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1. Concept of Probability

1.1. Introduction
Tentatively accept aformalstatistical model

Typically suggested by informal descriptive evaluation
Conclusions conditional on the assumption that model is correct

Bayesian approach firmly based onaxiomatic foundations
Mathematical need to describe by probabilities all uncertainties
Parametersmusthave a (prior) distribution describing available

information about their values
Nota description of their variability (fixed unknownquantities),

but a description of theuncertaintyabout their true values.

Important particular case: no relevant (or subjective) initial information:
scientific and industrial reporting, public decision making, ...
Priorexclusivelybased on model assumptions and available,
well-documented data:Objective Bayesian Statistics
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• Notation

Under conditionsC, p(x |C), π(θ |C) are, respectively,probability
densities (or mass) functions ofobservablesx andparametersθ
p(x |C) ≥ 0,

∫
X p(x |C) dx = 1, E[x |C] =

∫
X x p(x |C) dx,

π(θ |C) ≥ 0,
∫
Θ π(θ |C) dθ = 1, E[θ |C] =

∫
Θ θ π(θ |C) dθ.

Special densities (or mass) functions use specific notation, as
N(x |µ, σ), Bi(x |n, θ), or Pn(x |λ). Other examples:

Beta {Be(x |α, β), 0 < x < 1, α > 0, β > 0}
Be(x |α, β) = Γ(α+β)

Γ(α)Γ(β) xα−1(1 − x)β−1

Gamma {Ga(x |α, β), x > 0, α > 0, β > 0}
Ga(x |α, β) = βα

Γ(α) xα−1e−βx

Student {St(x |µ, σ, α), x ∈ �, µ ∈ �, σ > 0, α > 0}

St(x |µ, σ, α) = Γ{(α+1)/2)}
Γ(α/2)

1
σ
√

απ

[
1 + 1

α

(
x−µ

σ

)2
]−(α+1)/2
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• Statistical Models

Statistical modelgeneratingx ∈ XXX , {p(x |θ),x ∈ XXX ,θ ∈ Θ}
Parameter vectorθ = {θ1, . . . , θk} ∈ Θ. Parameter spaceΘ ⊂ �k.
Data setx ∈ XXX . Sampling (Outcome) spaceXXX , of arbitrary structure.

Likelihood functionof x, l(θ |x).
l(θ |x) = p(x |θ), as a function ofθ ∈ Θ.

Maximum likelihood estimator (mle)of θ

θ̂ = θ̂(x) = arg supθ∈Θ l(θ |x)

Datax = {x1, . . . , xn} random sample(iid) from model if
p(x |θ) =

∏n
j=1 p(xj |θ), xj ∈ X , XXX = Xn

Behaviour under repeated sampling (general, not iid data)
Considering{x1,x2, . . .}, a (possibly infinite) sequence
of possible replications of thecompletedata setx.

Denote byx(m) = {x1, . . . ,xm} a finite set ofm such replications.

Asymptotic results obtained asm → ∞
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1.2. Intrinsic Divergence

• Logarithmic divergences

The logarithmic divergence (Kullback-Leibler)k{p̂ | p} of a density
p̂(x), x ∈ XXX from its true densityp(x), is

κ{p̂ | p} =
∫
X p(x) log p(x)

p̂(x) dx, (provided this exists)

The functionalκ{p̂ | p} is non-negative, (zero iff,̂p(x) = p(x) a.e.) and
invariantunder one-to-one transformations ofx.

But κ{p1 | p2} is not symmetricand diverges if, strictly,XXX 2 ⊂ XXX 1 .

• Intrinsic discrepancy between distributions

δ{p1, p2} = min
{∫

X1
p1(x) log p1(x)

p2(x) dx,
∫
X2

p2(x) log p2(x)
p1(x) dx

}
The intrinsic discrepancyδ{p1, p2} is non-negative (zero iff,p1 = p2
a.e.), andinvariantunder one-to-one transformations ofx,

Defined if XXX 2 ⊂ XXX 1 or XXX 1 ⊂ XXX 2, operative interpretation as the
minimum amount of information (innits) required to discriminate.
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• Interpretation and calibration of the intrinsic discrepancy

Let {p1(x |θ1),θ1 ∈ Θ1} or {p2(x |θ2),θ2 ∈ Θ2} be two alternative
statistical models forx ∈ X, one of which is assumed to be true. The
intrinsic divergenceδ{θ1,θ2} = δ{p1, p2} is thenminimum expected
log-likelihood ratio in favour of the true model.

Indeed, ifp1(x |θ1) true model, the expected log-likelihood ratio in its
favour is E1[log{p1(x |θ1)/p2(x |θ1)}] = κ{p2 | p1}. If the true model
isp2(x |θ2), the expected log-likelihood ratio in favour of the true model
is κ{p2 | p1}. But δ{p2 | p1} = min[κ{p2 | p1}, κ{p1 | p2}].
Calibration. δ = log[100] ≈ 4.6 nits, likelihood ratios for the true model
larger than100 makingdiscrimination very easy.

δ = log(1 + ε) ≈ ε nits, likelihood ratios for the true model may about
1 + ε makingdiscrimination very hard.

Intrinsic Discrepancyδ 0.01 0.69 2.3 4.6 6.9

Average Likelihood Ratio
for true modelexp[δ] 1.01 2 10 100 1000
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Example.Conventional Poisson approximation Pn(r |nθ) of Binomial
probabilities Bi(r |n, θ)
Intrinsic discrepancy between Binomial and Poisson distributions

δ{Bi(r |n, θ), Po(r |nθ} = min[k{Bi |Po}, k{Po|Bi}] = k{Bi |Po}
=

∑n
r=0 Bi(r |n, θ) log[Bi(r |n, θ)/Po(r |nθ)] = δ{n, θ}

δ{3, 0.05} = 0.00074
δ{5000, 0.05} = 0.00065

δ{∞, θ} = 1
2[−θ − log(1 − θ)]

Good Poisson approximations
areimpossibleif θ is not small,
however largen might be.

0.1 0.2 0.3 0.4 0.5
Θ

0.02

0.04
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0.1
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• Intrinsic Convergence of Distributions

Intrinsic convergence. A sequence of probability densities (or mass)
functions{pi(x)}∞i=1 convergesintrinsically to p(x) if (and only if) the
intrinsic divergence betweenpi(x) andp(x) converges to zero.i.e., iff
limi→∞ δ(pi, p) = 0.

Example. Normal approximation to a Student distribution.
δ(α) = δ{St(x |µ, σ, α), N(x |µ, σ)} = min[k{Stα |N}, k{N |Stα}]

= k{Stα |N} =
∫
�

N(x | 0, 1) log
N(x | 0, 1)

St(x | 0, 1, α)
dx ≈ 7

α(22 + 4α)

20 40 60 80 100

0.002

0.004

0.006

0.008

0.01

Α

k�N�StΑ�
∆�Α��k�StΑ�N�

k�N�St39��0.0012
k�St39�N��0.0010

k{N |Stα} diverges forα ≤ 2
k{Stα |N} is finite for allα > 0.

δ(18) ≈ 0.04 δ(25) ≈ 0.02
Expected log-density ratios
at least0.001 whenα < 40.
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1.3. Foundations

• Foundations of Statistics

Axiomatic foundations on rational description of uncertainty imply that
the uncertainty about all unknown quantities should be measured with
probability distributions{π(θ |C),θ ∈ Θ} describing the plausibility
of their given available conditionsC.

Axioms have a strong intuitive appeal; examples include

• Transitivity of plausibility.
If E1 
 E2 |C, andE2 
 E3 |C, thenE1 
 E3 |C

• The sure-thing principle.
If E1 
 E2 |A, C andE1 
 E2 |A, C, thenE1 
 E2 |C).

Axioms are not adescriptionof actual human activity, but anormative
set of principles for those aspiring to rational behaviour.

“Absolute” probabilities do not exist. Typical applications produce
Pr(E |x, A, K), a measure of rational belief in the occurrence of the
eventE, given datax, assumptionsA and available knowledgeK.
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• Probability as a Measure of Conditional Uncertainty

Axiomatic foundations imply that Pr(E |C), theprobabilityof an event
E givenC is alwaysa conditional measure of the (presumably rational)
uncertainty, on a[0, 1] scale, about the occurrence ofE in conditionsC.

