors, to situations where accepted prior knowledge is sufficient to specify a
unique prior p0(ω), so that πθ(ω |M,P) = p0(θ), the situation commonly
assumed in Bayesian subjective analysis.

3.1 One parameter models

Let θ ∈ Θ ⊂ IR be a real-valued quantity of interest, and let available
data x consist of one observation from model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ},
so that there are no nuisance parameters. A permissible prior function π(θ) =
π(θ |M,P) in a class P is desired with a minimal expected effect on the
posteriors of θ which could be obtained after data x ∈ X generated from M
have been observed.

Let x(k) = {x1, . . . ,xk} consist of k conditionally independent (given θ)
observations from M, so that x(k) consists of one observation from the product
model Mk = {∏k

j=1 p(xj | θ), xj ∈ X , θ ∈ Θ }. Let pθ be a prior distribution
for the quantity of interest, and consider the intrinsic information about θ,
I{pθ |Mk}, which could be expected from the vector x(k) ∈ X k. For any
sufficiently regular prior pθ, the posterior distribution of θ would concentrate
on its true value as k increases and therefore, as k → ∞, the true value of θ
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would get to be precisely known. Thus, as k → ∞, the functional I{pθ |Mk}
will approach a precise measure of the amount of missing information about θ
which corresponds to the prior pθ. It is natural to define the reference prior as
that prior function πθ = π(θ |M,P) which maximizes the missing information
about the value of θ within the class P of candidate priors.

Under regularity conditions, the expected intrinsic information I{pθ |Mk}
becomes, for large k, Shannon’s expected information and hence, using (11),

I{pθ |Mk} = H[pθ] −
∫
Xk

p(x(k)) H[pθ |x(k) ] dx(k), (12)

where H[pθ] = − ∫
Θ p(θ) log p(θ) dθ, is the entropy of pθ. It follows that, when

the parameter space Θ = {θ1, . . . , θm} is finite, the missing information which
corresponds to any strictly positive prior pθ is, for any model M,

lim
k→∞

I{pθ |Mk} = H[pθ] = −
∑m

j=1
p(θj) log p(θj), (13)

since, as k → ∞, the discrete posterior probability function p(θ |x(k)) con-
verges to a degenerate distribution with probability one on the true value of θ
and zero on all others, and thus, the posterior entropy H[pθ |x(k) ] converges
to zero. Hence, in finite parameter spaces, the reference prior for the para-
meter does not depend on the precise form of the model, and it is precisely
that which maximizes the entropy within the class P of candidate priors. This
was the solution proposed by Jaynes (1968), and it is often used in mathem-
atical physics. In particular, if the class of candidate priors is the class P0

of all strictly positive probability distributions, the reference prior for θ is
a uniform distribution over Θ, the “noninformative” prior suggested by the
old insufficient reason argument (Laplace, 1812). For further information on
the concept of maximum entropy, see Jaynes (1968, 1982, 1985, 1989), Akaike
(1977), Csiszár (1985, 1991), Clarke and Barron (1994), Grünwald and Dawid
(2004), and references therein.

In the continuous case, however, I{pθ |Mk} typically diverges as k → ∞,
since an infinite amount of information is required to know exactly the value
of a real number. A general definition of the reference prior (which includes
the finite case as a particular case), is nevertheless possible as an appropriate
limit, when k → ∞, of the sequence of priors maximizing I{pθ |Mk} within
the class P . Notice that this limiting procedure is not some kind of asymptotic
approximation, but an essential element of the concept of a reference prior.
Indeed, the reference prior is defined to maximize the missing information
about the quantity of interest which could be obtained by repeated sampling
from M (not just the information expected from a finite data set), and this
is precisely achieved by maximizing the expected information from the arbit-
rarily large data set which could be obtained by unlimited repeated sampling
from the assumed model.
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Since I{pθ |Mk} is only defined for proper priors, and I{pθ |Mk} is not
guaranteed to attain its maximum at a proper prior, the formal definition
of a reference prior is stated as a limit, as i → ∞, of the sequence of solu-
tions obtained for restrictions {Θi}∞i=1 of the parameter space chosen to ensure
that the maximum of I{pθ |Mk} is actually obtained at a proper prior. The
definition below (Berger, Bernardo and Sun, 2005) generalizes those in Ber-
nardo (1979b) and Berger and Bernardo (1992c), and addresses the problems
described in Berger, Bernardo and Mendoza (1989).

Definition 6 (One-parameter reference priors) Consider the one-para-
meter model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ ⊂ IR}, and let P be a class of
candidate priors for θ. The positive function π(θ) = π(θ |M,P) is a reference
prior for model M given P if it is a permissible prior function such that, for
some increasing sequence {Θi}∞i=1 with limi→∞ Θi = Θ and

∫
Θi

π(θ) dθ < ∞,

lim
k→∞

{I{πi |Mk} − I{pi |Mk}} ≥ 0, for all Θi, for all p ∈ P,

where πi(θ) and pi(θ) are the renormalized restrictions of π(θ) and p(θ) to Θi.

Notice that Definition 6 involves two rather different limiting processes.
The limiting process of the Θi’s towards the whole parameter space Θ is only
required to guarantee the existence of the expected informations; this may
often (but not always) be avoided if the parameter space is (realistically)
chosen to be some finite interval [a, b]. On the other hand, the limiting process
as k → ∞ is an essential part of the definition. Indeed, the reference prior is
defined as that prior function which maximizes the missing information, which
is the expected discrepancy between prior knowledge and perfect knowledge;
but perfect knowledge is only approached asymptotically, as k → ∞.

Definition 6 implies that reference priors only depend on the asymptotic be-
haviour of the assumed model, a feature which greatly simplifies their actual
derivation; to obtain a reference prior π(θ |M,P) for the parameter θ of model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}, it is both necessary and sufficient to establish
the asymptotic behaviour of its posterior distribution under (conceptual) re-
peated sampling from M, that is the limiting form, as k → ∞, of the posterior
density (or probability function) π(θ |x(k)) = π(θ |x1, . . . ,xk).

As one would hope, Definition 6 yields the maximum entropy result in the
case where the parameter space is finite and the quantity of interest is the
actual value of the parameter:

Theorem 2 (Reference priors with finite parameter space) Consider
a model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}, with a finite parameter space
Θ = {θ1, . . . , θm} and such that, for all pairs θi and θj, δ{px | θi

, px | θj
} > 0,

and let P be a class of probability distributions over Θ. Then the reference
prior for the parameter θ is

πθ(θ |M,P) = arg max
pθ∈P

H{pθ},
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where pθ = {p(θ1), p(θ2), . . . , p(θm)} and H{pθ} = −∑m
j=1 p(θj) log p(θj) is the

entropy of pθ. In particular, if the class of candidate priors for θ is the set P0

of all strictly positive probability distributions over Θ, then the reference prior
is the uniform distribution πθ(θ |M,P0) = {1/m, . . . , 1/m}.

Theorem 2 follows immediately from the fact that, if the intrinsic discrepancies
δ{px | θi

, px | θj
} are all positive (and hence the m models p(x | θi) are all distin-

guishable from each other), then the posterior distribution of θ asymptotically
converges to a degenerate distribution with probability one on the true value
of θ (see e.g., Bernardo and Smith (1994, Sec. 5.3) and references therein).
Such asymptotic posterior has zero entropy and thus, by Equation 12, the
missing information about θ when the prior is pθ does not depend on M, and
is simply given by the prior entropy, H{pθ}. �

Consider now a model M indexed by a continuous parameter θ ∈ Θ ⊂ IR.
If the family of candidate priors consist of the class P0 of all continuous
priors with support Θ, then the reference prior, π(θ |M,P0) may be ob-
tained as the result of an explicit limit. This provides a relatively simple
procedure to obtain reference priors in models with one continuous para-
meter. Moreover, this analytical procedure may easily be converted into a
programmable algorithm for numerical derivation of reference distributions.
The results may conveniently be described in terms of any asymptotically suf-
ficient statistic, i.e., a function tk = tk(x

(k)) such that, for all θ and for all x(k),
limk→∞[p(θ |x(k))/p(θ | tk)] = 1.

Obviously, the entire sample x(k) is sufficient (and hence asymptotically
sufficient), so there is no loss of generality in framing the results in terms of
asymptotically sufficient statistics.

Theorem 3 (Explicit form of the reference prior) Consider the model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ ⊂ IR}, and let P0 be the class of all continuous
priors with support Θ. Let x(k) = {x1, . . . ,xk} consist of k independent obser-
vations from M, so that p(x(k) | θ) =

∏k
j=1 p(xj | θ), and let tk = tk(x

(k)) ∈ T
be any asymptotically sufficient statistic. Let h(θ) be a continuous strictly pos-
itive function such that, for sufficiently large k,

∫
Θ p(tk | θ) h(θ) dθ < ∞, and

define

fk(θ) = exp
{ ∫

T
p(tk | θ) log

(
p(tk | θ) h(θ)∫

Θ p(tk | θ) h(θ) dθ

)
dtk

}
, and (14)

f(θ) = lim
k→∞

fk(θ)

fk(θ0)
, (15)

where θ0 is any interior point of Θ. If f(θ) is a permissible prior function
then, for any c > 0, π(θ |M,P0) = c f(θ) is a reference prior function.

Intuitively, Theorem 3 states that the reference prior π(θ |M) relative to
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model M only depends on the asymptotic behaviour of the model and that,
with no additional information to restrict the class of candidate priors, it has
(from Equation 14), the form

π(θ |M,P0) ∝ exp
{
Etk | θ

[
log p(θ | tk)

] }
, (16)

where p(θ | tk) is any asymptotic approximation to the posterior distribution
of θ, and the expectation is taken with respect to the sampling distribution
of the relevant asymptotically sufficient statistic tk = tk(x

(k)). A heuristic
derivation of Theorem 3 is provided below. For a precise statement of the
regularity conditions and a formal proof, see Berger, Bernardo and Sun (2005).

Under fairly general regularity conditions, the intrinsic expected informa-
tion reduces to Shannon’s expected information when k → ∞. Thus, starting
from (10), the amount of information about θ to be expected from Mk when
the prior is p(θ) may be rewritten as I{pθ |Mk} =

∫
Θ p(θ) log[hk(θ)/p(θ)] dθ,

where hk(θ) = exp{∫
T p(tk | θ) log p(θ | tk) dtk}. If ck =

∫
Θ hk(θ) dθ < ∞, then

hk(θ) may be renormalized to get the proper density hk(θ)/ck, and I{pθ |Mk}
may be rewritten as

I{pθ |Mk} = log ck −
∫
Θ

p(θ) log
p(θ)

hk(θ)/ck

dθ. (17)

But the integral in (17) is the Kullback-Leibler directed divergence of hk(θ)/ck

from p(θ), which is non-negative, and it is zero iff p(θ) = hk(θ)/ck almost
everywhere. Thus, I{pθ |Mk} would be maximized by a prior πk(θ) which
satisfies the functional equation

πk(θ) ∝ hk(θ) = exp
{ ∫

T
p(tk | θ) log πk(θ | tk) dtk

}
, (18)

where πk(θ | tk) ∝ p(tk | θ) πk(θ) and, therefore, the reference prior should be
a limiting form, as k → ∞ of the sequence of proper priors given by (18).
This only provides an implicit solution, since the posterior density πk(θ | tk) in
the right hand side of (18) obviously depends on the prior πk(θ); however, as
k → ∞, the posterior πk(θ | tk) will approach its asymptotic form which, under
the assumed conditions, is independent of the prior. Thus, the posterior dens-
ity in (18) may be replaced by the posterior π0(θ | tk) ∝ p(tk | θ) h(θ) which
corresponds to any fixed prior, say π0(θ) = h(θ), to obtain an explicit expres-
sion for a sequence of priors,

πk(θ) ∝ fk(θ) = exp
{ ∫

T
p(tk | θ) log π0(θ | tk) dtk

}
, (19)

whose limiting form will still maximize the missing information about θ. The
preceding argument rests however on the assumption that (at least for suffi-
ciently large k) the integrals in Θ of fk(θ) are finite, but those integrals may
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well diverge. The problem is solved by considering an increasing sequence
{Θi}∞i=1 of subsets of Θ which converges to Θ and such that, for all i and
sufficiently large k, cik =

∫
Θi

fk(θ) dθ < ∞, so that the required integrals are
finite. An appropriate limiting form of the double sequence πik(θ) = fk(θ)/cik,
θ ∈ Θi will then approach the required reference prior.

Such a limiting form is easily established; indeed, let πik(θ |x), θ ∈ Θi be
the posterior which corresponds to πik(θ) and, for some interior point θ0 of all
the Θi’s, consider the limit

lim
k→∞

πik(θ |x)

πik(θ0 |x)
= lim

k→∞

p(x | θ) fk(θ)

p(x | θ0) fk(θ0)
∝ p(x | θ) f(θ), (20)

where f(θ) = limk→∞ fk(θ)/fk(θ0), which does not depend on the initial
function h(θ) (and therefore h(θ) may be chosen by mathematical conveni-
ence). It follows from (20) that, for any data x, the sequence of posteriors
πik(θ |x) which maximize the missing information will approach the posterior
π(θ |x) ∝ p(x | θ) f(θ) obtained by formal use of Bayes theorem, using f(θ)
as the prior. This completes the heuristic justification of Theorem 3. �

3.2 Main properties

Reference priors enjoy many attractive properties, as stated below. For de-
tailed proofs, see Bernardo and Smith (1994, Secs. 5.4 and 5.6).

In the frequently occurring situation where the available data consist of a
random sample of fixed size n from some model M (so that the assumed
model is Mn), the reference prior relative to Mn is independent of n, and
may simply be obtained as the reference prior relative to M, assuming the
later exists.

Theorem 4 (Independence of sample size) If data x = {y1, . . . ,yn} con-
sists of a random sample of size n from model M ≡ {p(y | θ), y ∈ Y , θ ∈ Θ},
with reference prior πθ(θ |M,P) relative to the class of candidate priors P,
then, for any fixed sample size n, the reference prior for θ relative to P is
πθ(θ |Mn,P) = πθ(θ |M,P).

This follows from the additivity of the information measure. Indeed, for any
sample size n and number of replicates k, I{pθ |Mnk} = n I{pθ |Mk}. �

Note, however, that Theorem 4 requires x to be a random sample from the
assumed model. If the model entails dependence between the observations (as
in time series, or in spatial models) the reference prior may well depend on the
sample size; see, for example, Berger and Yang (1994), and Berger, de Oliveira
and Sansó (2001).

The possible dependence of the reference prior on the sample size and, more
generally, on the design of the experiment highlights the fact that a reference
prior is not a description of (personal) prior beliefs, but a possible consensus
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prior for a particular problem of scientific inference. Indeed, genuine prior
beliefs about some quantity of interest should not depend on the design of
the experiment performed to learn about its value (although they will typ-
ically influence the choice of the design), but a prior function to be used as
a consensus prior to analyse the results of an experiment may be expected
to depend on its design. Reference priors, which by definition maximize the
missing information which repeated observations from a particular experiment
could possibly provide, generally depend on the design of that experiment.

As one would hope, if the assumed model M has a sufficient statistic
t = t(x), the reference prior relative to M is the same as the reference prior
relative to the equivalent model derived from the sampling distribution of t:

Theorem 5 (Compatibility with sufficient statistics) Consider a model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ} with sufficient statistic t = t(x) ∈ T , and
let Mt ≡ {p(t | θ), t ∈ T , θ ∈ Θ} be the corresponding model in terms of t.
Then, for any class of candidate priors P, the reference prior for θ relative to
model M is πθ(θ |M,P) = πθ(θ |Mt,P).

Theorem 5 follows from the fact that the expected information is invariant
under such transformation, so that, for all k, I{pθ |Mk} = I{pθ |Mk

t}. �

When data consist of a random sample of fixed size from some model, and
there exists a sufficient statistic of fixed dimensionality, Theorems 3, 4 and
5 may be combined for an easy, direct derivation of the reference prior, as
illustrated below.

Example 5 Exponential model, continued. Let x = {x1, . . . , xn} be a ran-
dom sample of size n from an exponential distribution. By Theorem 4, to
obtain the corresponding reference prior it suffices to analyse the beha-
viour, as k → ∞, of k replications of the model which corresponds to a
single observation, M ≡ {θ e−θ y, y > 0, θ > 0}, as opposed to k replica-
tions of the actual model for data x, Mn ≡ {∏n

j=1 θ e−θ xj , xj > 0, θ > 0}.
Thus, consider y(k) = {y1, . . . , yk}, a random sample of size k from the

single observation model M; clearly tk =
∑k

j=1 yj is sufficient, and the
sampling distribution of tk has a gamma density p(tk | θ) = Ga(tk | k, θ).
Using a constant for the arbitrary function h(θ) in Theorem 3, the corres-
ponding posterior has a gamma density Ga(θ | k + 1, tk) and, thus,

fk(θ) = exp
[ ∫ ∞

0
Ga(tk | k, θ) log

{
Ga(θ | k + 1, tk)

}
dtk

]
= ck θ−1,

where ck is a constant which does not contain θ. Therefore, using (15),
f(θ) = θ0/θ and, since this is a permissible prior function (see Example 3),
the unrestricted reference prior (for both the single observation model M
and the actual model Mn) is π(θ |Mn,P0) = π(θ |M,P0) = θ−1.
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Parametrizations are essentially arbitrary. As one would hope, reference pri-
ors are coherent under reparametrization in the sense that if φ = φ(θ) is a
one-to-one mapping of Θ into Φ = φ(Θ) then, for all φ ∈ Φ,

(i) πφ(φ) = πθ{θ(φ)}, if Θ is discrete;

(ii) πφ(φ) = πθ{θ(φ)} | ∂θ(φ)/∂φ | , if Θ is continuous;

More generally, reference posteriors are coherent under piecewise invertible
transformations φ = φ(θ) of the parameter θ in the sense that, for all x ∈ X ,
the reference posterior for φ derived from first principles, π(φ |x), is precisely
the same as that which could be obtained from π(θ |x) by standard probability
calculus:

Theorem 6 (Consistency under reparametrization) Consider a model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ} and let φ(θ) be a piecewise invertible trans-
formation of θ. For any data x ∈ X , the reference posterior density of φ,
π(φ |x), is that induced by the reference posterior density of θ, π(θ |x).

If φ(θ) is one-to-one, Theorem 6 follows immediately from the fact that the
expected information is also invariant under such transformation, so that, for
all k, I{pθ |Mk

θ} = I{pψ |Mk
ψ}; this may also be directly verified using The-

orems 2 and 3. Suppose now that φ(θ) = φj(θ), θ ∈ Θj, where the Θj’s form a
partition of Θ, such that each of the φj(θ)’s is one-to-one in Θj. The reference
prior for θ only depends on the asymptotic posterior of θ which, for sufficiently
large samples, will concentrate on that subset Θj of the parameter space Θ
to which the true value of θ belongs. Since φ(θ) is one-to-one within Θj, and
reference priors are coherent under one-to-one parametrizations, the general
result follows. �

An important consequence of Theorem 6 is that the reference prior of any
location parameter, and the reference prior of the logarithm of any scale para-
meter are both uniform:

Theorem 7 (Location models and scale models) Consider a location
model M1, so that for some function f1, M1 ≡ {f1(x − µ), x ∈ IR, µ ∈ IR},
and let P0 be the class of all continuous strictly positive priors on IR; then, if
it exists, a reference prior for µ is of the form π(µ |M1,P0) = c. Moreover,
if M2 is a scale model, M2 ≡ {σ−1f2(x/σ), x > 0, σ > 0}, and P0 is the class
of all continuous strictly positive priors on (0,∞), then a reference prior for σ,
if it exists, is of the form π(σ |M2,P0) = c σ−1.

Let π(µ) be the reference prior which corresponds to model M1; the changes
y = x + α and θ = µ + α produce {f1(y − θ), y ∈ Y , θ ∈ IR}, which is again
model M1. Hence, using Theorem 6, π(µ) = π(µ+α) for all α and, therefore,
π(µ) must be constant. Moreover, the obvious changes y = log x and φ = log σ
transform the scale model M2 into a location model; hence, π(φ) = c and,
therefore, π(σ) ∝ σ−1. �
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Example 6 Cauchy data. Let x = {x1, . . . , xn} be a random sample from
a Cauchy distribution with unknown location µ and known scale σ = 1, so
that p(xj |µ) ∝ [1 + (xj − µ)2]−1. Since this is a location model, the refer-
ence prior is uniform and, by Bayes theorem, the corresponding reference
posterior is

π(µ |x) ∝
∏n

j=1

[
1 + (xj − µ)2

]−1
, µ ∈ IR.

Using the change of variable theorem, the reference posterior of (say) the
one-to-one transformation φ = eµ/(1+eµ) mapping the original parameter
space IR into (0, 1), is π(φ |x) = π(µ(φ) |x)|∂µ/∂φ|, φ ∈ (0, 1). Similarly,
the reference posterior π(ψ |x) of (say) ψ = µ2 may be derived from
π(µ |x) using standard change of variable techniques, since ψ = µ2 is a
piecewise invertible function of µ, and Theorem 6 may therefore be applied.

3.3 Approximate location parametrization

Another consequence of Theorem 6 is that, for any model with one continu-
ous parameter θ ∈ Θ, there is a parametrization φ = φ(θ) (which is unique
up to a largely irrelevant proportionality constant), for which the reference
prior is uniform. By Theorem 6 this may be obtained from the reference prior
π(θ) in the original parametrization as a function φ = φ(θ) which satisfies
the differential equation π(θ)|∂φ(θ)/∂θ|−1 = 1, that is, any solution to the
indefinite integral φ(θ) =

∫
π(θ) dθ. Intuitively, φ = φ(θ) may be expected to

behave as an approximate location parameter; this links reference priors with
the concept data translated likelihood inducing priors introduced by Box and
Tiao (1973, Sec. 1.3). For many models, good simple approximations to the
posterior distribution may be obtained in terms of this parametrization, which
often yields an exact location model.

Definition 7 (Approximate location parametrization) Consider the
model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ ⊂ IR}. An approximate location paramet-
rization φ = φ(θ) for model M is one for which the reference prior is uniform.
In continuous regular models, this is given by any solution to the indefinite
integral φ(θ) =

∫
π(θ) dθ, where π(θ) = π(θ |M,P0) is the (unrestricted) ref-

erence prior for the original parameter.

Example 7 Exponential model, continued. Consider again the exponen-
tial model M ≡ {θ e−θ x, x > 0, θ > 0}. The reference prior for θ is
(see Example 5) π(θ) = θ−1; thus an approximate location parameter is
φ = φ(θ) =

∫
π(θ) dθ = log θ. Using y = − log x, this yields

My ≡
{

exp
[
− (y − φ) + e−(y−φ)

]
, y ∈ IR, φ ∈ IR

}
,

where φ is an (actually exact) location parameter.
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Example 8 Uniform model on (0, θ). Let x = {x1, . . . , xk} be a random
sample from the uniform model M ≡ {p(x | θ) = θ−1, 0 < x < θ, θ > 0},
so that tk = maxk

j=1 xj is sufficient, and the sampling distribution of tk is

the inverted Pareto p(tk | θ) = IPa(tk | k, θ−1) = k θ−k tk−1
k , if 0 < tk < θ,

and zero otherwise. Using a uniform prior for the arbitrary function h(θ)
in Theorem 3, the corresponding posterior distribution has the Pareto
density Pa(θ | k − 1, tk) = (k − 1) tk−1

k θ−k, θ > tk, and (14) becomes

fk(θ) = exp
[ ∫ θ

0
IPa(tk | k, θ−1) log Pa(θ | k − 1, tk) dtk

]
= ck θ−1,

where ck is a constant which does not contain θ. Therefore, using (15),
f(θ) = θ0/θ, π(θ |M,P0) = θ−1.

By Theorem 4, this is also the reference prior for samples of any size;
hence, by Bayes theorem, the reference posterior density of θ after, say, a
random sample x = {x1, . . . , xn} of size n has been observed is

π(θ |x) ∝
∏n

j=1
p(xj | θ) π(θ) = θ−(n+1), θ > tn,

where tn = max{x1, . . . , xn}, which is a kernel of the Pareto density
π(θ |x) = π(θ | tn) = Pa(θ |n, tn) = n (tn)n θ−(n+1), θ > tn.

The approximate location parameter is φ(θ) =
∫

θ−1 dθ = log θ. The
sampling distribution of the sufficient statistic sn = log tn in terms of
the new parameter is the reversed exponential p(sn |n, φ) = n e−n(φ−sn),
sn < φ, which explicitly shows φ as an (exact) location parameter. The
reference prior of φ is indeed uniform, and the reference posterior after x
has been observed is the shifted exponential π(φ |x) = n e−n(φ−sn), φ > sn,
which may also be obtained by changing variables in π(θ |x).

3.4 Numerical reference priors

Analytical derivation of reference priors may be technically demanding in
complex models. However, Theorem 3 may also be used to obtain a numerical
approximation to the reference prior which corresponds to any one-parameter
model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ} from which random observations may
be efficiently simulated.

The proposed algorithm requires a numerical evaluation of Equation (14).
This is relatively straightforward, for simulation from the assumed model may
be used to approximate by Monte Carlo the integral in (14), and the eval-
uation of its integrand for each simulated set of data only requires (cheap)
one-dimensional numerical integration. Moderate values of k (to simulate the
asymptotic posterior) are typically sufficient to obtain a good approximation
to the reference prior π(θ |M,P0) (up to an irrelevant proportionality con-
stant). The appropriate pseudo code is quite simple:
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(1) Starting values:
Choose a moderate value for k,
Choose an arbitrary positive function h(θ), say h(θ) = 1.
Choose the number m of samples to be simulated,

(2) For any given θ value, repeat, for j = 1, . . . , m:
Simulate a random sample {x1j, . . . ,xkj} of size k from p(x | θ).
Compute numerically the integral cj =

∫
Θ

∏k
i=1 p(xij | θ) h(θ) dθ.

Evaluate rj(θ) = log[
∏k

i=1 p(xij | θ) h(θ)/cj ].

(3) Compute π(θ) = exp[ m−1 ∑m
j=1 rj(θ) ] and store the pair {θ, π(θ)}.

(4) Repeat routines (2) and (3) for all θ values for which the pair {θ, π(θ)}
is required.

Example 9 Exponential data, continued. Figure 3 represents the exact
reference prior for the exponential model π(θ) = θ−1 (continuous line)
and the reference prior numerically calculated with the algorithm above
for nine θ values, ranging from e−3 to e3, uniformly log-spaced and rescaled
to have π(1) = 1; m = 500 samples of k = 25 observations were used to
compute each of the nine {θi, π(θi)} points.

Figure 3 Numerical reference prior for the exponential model
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If required, a continuous approximation to π(θ) may easily be obtained
from the computed points using standard interpolation techniques.

An educated choice of the arbitrary function h(θ) often leads to an analytical
form for the required posterior, p(θ |x1j, . . . ,xkj) ∝

∏k
i=1 p(xij | θ) h(θ); for

instance, this is the case in Example 9 if h(θ) is chosen to be of the form
h(θ) = θa, for some a ≥ −1. If the posterior may be analytically computed,
then the values of the rj(θ) = log[ p(θ |x1j, . . . ,xkj) ] are immediately ob-
tained, and the numerical algorithm reduces to only one Monte Carlo integ-
ration for each desired pair {θi, π(θi)}.

For an alternative, MCMC based, numerical computation method of refer-
ence priors, see Lafferty and Wasserman (2001).
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3.5 Reference priors under regularity conditions

If data consist of a random sample x = {x1, . . . , xn} of a model with one
continuous parameter θ, it is often possible to find an asymptotically suffi-
cient statistic θ̃n = θ̃n(x1, . . . , xn) which is also a consistent estimator of θ;
for example, under regularity conditions, the maximum likelihood estimator
(mle) θ̂n is consistent and asymptotically sufficient. In that case, the reference
prior may easily be obtained in terms of either (i) an asymptotic approxima-
tion π(θ | θ̃n) to the posterior distribution of θ, or (ii) the sampling distribution
p(θ̃n | θ) of the asymptotically sufficient consistent estimator θ̃n.

Theorem 8 (Reference priors under regularity conditions) Let avail-
able data x ∈ X consist of a random sample of any size from a one-parameter
model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}. Let x(k) = {x1, . . . , xk} be a random
sample of size k from model M, let θ̃k = θ̃k(x

(k)) ∈ Θ be an asymptotically
sufficient statistic which is a consistent estimator of θ, and let P0 be the class
of all continuous priors with support Θ. Let πk(θ | θ̃k) be any asymptotic ap-
proximation (as k → ∞) to the posterior distribution of θ, let p(θ̃k | θ) be the
sampling distribution of θ̃k, and define

fa
k (θ) = πk(θ | θ̃k)

∣∣∣∣
θ̃k=θ

, fa(θ) = lim
k→∞

fa
k (θ)

fa
k (θ0)

(21)

f b
k(θ) = p(θ̃k | θ)

∣∣∣∣
θ̃k=θ

, f b(θ) = lim
k→∞

f b
k(θ)

f b
k(θ0)

, (22)

where θ0 is any interior point of Θ. Then, under frequently occurring additional
technical conditions, fa(θ) = f b(θ) = f(θ) and, if f(θ) is a permissible prior,
any function of the form π(θ |M,P0) ∝ f(θ) is a reference prior for θ.

Since θ̃k is asymptotically sufficient, Equation (14) in Theorem 3 becomes

fk(θ) = exp
{ ∫

Θ
p(θ̃k | θ) log πk(θ | θ̃k) dθ̃k

}
.

Moreover, since θ̃k is consistent, the sampling distribution of θ̃k will concen-
trate on θ as k → ∞, fk(θ) will converge to fa

k (θ), and Equation (21) will have
the same limit as Equation (15). Moreover, for any formal prior function h(θ),

π(θ | θ̃k) =
p(θ̃k | θ) h(θ)∫

Θ p(θ̃k | θ) h(θ) dθ
.

As k → ∞, the integral in the denominator converges to h(θ̃k) and, therefore,
fa

k (θ) = π(θ | θ̃k) | θ̃k=θ converges to p(θ̃k | θ)| θ̃k=θ = f b
k(θ). Thus, both limits

in Equations (21) and (22) yield the same result, and their common value
provides an explicit expression for the reference prior. For details, and precise
technical conditions, see Berger, Bernardo and Sun (2005). �
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Example 10 Exponential model, continued. Let x = {x1, . . . , xk} be a
random sample of k exponential observations from Ex(x | θ). The mle
is θ̂k(x) = 1/x , a sufficient, consistent estimator of θ whose sampling
distribution is the inverted gamma p(θ̂k | θ) = IGa(θ̂k | kθ, k). Therefore,
f b

k(θ) = p(θ̂k | θ)| θ̂k=θ = ck/θ, where ck = e−kkk/Γ(k) and, using The-
orem 8, the reference prior is π(θ) = θ−1.

Alternatively, the likelihood function is θne−kθ/θ̂k ; hence, for any positive
function h(θ), πk(θ | θ̂k) ∝ θke−kθ/θ̂k h(θ) is an asymptotic approximation
to the posterior distribution of θ. Taking, for instance, h(θ) = 1, this
yields the gamma posterior πk(θ | θ̂k) = Ga(θ | k + 1, k/θ̂k). Consequently,
fa

k (θ) = πk(θ | θ̂k) | θ̂k=θ = ck/θ, and π(θ) = θ−1 as before.

Example 11 Uniform model, continued. Let x = {x1, . . . , xk} be a ran-
dom sample of k uniform observations from Un(x | 0, θ). The mle is θ̂k(x) =
max{x1, . . . , xk}, a sufficient, consistent estimator of θ whose sampling
distribution is the inverted Pareto p(θ̂k | θ) = IPa(θ̂k | k, θ−1). Therefore,
f b

k(θ) = p(θ̂k | θ)| θ̂k=θ = k/θ and, using Theorem 8, the reference prior is
π(θ) = θ−1.

Alternatively, the likelihood function is θ−k, θ > θ̂k; hence, taking for
instance a uniform prior, the Pareto πk(θ | θ̂k) = Pa(θ | k − 1, θ̂k) is found
to be a particular asymptotic approximation of the posterior of θ; thus,
fa

k (θ) = πk(θ | θ̂k) | θ̂k=θ = (k − 1)/θ, and π(θ) = θ−1 as before.