• Probabilistic diagnosis.V is the event that a person carries a virus
and+ a positive test result.All related probabilities,e.g.,
Pr(+ |V ) = 0.98, Pr(+ |V ) = 0.01, Pr(V |K) = 0.002,
Pr(+ |K) = Pr(+ |V )Pr(V |K) + Pr(+ |V )Pr(V |K) = 0.012

Pr(V |+, A, K) = Pr(+ |V )Pr(V |K)
Pr(+ |K) = 0.164 (Bayes’ Theorem)

are conditional uncertainty measures (and proportion estimates).

• Estimation of a proportion.Survey conducted to estimate
the proportionθ of positive individuals in a population.
Random sample of sizen with r positive.
Pr(a < θ < b | r, n, A, K), a conditional measure of the uncertainty
about the event thatθ belongs to[a, b] givenassumptionsA,
initial knowledgeK and data{r, n}.
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• Measurement of a physical constant.Measuring the unknown value of
physical constantµ, with datax = {x1, . . . , xn}, considered to be
measurements ofµ subject to error. Desired to find
Pr(a < µ < b |x1, . . . , xn, A, K), theprobability that the unknown
value ofµ (fixed in nature, but unknown to the scientists)
belongs to[a, b] given the information provided by the datax,
assumptionsA made, and available knowledgeK.

The statistical model may includenuisanceparameters, unknown quan-
tities , which have to be eliminated in the statement of the final results.

For instance, the precision of the measurements described by unknown
standard deviationσ in a N(x |µ, σ) normal model

Relevant scientific information may imposerestrictionson the admissi-
ble values of the quantities of interest. These must be taken into account.

For instance, in measuring the value of the gravitational fieldg in a
laboratory, it is known that it must lie between9.7803 m/sec2 (average
value at the Equator) and9.8322 m/sec2 (average value at the poles).
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• Future discrete observations.Experiment counting the numberr
of times that an eventE takes place in each ofn replications.
Desired to forecast the number of timesr thatE will take place
in a future, similar situation, Pr(r | r1, . . . , rn, A, K).
For instance, no accidents in each ofn = 10 consecutive months
may yield Pr(r = 0 |x, A, K) = 0.953.

• Future continuous observations.Datax = {y1, . . . ,yn}. Desired
to forecast the value of a future observationy, p(y |x, A, K).
For instance, from breaking strengthsx = {y1, . . . , yn} of n
randomly chosen safety belt webbings, the engineer may find
Pr(y > y∗ |x, A, K) = 0.9987.

• Regression.Data set consists of pairsx = {(y1,v1), . . . , (yn,vn)}
of quantityyj observed in conditionsvj.
Desired to forecast the value ofy in conditionsv, p(y |v,x, A, K).
For instance,y contamination levels,v wind speed from source;
environment authorities interested in Pr(y > y∗ | v,x, A, K)
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2. Basics of Bayesian Analysis

2.1. Parametric Inference

• Bayes Theorem

LetM = {p(x |θ),x ∈ XXX ,θ ∈ Θ} be an statistical model, letπ(θ |K)
be a probability density forθ given prior knowledgeK and letx be some
available data.

π(θ |x,M, K) =
p(x |θ)π(θ |K)∫

Θ p(x |θ) π(θ |K) dθ
,

encapsulates all information aboutθ given data and prior knowledge.

Simplifying notation, Bayes’ theorem may be expressed as

π(θ |x) ∝ p(x |θ)π(θ) :
The posterior is proportional to the likelihood times the prior. The
missing proportionality constant[

∫
Θ p(x |θ) π(θ) dθ]−1 may be de-

duced from the fact thatπ(θ |x) must integrate to one. To identify a
posterior distribution it suffices to identify akernelk(θ,x) such that
π(θ |x) = c(x) k(θ,x). This is a very common technique.
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• Bayesian Inference with a Finite Parameter Space

Model {p(x | θi),x ∈ XXX , θi ∈ Θ}, with Θ = {θ1, . . . , θm}, so thatθ
may only take afinite numberm of different values. Using the finite
form of Bayes’ theorem,

Pr(θi |x) =
p(x | θi) Pr(θi)∑m

j=1 p(x | θj) Pr(θj)
, i = 1, . . . , m.

Example: Probabilistic diagnosis. A test to detect a virus, is known
from laboratory research to give a positive result in98% of the infected
people and in1% of the non-infected. The posterior probability that a
person who tested positive is infected is

Pr(V |+)

Pr(V )
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1Pr(V |+) = 0.98 p
0.98 p+0.01 (1−p)

as a function ofp = Pr(V ).
Notice sensitivity of posterior
Pr(V |+) to changes
in the priorp = Pr(V ).
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• Example: Inference about a binomial parameter

Let datax ben Bernoulli observations with parameterθ

which containr positives, so thatp(x | θ, n) = θr(1 − θ)n−r.

If π(θ) = Be(θ |α, β), then

π(θ |x) ∝ θr+α−1(1 − θ)n−r+β−1

kernel of Be(θ | r + α, n − r + β).
Prior information (K)
P (0.4 < θ < 0.6) = 0.95,
and symmetric, yieldsα = β = 47;

No prior informationα = β = 1/2
n = 1500, r = 720
P (θ < 0.5 |x, K) = 0.933
P (θ < 0.5 |x) = 0.934
n = 100, r = 0
P (θ < 0.01 |x) = 0.844
Notice: θ̂ = 0, but Me[θ |x] = 0.0023 0.005 0.01 0.015 0.02 0.025
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400

500
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• Sufficiency

Given a modelp(x |θ), a function of the datat = t(x), is asufficient
statistic if it encapsulates all information aboutθ available inx.

Formally, t = t(x) is sufficientif (and only if), for any priorπ(θ)
π(θ |x) = π(θ | t). Hence,π(θ |x) = π(θ | t) ∝ p(t |θ)π(θ).
This is equivalent to the frequentist definition; thust = t(x) is sufficient
iff p(x |θ) = f(θ, t)g(x).
A sufficient statistic always exists, fort(x) = x is obviously sufficient

A much simpler sufficient statistic, with fixed dimensionality
independent of the sample size, often exists.
This is case whenever the statistical model belongs to the
generalized exponential family, which includes many of the
more frequently used statistical models.

In contrast to frequentist statistics, Bayesian methods are independent
on the possible existence of a sufficient statistic of fixed dimensionality.

For instance, if data come from anStudentdistribution, there isno suffi-
cient statisticof fixed dimensionality:all data are needed.
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• Example: Inference from Cauchy observations

Datax = {x1, . . . , xn} random from Ca(x |µ, 1) = St(x |µ, 1, 1).
Objective reference prior for the location parameterµ is π(µ) = 1.

By Bayes’ theorem,

π(µ |x) ∝
∏n

j=1
Ca(xj |µ, 1)π(µ) ∝

∏n

j=1
1

1 + (xj − µ)2
.

Proportionality constant easily obtained by numerical integration.

Five samples of sizen = 2
simulated from Ca(x | 5, 1).

x1 x2
4.034 4.054

21.220 5.831
5.272 6.475
4.776 5.317
7.409 4.743 0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

µ

π(µ |x)
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• Improper prior functions

Objective Bayesian methods often use functions which play the role of
prior distributions but arenotprobability distributions.

An improper prior functionis an non-negative functionπ(θ) such that∫
Θ π(θ) dθ is not finite.

The Cauchy example uses the improper prior functionπ(µ) = 1, µ ∈ �.

π(θ) is an improper prior function,{Θi}∞i=1 an increasing sequence
approximatingΘ, such that

∫
Θi

π(θ) < ∞, and{πi(θ)}∞i=1 the proper

priors obtained byrenormalizingπ(θ) within theΘi’s.

For any datax with likelihood p(x |θ), the sequence of posteriors
πi(θ |x) converges intrinsically toπ(θ |x) ∝ p(x |θ)π(θ).
Normal data,σ known,π(µ) = 1.
π(µ |x) ∝ p(x |µ, σ)π(µ)

∝ exp[− n
2σ2(x − µ)2]

π(µ |x) = N(µ |x, σ/
√

n)
Example:n = 9, x = 2.11, σ = 4

-4 -2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

µ

πi(µ |x)

π(µ |x)
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• Sequential updating

Prior and posterior are termsrelativeto a set of data.

If datax = {x1, . . . ,xn} are sequentially presented, the final result will
be the same whether data are globally or sequentially processed.

π(θ |x1, . . . ,xi+1) ∝ p(xi+1 |θ)π(θ |x1, . . . ,xi).

The “posterior” at a given stage becomes the “prior” at the next.