The posterior distribution of the parameter is often asymptotically normal
(see e.g., Bernardo and Smith (1994, Sec. 5.3), and references therein). In
this case, the reference prior is easily derived. The result includes (univariate)
Jeffreys (1946) and Perks (1947) rules as a particular cases:

Theorem 9 (Reference priors under asymptotic normality) Let data
consist of a random sample from model M ≡ {p(y | θ), y ∈ Y , θ ∈ Θ ⊂ IR},
and let P0 be the class of all continuous priors with support Θ. If the posterior
distribution of θ, π(θ |y1, . . . ,yk), is asymptotically normal with standard de-
viation s(θ̃k)/

√
k, where θ̃k is a consistent estimator of θ, and s(θ)−1 is a

permissible prior function, then any function of the form

π(θ |M,P0) ∝ s(θ)−1 (23)

is a reference prior. Under appropriate regularity conditions the posterior dis-
tribution of θ is asymptotically normal with variance i(θ̂k)

−1/k, where θ̂k is
the mle of θ and

i(θ) = −
∫
Y

p(y | θ) ∂2

∂θ2
log p(y | θ) dy (24)

is Fisher’s information function. If this is the case, and i(θ)1/2 is a permissible
prior function, the reference prior is Jeffreys prior, π(θ |M,P0) ∝ i(θ)1/2.
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The result follows directly from Theorem 8 since, uder the assumed conditions,
fa

k (θ) = π(θ | θ̂k) | θ̂k=θ = cks(θ)
−1. Jeffreys prior is the particular case which

obtains when s(θ) = i(θ)−1/2. �
Jeffreys (1946, 1961) prior, independently rediscovered by Perks (1947), was

central in the early objective Bayesian reformulation of standard textbook
problems of statistical inference (Lindley, 1965; Zellner, 1971; Press, 1972; Box
and Tiao, 1973). By Theorem 9, this is also the reference prior in regular mod-
els with one continuous parameter, whose posterior distribution is asymptot-
ically normal. By Theorem 6, reference priors are coherently transformed un-
der one-to-one reparametrizations; hence, Theorem 9 may be typically applied
with any mathematically convenient (re)parametrization. For conditions which
preserve asymptotic normality under transformations see Mendoza (1994).

The posterior distribution of the exponential parameter in Example 10 is
asymptotically normal; thus the corresponding reference prior may also be
obtained using Theorem 9; the reference prior for the uniform parameter in
Example 11 cannot be obtained however in this way, since the relevant pos-
terior distribution is not asymptotically normal. Notice that, even under condi-
tions which guarantee asymptotic normality, Jeffreys formula is not necessarily
the easiest way to derive a reference prior; indeed, Theorem 8 often provides
a simpler alternative.

3.6 Reference priors and the likelihood principle

By definition, reference priors are a function of the entire statistical model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}, not of the observed likelihood. Indeed, the
reference prior π(θ |M) is a mathematical description of lack of information
about θ relative to the information about θ which could be obtained by re-
peated sampling from a particular experimental design M. If the design is
changed, the reference prior may be expected to change accordingly. This is
now illustrated by comparing the reference priors which correspond to direct
and inverse sampling of Bernoulli observations.

Example 12 Binomial and negative Binomial data. Let available data
x = {r, m} consist of m Bernoulli trials (with m fixed in advance) which
contain r successes, so that the assumed model is Binomial Bi(r |m, θ):

M1 ≡ {p(r |m, θ) =

(
m

r

)
θr(1 − θ)m−r, r = 0, 1, . . . , m, 0 < θ < 1}

Using Theorem 9, with n = 1, m fixed, and y = r, the reference prior
for θ is the (proper) prior π(θ) ∝ θ−1/2(1 − θ)−1/2; Bayes theorem yields
the Beta reference posterior π(θ |x) = Be(θ | r +1/2, m− r +1/2). Notice
that π(θ |x) is proper, for all values of r; in particular, if r = 0, the
reference posterior is π(θ |x) = Be(θ | 1/2, m + 1/2), from which sensible
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conclusions may be reached, even though there are no observed successes.
This may be compared with the Haldane (1948) prior, also proposed by
Jaynes (1968), π(θ) ∝ θ−1(1−θ)−1, which produces an improper posterior
until at least one success and one failure are observed.

Consider, however, that data x = {r, m} consist of the sequence of
Bernoulli trials observed until r successes are obtained (with r ≥ 1 fixed
in advance), so that the assumed model is negative Binomial:

M2 ≡ {p(m | r, θ) =

(
m − 1

r − 1

)
θr(1− θ)m−r, m = r, r +1, . . . 0 < θ < 1}

Using Theorem 9, with n = 1 and y = m, the reference prior for θ is
the (improper) prior π(θ) ∝ θ−1(1− θ)−1/2, and Bayes theorem yields the
Beta reference posterior π(θ |x) = Be(θ | r, m − r + 1/2), which is proper
whatever the number of observations m required to obtain r successes. No-
tice that r = 0 is not possible under this model: inverse Binomial sampling
implicitly assumes that r ≥ 1 successes will occur for sure.

In reporting results, scientists are typically required to specify not only the
observed data but also the conditions under which those where obtained, the
design of the experiment, so that the data analyst has available the full specific-
ation of the model, M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}. To carry out a reference
analysis of the data, such a full specification (that is, including the experi-
mental design) is indeed required. The reference prior π(ω |M,P) is proposed
as a consensus prior to analyse data associated to a particular design M (and
under any agreed assumptions about the value of ω which might be encapsu-
lated in the choice of P).

The likelihood principle (Berger and Wolpert, 1988) says that all evidence
about an unknown quantity ω, which is obtained from an experiment which
has produced data x, is contained in the likelihood function p(x |ω) of ω
for the observed data x. In particular, for any specific prior beliefs (described
by a fixed prior), proportional likelihoods should produce the same posterior
distribution.

As Example 12 demonstrates, it may be argued that formal use of reference
priors is not compatible with the likelihood principle. However, the likelihood
principle applies after data have been observed while reference priors are de-
rived before the data are observed. Reference priors are a (limiting) form of
rather specific beliefs, namely those which would maximize the missing in-
formation (about the quantity or interest) associated to a particular design,
and thus depend on the particular design considered. There is no claim that
these particular beliefs describe (or even approximate) those of any particu-
lar individual; instead, they are precisely defined as possible consensus prior
functions, presumably useful as a reference for scientific communication. No-
tice that reference prior functions (often improper) should not be interpreted
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as prior probability distributions: they are merely technical devices to facilitate
the derivation of reference posteriors, and only reference posteriors support a
probability interpretation.

Any statistical analysis should include an evaluation of the sensitivity of the
results to accepted assumptions. In particular, any Bayesian analysis should
include some discussion of the sensitivity of the results to the choice of the
prior, and reference priors are better viewed as a useful tool for this important
aspect of sensitivity analysis. The analyst is supposed to have a unique (often
subjective) prior p(ω), independent of the design of the experiment, but the
scientific community will presumably be interested in comparing the corres-
ponding analyst’s personal posterior with the reference (consensus) posterior
associated to the published experimental design. To report reference posteriors
(possibly for a range of alternative designs) should be seen as part of this sens-
itivity analysis. Indeed, reference analysis provides an answer to an important
conditional question in scientific inference: the reference posterior encapsulates
what could be said about the quantity of interest if prior information about
its value were minimal relative to the information which repeated data from
an specific experimental design M could possibly provide.

3.7 Restricted reference priors

The reference prior π(θ |M,P) is that which maximizes the missing in-
formation about θ relative to model M among the priors which belong to P ,
the class of all sufficiently regular priors which are compatible with available
knowledge (Definition 6). By restricting the class P of candidate priors to those
which satisfy specific restrictions (derived from assumed knowledge) one may
use the reference prior algorithm as an effective tool for prior elicitation: the
corresponding reference prior will incorporate the accepted restrictions, but
no other information.

Under regularity conditions, Theorems 3, 8 and 9, make it relatively simple
to obtain the unrestricted reference prior π(θ) = π(θ |M,P0) which corres-
ponds to the case where the class of candidate priors is the class P0 of all
continuous priors with support Θ. Hence, it is useful to be able to express a
general reference prior π(θ |M,P) in terms of the corresponding unrestricted
reference prior π(θ |M,P0), and the set of restrictions which define the class P
of candidate priors.

If the unrestricted reference prior π(θ |M,P0) is proper, then π(θ |M,P) is
the closest prior in P to π(θ |M,P0), in the sense of minimizing the intrinsic
discrepancy (see Definition 1) between them, so that

π(θ |M,P) = arg inf
p(θ)∈P

δ{ p(θ), π(θ |M,P0) }

If π(θ |M,P0) is not proper it may be necessary to derive π(θ |M,P) from its
definition. However, in the rather large class of problems where the conditions
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which define P may all be expressed in the general form
∫
Θ gi(θ) p(θ) dθ = βi,

for appropriately chosen functions gi(θ), (i.e., as a collection of expected values
which the prior p(θ) must satisfy), an explicit solution is available in terms of
the unrestricted reference prior:

Theorem 10 (Explicit form of restricted reference priors) Consider a
model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}, let P be the class of continuous proper
priors with support Θ

P =
{

pθ;
∫
Θ

p(θ) dθ = 1,
∫
Θ

gi(θ) p(θ) dθ = βi, i = 1, . . . , m
}

which satisfies the restrictions imposed by the expected values E[gi(θ)] = βi,
and let P0 be the class of all continuous priors with support Θ. The reference
prior π(θ |M,P), if it exists, is then of the form

π(θ |M,P) ∝ π(θ |M,P0) exp
{ ∑m

i=1
λi gi(θ)

}
where the λi’s are constants determined by the conditions which define P.

Theorem 10 may be proven using a standard calculus of variations argument.
If m = 0, so that one only has the constraint that the prior is proper, then
there typically is no restricted reference prior. For details, see Bernardo and
Smith (1994, p. 316). �

Example 13 Location models, continued. Let x = {x1, . . . , xn} be a ran-
dom sample from a location model M ≡ {f(x − µ), x ∈ X , µ ∈ IR},
and suppose that the prior mean and variance of µ are restricted to be
E[µ] = µ0, and Var[µ] = σ2

0. By Theorem 7, the unrestricted reference
prior π(µ |M,P0) is uniform; hence, using Theorem 10, the (restricted)
reference prior must be of the form

π(µ |M,P) ∝ exp{λ1µ + λ2(µ − µ0)
2}

with
∫ ∞
−∞ µ π(µ |M,P) dµ = µ0 and

∫ ∞
−∞(µ − µ0)

2 π(µ |M,P) dµ = σ2
0.

It follows that λ1 = 0 and λ2 = −1/(2σ2
0) and, substituting above, the

restricted reference prior is π(µ |M,P) ∝ exp{−(µ−µ0)
2/(2σ2

0)}, which is
the normal distribution N(µ |µ0, σ0) with the specified mean and variance.
This provides a very powerful argument for the choice of a normal density
to describe prior information in location models, when prior knowledge
about the location parameter is limited to its first two moments.

3.8 One nuisance parameter

Consider now the case where the statistical model M contains one nuisance
parameter, so that M ≡ {p(x | θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, the quantity of
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interest is θ ∈ Θ ⊂ IR, and the nuisance parameter is λ ∈ Λ ⊂ IR. To obtain
the required reference posterior for θ, π(θ |x), an appropriate joint reference
prior πθ(θ, λ) is obviously needed: by Bayes theorem, the corresponding joint
posterior is πθ(θ, λ |x) ∝ p(x | θ, λ) πθ(θ, λ) and, integrating out the nuisance
parameter, the (marginal) reference posterior for the parameter of interest is

π(θ |x) =
∫
Λ

πθ(θ, λ |x) dλ ∝
∫
Λ

p(x | θ, λ) πθ(θ, λ) dλ.

The extension of the reference prior algorithm to the case of two parameters
follows the usual mathematical procedure of reducing the two parameter prob-
lem to a sequential application of the established procedure for the single para-
meter case. Thus, the reference algorithm proceeds by combining the results
obtained in two successive applications of the one-parameter solution:

(1) Conditional on θ, p(x | θ, λ) only depends on the nuisance parameter λ
and, hence, the one-parameter algorithm may be used to obtain the con-
ditional reference prior π(λ | θ) = π(λ | θ,M,P).

(2) If π(λ | θ) has a finite integral in Λ (so that, when normalized, yields a
proper density with

∫
Λ π(λ | θ) dλ = 1), the conditional reference prior

π(λ | θ) may be used to integrate out the nuisance parameter and derive
the one-parameter integrated model,

p(x | θ) =
∫
Λ

p(x | θ, λ) π(λ | θ) dλ, (25)

to which the one-parameter algorithm may be applied again to obtain
the marginal reference prior π(θ) = π(θ |M,P).

(3) The desired θ-reference prior is then πθ(θ, λ) = π(λ | θ) π(θ), and the
required reference posterior is

π(θ |x) ∝
∫
Λ

p(x | θ, λ) πθ(θ, λ) dλ = p(x | θ) π(θ). (26)

Equation (25) suggests that conditional reference priors provides a general
procedure to eliminate nuisance parameters, a major problem within the fre-
quentist paradigm. For a review of this important topic, see Liseo (2005), in
this volume.

If the conditional reference prior π(λ | θ) is not proper, Equation (25) does
not define a valid statistical model and, as a consequence, a more subtle ap-
proach is needed to provide a general solution; this will be described later.
Nevertheless, the simple algorithm described above may be used to obtain
appropriate solutions to a number of interesting problems which serve to il-
lustrate the crucial need to identify the quantity of interest, as is the following
two examples.
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Example 14 Induction. Consider a finite population of (known) size N ,
all of whose elements may or may not have a specified property. A random
sample of size n is taken without replacement, and all the elements in the
sample turn out to have that property. Scientific interest often centres in
the probability that all the N elements in the population have the property
under consideration (natural induction). It has often been argued that for
relatively large n values, this should be close to one whatever might be
the population size N (typically much larger than the sample size n).
Thus, if all the n = 225 randomly chosen turtles in an isolated volcanic
island are found to show a particular difference with respect to those in
the mainland, zoologists would tend to believe that all the turtles in the
island share that property. Formally, if r and R respectively denote the
number of elements in the sample and in the population which have the
property under study, the statistical model is

M ≡
{
p(r |n, R, N), r ∈ {0, . . . , n}, R ∈ {0, . . . , N}

}
,

where R is the unknown parameter, and p(r |n, R, N) =
(

R
r

)(
N−R
n−r

)
/
(

N
n

)
is the relevant hypergeometric distribution. The required result,

p(R = N | r = n, N) =
p(r = n |n, R, N) p(R = N)∑N

R=0 p(r = n |n, R, N) p(R)
. (27)

may immediately be obtained from Bayes theorem, once a prior p(R) for
the unknown number R of elements in the population which have the
property has been established. If the parameter of interest were R itself,
the reference prior would be uniform over its range (Theorem 2), so that
p(R) = (N + 1)−1; using (27) this would lead to the posterior probab-
ility p(R = N | r = n, N) = (n + 1)/(N + 1) which will be small when
(as it is usually the case) the sampling fraction n/N is small. However,
the quantity of interest here is not the value of R but whether or not
R = N , and a reference prior is desired which maximizes the missing in-
formation about this specific question. Rewriting the unknown parameter
as R = (θ, λ), where θ = 1 if R = N and θ = 0 otherwise, and λ = 1
if R = N and λ = R otherwise (so that the quantity of interest θ is ex-
plicitly shown), and using Theorem 2 and the argument above, one gets
π(λ | θ = 1) = 1, π(λ | θ = 0) = N−1, and π(θ = 0) = π(θ = 1) = 1/2, so
that the θ-reference prior is πθ(R) = 1/2 if R = N and πθ(R) = 1/(2N)
if R �= N . Using (27), this leads to

p(R = N | r = n, N) =
[
1 +

1

n + 1

(
1 − n

N

)]−1

≈ n + 1

n + 2
(28)

which, as expected, clearly displays the irrelevance of the sampling frac-
tion, and the approach to unity for large n. In the turtles example (a real
question posed to the author at the Galápagos Islands in the eighties), this
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yields p(R = N | r = n = 225, N) ≈ 0.995 for all large N . The reference
result (28) does not necessarily represents any personal scientist’s beliefs
(although apparently it may approach actual scientists’s beliefs in many
situations), but the conclusions which should be reached from a situation
where the missing information about the quantity of interest (whether or
not R = N) is maximized, a situation mathematically characterized by the
θ-reference prior described above. For further discussion of this problem
(with important applications in philosophy of science, physical sciences
and reliability), see Jeffreys (1961, pp. 128–132), Geisser (1984), Bernardo
(1985b) and Singpurwalla and Wilson (2004).