Typically (but not always), the newposterior, π(θ |x1, . . . ,xi+1), is
more concentratedaround the true value thanπ(θ |x1, . . . ,xi).
Posteriorsπ(λ |x1, . . . , xi)
from increasingly large
simulated data from Poisson
Pn(x |λ), with λ = 3
π(λ |x1, . . . , xi)

= Ga(λ | ri + 1/2, i)
ri =

∑i
j=1 xj

1 2 3 4 5 6 7

0.5

1

1.5

2

λn = 5
n = 10

n = 20

n = 50

n = 100
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• Nuisance parameters

In general thevector of interestis not the whole parameter vectorθ, but
some functionφ = φ(θ) of possibly lower dimension.

By Bayes’ theoremπ(θ |x) ∝ p(x |θ)π(θ). Let ω = ω(θ) ∈ Ω be
another function ofθ such thatψ = {φ,ω} is a bijection ofθ, and let
J(ψ) = (∂θ/∂ψ) be the Jacobian of the inverse functionψ = ψ(θ).
From probability theory,π(ψ |x) = |J(ψ)|[π(θ |x)]θ=θ(ψ)
andπ(φ |x) =

∫
Ω π(φ,ω |x) dω.

Any valid conclusion onφ will be contained inπ(φ |x).
Particular case:marginal posteriors

Often model directly expressed in terms of vector of interestφ, and
vector of nuisance parametersω, p(x |θ) = p(x |φ,ω).
Specify the prior π(θ) = π(φ) π(ω |φ)
Get the joint posterior π(φ,ω |x) ∝ p(x |φ,ω)π(ω |φ)π(φ)
Integrate outω, π(φ |x) ∝ π(φ)

∫
Ω p(x |φ,ω)π(ω |φ) dω
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• Example: Inferences about a Normal mean

Datax = {x1, . . . xn} random from N(x |µ, σ). Likelihood function
p(x |µ, σ) ∝ σ−n exp[−n{s2 + (x − µ)2}/(2σ2)],
with nx =

∑
i xi, andns2 =

∑
i(xi − x)2.

Objective prior is uniform in bothµ andlog(σ), i.e., π(µ, σ) = σ−1.
Joint posteriorπ(µ, σ |x) ∝ σ−(n+1) exp[−n{s2 +(x−µ)2}/(2σ2)].

Marginal posteriorπ(µ |x) ∝
∫ ∞
0 π(µ, σ |x) dσ ∝ [s2+(x−µ)2]−n/2,

kernel of the Student density St(µ |x, s/
√

n − 1, n − 1)
Classroom experiment to
measure gravityg yields
x = 9.8087, s = 0.0428
with n = 20 measures.

π(g |x, s, n)
= St(g | 9.8087, 0.0098, 19)
Pr(9.788 < g < 9.829 |x)
= 0.95 (shaded area)

9.75 9.8 9.85 9.9
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20

30

40

π(g |x, s, n)

g
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• Restricted parameter space

Range of values ofθ restricted by contextual considerations.
If θ known to belong toΘc ⊂ Θ, π(θ) > 0 iff θ ∈ Θc
By Bayes’ theorem,

π(θ |x,θ ∈ Θc) =


π(θ |x)∫

Θc
π(θ |x) dθ

, if θ ∈ Θc

0 otherwise

To incorporate a restriction, it suffices torenormalizethe unrestricted
posterior distribution to the setΘc ⊂ Θ of admissible parameter values.

Classroom experiment to
measure gravityg with
restriction to lie between
g0 = 9.7803 (equator)
g1 = 9.8322 (poles).

Pr(9.7921 < g < 9.8322 |x)
= 0.95 (shaded area)

9.7 9.75 9.8 9.85 9.9

10

20

30

40

π(g |x, s, n,�c)

g
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• Asymptotic behaviour, discrete case

If the parameter spaceΘ = {θ1, θ2, . . .} is countableand

The true parameter valueθt is distinguishablefrom the others,i.e.,

δ{p(x |θt), p(x |θi)) > 0, i = t,

lim
n→∞π(θt |x1, . . . ,xn) = 1

lim
n→∞π(θi |x1, . . . ,xn) = 0, i = t

To prove this, take logarithms is Bayes’ theorem,

definezi = log[p(x |θi)/p(x |θt)],
and use the strong law of large numbers on then

i.i.d. random variablesz1, . . . , zn.

For instance, in probabilistic diagnosis the posterior probability of the
true disease converges to one as new relevant information accumulates,
providedthe model distinguishes the probabilistic behaviour of data un-
der the true disease from its behaviour under the other alternatives.
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• Asymptotic behaviour, continuous case

If the parameterθ is one-dimensional and continuous, so thatΘ ⊂ �,

and the model{p(x | θ), x ∈ X} is regular: basically,
X does not depend onθ,
p(x | θ) is twice differentiable with respect toθ

Then, asn → ∞, π(θ |x1, . . . ,xn) converges intrinsically
to anormaldistribution with mean at the mle estimatorθ̂,
and with variancev(x1, . . . ,xn, θ̂), where

v−1(x1, . . . ,xn, θ̂) = −
∑n

j=1
∂2

∂θ2
log[p(xj | θ]

To prove this, express is Bayes’ theorem as

π(θ |x1, . . . ,xn) ∝ exp[log π(θ) +
∑n

j=1 log p(xj | θ)],
and expand

∑n
j=1 log p(xj | θ)] about its maximum, the mlêθ

The result is easily extended to the multivariate caseθ = {θ1, . . . , θk},
to obtain a limitingk-variate normal centered atθ̂, and with a dispersion
matrixV (x1, . . . ,xn, θ̂) which generalizesv(x1, . . . ,xn, θ̂).
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• Asymptotic behaviour, continuous case. Simpler form

Using the strong law of large numbers on the sums above a simpler, less
precise approximation is obtained:

If the parameterθ = {θ1, . . . , θk} is continuous, so thatΘ ⊂ �k

and the model{p(x | θ), x ∈ X} is regular, so thatXXX does not depend
onθ andp(x |θ) is twice differentiable with respect to each of theθi’s,

then, asn → ∞, π(θ |x1, . . . ,xn) converges intrinsically to amulti-
variate normaldistribution with mean the mlêθ and precision matrix
(inverse of the dispersion or variance-covariance matrix)n F (θ̂), where
F (θ) is Fisher’s matrix, of general element

F ij(θ) = −Ex |θ[ ∂2
∂θi∂θj

log p(x |θ)]

The properties of the multivariate normal yield from this result the asymp-
totic forms for themarginaland theconditionalposterior distributions
of any subgroup of theθj ’s.

In one dimension,π(θ |x1, . . . ,xn) ≈ N(θ | θ̂, (nF (θ)−1/2),
whereF (θ) = −Ex | θ[∂

2 log p(x | θ)/∂θ2]



27
• Example: Asymptotic approximation with Poisson data

Datax = {x1, . . . , xn} random from Pn(x |λ) ∝ e−λλx/x!
hence,p(x |λ) ∝ e−nλλr, r = Σj xj, andλ̂ = r/n.

Fisher’s function isF (λ) = −Ex |λ

[
∂2

∂λ2 log Pn(x |λ)
]

= 1
λ

The objective prior function isπ(λ) = F (λ)1/2 = λ−1/2

Henceπ(λ |x) ∝ e−nλλr−1/2

the kernel of Ga(λ | r + 1
2, n)

The Normal approximation is

π(λ |x) ≈ N{λ | λ̂, (n F (λ̂))−1/2}
= N{λ | r/n,

√
r/n}

Samplesn = 5 andn = 25
simulated from Poissonλ = 3
yieldedr = 19 andr = 82 0 2 4 6 8

0
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0.4

0.6

0.8

1

λ

π(λ |x)
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2.2. Reference Analysis

• No Relevant Initial Information

Identify the mathematical form of a “noninformative” prior. One with
minimal effect, relative to the data, on the posterior distribution of the
quantity of interest.

Intuitive basis:
Useinformation theoryto measure the amount on information about the
quantity of interest to be expected from data. This depends on prior
knowledge: the more it is known, the less the amount of information the
data may be expected to provide.
Define themissing informationabout the quantity of interest as that
which infinite independent replications of the experiment could possible
provide.
Define thereference prioras that whichmaximizes the missing informa-
tion about the quantity if interest.
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• Expected information from the data

Given model{p(x | θ),x ∈ XXX , θ ∈ Θ}, the amount of information
Iθ{XXX , π(θ)} which may be expected to be provided byx, about the
value ofθ is defined by
Iθ{XXX , π(θ)} = δ{p(x, θ), p(x)π(θ)},
the intrinsic discrepancy between the joint distributionp(x, θ) and the
product of their marginalsp(x)π(θ), which is theinstrinsic association
between the random quantitiesx andθ.

ConsiderIθ{XXX k, π(θ)} the information aboutθ which may be expected
from k conditionally independent replications of the original setup.
Ask → ∞, this would provide anymissing informationaboutθ. Hence,
as k → ∞, the functionalIθ{XXX k, π(θ)} will approach the missing
information aboutθ associated with the priorπ(θ).

Let πk(θ) be the prior which maximizesIθ{XXX k, π(θ)} in the classP of
strictly positive prior distributions compatible with accepted assumptions
on the value ofθ (which be the class ofall strictly positive priors).

Thereference priorπ∗(θ) is the limit ask → ∞ (in a sense to be made
precise) of the sequence of priors{πk(θ), k = 1, 2, . . .}.
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• Reference priors in the finite case

If θ may only take afinite numberm of different values{θ1, . . . , θm}
andπ(θ) = {p1, . . . , pm}, with pi = Pr(θ = θi), then
limk→∞ Iθ{XXX k, π(θ)} = H(p1, . . . , pm) = −

∑m
i=1 pi log(pi),

that is, theentropyof the prior distribution{p1, . . . , pm}.

In the finite case, the reference prior is that withmaximum entropywithin
the classP of priors compatible with accepted assumptions.
(cf. Statistical Physics)

If, in particular,P containsall priors over{θ1, . . . , θm}, the reference
prior is theuniformprior, π(θ) = {1/m, . . . , 1/m}.
(cf. Bayes-Laplace postulate of insufficient reason)

Prior{p1, p2, p3, p4}
in genetics problem
wherep1 = 2p2.

Reference prior is
{0.324, 0.162, 0.257, 0.257}
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• Reference priors in one-dimensional continuous case

Let πk(θ) be the prior which maximizesIθ{XXX k, π(θ)} in the classP of
acceptable priors.

For any datax ∈ XXX , let πk(θ |x) ∝ p(x | θ)πk(θ) be
the corresponding posterior.

The reference posterior densityπ∗(θ |x) is defined to be the intrinsic
limit of the sequence{πk(θ |x), k = 1, 2, . . .}
A reference prior functionπ∗(θ) is any positive function such that,
for all x ∈ XXX , π∗(θ |x) ∝ p(x | θ) π∗(θ).
This is defined up to an (irrelevant) arbitrary constant.

Let x(k) ∈ XXX k be the result ofk independent replications ofx ∈ XXX .
The exact expression forπk(θ) (which may be obtained with calculus of
variations) is
πk(θ) = exp [ E

x(k) | θ{log πk(θ |x(k))}]

This formula may be used, by repeated simulation fromp(x | θ) for
differentθ values, to obtain anumerical approximationto the reference
prior.
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• Reference priors under regularity conditions

Let θ̃k = θ̃(x(k)) be a consistent, asymptotically sufficient estimator
of θ. In regular problems this is often the case with the mle estimatorθ̂.

The exact expression forπk(θ) then becomes, for largek,

πk(θ) ≈ exp[E
θ̃k | θ{log πk(θ | θ̃k)}]

As k → ∞ this converges toπk(θ | θ̃k)|
θ̃k=θ

Let θ̃k = θ̃(x(k)) be a consistent, asymptotically sufficient estimator
of θ. Let π(θ | θ̃k) be any asymptotic approximation toπ(θ |x(k)), the
posterior distribution ofθ.

Hence,π∗(θ) = π(θ | θ̃k)|
θ̃k=θ

Under regularity conditions, the posterior distribution ofθ
is asymptotically Normal, with meanθ̂ and precisionn F (θ̂), where
F (θ) = −Ex | θ[∂

2 log p(x | θ)/∂θ2] is Fisher’s information function.

Hence,π∗(θ) = F (θ)1/2 (Jeffreys’ rule).
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• One nuisance parameter

Two parameters: reduce the problem to asequentialapplication of the
one parameter case. Probability model is{p(x | θ, λ, θ ∈ Θ, λ ∈ Λ} and
aθ-reference priorπ∗θ(θ, λ) is required. Two steps:

(i) Conditional onθ, p(x | θ, λ) only depends onλ, and it is possible to
obtain theconditionalreference priorπ∗(λ | θ).
(ii) If π∗(λ | θ) is proper, integrate outλ to get the one-parameter model
p(x | θ) =

∫
Λ p(x | θ, λ)π∗(λ | θ) dλ, and use the one-parameter solu-

tion to obtainπ∗(θ).
Theθ-reference prior is thenπ∗θ(θ, λ) = π∗(λ | θ)π∗(θ).
The required reference posterior isπ∗(θ |x) ∝ p(x | θ)π∗(θ).
If π∗(λ | θ) is animproperprior function, proceed within an increasing
sequence{Λi} over whichπ∗(λ | θ) is integrable and, for given datax,
obtain the corresponding sequence of reference posteriors{π∗i (θ |x}.

The required reference posteriorπ∗(θ |x) is their intrinsic limit.

A θ-reference prior is any positive function such that, for any datax,
π∗(θ |x) ∝

∫
Λ p(x | θ, λ) π∗θ(θ, λ) dλ.
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• The regular two-parameter continuous case

Model p(x | θ, λ). If the joint posterior of(θ, λ) is asymptotically nor-
mal, theθ-reference prior may be derived in terms of the corresponding
Fisher’s information matrix,F (θ, λ).

F (θ, λ) =

(
Fθθ(θ, λ) Fθλ(θ, λ)
Fθλ(θ, λ) Fλλ(θ, λ)

)
, S(θ, λ) = F−1(θ, λ),

Theθ-reference prior isπ∗θ(θ, λ) = π∗(λ | θ)π∗(θ), where

π∗(λ | θ) ∝ F
1/2
λλ (θ, λ), λ ∈ Λ, and, ifπ∗(λ | θ) is proper,

π∗(θ) ∝ exp {
∫
Λ π∗(λ | θ) log[S−1/2

θθ (θ, λ)] dλ}, θ ∈ Θ.

If π∗(λ | θ) is not proper, integrations are performed within an approx-
imating sequence{Λi} to obtain a sequence{π∗i (λ | θ)π∗i (θ)}, and the
θ-reference priorπ∗θ(θ, λ) is defined as its intrinsic limit.

Even ifπ∗(λ | θ) is improper, ifθ andλ are variation independent,

S
−1/2
θθ (θ, λ) ∝ fθ(θ) gθ(λ), andF

1/2
λλ (θ, λ) ∝ fλ(θ) gλ(λ),

Thenπ∗θ(θ, λ) = fθ(θ) gλ(λ).
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• Examples: Inference on normal parameters

The information matrix for the normal model N(x |µ, σ) is

F (µ, σ) =

(
σ−2 0
0 2σ−2

)
, S(µ, σ) = F−1(µ, σ) =

(
σ2 0
0 σ2/2

)
;

Sinceµ andσ are variation independent, and bothFσσ andSµµ factorize,

π∗(σ |µ) ∝ F
1/2
σσ ∝ σ−1, π∗(µ) ∝ S

−1/2
µµ ∝ 1.

Theµ-reference prior, as anticipated, is
π∗µ(µ, σ) = π∗(σ |µ)π∗(µ) = σ−1,
i.e., uniform on bothµ andlog σ

SinceF (µ, σ) is diagonal theσ-reference prior is
π∗σ(µ, σ) = π∗(µ |σ)π∗(σ) = σ−1, the same asπ∗µ(µ, σ) = π∗σ(µ, σ).
In fact, it may be shown that, for location-scale models,
p(x |µ, σ) = 1

σf(x−µ
σ ),

the reference prior for the location and scale parameters are always
π∗µ(µ, σ) = π∗σ(µ, σ) = σ−1.
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Within any given modelp(x |θ) theφ-reference priorπ∗φ(θ) maximizes
the missing information aboutφ = φ(θ) and, in multiparameter prob-
lems, that priormay change with the quantity of interestφ.

For instance, within a normal N(x |µ, σ) model, let thestandardized
meanφ = µ/σ. be the quantity of interest.

Fisher’s information matrix in terms of the parametersφ andσ is
F (φ, σ) = Jt F (µ, σ) J , whereJ = (∂(µ, σ)/∂(φ, σ)) is the Jacobian
of the inverse transformation; this yields

F (φ, σ) =

(
1 φ/σ

φ/σ (2 + φ2)/σ2

)
, S(φ, σ) =

 1 + φ2/2 −φ σ/2
−φ σ/2 σ2/2

,

with F
1/2
σσ ∝ σ−1, andS

−1/2
φφ ∝ (1 + φ2/2)−1/2.