Example 15 Ratio of multinomial parameters. Let data x = {r1, r2, n}
consist of the result of n trinomial observations, with parameters α1, α2

and α3 = 1 − α1 − α2, so that, for 0 < αi < 1, α1 + α2 < 1,

p(r1, r2 |n, α1, α2) = c(r1, r2, n) αr1
1 αr2

2 (1 − α1 − α2)
n−r1−r2 ,

where c(r1, r2, n) = (n!)/(r1! r2! (n−r1−r2)!), and suppose that the quant-
ity of interest is the ratio θ = α1/α2 of the first two original parameters.
Reparametrization in terms of θ and (say) λ = α2 yields

p(r1, r2 |n, θ, λ) = c(r1, r2, n) θr1 λr1+r2 {1 − λ(1 + θ)}n−r1−r2 ,

for θ > 0 and, given θ, 0 < λ < (1+θ)−1. Conditional on θ, this is a model
with one continuous parameter λ, and the corresponding Fisher informa-
tion function is i(λ | θ) = n(1+ θ)/{λ(1−λ(1+ θ))}; using Theorem 9 the
conditional reference prior of the nuisance parameter is π(λ | θ) ∝ i(λ | θ)1/2

which is the proper beta-like prior π(λ | θ) ∝ λ−1/2{1 − λ(1 + θ)}−1/2, with
support on λ ∈ [0, (1 + θ)−1] (which depends on θ). Integration of the
full model p(r1, r2 |n, θ, λ) with the conditional reference prior π(λ | θ)
yields p(r1, r2 |n, θ) =

∫ (1+θ)−1

0 p(r1, r2 |n, θ, λ) π(λ | θ) dλ, the integrated
one-parameter model

p(r1, r2 |n, θ) =
Γ(r1 + r2 + 1

2) Γ(n − r1 − r2 + 1
2)

r1! r2! (n − r1 − r2)!

θr1

(1 + θ)r1+r2

.

The corresponding Fisher information function is i(θ) = n/{2θ(1 + θ)2};
using again Theorem 9 the reference prior of the parameter of interest
is π(θ) ∝ i(θ)1/2 which is the proper prior π(θ) ∝ θ−1/2(1 + θ)−1, θ > 0.
Hence, by Bayes theorem, the reference posterior of the quantity of interest
is π(θ | r1, r2, n) ∝ p(r1, r2 |n, θ) π(θ); this yields

π(θ | r1, r2) =
Γ(r1 + r2 + 1)

Γ(r1 + 1
2) Γ(r2 + 1

2)

θr1−1/2

(1 + θ)r1+r2+1
, θ > 0.

Notice that π(θ | r1, r2) does not depend on n; to draw conclusions about
the value of θ = α1/α2 only the numbers r1 and r2 observed in the first
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two classes matter: a result {55, 45, 100} carries precisely the same inform-
ation about the ratio α1/α2 than a result {55, 45, 10000}. For instance, if
an electoral survey of size n yields r1 voters for party A and r2 voters for
party B, the reference posterior distribution of the ratio θ of the proportion
of A voters to B voters in the population only depends on their respective
number of voters in the sample, r1 and r2, whatever the size and political
intentions of the other n − r1 − r2 citizens in the sample. In particular,
the reference posterior probability that party A gets better results than
party B is Pr[θ > 1 | r1, r2] =

∫ ∞
1 π(θ | r1, r2) dθ. As one would expect, this

is precisely equal to 1/2 if, and only if, r1 = r2; one-dimensional numerical
integration (or use of the incomplete beta function) is required to com-
pute other values. For instance, whatever the total sample size n in each
case, this yields Pr[θ > 1 | r1 = 55, r2 = 45] = 0.841 (with r1 + r2 = 100)
and Pr[θ > 1 | r1 = 550, r2 = 450] = 0.999 (with the same ratio r1/r2, but
r1 + r2 = 1000).

As illustrated by the preceding examples, in a multiparameter model, say
M ≡ {p(x |ω), x ∈ X , ω ∈ Ω} the required (joint) reference prior πθ(ω)
may depend on the quantity of interest, θ = θ(ω) (although, as one would
certainly expect, and will later be demonstrated, this will not be the case if
the new quantity of interest φ = φ(ω) say, is a one-to-one function of θ).
Notice that this does not mean that the analyst’s beliefs should depend on his
or her interests; as stressed before, reference priors are not meant to describe
the analyst’s beliefs, but the mathematical formulation of a particular type of
prior beliefs—those which would maximize the expected missing information
about the quantity of interest—which could be adopted by consensus as a
standard for scientific communication.

If the conditional reference prior π(λ | θ) is not proper, so that Equation (25)
does not define a valid statistical model, then integration may be performed
within each of the elements of an increasing sequence {Λi}∞i=1 of subsets of Λ
converging to Λ over which π(λ | θ) is integrable. Thus, Equation (25) is to be
replaced by

pi(x | θ) =
∫
Λi

p(x | θ, λ) πi(λ | θ) dλ, (29)

where πi(λ | θ) is the renormalized proper restriction of π(λ | θ) to Λi, from
which the reference posterior πi(θ |x) = π(θ |Mi,P), which corresponds to
model Mi ≡ {p(x | θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λi} may be derived.

The use of the sequence {Λi}∞i=1 makes it possible to obtain a corresponding
sequence of θ-reference posteriors {πi(θ |x)}∞i=1 for the quantity of interest θ
which corresponds to the sequence of integrated models (29); the required
reference posterior may then be found as the corresponding intrinsic limit
π(θ |x) = limi→∞ πi(θ |x). A θ-reference prior is then defined as any positive
function πθ(θ, λ) which may formally be used in Bayes’ theorem to directly
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obtain the reference posterior, so that for all x ∈ X , the posterior density
satisfies π(θ |x) ∝ ∫

Λ p(x | θ, λ) πθ(θ, λ) dλ.

The approximating sequences should be consistently chosen within the same
model: given a statistical model M ≡ {p(x |ω), x ∈ X , ω ∈ Ω} an appropri-
ate approximating sequence {Ωi} should be chosen for the whole parameter
space Ω. Thus, if the analysis is done in terms of ψ = {ψ1, ψ2} ∈ Ψ(Ω), the ap-
proximating sequence should be chosen such that Ψi = ψ(Ωi). A very natural
approximating sequence in location-scale problems is {µ, log σ} ∈ [−i, i]2; re-
parametrization to asymptotically independent parameters and approximate
location reparametrizations (Definition 7) may be combined to choose appro-
priate approximating sequences in more complex situations. A formal defini-
tion of reference prior functions in multiparameter problems is possible along
the lines of Definition 6.

As one would hope, the θ-reference prior does not depend on the choice
of the nuisance parameter λ; thus, for any ψ = ψ(θ, λ) such that (θ, ψ) is a
one-to-one function of (θ, λ), the θ-reference prior in terms of (θ, ψ) is simply
πθ(θ, ψ) = πθ(θ, λ)/|∂(θ, ψ)/∂(θ, λ)|, the appropriate probability transforma-
tion of the θ-reference prior in terms of (θ, λ). Notice however that, as men-
tioned before, the reference prior may depend on the parameter of interest;
thus, the θ-reference prior may differ from the φ-reference prior unless either φ
is a one-to-one transformation of θ, or φ is asymptotically independent of θ.
This is an expected consequence of the mathematical fact that the prior which
maximizes the missing information about θ is not generally the same as the
prior which maximizes the missing information about any function φ = φ(θ, λ).

The non-existence of a unique “noninformative” prior for all inference prob-
lems within a given model was established by Dawid, Stone and Zidek (1973)
when they showed that this is incompatible with consistent marginalization.
Indeed, given a two-parameter model M ≡ {p(x | θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ},
if the reference posterior of the quantity of interest θ, π(θ |x) = π(θ | t), only
depends on the data through a statistic t = t(x) whose sampling distribution,
p(t | θ, λ) = p(t | θ), only depends on θ, one would expect the reference pos-
terior to be of the form π(θ | t) ∝ p(t | θ) π(θ) for some prior π(θ). However,
examples were found where this cannot be the case if a unique joint “nonin-
formative” prior were to be used for all possible quantities of interest within
the same statistical model M.

By definition, a reference prior must be a permissible prior function. In par-
ticular (Definition 3), it must yield proper posteriors for all data sets large
enough to identify the parameters. For instance, if data x consist of a ran-
dom sample of fixed size n from a normal N(x |µ, σ) distribution, so that,
M ≡ {∏n

j=1 N(xj |µ, σ), xj ∈ IR, σ > 0}, the function πµ(µ, σ) = σ−1 is only a
permissible (joint) prior for µ if n ≥ 2 (and, without restrictions in the class P
of candidate priors, a reference prior function does not exist for n = 1).
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Under posterior asymptotic normality, reference priors are easily obtained in
terms of the relevant Fisher information matrix. The following result extends
Theorem 9 to models with two continuous parameters:

Theorem 11 (Reference priors under asymptotic binormality) Let
data x = {y1, . . . ,yn} consist of n conditionally independent (given θ) obser-
vations from a model M ≡ {p(y | θ, λ), y ∈ Y , θ ∈ Θ, λ ∈ Λ}, and let P0

be the class of all continuous (joint) priors with support Θ × Λ}. If the pos-
terior distribution of {θ, λ} is asymptotically normal with dispersion matrix
V (θ̂n, λ̂n)/n, where {θ̂n, λ̂n} is a consistent estimator of {θ, λ}, define

V (θ, λ) =

 vθθ(θ, λ) vθλ(θ, λ)

vθλ(θ, λ) vλλ(θ, λ)

 , H(θ, λ) = V −1(θ, λ), and

π(λ | θ)∝h
1/2
λλ (θ, λ), λ ∈ Λ, (30)

and, if π(λ | θ) is proper,

π(θ) ∝ exp
{ ∫

Λ
π(λ | θ) log[v

−1/2
θθ (θ, λ)] dλ

}
, θ ∈ Θ. (31)

Then, if π(λ | θ) π(θ) is a permissible prior function, the θ-reference prior is

π(θ |Mn,P0) ∝ π(λ | θ) π(θ).

If π(λ | θ) is not proper, integration in (31) is performed on elements of an in-
creasing sequence {Λi}∞i=1 such that

∫
Λi

π(λ | θ) dλ < ∞, to obtain the sequence
{πi(λ | θ) πi(θ)}∞i=1, where πi(λ | θ) is the renormalization of π(λ | θ) to Λi, and
the θ-reference prior πθ(θ, λ) is defined as its corresponding intrinsic limit.

A heuristic justification of Theorem 11 is now provided. Under the stated
conditions, given k independent observations from model M, the conditional
posterior distribution of λ given θ is asymptotically normal with precision
k hλλ(θ, λ̂k), and the marginal posterior distribution of θ is asymptotically nor-

mal with precision k v−1
θθ (θ̂k, λ̂k); thus, using Theorem 9, π(λ | θ) ∝ h

1/2
λλ (θ, λ),

which is Equation (30). Moreover, using Theorem 3,

πk(θ)∝ exp
{ ∫∫

p(θ̂k, λ̂k | θ) log[N{θ | θ̂k, k
−1/2v

1/2
θθ (θ̂k, λ̂k)}] dθ̂k dλ̂k

}
(32)

where, if π(λ | θ) is proper, the integrated model p(θ̂k, λ̂k | θ) is given by

p(θ̂k, λ̂k | θ) =
∫
Λ

p(θ̂k, λ̂k | θ, λ) π(λ | θ) dλ. (33)

Introducing (33) into (32) and using the fact that (θ̂k, λ̂k) is a consistent
estimator of (θ, λ)—so that as k → ∞ integration with p(θ̂k, λ̂k | θ, λ) reduces
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to substitution of (θ̂k, λ̂k) by (θ, λ)—directly leads to Equation (31). If π(λ | θ)
is not proper, it is necessary to integrate in an increasing sequence {Λi}∞i=1 of
subsets of Λ such that the restriction πi(λ | θ) of π(λ | θ) to Λi is proper, obtain
the sequence of reference priors which correspond to these restricted models,
and then take limits to obtain the required result. �

Notice that under appropriate regularity conditions (see e.g., Bernardo and
Smith (1994, Sec. 5.3) and references therein) the joint posterior distribution
of {θ, λ} is asymptotically normal with precision matrix n I(θ̂n, λ̂n), where I(θ)
is Fisher information matrix; in that case, the asymptotic dispersion matrix
in Theorem 11 is simply V (θ, λ) = I−1(θ, λ)/n.

Theorem 12 (Reference priors under factorization) In the conditions
of Theorem 11, if (i) θ and λ are variation independent—so that Λ does not
depend on θ—and (ii) both hλλ(θ, λ) and vθθ(θ, λ) factorize, so that

v
−1/2
θθ (θ, λ) ∝ fθ(θ) gθ(λ), h

1/2
λλ (θ, λ) ∝ fλ(θ) gλ(λ), (34)

then the θ-reference prior is simply πθ(θ, λ) = fθ(θ) gλ(λ), even if the condi-
tional reference prior π(λ | θ) = π(λ) ∝ gλ(λ) is improper.

If h
1/2
λλ (θ, λ) factorizes as h

1/2
λλ (θ, λ) = fλ(θ)gλ(λ), then the conditional refer-

ence prior is π(λ | θ) ∝ fλ(θ)gλ(λ) and, normalizing, π(λ | θ) = c1 gλ(λ), which

does not depend on θ. If, furthermore, v
−1/2
θθ (θ, λ) = fθ(θ)gθ(λ) and Λ does

not depend on θ, Equation (31) reduces to

π(θ) ∝ exp{
∫
Λ

c1 gλ(λ) log[fθ(θ)gθ(λ)] dλ
}

= c2 fθ(θ)

and, hence, the reference prior is πθ(θ, λ) = π(λ | θ) π(θ) = c fθ(θ) gλ(λ). �

Example 16 Inference on the univariate normal parameters. Let data
x = {x1, . . . , xn} consist of a random sample of fixed size n from a normal
distribution N(x |µ, σ). The information matrix I(µ, σ) and its inverse
matrix are respectively

I(µ, σ) =

 σ−2 0

0 2σ−2

 , V (µ, σ) = I−1(µ, σ) =

 σ2 0

0 1
2σ

2

 .

Hence, i1/2
σσ (µ, σ) =

√
2 σ−1 = fσ(µ) gσ(σ), with gσ(σ) = σ−1, so that

π(σ |µ) = σ−1. Similarly, v−1/2
µµ (µ, σ) = σ−1 = fµ(µ) gσ(σ), with fµ(µ) = 1,

and thus π(µ) = 1. Therefore, using Theorem 11 the µ-reference prior is
πµ(µ, σ) = π(σ |µ) π(µ) = σ−1 for all n ≥ 2. For n = 1 the posterior distri-
bution is not proper, the function h(µ, σ) = σ−1 is not a permissible prior,
and a reference prior does not exist. Besides, since I(µ, σ) is diagonal, the
σ-reference prior is πσ(µ, σ) = fσ(σ) gµ(µ) = σ−1, the same as πµ(µ, σ).

37



Consider now the case where the quantity of interest is not the mean µ
or the standard deviation σ, but the standardized mean φ = µ/σ (or, equi-
valently, the coefficient of variation σ/µ). Fisher’s matrix in terms of the
parameters φ and σ is I(φ, σ) = J t I(µ, σ) J , where J = (∂(µ, σ)/∂(φ, σ))
is the Jacobian of the inverse transformation, and this yields

I(φ, σ) =

 1 φσ−1

φσ−1 σ−2(2 + φ2)

 , V (φ, σ) =

 1 + 1
2φ

2 −1
2φσ

−1
2φσ 1

2σ
2

 .

Thus, i1/2
σσ (φ, σ) = σ−1(2 + φ2)1/2, and v

−1/2
φφ (φ, σ) = (1 + 1

2φ
2)−1/2. Hence,

using Theorem 11, πφ(φ, σ) = (1 + 1
2φ

2)−1/2σ−1 (n ≥ 2). In the original
parametrization, this is πφ(µ, σ) = (1 + 1

2(µ/σ)2)−1/2σ−2, which is very
different from πµ(µ, σ) = πσ(µ, σ) = σ−1. The reference posterior of the
quantity of interest φ after data x = {x1, . . . , xn} have been observed is

π(φ |x) ∝ (1 + 1
2φ

2)−1/2 p(t |φ) (35)

where t = (
∑

xj)/(
∑

x2
j)

1/2, a one-dimensional statistic whose sampling
distribution, p(t |µ, σ) = p(t |φ), only depends on φ. Thus, the reference
prior algorithm is seen to be consistent under marginalization.