Theφ-reference prior is,π∗φ(φ, σ) = (1 + φ2/2)−1/2σ−1.

In the original parametrization,π∗φ(µ, σ) = (1 + (µ/σ)2/2)−1/2σ−2,
which is different fromπ∗µ(µ, σ) = π∗σ(µ, σ).
This prior is shown to lead to a reference posterior forφ with consistent
marginalization properties.
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• Many parameters

The reference algorithm generalizes to any number of parameters.
If the model isp(x |θ) = p(x | θ1, . . . , θm), a joint reference prior
π∗(φm |φm−1, . . . , φ1)× . . .×π∗(φ2 |φ1)×π∗(φ1) may sequentially
be obtained for eachordered parametrization, {φ1(θ), . . . , φm(θ)}.

Reference priors areinvariantunder reparametrization of theφi(θ)’s.

The choice of the ordered parametrization{φ1, . . . , φm} describes the
particular prior required, namely that whichsequentially
maximizes the missing information about each of theφi’s,
conditional on{φ1, . . . , φi−1}, for i = m, m − 1, . . . , 1.

Example: Stein’s paradox. Data random from am-variate normal
Nm(x |µ, I). The reference prior function for any permutation of
theµi’s is uniform, and leads to appropriate posterior distributions for
any of theµi’s, but cannot be used if the quantity of interest isθ =

∑
i µ

2
i ,

the distance ofµ to the origin.

The reference prior for{θ, λ1, . . . , λm−1} produces, for any choice of
theλi’s, an appropriate the reference posterior forθ.
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2.3. Inference Summaries

• Summarizing the posterior distribution

TheBayesian finaloutcomeof a problem of inference about any unknown
quantityθ is precisely theposterior densityπ(θ |x, C).
Bayesian inference may be described as the problem of stating a proba-
bility distribution for the quantity of interest encapsulating all available
information about its value.

In one or two dimensions, agraph of the posterior probability density
of the quantity of interest conveys an intuitive summary of the main
conclusions. This is greatly appreciated by users, and is an important
asset of Bayesian methods.

However, graphical methods not easily extend to more than two dimen-
sions and elementaryquantitativeconclusions are often required.

The simplest forms tosummarizethe information contained in the poste-
rior distribution are closely related to the conventional concepts of point
estimation and interval estimation.
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• Point Estimation: Posterior mean and posterior mode

It is often required to provide point estimates of relevant quantities.
Bayesian point estimation is best described as adecision problemwhere
one has tochoosea particular valuẽθ as an approximate proxy for the
actual, unknown value ofθ.

Intuitively, any location measure of the posterior densityπ(θ |x)
may be used as a point estimator. When they exist, either
E[θ |x] =

∫
Θ θ π(θ |x) dθ (posterior mean ), or

Mo[θ |x] = arg supθ∈Θ π(θ |x) (posterior mode)
are often regarded as natural choices.

Lack of invariance. Neither the posterior mean not the posterior mode are
invariant under reparametrization. The point estimatorψ̃ of a bijection
ψ = ψ(θ) of θ will generally not be equal toψ(θ̃).
In pure “inferential” applications, where one is requested to provide a
point estimate of the vector of interest without an specific application in
mind, it is difficult to justify a non-invariant solution:
The best estimate of, say,φ = log(θ) should beφ∗ = log(θ∗).
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• Point Estimation: Posterior median

A summary of a multivariate densityπ(θ |x), whereθ = {θ1, . . . , θk},
should contain summaries of:
(i) each of the marginal densitiesπ(θi |x),
(ii) the densitiesπ(φ |x) of other functions of interestφ = φ(θ).
In one-dimensional continuousproblems theposterior median,
is easily defined and computed as
Me[θ |x] = q ; Pr[θ ≤ q |x] =

∫
{θ≤q} π(θ |x) dθ = 1/2

The one-dimensional posterior median has many attractive properties:
(i) it is invariantunder bijections, Me[φ(θ) |x] = φ(Me[θ |x]).
(ii) it existsand it isuniqueunder very wide conditions
(iii) it is rather robustunder moderate perturbations of the data.

The posterior median is often considered to be the best ‘automatic’
Bayesian point estimator in one-dimensional continuous problems.

The posterior median is not easily used to a multivariate setting.
The natural extension of its definition producessurfaces(not points).

General invariant multivariate definitions of point estimators is possible
using Bayesiandecision theory
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• General Credible Regions

To describeπ(θ |x) it is often convenient to quote regionsΘp ⊂ Θ of
given probability contentp underπ(θ |x). This is the intuitive basis of
graphical representations like boxplots.

A subsetΘp of the parameter spaceΘ such that∫
Θp

π(θ |x) dθ = p, so that Pr(θ ∈ Θp |x) = p,
is aposteriorp-credible regionfor θ.

A credible region is invariant under reparametrization:
If Θp is p-credible forθ, φ(Θp) is ap-credible forφ = φ(θ).
For any givenp there are generally infinitely many credible regions.
Credible regions may be selected to have minimum size (length, area,
volume), resulting inhighest probability density(HPD) regions,
where all points in the region have larger probability density
than all points outside.

HPD regions arenot invariant: the imageφ(Θp) of an HPD regionΘp
will be a credible region forφ, but will not generally be HPD.
There is no reason to restrict attention to HPD credible regions.
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• Credible Intervals

In one-dimensional continuousproblems, posterior quantiles are often
used to derive credible intervals.

If θq = Qq[θ |x] is theq-quantile of the posterior distribution ofθ,
the intervalΘp = {θ; θ ≤ θp} is ap-credible region,
and it is invariant under reparametrization.

Equal-tailedp-credible intervals of the form
Θp = {θ; θ(1−p)/2 ≤ θ ≤ θ(1+p)/2}
are typically unique, and they invariant under reparametrization.

Example: Model N(x |µ, σ). Credible intervals for the normal mean.
The reference posterior forµ is π(µ |x) = St(µ |x, s/

√
n − 1, n − 1).

Hence the referenceposteriordistribution ofτ =
√

n − 1(µ − x)/s,
a function ofµ, is π(τ |x, s, n) = St(τ | 0, 1, n − 1).
Thus, the equal-tailedp-credible intervals forµ are

{µ; µ ∈ x ± q
(1−p)/2
n−1 s/

√
n − 1},

whereq
(1−p)/2
n−1 is the(1 − p)/2 quantile of a standard Student density

with n − 1 degrees of freedom.
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• Calibration

In the normal example above , the expressiont =
√

n − 1(µ − x)/s
mayalsobe analyzed, for fixedµ, as afunction of the data.

The fact that thesamplingdistribution of the statistict = t(x, s |µ, n)
is alsoan standard Studentp(t |µ, n) = St(t | 0, 1, n− 1) with the same
degrees of freedom implies that, in this example, objective Bayesian
credible intervals arealsobeexactfrequentist confidence intervals.

Exact numerical agreementbetween Bayesian credible intervals and
frequentist confidence intervals is theexception, not the norm.

For large samples, convergence to normality impliesapproximate
numerical agreement. This provides a frequentistcalibration to
objective Bayesian methods.

Exact numericalagreementis obviouslyimpossible when the data are
discrete: Precise (non randomized) frequentist confidence intervals do
not exist in that case for most confidence levels.

The computation of Bayesian credible regions for continuous parameters
is howeverprecisely the samewhether the data arediscrete or continuous.



44
2.4. Prediction

• Posterior predictive distributions

Datax = {x1, . . . , xn}, xi ∈ X , set of “homogeneous” observations.
Desired to predict the value of a future observationx ∈ X generated by
the same mechanism.

From the foundations arguments the solutionmustbe a probability dis-
tribution p(x |x, K) describing the uncertainty on the value thatx will
take, given datax and any other available knowledgeK. This is called
the (posterior)predictive densityof x.

To derivep(x |x, K) it is necessary to specify theprecise sensein which
thexi’s are judged to behomogeneous.

It is often directly assumed that the datax = {x1, . . . , xn} consist of a
random samplefrom some specified model,{p(x |θ), x ∈ X ,θ ∈ Θ},
so thatp(x |θ) = p(x1, . . . , xn |θ) =

∏n
j=1 p(xj |θ).