The reference priors πµ(µ, σ) = σ−1 and πσ(µ, σ) = σ−1 for the normal loca-
tion and scale parameters obtained in the first part of Example 16 are just a
particular case of a far more general result:

Theorem 13 (Location-scale models) If M is a location-scale model, so
that for some function f , M ≡ σ−1f{(x − µ)/σ}, x ∈ X , µ ∈ IR, σ > 0},
and P0 is the class of all continuous, strictly positive (joint) priors for (µ, σ),
then a reference prior for either µ or σ, if it exists, is of the form

πµ(µ, σ |M,P0) = πσ(µ, σ |M,P0) ∝ σ−1.

For a proof, which is based on the form of the relevant Fisher matrix, see
Fernández and Steel (1999b). �

When the quantity of interest and the nuisance parameter are not variation
independent, derivation of the reference prior requires special care. This is
illustrated in the example below:

Example 17 Product of positive normal means. Let data consist of two
independent random samples x = {x1, . . . , xn} and y = {y1, . . . , ym} from
N(x |α, 1) and N(y | β, 1), α > 0, β > 0, so that the assumed model is

p(x, y |α, β) =
∏n

i=1
N(xi |α, 1)

∏m

j=1
N(yj | β, 1), α > 0, β > 0,

and suppose that the quantity of interest is the product of the means,
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θ = αβ, a frequent situation in physics and engineering. Reparametriz-
ing in terms of the one-to-one transformation (θ, λ) = (αβ, α/β), Fisher
matrix I(θ, λ) and its inverse matrix V (θ, λ) are,

I =

 m+nλ2

4θλ
1
4

(
n − m

λ2

)
1
4

(
n − m

λ2

)
θ (m+nλ2)

4λ3

 , V =

 θ( 1
nλ

+ λ
m

) 1
n
− λ2

m

1
n
− λ2

m
λ(m+nλ2)

nmθ

 .

and, therefore, using (30),

π(λ | θ) ∝ I22(θ, λ)1/2 ∝ θ1/2(m + nλ2)1/2λ−3/2. (36)

The natural increasing sequence of subsets of the original parameter space,
Ωi = {(α, β); 0 < α < i, 0 < β < i}, transforms, in the parameter space
of λ, into the sequence Λi(θ) = {λ; θ i−2 < λ < i2 θ−1}. Notice that this
depends on θ, so that θ and λ are not variation independent and, hence,
Theorem 12 cannot be applied. Renormalizing (36) in Λi(θ) and using
(31), it is found that, for large i,

πi(λ | θ) = ci(m, n) θ1/2(m + nλ2)1/2λ−3/2

πi(θ) = ci(m, n)
∫
Λi(θ)

(m + nλ2)1/2λ−3/2 log

(
λ

m
+

1

nλ

)−1/2

dλ,

where ci(m, n) = i−1
√

nm/(
√

m +
√

n), which leads to the θ-reference

prior πθ(θ, λ) ∝ θ1/2λ−1
(

λ
m

+ 1
nλ

)1/2
. In the original parametrization, this

corresponds to

πθ(α, β) ∝ (nα2 + mβ2)1/2, n ≥ 1, m ≥ 1 (37)

which depends on the sample sizes through the ratio m/n. It has already
been stressed that the reference prior depends on the experimental design.
It is therefore not surprising that, if the design is unbalanced, the refer-
ence prior depends on the ratio m/n which controls the level of balance.
Notice that the reference prior (37) is very different from the uniform
prior πα(α, β) = πβ(α, β) = 1, which should be used to make reference
inferences about either α or β.

It will later be demonstrated (Example 22) that the prior πθ(α, β) found
above provides approximate agreement between Bayesian credible regions and
frequentist confidence intervals for θ (Berger and Bernardo, 1989); indeed, this
prior was originally suggested by Stein (1986) (who only considered the case
m = n) to obtain such approximate agreement. Efron (1986) used this problem
as an example in which conventional objective Bayesian theory encounters
difficulties since, even within a fixed model M ≡ {p(y |θ), y ∈ Y , θ ∈ Θ},
the “correct” objective prior depends on the particular function φ = φ(θ) one
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desires to estimate. For the reference priors associated to generalizations of
the product of normal means problem, see Sun and Ye (1995, 1999).

3.9 Many parameters

Theorems 11 and 12 may easily be extended to any number of nuisance
parameters. Indeed, let data x = {y1, . . . ,yn} consist of a random sample
of size n from a model M ≡ {p(y |ω), y ∈ Y , ω = {ω1, . . . , ωm}, ω ∈ Ω},
let ω1 be the quantity of interest, assume regularity conditions to guarantee
that, as n → ∞, the joint posterior distribution of ω is asymptotically normal
with mean ω̂n and dispersion matrix V (ω̂n)/n, and let H(ω) = V −1(ω). It
then follows that, if Vj(ω) is the j × j upper matrix of V (ω), j = 1, . . . , m,
Hj(ω) = V −1

j (ω) and hjj(ω) is the lower right (j, j) element of Hj(ω), then

(1) the conditional posterior distribution of ωj given {ω1, . . . , ωj−1}, is asymp-
totically normal with precision n hjj(ω̂n), (j = 2, . . . , m) and

(2) the marginal posterior distribution of ω1 is asymptotically normal with
precision n h11(ω̂n).

This may be used to extend the algorithm described in Theorem 11 to sequen-
tially derive π(ωm |ω1, . . . , ωm−1), π(ωm−1 |ω1, . . . , ωm−2), . . . , π(ω2 |ω1) and
π(ω1); their product yields the reference prior associated to the particular
ordering {ω1, ω2, . . . , ωm}. Intuitively, this is a mathematical description of a
situation where, relative to the particular design considered M, one maxim-
izes the missing information about the parameter ω1 (that of higher inferential
importance), but also the missing information about ω2 given ω1, that of ω3

given ω1 and ω2,... and that of ωm given ω1 to ωm−1. As in sequential decision
theory, this must be done backwards. In particular, to maximize the miss-
ing information about ω1, the prior which maximizes the missing information
about ω2 given ω1 has to be derived first.

The choice of the ordered parametrization, say {θ1(ω), θ2(ω), . . . , θm(ω)},
precisely describes the particular prior required, namely that which sequen-
tially maximizes the missing information about the θj’s in order of inferen-
tial interest. Indeed, “diffuse” prior knowledge about a particular sequence
{θ1(ω), θ2(ω), . . . , θm(ω)} may be very “precise” knowledge about another
sequence {φ1(ω), φ2(ω), . . . , φm(ω)} unless, for all j, φj(ω) is a one-to-one
function of θj(ω). Failure to recognize this fact is known to produce untenable
results; famous examples are the paradox of Stein (1959) (see Example 19
below) and the marginalization paradoxes (see Example 16).

Theorem 14 (Reference priors under asymptotic normality) Let data
x = {y1, . . . ,yn} consist of a random sample of size n from a statistical model
M ≡ {p(y |θ), y ∈ Y , θ = {θ1, . . . , θm}, θ ∈ Θ =

∏m
j=1 Θj}, and let P0 be the

class of all continuous priors with support Θ. If the posterior distribution of θ
is asymptotically normal with dispersion matrix V (θ̂n)/n, where θ̂n is a con-
sistent estimator of θ, H(θ) = V −1(θ), Vj is the upper j × j submatrix of V ,
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Hj = V −1
j , and hjj(θ) is the lower right element of Hj, then the θ-reference

prior, associated to the ordered parametrization {θ1, . . . , θm}, is

π(θ |Mn,P0) = π(θm | θ1, . . . , θm−1) × · · · × π(θ2 | θ1) π(θ1),

with π(θm | θ1, . . . , θm−1) = h1/2
mm(θ) and, for i = 1, . . . , m − 1,

π(θj | θ1, . . . , θj−1)∝ exp
{ ∫

Θj+1

m∏
l=j+1

π(θl | θ1, . . . , θl−1) log[h
1/2
jj (θ)] dθj+1

}

with θj+1 = {θj+1, . . . , θm}, provided π(θj | θ1, . . . , θj−1) is proper for all j.

If the conditional reference priors π(θj | θ1, . . . , θj−1) are not all proper, in-
tegration is performed on elements of an increasing sequence {Θi}∞i=1 such
that

∫
Θij

π(θj | θ1, . . . , θj−1) dθj is finite, to obtain the corresponding sequence
{πi(θ)}∞i=1 of reference priors for the restricted models. The θ-reference prior
is then defined as their intrinsic limit.

If, moreover, (i) Θj does not depend on {θ1, . . . , θj−1}, and (ii) the functions
hjj(θ, λ) factorize in the form

h
1/2
jj (θ) ∝ fj(θj) gj(θ1, . . . , θj−1, θj+1, . . . , θm), j = 1, . . . , m,

then the θ-reference prior is simply πθ(θ) =
∏m

j=1 fj(θj), even if the condi-
tional reference priors are improper.

Under appropriate regularity conditions—see e.g., Bernardo and Smith (1994,
Theo. 5.14)—the posterior distribution of θ is asymptotically normal with
mean the mle θ̂n and precision matrix n I(θ̂n), where I(θ) is Fisher matrix,

iij(θ) = −
∫

Y
p(y |θ)

∂2

∂θi∂θj

log[p(y |θ)] dy;

in that case, H(θ) = n I(θ), and the reference prior may be computed from the
elements of Fisher matrix I(θ). Notice, however, that in the multivariate case,
the reference prior does not yield Jeffreys multivariate rule (Jeffreys, 1961),
πJ(θ) ∝ |I(θ)|1/2. For instance, in location-scale models, the (µ, σ)-reference
prior and the (σ, µ)-reference prior are both πR(µ, σ) = σ−1 (Theorem 13),
while Jeffreys multivariate rule yields πJ(µ, σ) = σ−2. As a matter of fact,
Jeffreys himself criticised his own multivariate rule. This is known, for instance,
to produce both marginalization paradoxes Dawid, Stone and Zidek (1973),
and strong inconsistencies (Eaton and Freedman, 2004). See, also, Stein (1962)
and Example 23.

Theorem 14 provides a procedure to obtain the reference prior πθ(θ) which
corresponds to any ordered parametrization θ = {θ1, . . . , θm}. Notice that,
within any particular multiparameter model

M ≡ {p(x |θ), x ∈ X , θ = {θ1, . . . , θm} ∈ Θ ⊂ IRk},

41



the reference algorithm provides a (possibly different) joint reference prior

πφ(φ) = π(φm |φ1, . . . , φm−1) × · · · × π(φ2 |φ1) π(φ1),

for each possible ordered parametrization {φ1(θ), φ2(θ), . . . , φm(θ)}. However,
as one would hope, the results are coherent under monotone transformations
of each of the φi(θ)’s in the sense that, in that case, πφ(φ) = πθ[ θ(φ) ]|J(φ)|,
where J(φ) is the Jacobian of the inverse transformation θ = θ(φ), of general
element jij(φ) = ∂θi(φ)/∂φj. This property of coherence under appropriate
reparametrizations may be very useful in choosing a particular parametriza-
tion (for instance one with orthogonal parameters, or one in which the rel-
evant hjj(θ) functions factorize) which simplifies the implementation of the
algorithm.

Starting with Jeffreys (1946) pioneering work, the analysis of the invari-
ance properties under reparametrization of multiparameter objective priors
has a very rich history. Relevant pointers include Hartigan (1964), Stone (1965,
1970), Zidek (1969), Florens (1978, 1982), Dawid (1983), Consonni and Ver-
onese (1989b), Chang and Eaves (1990), George and McCulloch (1993), Datta
and J. K. Ghosh (1995b), Yang (1995), Datta and M. Ghosh (1996), Eaton
and Sudderth (1999, 2002, 2004) and Severini, Mukerjee and Ghosh (2002).
In particular, Datta and J. K. Ghosh (1995b), Yang (1995) and Datta and
M. Ghosh (1996) are specifically concerned with the invariance properties of
reference distributions.

Example 18 Multivariate normal data. Let data consist of a size n ran-
dom sample x = {y1, . . . ,yn}, n ≥ 2, from an m-variate normal distribu-
tion with mean µ, and covariance matrix σ2 Im, m ≥ 1, so that

I(µ, σ) =

 σ−2 Im 0

0 (2/m) σ−2


It follows from Theorem 14 that the reference prior relative to the natural
parametrization θ = {µ1, . . . , µm, σ} is πθ(µ1, . . . , µm, σ) ∝ σ−1, and
also that the result does not depend on the order in which the para-
metrization is taken, since their asymptotic covariances are zero. Hence,
πθ(µ1, . . . , µm, σ) ∝ σ−1 is the appropriate prior function to obtain the
reference posterior of any piecewise invertible function φ(µj) of µj, and
also to obtain the reference posterior of any piecewise invertible function
φ(σ) of σ. In particular, the corresponding reference posterior for any of
the µj’s is easily shown to be the Student density

π(µj |y1, . . . ,yn) = St
{
µj

∣∣∣∣ yj, s/
√

(n − 1), m(n − 1)
}

with nyj =
∑n

i=1 yij, and nms2 =
∑m

j=1

∑n
i=1(yij − yj)

2, which agrees with
the standard argument according to which one degree of freedom should
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be lost by each of the unknown means. Similarly, the reference posterior
of σ2 is the inverted Gamma

π(σ2 |y1, . . . ,yn) = IGa{σ2 |n(m − 1)/2, nms2/2}

When m = 1, these results reduce to those obtained in Example 16.

Example 19 Stein’s paradox. Let x ∈ X be a random sample of size n
from a m-variate normal Nm(x |µ, Im) with mean µ = {µ1, . . . , µm} and
unitary dispersion matrix. The reference prior which corresponds to any
permutation of the µi’s is uniform, and this uniform prior leads indeed
to appropriate reference posterior distributions for any of the µj’s, given
by π(µj |x) = N(µj |xj, 1/

√
n). Suppose, however, that the quantity of in-

terest is θ =
∑

j µ2
j , the squared distance of µ from the origin. As shown by

Stein (1959), the posterior distribution of θ based on the uniform prior (or
indeed any “flat” proper approximation) has very undesirable properties;
this is due to the fact that a uniform (or nearly uniform) prior, although
“noninformative” with respect to each of the individual µj’s, is actually
highly informative on the sum of their squares, introducing a severe bias
towards large values of θ (Stein’s paradox). However, the reference prior
which corresponds to a parametrization of the form {θ, λ} produces, for
any choice of the nuisance parameter vector λ = λ(µ), the reference pos-
terior for the quantity of interest π(θ |x) = π(θ | t) ∝ θ−1/2χ2(n t |m, n θ),
where t =

∑
i x

2
i , and this posterior is shown to have the appropriate

consistency properties. For further details see Ferrándiz (1985).
If the µi’s were known to be related, so that they could be assumed

to be exchangeable, with p(µ) =
∏m

i=1 p(µi |φ), for some p(µ |φ), one
would have a (very) different (hierarchical) model. Integration of the µi’s
with p(µ) would then produce a model M ≡ {p(x |φ), x ∈ X , φ ∈ Φ}
parametrized by φ, and only the corresponding reference prior π(φ |M)
would be required. See below (Subsection 3.12) for further discussion on
reference priors in hierarchical models.

Far from being specific to Stein’s example, the inappropriate behaviour in
problems with many parameters of specific marginal posterior distributions
derived from multivariate “flat” priors (proper or improper) is very frequent.
Thus, as indicated in the introduction, uncritical use of “flat” priors (rather
than the relevant reference priors), should be very strongly discouraged.

3.10 Discrete parameters taking an infinity of values

Due to the non-existence of an asymptotic theory comparable to that of the
continuous case, the infinite discrete case presents special problems. However,
it is often possible to obtain an approximate reference posterior by embedding
the discrete parameter space within a continuous one.

43



Example 20 Discrete parameters taking an infinite of values. In the con-
text of capture-recapture models, it is of interest to make inferences about
the population size θ ∈ {1, 2, . . .} on the basis of data x = {x1, . . . , xn},
which are assumed to consist of a random sample from

p(x | θ) =
θ(θ + 1)

(x + θ)2
, 0 ≤ x ≤ 1.

This arises, for instance, in software reliability, when the unknown num-
ber θ of bugs is assumed to be a continuous mixture of Poisson distri-
butions. Goudie and Goldie (1981) concluded that, in this problem, all
standard non-Bayesian methods are liable to fail; Raftery (1988) finds
that, for several plausible “diffuse looking” prior distributions for the dis-
crete parameter θ, the corresponding posterior virtually ignores the data;
technically, this is due to the fact that, for most samples, the corresponding
likelihood function p(x | θ) tends to one (rather than to zero) as θ → ∞.
Embedding the discrete parameter space Θ = {1, 2, . . .} into the continu-
ous space Θ = (0,∞) (since, for each θ > 0, p(x|θ) is still a probability
density for x), and using Theorem 9, the appropriate reference prior is

π(θ) ∝ i(θ)1/2 ∝ (θ + 1)−1θ−1,

and it is easily verified that this prior leads to a posterior in which the data
are no longer overwhelmed. If the problem requires the use of discrete θ
values, the discrete approximation Pr(θ = 1 |x) =

∫ 3/2
0 π(θ |x) dθ, and

Pr(θ = j |x) =
∫ j+1/2
j−1/2 π(θ |x) dθ, j > 1, may be used as an approximate

discrete reference posterior, specially when interest mostly lies on large θ
values, as it is typically the case.

3.11 Behaviour under repeated sampling

The frequentist coverage probabilities of the different types of credible inter-
vals which may be derived from reference posterior distributions are sometimes
identical, and usually very close, to their posterior probabilities; this means
that, even for moderate samples, an interval with reference posterior prob-
ability q may often be interpreted as an approximate frequentist confidence
interval with significance level 1 − q.

Example 21 Coverage in simple normal problems. Consider again infer-
ences about the mean µ and the variance σ2 of a normal N(x |µ, σ) model.
Using the reference prior πµ(µ, σ) ∝ σ1 derived in Example 16, the refer-
ence posterior distribution of µ after a random sample x = {x1, . . . , xn}
has been observed, π(µ |x) ∝ ∫ ∞

0

∏n
j=1 N(xj |µ, σ) πµ(µ, σ) dσ, is the Stu-

dent density π(µ |x) = St(µ |x, s/
√

n − 1, n − 1) ∝ [s2 + (x − µ)2]−n/2,
where x =

∑
j xj/n, and s2 =

∑
j(xj − x)2/n. Hence, the reference pos-
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terior of the standardized function of µ, φ(µ) =
√

n − 1 (µ−x)/s is stand-
ard Student with n − 1 degrees of freedom. But, conditional on µ, the
sampling distribution of t(x) =

√
n − 1 (µ−x)/s is also standard Student

with n−1 degrees of freedom. It follows that, for all sample sizes, posterior
reference credible intervals for µ will numerically be identical to frequent-
ist confidence intervals based on the sampling distribution of t. Similar
results are obtained concerning inferences about σ: the reference posterior
distribution of ψ(σ) = ns2/σ2 is a χ2 with n − 1 degrees of freedom but,
conditional on σ, this is also the sampling distribution of r(x) = ns2/σ2.

The exact numerical agreement between reference posterior credible inter-
vals and frequentist confidence intervals shown in Example 21 is however the
exception, not the norm. Nevertheless, for large sample sizes, reference credible
intervals are always approximate confidence intervals.

More precisely, let data x = {x1, . . . , xn} consist of n independent obser-
vations from M = {p(x | θ), x ∈ X , θ ∈ Θ}, and let θq(x, pθ) denote the q
quantile of the posterior p(θ |x) ∝ p(x | θ) p(θ) which corresponds to the prior
p(θ), so that

Pr
[
θ ≤ θq(x, pθ) |x

]
=

∫
θ≤θq(x, pθ)

p(θ |x) dθ = q.

Standard asymptotic theory may be used to establish that, for any sufficiently
regular pair {pθ, M} of prior pθ and model M, the coverage probability of
the region thus defined, Rq(x, θ, pθ) = {x; θ ≤ θq(x, pθ)}, converges to q as
n → ∞. Specifically, for all sufficiently regular priors,

Pr
[
θq(x, pθ) ≥ θ | θ

]
=

∫
Rq(x, θ, pθ)

p(x | θ) dx = q + O(n−1/2).

It has been found however that, when there are no nuisance parameters, the
reference prior πθ typically satisfies

Pr
[
θq(x, πθ) ≥ θ | θ

]
= q + O(n−1);

this means that the reference prior is often a probability matching prior, that
is, a prior for which the coverage probabilities of one-sided posterior credible
intervals are asymptotically closer to their posterior probabilities. Hartigan
(1966) showed that the coverage probabilities of two-sided Bayesian posterior
credible intervals satisfy this type of approximation to O(n−1) for all suffi-
ciently regular prior functions.

In a pioneering paper, Welch and Peers (1963) established that in the case
of the one-parameter regular continuous models Jeffreys prior (which in this
case, Theorem 9, is also the reference prior), is the only probability match-
ing prior. Hartigan (1983, p. 79) showed that this result may be extended
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to one-parameter discrete models by using continuity corrections. Datta and
J. K. Ghosh (1995a) derived a differential equation which provides a necessary
and sufficient condition for a prior to be probability matching in the multi-
parameter continuous regular case; this has been used to verify that reference
priors are typically probability matching priors.

In the nuisance parameter setting, reference priors are sometimes matching
priors fro the parameter of interest, but in this general situation, matching
priors may not always exist or be unique (Welch, 1965; Ghosh and Mukerjee,
1998). For a review of probability matching priors, see Datta and Sweeting
(2005), in this volume.

Although the results described above only justify an asymptotic approxim-
ate frequentist interpretation of reference posterior probabilities, the coverage
probabilities of reference posterior credible intervals derived from relatively
small samples are also found to be typically close to their posterior probab-
ilities. This is now illustrated within the product of positive normal means
problem, already discussed in Example 17.

Example 22 Product of normal means, continued. Let available data
x = {x, y} consist of one observation x from N(x |α, 1), α > 0, and an-
other observation y from N(y | β, 1), β > 0, and suppose that the quantity
of interest is the product of the means θ = α β. The behaviour under
repeated sampling of the posteriors which correspond to both the con-
ventional uniform prior πu(α, β) = 1, and the reference prior πθ(α, β) =
(α2 + β2)1/2 (see Example 17) is analyzed by computing the coverage
probabilities Pr[Rq | θ, pθ] =

∫
Rq(x,θ,pθ) p(x | θ) dx associated to the regions

Rq(x, θ, pθ) = {x; θ ≤ θq(x, pθ)} defined by their corresponding quantiles,
θq(x, πu) and θq(x, πθ). Table 1 contains the coverage probabilities of the
regions defined by the 0.05 posterior quantiles. These have been numeric-
ally computed by simulating 4, 000 pairs {x, y} from N(x |α, 1)N(y | β, 1)
for each of the {α, β} pairs listed in the first column of the table.

Table 1 Coverage probabilities of 0.05-credible regions for θ = α β.

{α, β} Pr[R0.05 | θ, πu] Pr[R0.05 | θ, πθ]

{1, 1} 0.024 0.047
{2, 2} 0.023 0.035
{3, 3} 0.028 0.037
{4, 4} 0.033 0.048
{5, 5} 0.037 0.046

The standard error of the entries in the table is about 0.0035. It may be
observed that the estimated coverages which correspond to the reference
prior are appreciably closer to the nominal value 0.05 that those corres-
ponding to the uniform prior. Notice that, although it may be shown that
the reference prior is probability matching in the technical sense described
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above, the empirical results shown in the Table do not follow from that
fact, for probability matching is an asymptotic result, and one is dealing
here with samples of size n = 1. For further details on this example, see
Berger and Bernardo (1989).

3.12 Prediction and hierarchical models

Two classes of problems that are not specifically covered by the methods
described above are hierarchical models and prediction problems. The diffi-
culty with these problems is that the distributions of the quantities of interest
must belong to specific families of distributions. For instance, if one wants
to predict the value of y based on x when (y, x) has density p(y, x |θ), the
unknown of interest is y, but its distribution is conditionally specified; thus,
one needs a prior for θ, not a prior for y. Likewise, in a hierarchical model
with, say, {µ1, µ2, . . . , µp} being N(µi | θ, λ), the µi’s may be the parameters
of interest, but a prior is only needed for the hyperparameters θ and λ.

In hierarchical models, the parameters with conditionally known distribu-
tions may be integrated out (which leads to the so-called marginal over-
dispersion models). A reference prior for the remaining parameters based on
this marginal model is then required. The difficulty that arises is how to then
identify parameters of interest and nuisance parameters to construct the or-
dering necessary for applying the reference algorithm, the real parameters of
interest having been integrated out.

A possible solution to the problems described above is to define the quantity
of interest to be the conditional mean of the original parameter of interest.
Thus, in the prediction problem, the quantity of interest could be defined to
be φ(θ) = E[y|θ], which will be either θ or some transformation thereof, and
in the hierarchical model mentioned above the quantity of interest could be
defined to be E[µi | θ, λ] = θ. More sophisticated choices, in terms of appro-
priately chosen discrepancy functions, are currently under scrutiny.

Bayesian prediction with objective priors is a very active research area.
Pointers to recent suggestions include Kuboki (1998), Eaton and Sudderth
(1998, 1999) and Smith (1999). Under appropriate regularity conditions, some
of these proposals lead to Jeffreys multivariate prior, π(θ) ∝ |I(θ)|1/2. How-
ever, the use of that prior may lead to rather unappealing predictive posteriors
as the following example demonstrates.

Example 23 Normal prediction. Let available data consist of a random
sample x = {x1, . . . , xn} from N(xj |µ, σ), and suppose that one is inter-
ested in predicting a new, future observation x from N(x |µ, σ). Using the
argument described above, the quantity of interest could be defined to
be φ(µ, σ) = E[x |µ, σ] = µ and hence (see Example 16) the appropriate
reference prior would be πx(µ, σ) = σ−1 (n ≥ 2). The corresponding joint
reference posterior is π(µ, σ |x) ∝ ∏n

j=1 N(xj |µ, σ) σ−1 and the posterior
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predictive distribution is

π(x |x) =
∫ ∞

0

∫ ∞

−∞
N(x |µ, σ) π(µ, σ |x) dµ dσ

∝{(n + 1)s2 + (x − µ)2)}−n/2,

∝ St(x |x, s{(n + 1)/(n − 1)}1/2, n − 1), n ≥ 2 (38)

where, as before, x = n−1 ∑n
j=1 xj and s2 = n−1 ∑n

j=1(xj − x)2. As one
would expect, the reference predictive distribution (38) is proper whenever
n ≥ 2: in the absence of prior knowledge, n = 2 is the minimum sample
size required to identify the two unknown parameters.

It may be verified that the predictive posterior (38) has consistent cover-
age properties. For instance, with n = 2, the reference posterior predictive
probability that a third observation lies within the first two is

Pr[x(1) < x < x(2) |x1, x2] =
∫ x(2)

x(1)

π(x |x1, x2) dx = 1
3

,

where x(1) = min[x1, x2], and x(2) = max[x1, x2]. This is consistent with
the fact that, for all µ and σ, the frequentist coverage of the corresponding
region of IR3 is precisely∫ ∫ ∫

{(x1,x2,x3); x(1)<x3<x(2)}

∏3

i=1
N(xj |µ, σ) dx1 dx2 dx3 = 1

3
. (39)

In sharp contrast, if Jeffreys multivariate rule πJ(µ, σ) ∝ |I(µ, σ)|1/2 = σ−2

were used, the posterior predictive would have been a Student t centred
at x, with scale s{(n + 1)/n}1/2, and with n degrees of freedom, which is
proper whenever n ≥ 1. Thus, with πJ(µ, σ) as a prior, probabilistic pre-
dictions would be possible with only one observation, rather unappealing
when no prior knowledge is assumed. Moreover, the probability that a
third observation lies within the first two which corresponds to the prior
πJ(µ, σ) is 1/2, rather than 1/3, a less than attractive result in view of (39).

For a recent predictive probability matching approach to objective predictive
posteriors, see Datta, Mukerjee, Ghosh and Sweeting (2000).

4 Reference Inference Summaries

From a Bayesian viewpoint, the final outcome of a problem of inference
about any unknown quantity is nothing but the posterior distribution of that
quantity. Thus, given some data x and conditions C, all that can be said
about any function θ(ω) of the parameters ω which govern the model is
contained in the posterior distribution p(θ |x, C), and all that can be said
about some function y of future observations from the same model is contained
in its posterior predictive distribution p(y |x, C). In fact (Bernardo, 1979a),
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Bayesian inference may be described as a decision problem where the space
of available actions is the class of those posterior probability distributions of
the quantity of interest which are compatible with accepted assumptions.

However, to make it easier for the user to assimilate the appropriate con-
clusions, it is often convenient to summarize the information contained in
the posterior distribution, while retaining as much of the information as pos-
sible. This is conventionally done by (i) providing values of the quantity of
interest which, in the light of the data, are likely to be “close” to its true
value, and (ii) measuring the compatibility of the results with hypothetical
values of the quantity of interest which might have been suggested in the con-
text of the investigation. In this section, objective Bayesian counterparts to
these traditional inference problems of estimation and testing, which are based
on the joint use of intrinsic loss functions and reference analysis, are briefly
considered.

4.1 Point Estimation

Let x be the available data, which are assumed to consist of one observation
from M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}, and let θ = θ(ω) ∈ Θ be the quantity
of interest. Without loss of generality, the original model M may be written
as M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, in terms of the quantity of
interest θ and a vector λ of nuisance parameters. A point estimate of θ is
some value θ̃ ∈ Θ which could possibly be regarded as an appropriate proxy
for the actual, unknown value of θ.

Formally, to choose a point estimate for θ is a decision problem, where the
action space is the class Θ of possible θ values. From a decision-theoretic
perspective, to choose a point estimate θ̃ of some quantity θ is a decision to
act as if θ̃ were θ, not to assert something about the value of θ (although desire
to assert something simple may well be the main reason to obtain an estimate).
To solve this decision problem it is necessary to specify a loss function �(θ̃, θ)
measuring the consequences of acting as if the true value of the quantity of
interest were θ̃, when it is actually θ. The expected posterior loss if θ̃ were
used is l[θ̃ |x] =

∫
Θ �(θ̃, θ) π(θ |x) dθ, and the Bayes estimate is that θ̃ value

which minimizes l[θ̃ |x] in Θ. The Bayes estimator is the function of the data
θ∗(x) = arg minθ̃∈Θ l[θ̃ |x].

For any given model and data, the Bayes estimate depends on the chosen loss
function. The loss function is context specific, and should generally be chosen
in terms of the anticipated uses of the estimate; however, a number of conven-
tional loss functions have been suggested for those situations where no partic-
ular uses are envisaged. These loss functions produce estimates which may be
regarded as simple descriptions of the location of the posterior distribution.
For example, if the loss function is quadratic, so that �(θ̃, θ) = (θ̃−θ)t(θ̃−θ),
then the Bayes estimate is the posterior mean θ∗ = E[θ |x], assuming that
the mean exists. Similarly, if the loss function is a zero-one function, so that
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�(θ̃, θ) = 0 if θ̃ belongs to a ball of radius ε centred in θ and �(θ̃, θ) = 1 oth-
erwise, then the Bayes estimate θ∗ tends to the posterior mode as the radius
of the ball tends to zero, assuming that a unique mode exists.

If θ is univariate and the loss function is linear, so that �(θ̃, θ) = c1(θ̃ − θ)
if θ̃ ≥ θ, and �(θ̃, θ) = c2(θ − θ̃) otherwise, then the Bayes estimate is the
posterior quantile of order c2/(c1 + c2), so that Pr[θ < θ∗] = c2/(c1 + c2). In
particular, if c1 = c2, the Bayes estimate is the posterior median. The results
just described for univariate linear loss functions clearly illustrate the fact
that any possible parameter value may turn out be the Bayes estimate: it all
depends on the loss function describing the consequences of the anticipated
uses of the estimate.

Conventional loss functions are typically not invariant under reparametriza-
tion. As a consequence, the Bayes estimator φ∗ of a one-to-one transformation
φ = φ(θ) of the original parameter θ is not necessarily φ(θ∗) (the univariate
posterior median, which is coherent under reparametrization, is an interest-
ing exception). Moreover, conventional loss functions, such as the quadratic
loss, focus attention on the discrepancy between the estimate θ̃ and the true
value θ, rather than on the more relevant discrepancy between the statist-
ical models they label. The intrinsic discrepancy δ{Mθ̃, px |θ,λ} (Definition 1)
directly measures how different the probability model p(x |θ, λ) is from its
closest approximation within the family Mθ̃ ≡ {p(x | θ̃, λ), λ ∈ Λ}, and its
value does not depend on the particular parametrization chosen to describe
the problem.