If this is the case, the solution to the prediction problem is immediate
once a prior distributionπ(θ) has been specified.
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• Posterior predictive distributions from random samples

Let x = {x1, . . . , xn}, xi ∈ X a random sample of sizen from the
statistical model{p(x |θ), x ∈ X ,θ ∈ Θ}
Let π(θ) a prior distribution describing available knowledge (in any)
about the value of the parameter vectorθ.
Theposterior predictive distributionis

p(x |x) = p(x |x1, . . . , xn) =
∫
Θ p(x |θ)π(θ |x) dθ

This encapsulates all available information about the outcome of any
future observationx ∈ X from the same model.

To prove this, make use the total probability theorem, to have
p(x |x) =

∫
Θ p(x |θ,x)π(θ |x) dθ

and notice the new observationx has been assumed to be conditionally
independent of the observed datax, so thatp(x |θ,x) = p(x |θ).
The observable valuesx ∈ X may be eitherdiscreteor continuous
random quantities. In the discrete case, the predictive distribution will
be described by its probabilitymassfunction; in the continuous case, by
its probabilitydensityfunction. Both are denotedp(x |x).
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• Prediction in a Poisson process

Datax = {r1, . . . , rn} random from Pn(r |λ). The reference posterior
density ofλ is π∗(λ |x) = Ga(λ | t + 1/2, n), wheret = Σj rj.

The (reference) posterior predictive distribution is

p(r |x) = Pr[r | t, n] =
∫ ∞

0
Pn(r |λ) Ga(λ | t + 1

2, n) dλ

=
nt+1/2

Γ(t + 1/2)
1
r!

Γ(r + t + 1/2)

(1 + n)r+t+1/2
,

an example of a Poisson-Gamma probability mass function.

For example, no flash floods have been recorded on a particular location
in 10 consecutive years. Local authorities are interested in forecasting
possible future flash floods. Using a Poisson model, and assuming that
meteorological conditions remain similar, the probabilities thatr flash
floods will occur next year in that location are given by the Poisson-
Gamma mass function above, witht = 0 andn = 10. This yields,
Pr[0 | t, n] = 0.953, Pr[1 | t, n] = 0.043, and Pr[2 | t, n] = 0.003.

Many other situations may be described with the same model.



47
• Prediction of Normal measurements

Data x = {x1, . . . , xn} random fromN(x |µ, σ). Reference prior
π∗(µ, σ) = σ−1 or, in terms of the precisionλ = σ−2, π∗(µ, λ) = λ−1.

The joint reference posterior,π∗(µ, λ |x) ∝ p(x |µ, λ) π∗(µ, λ), is
π∗(µ, λ |x) = N(µ |x, (nλ)−1/2) Ga(λ | (n − 1)/2, ns2/2).
The predictive distribution is

π∗(x |x) =
∫ ∞

0

∫ ∞

−∞
N(x |µ, λ−1/2) π∗(µ, λ |x) dµ dλ

∝ {(1 + n)s2 + (µ − x)2}−n/2,

a kernel of theStudentdensity π∗(x |x) = St(x |x, s
√

n+1
n−1, n − 1).

Example. Production of safety belts. Observed breaking strengths of10
randomly chosen webbings have meanx = 28.011 kN and standard
deviations = 0.443 kN. Specification requiresx > 26 kN.

Reference posterior predictivep(x |x) = St(x | 28.011, 0.490, 9).
Pr(x > 26 |x) =

∫ ∞
26 St(x | 28.011, 0.490, 9) dx = 0.9987.
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• Regression

Often additional informationfrom relevant covariates. Data structure,
set of pairsx = {(y1,v1), . . . (yn,vn)}; yi, vi, both vectors. Given a
new observation, withv known, predict the corresponding value ofy.
Formally, computep{y |v, (y1,v1), . . . (yn,vn)}.

Need a model{p(y |v,θ),y ∈ Y ,θ ∈ Θ} which makes precise the
probabilistic relationship betweeny andv. The simplest option assumes
a linear dependencyof the formp(y |v,θ) = N(y |V β,Σ), but far
more complex structures are common in applications.

Univariate linear regression onk covariates. Y ⊂ �,v = {v1, . . . , vk}.
p(y |v,β, σ) = N(y |vβ, σ2), β = {β1, . . . , βk}t. Datax = {y,V },
y = {y1, . . . , yn}t, andV is then × k matrix with thevi’s as rows.
p(y |V ,β, σ) = Nn(y |V β, σ2In); reference priorπ∗(β, σ) = σ−1.

Predictive posterior is the Student density
p(y |v,y,V ) = St(y |vβ̂, s

√
f(v,V ) n

n−k, n − k)

β̂ = (V tV )−1V ty, ns2 = (y − vβ̂)t(y − vβ̂)
f(v,V ) = 1 + v(V tV )−1vt
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• Example: Simple linear regression

One covariate and a constant term;p(y | v,β, σ) = N(y |β1 + β2v, σ)
Sufficient statistic ist = {v, y, svy, svv}, with nv = Σvj, ny = Σyj,
syv = Σvjyj/n − v y, svv = Σv2

j /n − v2.

p(y | v, t) = St(y | β̂1 + β̂2 v, s
√

f(v, t) n
n−2, n − 2)

β̂1 = y − β̂2v, β̂2 =
svy
svv

,

ns2 =
∑n

j=1(yj − β̂1 − β̂2xj)2

f(v, t) = 1 + 1
n

(v−v)2+svv
svv

Pollution density (µgr/m3), and
wind speed from source (m/s ).
yj 1212 836 850 446 1164 601
vj 4.8 3.3 3.1 1.7 4.7 2.1

yj 1074 284 352 1064 712 976
vj 3.9 0.9 1.4 4.3 2.9 3.4

Pr[y > 50 | v = 0,x] = 0.66 250 500 750 1000 1250 1500

0.002
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0.008
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v

p(y | v,x)
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2.4. Hierarchical Models

• Exchangeability

Random quantities are often “homogeneous” in the precise sense that
only theirvaluesmatter, not theorder in which they appear. Formally,
this is captured by the notion ofexchangeability. The set of random vec-
tors{x1, . . . ,xn} is exchangeable if their joint distribution is invariant
under permutations. An infinite sequence{xj} of random vectors is
exchangeable if all its finite subsequences are exchangeable.

Any random sample from any model is exchangeable. Therepresentation
theoremestablishes that if observations{x1, . . . ,xn} are exchangeable,
they are aa random samplefrom some model{p(x |θ),θ ∈ Θ}, labeled
by aparameter vectorθ,definedas the limit (asn → ∞) of some function
of thexi’s. Information aboutθ in prevailing conditionsC isnecessarily
described bysomeprobability distributionπ(θ |C).
Formally, the joint density of any finite set of exchangeable observations
{x1, . . . ,xn} has anintegral representationof the form
p(x1, . . . ,xn |C) =

∫
Θ

∏n
i=1 p(xi |θ) π(θ |C) dθ.
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• Structured Models

Complex data structures may often be usefully described by partial ex-
changeability assumptions.

Example: Public opinion.Samplek different regions in the country.
Sampleni citizens in regioni and record whether or not (yij = 1 or
yij = 0) citizen j would voteA. Assuming exchangeable citizens
within each region implies
p(yi1, . . . , yini

) =
∏ni

j=1 p(yij | θi) = θ
ri
i (1 − θi)

ni−ri,
whereθi is the (unknown) proportion of citizens in regioni votingA and
ri = Σjyij the number of citizens votingA in regioni.

Assuming regions exchangeable within the country similarly leads to
p(θ1, . . . , θk) =

∏k
i=1 π(θi |φ)

for some probability distributionπ(θ |φ) describing the political varia-
tion within the regions. Often chooseπ(θ |φ) = Be(θ |α, β).
The resultingtwo-stages hierarchical Binomial-Beta model
x = {y1, . . . ,yk}, yi = {yi1, . . . , yini

}, random from Bi(y | θi),
{θ1, . . . , θk}, random from Be(θ |α, β)
provides a far richer model than (unrealistic) simple binomial sampling.
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Example: Biological response.Samplek different animals of the same
species in specific environment. Controlni times animali and record
his responses{yi1, . . . ,yini

} to prevailing conditions. Assuming ex-
changeable observations within each animal implies
p(yi1, . . . ,yini

) =
∏ni

j=1 p(yij |θi).
Often choosep(yij |θi) = Nr(y |µi,Σ1), wherer is the number of
biological responses measured.

Assuming exchangeable animals within the environment leads to
p(µ1, . . . ,µk) =

∏k
i=1 π(µi |φ)

for some probability distributionπ(µ |φ) describing the biological vari-
ation within the species. Often chooseπ(µ |φ) = Nr(µ |µ0,Σ2).
Thetwo-stages hierarchical multivariate Normal-Normal model
x = {y1, . . . ,yk}, yi = {yi1, . . . ,yini

}, random from Nr(y |µi,Σ1),
{µ1, . . . ,µk}, random from Nr(µ |µ0,Σ2)
provides a far richer model than (unrealistic) simple multivariate normal
sampling.

Finer subdivisions,e.g., subspecies within each species, similarly lead
to hierarchical models with more stages.
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• Bayesian analysis of hierarchical models

A two-stages hierarchical modelhas the general form
x = {y1, . . . ,yk}, yi = {zi1, . . . ,zini

}
yi random sample of sizeni from p(z |θi), θi ∈ Θ,

{θ1, . . . ,θk}, random of sizek from π(θ |φ), φ ∈ Φ.

Specify aprior distribution (or a reference prior function)
π(φ) for thehyperparameter vectorφ.

Usestandard probability theoryto compute all desired
posterior distributions:
π(φ |x) for inferences about the hyperparameters,
π(θi |x) for inferences about the parameters,
π(ψ |x) for inferences about the any functionψ = ψ(θ1, . . . ,θk)

of the parameters,
π(y |x) for predictions on future observations,
π(t |x) for predictions on any functiont = t(y1, . . . ,ym)

of m future observations

Markov Chain Monte Carlobasedsoftwareavailable for the necessary
computations.
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3. Decision Making

3.1 Structure of a Decision Problem

• Alternatives, consequences, relevant events

A decision problem if two or more possible courses of action;A is the
class of possibleactions.

For eacha ∈ A, Θa is the set ofrelevant events, those may affect the
result of choosinga.

Each pair{a,θ}, θ ∈ Θa, produces a consequencec(a,θ) ∈ Ca. In this
context,θ if often referred to as theparameter of interest.

The class of pairs{(Θa, Ca), a ∈ A} describes thestructureof the
decision problem. Without loss of generality, it may be assumed that the
possible actions are mutually exclusive, for otherwise the appropriate
Cartesian product may be used.

In many problems the class of relevant eventsΘa is the same for all
a ∈ A. Even if this is not the case, a comprehensiveparameter spaceΘ
may be defined as the union of all theΘa.
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• Foundations of decision theory

Different sets of principles capture a minimum collection of logical rules
required for “rational” decision-making.

These are axioms with strong intuitive appeal.
Their basic structure consists of:

• TheTransitivityof preferences:
If a1 
 a2 givenC, anda2 
 a3 givenC,
thena1 
 a3 givenC.

• TheSure-thing principle:
If a1 
 a2 givenC andE, anda1 
 a2 givenC and notE
thena1 
 a2 givenC.

• The existence ofStandard events:
There are events of known plausibility.
These may be used as a unit of measurement, and
have the properties of a probability measure

These axioms are not a description of human decision-making,
but anormativeset of principles definingcoherentdecision-making.
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• Decision making

Many different axiom sets.
All lead basically to the same set of conclusions, namely:

• The consequences of wrong actions should be evaluated in terms of a
real-valuedlossfunction�(a,θ) which specifies, on a numerical scale,
their undesirability.

• The uncertainty about the parameter of interestθ should be measured
with aprobability distribution π(θ |C)

π(θ |C) ≥ 0, θ ∈ Θ,

∫
Θ

π(θ |C) dθ = 1,

describing all available knowledge about its value, given the conditionsC
under which the decision must be taken.

• The relative undesirability of available actionsa ∈ A is measured by
their expected loss:the optimal action minimizes the expected loss.

�[a |C] =
∫
Θ

�(a,θ)π(θ |C) dθ, a ∈ A.

(alternatively, one maymaximize expected utility)
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• Intrinsic loss functions: Intrinsic discrepancy

The loss function is typicallycontext dependent.

In mathematical statistics,intrinsic loss functions are used to measure
the distance between between statistical models.

They measure thedivergence between the models{p1(x |θ1),x ∈ XXX}
and{p2(x |θ2),x ∈ XXX} as somenon-negativefunction of the form
�{p1, p2} which is zero if (and only if) the two distributions are equal
almost everywhere.
The intrinsic discrepancybetween two statistical models is simply the
intrinsic discrepancy between their sampling distributions,i.e.,
δ{p1, p2} = δ{θ1,θ2}

= min

{∫
X1

p1(x |θ1) log
p1(x |θ1)
p2(x |θ2)

dx,

∫
X2

p2(x |θ2) log
p2(x |θ2)
p1(x |θ1)

dx

}
The intrinsic discrepancy is aninformation-based, symmetric, invariant
intrinsic loss.
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3.2 Point and Region Estimation

• Point estimation as a decision problem

Given statistical model{p(x |ω),x ∈ XXX ,ω ∈ Ω}, quantity of interest
θ = θ(ω) ∈ Θ. A point estimator̃θ = θ̃(x) of θ is some function of
the data to be regarded as a proxy for the unknown value ofθ.

To choose a point estimate forθ is adecision problem, where the action
space isA = Θ.

Given aloss function�(θ̃,θ), the posterior expected loss is

�[θ̃ |x] =
∫
Θ

�(θ̃,θ) π(θ |x) dθ,

The correspondingBayes estimatoris the function of the data,

θ∗ = θ∗(x) = arg inf
θ̃∈Θ

�[θ̃ |x],

which minimizes that expectation.
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• Conventional estimators

The posterior meanand theposterior modeare the Bayes estimators
which respectively correspond to aquadratican azero-oneloss functions.

• If �(θ̃,θ) = (θ̃ − θ)t(θ̃ − θ), then, assuming that the mean exists, the
Bayes estimator is theposterior meanE[θ |x].

• If the loss function is a zero-one function, so that�(θ̃,θ) = 0 if θ̃
belongs to a ball of radiusε centered inθ and�(θ̃,θ) = 1 otherwise
then, assuming that a unique mode exists, the Bayes estimator converges
to theposterior modeMo[θ |x] as the ball radiusε tends to zero.

If θ is univariate and continuous, and the loss function islinear,

�(θ̃, θ) =
{

c1(θ̃ − θ) if θ̃ ≥ θ

c2(θ − θ̃) if θ̃ < θ

then the Bayes estimator is theposterior quantileof orderc2/(c1 + c2),
so that Pr[θ < θ∗] = c2/(c1 + c2).
In particular, ifc1 = c2, the Bayes estimator is theposterior median.

Any θ value may be optimal:it all depends on the loss function.
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• Intrinsic point estimation

Given the statistical model{p(x |θ),x ∈ XXX ,θ ∈ Θ} the intrinsic dis-
crepancyδ(θ1,θ2) between two parameter valuesθ1 andθ2 is the in-
trinsic discrepancyδ{p(x |θ1), p(x |θ2)} between the corresponding
probability models.

This is symmetric, non-negative (and zero iffθ1 = θ2), invariant under
reparametrization and invariant under bijections ofx.

The intrinsic estimator is thereferenceBayes estimator which
corresponds to the loss defined by theintrinsic discrepancy:

• The expected loss with respect to the reference posterior distribution

d(θ̃ |x) =
∫
Θ

δ{θ̃,θ}π∗(θ |x) dθ

is an objective measure, in information units, of theexpecteddiscrepancy
between the modelp(x | θ̃) and the true (unknown) modelp(x |θ).
• Theintrinsic estimatorθ∗ = θ∗(x) is the value which minimizes such
expected discrepancy,

θ∗ = arg inf
θ̃∈Θ

d(θ̃ |x).
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• Example: Intrinsic estimation of the Binomial parameter

Datax = {x1, . . . , xn}, random fromp(x | θ) = θx(1 − θ)1−x,
r = Σxj. Intrinsic discrepancyδ(θ̃, θ) = n min{k(θ̃ | θ), k(θ | θ̃)},
k(θ1 | θ2) = θ2 log θ2

θ1
+ (1 − θ2) log 1−θ2

1−θ1
, π∗(θ) = Be(θ | 1

2,
1
2)

π∗(θ | r, n) = Be(θ | r + 1
2, n − r + 1

2).
Expected reference discrepancy

d(θ̃, r, n) =
∫ 1
0 δ(θ̃, θ)π∗(θ | r, n) dθ

Intrinsic estimator
θ∗(r, n) = arg min0<θ̃<1 d(θ̃, r, n)

From invariance, for any bijection
φ = φ(θ), φ∗ = φ(θ∗).
Analytic approximation

θ∗(r, n) ≈ r+1/3
n+2/3, n > 2

n = 12, r = 0, θ∗(0, 12) = 0.026
Me[θ |x] = 0.018, E[θ |x] = 0.038 0 10 20 30 40 50
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• Intrinsic region (interval) estimation

The intrinsic q-credible regionR∗(q) ⊂ Θ is thatq-credible reference
region which corresponds to minimum expected intrinsic loss:

(i)
∫
R∗(q) π∗(θ |x) dθ = q

(ii) ∀θi ∈ R∗(q), ∀θj /∈ R∗(q), d(θi |x) < d(θj |x)

Binomial examples:d(θi |x) = d(θi | r, n)

r = 0, n = 12,

θ∗ = 0.0263;

R∗
0.95 = [0, 0.145];

r = 25, n = 100,

θ∗ = 0.2514;

R∗
0.95 = [0.172, 0.340];
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3.3 Hypothesis Testing

• Precise hypothesis testing as a decision problem

The posteriorπ(θ |D) conveys intuitive information on the values ofθ
which arecompatiblewith the observed datax: those with arelatively
high probability density.