Definition 8 (Intrinsic estimation) Let available data x consist of one
observation from M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, let Mθ̃ be the
restricted model Mθ̃ ≡ {p(x | θ̃, λ), x ∈ X , λ ∈ Λ}, and let

δ{θ̃, (θ, λ)} = δ{Mθ̃, px |θ,λ} = min
λ̃∈Λ

δ{p(x | θ̃, λ̃), p(x |θ, λ)} (40)

be the intrinsic discrepancy between the distribution p(x |θ, λ) and the set of
distributions Mθ̃. The reference posterior expected intrinsic loss is

d(θ̃ |x) = E[δ |x] =
∫
Θ

∫
Λ

δ{θ̃, (θ, λ)} πδ(θ, λ |x) dθ dλ, (41)

where πδ(θ, λ |x) ∝ p(x |θ, λ) πδ(θ, λ) is the reference posterior of (θ, λ)
when δ is the quantity of interest. Given x, the intrinsic estimate θ∗ = θ∗(x)
is that value θ̃ ∈ Θ which minimizes the posterior reference expected intrinsic
loss d(θ̃ |x). As a function of x, θ∗(x) is the intrinsic estimator of θ.

The intrinsic estimate is well defined for any dimensionality, and it is coherent
under transformations, in the sense that, if φ(θ) is a one-to-one function of θ,
then the intrinsic estimate φ∗ of φ(θ) is simply φ(θ∗). Under broad regularity
conditions (Juárez, 2004), the intrinsic estimator is admissible under the in-
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trinsic loss. Moreover, the reference expected intrinsic loss d(θ̃ |x) is typically
a convex function of θ̃ in a neighbourhood of its minimum, in which case the
intrinsic estimate θ∗ is unique, and it is easily derived by either analytical or
numerical methods.

Example 24 Intrinsic estimation of a Binomial parameter. Consider es-
timation of a Binomial proportion θ from r successes given n trials; the
reference prior (see Example 12) is π(θ) ∝ θ−1/2(1 − θ)−1/2, the corres-
ponding reference posterior is π(θ |n, r) = Be(θ | r + 1

2 , n− r + 1
2), and the

quadratic loss based estimator (the posterior mean) of θ is E[θ |n, r] =
(r + 1/2)/(n + 1). However, the quadratic loss based estimator of the log-
odds φ(θ) = log[θ/(1 − θ)], is E[φ |n, r] = ψ(r + 1/2) − ψ(n − r + 1/2)
(where ψ(x) = d log[Γ(x)]/dx is the digamma function), which is not equal
to φ(E[θ |n, r]).

On the other hand the intrinsic discrepancy between two Binomial dis-
tributions with parameters θ and θ̃ and the same value of n, the loss to be
suffered if θ̃ were used as a proxy for θ, is δ{θ̃, θ |n} = n δ1{θ̃, θ}, where
(see Example 1)

δ1{θi, θj}= min{k(θi | θi), k(θj | θi)},
k(θi | θj) = θj log[ θj/θi ] + (1 − θj) log[(1 − θj)/(1 − θi)].

The intrinsic estimator θ∗ = θ∗(r, n) is obtained by minimizing the refer-
ence expected posterior loss

d(θ̃ |n, r) =
∫ 1

0
δ(θ̃, θ |n) Be(θ | r + 1

2 , n − r + 1
2) dθ. (42)

Since intrinsic estimation is coherent under reparametrization, the intrinsic
estimator of, say, the log-odds is simply the log-odds of the intrinsic es-
timator of θ. The exact value of θ∗ may be easily obtained by numer-
ical methods, but a very good linear approximation, based on the refer-
ence posterior mean of the approximate location parameter (Definition 7)
φ(θ) =

∫ θ
0 θ−1/2(1 − θ)−1/2 dθ = 2

π arcsin
√

θ, is

θ∗(r, n) ≈ sin2{π
2E[φ | r, n]} ≈ (r + 1

3)/(n + 2
3). (43)

The linear approximation (43) remains good even for small samples and ex-
treme r values. For instance, the exact value of the intrinsic estimator with
r = 0 and n = 12 (see Example 28 later in this section) is θ∗ = 0.02631,
while the approximation yields 0.02632.

Example 25 Intrinsic estimation of normal variance. The intrinsic dis-
crepancy δ{p1, p2} between two normal densities p1(x) and p2(x), with
pi(x) = N(x |µi, σi), is δ{p1, p2} = min{k{p1 | p2}, k{p2 | p1}}, where the
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relevant Kullback-Leibler directed divergences are

κ{pi | pj} =
∫
X

pj(x) log
pj(x)

pi(x)
dx =

1

2

{
log

σ2
i

σ2
j

+
σ2

j

σ2
i

− 1 +
(µi − µj)

2

σ2
i

}
.

The intrinsic discrepancy between the normal N(x |µ, σ) and the set of nor-
mals with standard deviation σ̃, Mσ̃ ≡ {N(x | µ̃, σ̃), µ̃ ∈ IR)} is achieved
when µ̃ = µ, and is found to be

δ{Mσ̃, N(x |µ, σ)} = δ(θ) =


1
2 [log θ−1 + θ − 1], θ < 1

1
2 [log θ + θ−1 − 1], θ ≥ 1

which only depends on the ratio θ = σ̃2/σ2. Since, for any fixed σ̃, the
intrinsic discrepancy, δ{σ̃, (µ, σ)} = δ(θ) is a one-to-one function of σ,
the reference prior when δ is the quantity of interest is πδ(µ, σ) = σ−1,
the same as if the quantity of interest were σ (see Example 16). The
corresponding posterior distribution of θ = σ̃2/σ2, after a random sample
x = {x1, . . . , xn} of fixed size n ≥ 2 has been observed, is the gamma
density π(θ |x) = Ga(θ | (n − 1)/2, ns2/σ̃2), where s2 =

∑
j(xj − x)2/n.

The intrinsic estimate of σ is that value σ∗ of σ̃ which minimizes the
expected posterior loss,∫ ∞

0
δ(θ) π(θ |x) dθ =

∫ ∞

0
δ(θ) Ga(θ | (n − 1)/2, ns2/σ̃2) dθ.

The exact value of σ∗(x) is easily obtained by one-dimensional numerical
integration. However, for n > 2, a very good approximation is given by

σ∗ =

√∑
j(xj − x)2

n − 2
(44)

which is larger than both the mle estimate s (which divides by n the sum
of squares) and the squared root of the conventional unbiased estimate of
the variance (which divides by n − 1). A good approximation for n = 2
is σ∗ = (

√
5/2)|x1 − x2|. Since intrinsic estimation is coherent under one-

to-one reparametrizations, the intrinsic estimator of the variance is (σ∗)2,
and the intrinsic estimator of, say, log σ is simply log σ∗.

Intrinsic estimation is a very powerful, general procedure for objective, invari-
ant point estimation. For further discussion, see Bernardo and Juárez (2003).

4.2 Region (interval) estimation

To describe the inferential content of the posterior distribution π(θ |x) of
the quantity of interest it is often convenient to quote regions R ⊂ Θ of
given (posterior) probability under π(θ |x). Any subset of the parameter space
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Rq ⊂ Θ such that
∫
Rq

π(θ |x) dθ = q, 0 < q < 1, so that, given data x, the
true value of θ belongs to Rq with probability q, is said to be a (posterior)
q-credible region of θ. Credible regions are coherent under reparametrization;
thus, for any q-credible region Rq of θ a one-to-one transformation φ = φ(θ),
φ(Rq) is a q-credible region of φ. However, for any given q there are generally
infinitely many credible regions.

Sometimes, credible regions are selected to have minimum size (length,
area, volume), resulting in highest probability density (HPD) regions, where
all points in the region have larger probability density than all points out-
side. However, HPD regions are not coherent under reparametrization: the
image φ(Rq) of an HPD q-credible region Rq will be a q-credible region for φ,
but will not generally be HPD; indeed, there is no compelling reason to re-
strict attention to HPD credible regions. In one dimension, posterior quantiles
are often used to derive credible regions. Thus, if θq = θq(x) is the 100q%
posterior quantile of θ, then Rl

q = {θ; θ ≤ θq} is a one-sided, typically
unique q-credible region, and it is coherent under reparametrization. Prob-
ability centred q-credible regions of the form Rc

q = {θ; θ(1−q)/2 ≤ θ ≤ θ(1+q)/2}
are easier to compute, and are often quoted in preference to HPD regions.
However, centred credible regions are only really appealing when the pos-
terior density has a unique interior mode, and have a crucial limitation: they
are not uniquely defined in problems with more than one dimension.

For reasonable loss functions, a typically unique credible region may be
selected as a lowest posterior loss (LPL) region, where all points in the region
have smaller (posterior) expected loss than all points outside.

Definition 9 (Intrinsic credible region) Let available data x consist of
one observation from M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, let Mθ̃ be
the restricted model Mθ̃ ≡ {p(x | θ̃, λ), x ∈ X , λ ∈ Λ} and let δ{θ̃, (θ, λ)} be
the intrinsic discrepancy between the distribution p(x |θ, λ) and the set Mθ̃,.
An intrinsic q-credible region R∗

q = R∗
q(x) ⊂ Θ is a subset of the parameter

space Θ such that,

∫
R∗

q(x)
π(θ |x) dθ = q, ∀θi ∈ R∗

q(x), ∀θj /∈ R∗
q(x), d(θ̃i |x) ≤ d(θ̃j |x),

where, as before, d(θ̃ |x) = E[δ |x] =
∫
Θ

∫
Λ δ{θ̃, (θ, λ)} πδ(θ, λ |x) dθ dλ is

the reference posterior expected intrinsic loss.

Intrinsic credible regions are well defined for any dimensionality, and they
are coherent under one-to-one transformations, in the sense that, if φ{θ} is a
one-to-one transformation of θ and R∗

q ⊂ Θ is an intrinsic q-credible region
for θ, then φ{R∗

q} ⊂ Φ is an intrinsic q-credible region for φ. As mentioned

above, the reference expected intrinsic loss d(θ̃ |x) is often a convex function
of θ̃; in that case, for each q ∈ (0, 1) there is a unique (convex) intrinsic
q-credible region.
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Example 26 Intrinsic Binomial credible regions. Let r be the number of
successes observed in n independent Bernoulli trials with parameter θ.

Figure 4 Intrinsic 0.95-credible region for a Binomial parameter.
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As described in Example 24, the reference posterior expected intrinsic loss
which corresponds to using θ̃ instead of the actual (unknown) θ is the
convex function d{θ̃ |n, r} of Equation (42), which is represented in the
upper panel of Figure 4 as a function of θ̃, for r = 10 and n = 50. Using
the invariance of the intrinsic loss with respect to one-to-one transform-
ations, and a normal approximation to the posterior distribution of the
approximate location parameter φ(θ) = 2 arcsin

√
θ, it is found that

d{θ̃ |n, r}≈ 1
2 + 2 n

(
arcsin

√
θ̃ − arcsin

√
(r + αn)/(n + 2αn)

)2
,

where αn = (n + 4)/(4n + 10), rapidly concerging to 1
4 . A lowest posterior

loss (LDL) q-credible region consists of the set of θ̃ points with posterior
probability q and minimum expected loss. In this problem, the intrinsic
q-credible region R∗

q(r, n), is therefore obtained as the interval R∗
q(r, n) =

[θa(r, n), θb(r, n)] defined by the solution (θa, θb) to the system

{
d{θa |n, r} = d{θb |n, r},

∫ θb

θa

π(θ |n, r) dθ = q
}
.

In particular, the intrinsic 0.95-credible region is the set of θ̃ points with
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posterior expected loss smaller than 2.139 (shaded region in the lower
panel of Figure 4), which is R∗

0.95 = {θ̃; 0.105 ≤ θ̃ ≤ 0.321]. Notice that
this is neither a HPD interval nor a centred interval. The point with
minimum expected loss is the intrinsic estimator, θ∗ = 0.2034. Since in-
trinsic estimation is coherent under one-to-one reparametrizations, the
intrinsic estimator and the 0.95-intrinsic credible region of the log-odds,
ψ = ψ(θ) = log[θ/(1 − θ)] are immediately derived as ψ(θ∗) = −1.365 and
ψ(R∗

0.95) = [−2.144, −0.747].

It may be argued that, in practice, it is reasonable for credible regions to
give privilege to the most probable values of the parameters, as HPD regions
do. This is obviously incompatible with an invariance requirement, but it is
interesting to notice that, in one-parameter problems, intrinsic credible regions
are approximately HPD in the approximate location parametrization. Thus, in
Example 26, the 0.95-credible region for the approximate location parameter,
φ(θ) = 2

π arcsin
√

θ, φ(R∗
0.95) = [0.210, 0.384], is nearly an HPD interval for φ.

4.3 Hypothesis Testing

Let x be the available data, which are assumed to consist of one observation
from model M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, parametrized in
terms of the vector of interest θ and a vector λ of nuisance parameters. The
posterior distribution π(θ |x) of the quantity of interest θ conveys immediate
intuitive information on the values of θ which, given M, might be declared to
be compatible with the observed data x, namely, those with a relatively high
probability density. Sometimes, a restriction, θ ∈ Θ0 ⊂ Θ, of the possible
values of the quantity of interest (where Θ0 may possibly consist of a single
value θ0) is suggested in the course of the investigation as deserving special
consideration, either because restricting θ to Θ0 would greatly simplify the
model, or because there are additional, context specific arguments suggesting
that θ ∈ Θ0. Intuitively, the (null) hypothesis H0 ≡ {θ ∈ Θ0} should be
judged to be compatible with the observed data x if there are elements in Θ0

with a relatively high posterior density. However, a more precise conclusion is
typically required and this is made possible by adopting a decision-oriented
approach. Formally, testing the hypothesis H0 ≡ {θ ∈ Θ0} is a decision
problem where the action space A = {a0, a1} only contains two elements: to
accept (a0) or to reject (a1) the proposed restriction.

To solve this decision problem, it is necessary to specify an appropriate loss
function, �(ai, θ), measuring the consequences of accepting or rejecting H0 as
a function of the actual value θ of the vector of interest. Notice that this
requires the statement of an alternative a1 to accepting H0; this is only to be
expected, for an action is taken not because it is good, but because it is better
than anything else that has been imagined. Given data x, the optimal action
will be to reject H0 if (and only if) the expected posterior loss of accepting
the null,

∫
Θ �(a0, θ) π(θ |x) dθ, is larger than the expected posterior loss of
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rejecting,
∫
Θ �(a1, θ) π(θ |x) dθ, that is, if (and only if)

∫
Θ

[�(a0, θ) − �(a1, θ)] π(θ |x) dθ =
∫
Θ

∆�(θ) π(θ |x) dθ > 0. (45)

Therefore, only the loss difference ∆�(Θ0, θ) = �(a0, θ)−�(a1, θ), which meas-
ures the advantage of rejecting H0 ≡ {θ ∈ Θ0} as a function of θ, has to be
specified: the hypothesis H0 should be rejected whenever the expected advant-
age of rejecting is positive.

A crucial element in the specification of the loss function is a description
of what is precisely meant by rejecting H0. By assumption a0 means to act
as if H0 were true, i.e., as if θ ∈ Θ0, but there are at least two options for the
alternative action a1. This may either mean (i) the negation of H0, that is to
act as if θ /∈ Θ0 or, alternatively, it may rather mean (ii) to reject the simplific-
ation implied by H0 and to keep the unrestricted model, θ ∈ Θ, which is true
by assumption. Both options have been analyzed in the literature, although it
may be argued that the problems of scientific data analysis, where hypothesis
testing procedures are typically used, are better described by the second al-
ternative. Indeed, an established model, identified by H0 ≡ {θ ∈ Θ0}, is often
embedded into a more general model, {θ ∈ Θ,Θ0 ⊂ Θ}, constructed to in-
clude promising departures from H0, and it is then required to verify whether
presently available data x are still compatible with θ ∈ Θ0, or whether the
extension to θ ∈ Θ is really required.