Often a particular valueθ0 is suggested for special consideration:

• Becauseθ = θ0 would greatly simplify the model

• Because there are context specific arguments suggesting thatθ = θ0
More generally, one may analyze therestriction of parameter spaceΘ
to a subsetΘ0 which may contain more than one value.

Formally, testing the hypothesisH0 ≡ {θ = θ0} is adecision problem
with just two possible actions:

• a0: to acceptH0 and work withp(x |θ0).
• a1: to rejectH0 and keep the general modelp(x |θ).
To proceed, aloss function �(ai,θ), θ ∈ Θ, describing the possible
consequences of both actions, must be specified.
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• Structure of the loss function

Given datax, optimal action is to rejectH0 (actiona1) iff the expected
posterior loss of accepting,

∫
Θ �(a0,θ)π(θ |x) dθ, is larger than the

expected posterior loss of rejecting,
∫
Θ �(a1,θ)π(θ |x) dθ, i.e., iff∫

Θ[�(a0,θ) − �(a1,θ)]π(θ |x) dθ =
∫
Θ ∆�(θ)π(θ |x) dθ > 0.

Therefore, only the loss difference∆�(θ) = �(a0,θ) − �(a1,θ), which
measures theadvantageof rejectingH0 as a function ofθ, has to be
specified: The hypothesis should be rejected whenever theexpected
advantage of rejecting is positive.

The advantage∆�(θ) of rejectingH0 as a function ofθ should be of the
form ∆�(θ) = l(θ0,θ) − l∗, for somel∗ > 0, where

• l(θ0,θ) measures thediscrepancybetweenp(x |θ0) andp(x |θ),
• l∗ is a positiveutility constantwhich measures the advantage working
with the simpler model when it is true.

The Bayes criterion will then be:RejectH0 if (and only if)∫
Θ l(θ0,θ) π(θ |x) dθ > l∗, that is if (and only if)

theexpected discrepancybetweenp(x |θ0) andp(x |θ) is too large.
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• Bayesian Reference Criterion

An good choice for the functionl(θ0,θ) is theintrinsic discrepancy,

δ(θ0,θ) = min {k(θ0 |θ), k(θ |θ0)},
wherek(θ0 |θ) =

∫
XXX p(x |θ) log{p(x |θ)/p(x |θ0)}dx.

If x = {x1, . . . , xn} ∈ Xn is a random sample fromp(x |θ), then

k(θ0 |θ) = n
∫
X p(x |θ) log p(x |θ)

p(x |θ0) dx.

For objective results, exclusively based on model assumptions and data,
thereferenceposterior distributionπ∗(θ |x) should be used.

Hence,reject if (and only if) the expected reference posterior intrinsic
discrepancyd(θ0 |x) is too large,

d(θ0 |x) =
∫
Θ δ(θ0,θ)π∗(θ |x) dθ > d∗, for somed∗ > 0.

This is theBayesian reference criterion (BRC).

The reference test statisticd(θ0 |x) is nonnegative, it is invariant both
under reparametrization and under sufficient transformation of the data,
and it is a measure, in natural information units (nits) of the expected
discrepancy betweenp(x |θ0) and the true model.
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• Calibration of the BRC

The reference test statisticd(θ0 |x) is the posterior expected value of
the intrinsic discrepancy betweenp(x |θ0) andp(x |θ).
• A reference test statistic valued(θ0 |x) ≈ 1 suggests that data are
clearly compatible with the Hypotheis thatθ = θ0.

• A test statistic valued(θ0 |x) log(10) = 2.303 nits implies that, given
datax, theaveragevalue of the likelihood ratioagainstthe hypothesis,
p(x |θ)/p(x |θ0), is expected to be about10: mild evidenceagainstθ0.

• Similarly, d(θ0 |x) ≈ log(100) = 4.605 (expected likelihood ra-
tio againstθ0 about100), indicatesstrong evidenceagainstθ0, and
log(1000) = 6.908, conclusive evidenceagainstθ0.

Strong connections between BRC and intrinsic estimation:

• The intrinsic estimatoris the value ofθ with minimizes the reference
test statistic:θ∗ = arg infθ∈Θ d(θ |x).

• The regions defined by{θ; d(θ |x) ≤ d∗} are invariantreference
posteriorq(d∗)-credible regionsfor θ. For regular problems and large
samples,q(log(10)) ≈ 0.95 andq(log(100)) ≈ 0.995.
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• A canonical example: Testing a value for the Normal mean

In the simplest case where the varianceσ2 is known,

δ(µ0, µ) = n(µ − µ0)2/(2σ2), π∗(µ |x) = N(µ |x, σ/
√

n),

d(µ0 |x) = 1
2(1 + z2), z = x−µ0

σ/
√

n

Thus rejectingµ = µ0 if d(µ0 |x) > d∗ is equivalent to rejecting if
|z| >

√
2d∗ − 1 and, hence, to a conventional two-sided frequentist test

with significance levelα = 2(1 − Φ(|z|)).
d∗ |z| α

log(10) 1.8987 0.0576
log(100) 2.8654 0.0042

log(1000) 3.5799 0.0003

The expected value ofd(µ0 |x)
if the hypothesis istrueis
∞∫

−∞
1
2(1 + z2)N(z | 0, 1) dz = 1

-4 -2 0 2 4
0

2

4

6

8

z

d(µ0 |x) = (1 + z2)/2
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• Fisher’s tasting tea lady

Datax = {x1, . . . , xn}, random fromp(x | θ) = θx(1 − θ)1−x,
r = Σxj. Intrinsic discrepancyδ(θ0, θ) = n min{k(θ0 | θ), k(θ | θ0)},
k(θ1 | θ2) = θ2 log θ2

θ1
+ (1 − θ2) log 1−θ2

1−θ1
, π∗(θ | r, n) = Be(θ | r + 1

2, n − r + 1
2)

Intrinsic test statistic
d(θ0 | r, n) =

∫ 1
0 δ(θ̃, θ)π∗(θ | r, n) dθ

Fisher’s example:x = {10, 10},
Testθ0 = 1/2, θ∗(x) = 0.9686
d(θ0 | 10, 10) = 5.414 = log[224]
Usingd∗ = log[100] = 4.61,
the valueθ0 = 1/2 is rejected.
Pr[θ < 0.5 |x] = 0.00016

d(θ∗ |x) θ∗ Pr[θ < θ∗ |x]

log[10] 0.711 0.00815
log[100] 0.547 0.00043

log[1000] 0.425 0.00003
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• Asymptotic approximation

For large samples, the posterior approaches N(θ | θ̂, (nF (θ̂))−1/2),
whereF (θ) is Fisher’s function. Changing variables, the
posterior distribution ofφ = φ(θ) =

∫
F 1/2(θ) dθ = 2 arc sin

√
θ) is

approximately normal N(φ | φ̂, n−1/2). Sinced(θ, x) is invariant,

d(θ0,x) ≈ 1
2[1 + n{φ(θ0) − φ(θ̂)}2].

• Testing for a majority (θ0 = 1/2)

x = {720, 1500}, θ∗(x) = 0.4800

d(θ∗ |x) R = (θ∗0, θ
∗
1) Pr[θ ∈ R |x]

log[10] (0.456, 0.505) 0.9427
log[100] (0.443, 0.517) 0.9959

log[1000] (0.434, 0.526) 0.9997

Very mild evidence againstθ = 0.5:
d(0.5 | 720, 1500) = 1.67
Pr(θ < 0.5 | 720, 1500) = 0.9393 0.44 0.46 0.48 0.5 0.52 0.54
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