The simplest loss structure has, for all values of the nuisance parameter
vector λ, a zero-one form, with {�(a0, θ) = 0, �(a1, θ) = 1} if θ ∈ Θ0, and
{�(a0, θ) = 1, �(a1, θ) = 0} if θ /∈ Θ0, so that the advantage ∆�{Θ0, (θ, λ)} of
rejecting H0 is

∆�{Θ0, (θ, λ)} =

 1, if θ /∈ Θ0

−1, if θ ∈ Θ0.
(46)

With this (rather näıve) loss function it is immediately found that the optimal
action is to reject H0 if (and only if) Pr(θ /∈ Θ0 |x) > Pr(θ ∈ Θ0 |x).
Notice that this formulation requires that Pr(θ ∈ Θ0) > 0, that is, that
the (null) hypothesis H0 has a strictly positive prior probability. If θ is a
continuous parameter and Θ0 has zero measure (for instance if H0 consists
of a single point θ0), this requires the use of a non-regular “sharp” prior
concentrating a positive probability mass on θ0. With no mention to the loss
structure implicit behind, this solution was early advocated by Jeffreys (1961,
Ch. 5). However, this is known to lead to the difficulties associated to Lindley’s
paradox (Lindley, 1957; Bartlett, 1957; Bernardo, 1980; Robert, 1993; Brewer,
2002).

The intrinsic discrepancy loss may also be used to provide an attractive
general alternative to Bayesian hypothesis testing, the Bayesian reference cri-
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terion, BRC (Bernardo, 1999a; Bernardo and Rueda, 2002). This follows from
assuming that the loss structure is such that

∆�{Θ0, (θ, λ)} = δ{Θ0, (θ, λ)} − d∗, d∗ > 0, (47)

where δ{Θ0, (θ, λ)}, which describes as a function of (θ, λ) the loss suffered by
assuming that θ ∈ Θ0, is the intrinsic discrepancy between the distribution
p(x |θ, λ) and the set M0 ≡ {p(x |θ0, λ), θ0 ∈ Θ0, λ ∈ Λ}. The function
δ{Θ0, (θ, λ)}, which is invariant under one-to-one reparametrization, is non-
negative and it is zero if, and only if, θ ∈ Θ0. The constant d∗ is the (strictly
positive) advantage of being able to work with the null model when it is true,
measured in the same units as δ; the choice of d∗, in terms of posterior expected
log-likelihood ratios, is discussed below.

Definition 10 (Intrinsic hypothesis testing: BRC) Let available data x
consist of one observation from M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ},
let M0 be the restricted model M0 ≡ {p(x |θ0, λ), θ0 ∈ Θ0, λ ∈ Λ} and let
δ{Θ0, (θ, λ)} be the intrinsic discrepancy between the distribution p(x |θ, λ)
and the set M0. The Bayesian reference criterion (BRC) rejects model M0

if the intrinsic statistic d(Θ0 |x), defined as the reference posterior expected
intrinsic loss, exceeds a critical value d∗. Formally, the null hypothesis H0 ≡
{θ ∈ Θ0} is rejected if, and only if,

d(Θ0 |x) = E[δ |x] =
∫
Θ

δ{Θ0, (θ, λ)} πδ(θ, λ |x) dθ dλ > d∗,

where πδ(θ, λ |x) ∝ p(x |θ, λ) πδ(θ, λ) is the reference posterior of (θ, λ)
when δ = δ{Θ0, (θ, λ)} is the quantity of interest. The conventional value
d∗ = log(100) may be used for scientific communication.

As the sample size increases, the expected value of d(Θ0 |x) under sampling
tends to one when H0 is true, and tends to infinity otherwise; thus d(Θ0 |x)
may be regarded as a continuous, positive measure of the expected loss (in
information units) from simplifying the model by accepting M0. In traditional
language, d(Θ0 |x) is a test statistic, and the BRC criterion rejects the null if
this intrinsic test statistic d(Θ0 |x) exceeds some critical value d∗. However, in
sharp contrast to frequentist hypothesis testing, the critical value d∗ is simply
a utility constant which measures the number of information units which the
decision maker is prepared to loose in order to be able to work with the null
model H0, not a function of sampling properties of the model.

The interpretation of the intrinsic discrepancy in terms of the minimum
posterior expected likelihood ratio in favour of the true model (see Section 2)
provides a direct calibration of the required critical value. Indeed, d(Θ0 |x) is
the minimum posterior expected log-likelihood ratio in favour of the unres-
tricted model. For instance, values around log[10] ≈ 2.3 should be regarded as
mild evidence against H0, while values around log[100] ≈ 4.6 suggest strong
evidence against the null, and values larger than log[1000] ≈ 6.9 may be safely
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used to reject H0. Notice that, in contrast to frequentist hypothesis testing,
where it is hazily recommended to adjust the significance level for dimension-
ality and sample size, the intrinsic statistic in measured on an absolute scale
which remains valid for any sample size and any dimensionality.

Example 27 Testing the value of a normal mean. Let data consist of a
random sample x = {x1, . . . , xn} from a normal N(x |µ, σ) distribution,
and consider the “canonical” problem of testing whether or not these data
are compatible with some specific sharp hypothesis H0 ≡ {µ = µ0} on the
value of the mean. The intrinsic discrepancy is easily found to be

δ(µ0, µ |σ) =
n

2

(
µ − µ0

σ

)2

, (48)

a simple transformation of the standardized distance between µ and µ0,
which generalizes to δ(µ0, µ) = (n/2)(µ−µ0)

tΣ−1(µ−µ0), a linear func-
tion of the Mahalanobis distance, in the multivariate normal case.

Consider first the case where σ is assumed to be known. The refer-
ence prior for µ is then uniform; this is also the reference prior when the
parameter of interest is δ, since δ(µ0, µ) is a piecewise invertible func-
tion of µ (see Theorem 6). The corresponding posterior distribution, is
π(µ |x) = N(µ |x, σ/

√
n), (n ≥ 1). The expected value of δ(µ0, µ) with

respect to this posterior yields the corresponding intrinsic statistic,

d(µ0 |x) = 1
2(1 + z2), z =

x − µ0

σ/
√

n
(49)

a simple function of the standardized distance between the sample mean x
and µ0. As prescribed by the general theory, the expected value of d(µ0, |x)
under repeated sampling is one if µ = µ0, and increases linearly with n
otherwise. In this canonical example, to reject H0 whenever |z| > 1.96 (the
frequentist suggestion with the conventional 0.05 significance level), cor-
responds to rejecting H0 whenever d(µ0 |x) is larger than 2.42, a rather
weak evidence, since this means that the posterior expected likelihood
ratio against H0 is only about exp[2.42] = 11.25. Conversely, to reject
whenever posterior expected likelihood ratio against H0 is about 100, so
that d∗ = log[100] ≈ 4.6, is to reject whenever |z| > 2.86, which is close
to the conventional 3σ rule often used by engineers. The extreme 6σ rule,
apparently popular these days, would correspond (under normality) to
d∗ = 18.5 ≈ log[108].

If the scale parameter σ is also unknown, the intrinsic discrepancy is

δ{µ0, (µ, σ)} =
n

2
log

[
1 +

(
µ − µ0

σ

)2]
, (50)

which is not the same as (48). The intrinsic test statistic d(µ0, x) may then
be found as the expected value of δ{µ0, (µ, σ)} under the corresponding
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joint reference posterior distribution πδ(µ, σ |x) when δ is the quantity of
interest. After some algebra, the exact result may be expressed in terms
of hypergeometric functions (Bernardo, 1999a), but is very well approx-
imated by the simple function

d(µ0 |x) ≈ 1

2
+

n

2
log

(
1 +

t2

n

)
, (51)

where t is the conventional statistic t =
√

n − 1 (x−µ0)/s, written here in
terms of the sample variance s2 =

∑
j(xj − x)2/n. For instance, for samples

sizes 5, 30 and 1000, and using the threshold d∗ = log[100], the null hypo-
thesis H0 ≡ {µ = µ0} would be rejected whenever |t| is respectively larger
than 4.564, 3.073, and 2.871.

Example 28 A lady tasting tea. A lady claims that by tasting a cup of
tea made with milk she can discriminate whether milk has been poured
over the tea infusion or the other way round, and she is able to give
the correct answer in n consecutive trials. Are these results compatible
with the hypothesis that she is only guessing and has been lucky? The
example, a variation suggested by Neyman (1950, Sec. 5.2) to a problem
originally proposed by Fisher (1935, Sec. 2.5), has often been used to
compare alternative approaches to hypothesis testing. See Lindley (1984)
for a subjectivist Bayesian analysis.

The intrinsic objective Bayesian solution is immediate from the results
in Examples 24 and 26. Indeed, using Definition 10, if data are assumed
to consist of n Bernoulli observations and r successes have been observed,
the intrinsic statistic to test the precise null θ = θ0 is

d(θ0 | r, n) =
∫ 1

0
δ{θ0, θ |n}Be(θ | r + 1

2 , n − r + 1
2) dθ,

where δ{θ0, θ |n} is given by (7). In this case, one has r = n and θ0 = 1
2 . For

the values n = 8, n = 10 and n = 12 traditionally discussed, the intrinsic
test statistic, d(θ0 | r, n), respectively yields the values d(1

2 | 8, 8) ≈ 4.15,
d(1

2 | 10, 10) ≈ 5.41 and d(1
2 | 12, 12) ≈ 6.70. Since log[100] ≈ 4.61, the

hypothesis of pure guessing would not be rejected with n = 8 with the
conventional threshold d∗ = log[100], but would be rejected with n = 10
successes (and a fortiori with n = 12). Actually, the value of d(1

2 | 8, 8)
says that the observed data are only estimated to be about exp[4.15] ≈ 64
times more likely under the unrestricted model (unknown θ) that under
the null model (no discrimination power, θ = θ0 = 1

2). However, with
n = 10 and n = 12 the observed data are respectively estimated to be
about 224 and 811 times more likely under the unrestricted model that
under the null.

The Bayesian reference criterion may also be used with non-nested problems.
Thus, given two alternative models for x ∈ X , M1 = {p1(x |θ1), θ1 ∈ Θ1}

59



and M2 = {p2(x |θ2), θ2 ∈ Θ2}, one may introduce the a new parameter α to
define a mixture model p(x |θ1, θ1, α) = p1(x |θ1)

α p2(x |θ2)
1−α (with either

a continuous α ∈ [0, 1] or, more simply, a discrete α ∈ {0, 1}), and use BRC to
verify whether M1, or M2, or both, are compatible with the data, assuming
the mixture is. For further discussion on hypothesis testing and the develop-
ment of the Bayesian reference criterion see Bernardo (1982, 1985a, 1999a),
Bernardo and Bayarri (1985), Rueda (1992) and Bernardo and Rueda (2002).

5 Further Reading

Reference analysis already has a long history, but it still is a very active
area of research. The original paper on reference analysis, (Bernardo, 1979b),
is easily read and it is followed by a very lively discussion; Bernardo (1981),
extends the theory to general decision problems; see also Bernardo and Smith
(1994, Sec. 5.4.1) and Rabena (1998). Berger and Bernardo (1989, 1992c)
contain crucial mathematical extensions. Bernardo (1997) is a non-technical
analysis, in a dialogue format, of the foundational issues involved, and it is
followed by a discussion. A textbook level description of reference analysis is
provided in Bernardo and Smith (1994, Sec. 5.4); Bernardo and Ramón (1998)
contains a simple introduction to reference distributions. BRC, the Bayesian
reference criterion for hypothesis testing, was introduced by Bernardo (1999a)
and further refined in Bernardo and Rueda (2002). Intrinsic estimation was
introduced in Bernardo and Juárez (2003). Berger, Bernardo and Sun (2005)
contains the last mathematical developments of reference theory at the mo-
ment of writing.

Papers which contain either specific derivations or new applications of ref-
erence analysis include, in chronological order of the first related paper by the
same author(s), Bernardo (1977a,b, 1978, 1980, 1982, 1985a,b, 1999b), Bayarri
(1981, 1985), Ferrándiz (1982, 1985), Sendra (1982), Eaves (1983a,b, 1985),
Armero (1985), Bernardo and Bayarri (1985), Chang and Villegas (1986),
Chang and Eaves (1990), Hills (1987), Mendoza (1987, 1988, 1990), Bernardo
and Girón (1988), Lindley (1988), Berger and Bernardo (1989, 1992a,b,c),
Clarke and Barron (1990, 1994), Polson and Wasserman (1990), Phillips (1991),
Severini (1991, 1993, 1995, 1999), Ye and Berger (1991), Ghosh and Mukerjee
(1992), Singh and Upadhyay (1992), Stephens and Smith (1992), Berger and
Sun (1993), Clarke and Wasserman (1993), Dey and Peng (1993, 1995), Kuboki
(1993, 1998), Liseo (1993, 2003, 2005), Ye (1993, 1994, 1995, 1998), Berger and
Yang (1994), Kubokawa and Robert (1994), Sun (1994, 1997), Sun and Berger
(1994, 1998), Yang and Berger (1994, 1997), Datta and J. K. Ghosh (1995a,b),
Datta and M. Ghosh (1995a); Datta and M. Ghosh (1995b), Giudici (1995),
Ghosh, Carlin and Srivastava (1995), du Plessis, van der Merwe and Groene-
wald (1995), Sun and Ye (1995, 1996, 1999), de Waal, Groenewald and Kemp
(1995), Yang and Chen (1995), Bernard (1996), Clarke (1996), Ghosh and
Yang (1996), Armero and Bayarri (1997), Fernández, Osiewalski and Steel
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(1997), Garvan and Ghosh (1997, 1999), Ghosal and Samanta (1997), Ghosal
(1997, 1999), Sugiura and Ishibayashi (1997), Berger, Philippe and Robert
(1998), Bernardo and Ramón (1998), Chung and Dey (1998, 2002), Scholl
(1998), Sun, Ghosh and Basu (1998), Philippe and Robert (1998), Berger,
Liseo and Wolpert (1999), Burch and Harris (1999), Brewer (1999), Scricciolo
(1999), Vernotte and Zalamansky (1999), Yuan and Clarke (1999), Berger, Per-
icchi and Varshavsky (1998), Lee (1998), Fernández and Steel (1998b, 1999a,b,
2000), Mendoza and Gutiérrez-Peña (1999), Mukerjee and Reid (1999, 2001),
Aguilar and West (2000), Eno and Ye (2000, 2001), Elhor and Pensky (2000),
Fernández and Steel (2000), Kim, Kang and Cho (2000), van der Linde (2000),
Berger, de Oliveira and Sansó (2001), Fan (2001), Ghosh and Kim (2001),
Ghosh, Rousseau and Kim (2001), Kim, Chang and Kang (1961), Kim, Kang
and Lee (2001, 2002), Komaki (2001, 2004), Natarajan (2001), Rosa and Gian-
ola (2001), Aslam (2002a,b), Daniels (2002), Datta, Ghosh and Kim (2002),
Millar (2002), Philippe and Rousseau (2002), Pretorius and van der Merwe
(2002), Tardella (2002), Consonni and Veronese (2003), Datta and Smith
(2003), Fraser, Reid, Wong and Yi (2003), Ghosh and Heo (2003a,b), Ghosh,
Yin and Kim (2003), Gutiérrez-Peña and Rueda (2003), He (2003), Leucari
and Consonni (2003), Lauretto, Pereira, Stern and Zacks (2003), Madruga,
Pereira and Stern (2003), Ni and Sun (2003), Sareen (2003), Consonni, Ver-
onese, and Gutiérrez-Peña (2004), Sun and Ni (2004), Grünwald and Dawid
(2004), Roverato and Consonni (2004), Stern (2004a,b), van der Merwe and
Chikobvu (2004) and Liseo and Loperfido (2005).

This chapter concentrates on reference analysis. It is known, however, that
ostensibly different approaches to the derivation of objective priors often pro-
duce the same result, a testimony of the robustness of many solutions to
the definition of what an appropriate objective prior may be in a particu-
lar problem. Many authors have proposed alternative objective priors (often
comparing the resulting inferences with those obtained within the frequent-
ist paradigm), either as general methods or as ad hoc solutions to specific
inferential problems, and a few are openly critical with objective Bayesian
methods. Many relevant papers in this very active field of Bayesian mathem-
atical statistics are listed in the references section below. For reviews of many
of these, see Dawid (1983), Bernardo and Smith (1994, Sec. 5.6.2), Kass and
Wasserman (1996) and Bernardo (1997).
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Florens, J.-P. (1978). Mesures à priori et invariance dans une expérience Bayésienne.

Pub. Inst. Statist. Univ. Paris 23, 29–55.
Florens, J.-P. (1982). Expériences Bayésiennes invariantes. Ann. Inst. M. Poin-
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Hipótesis. Ph.D. Thesis, Universitat de València, Spain.
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