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Abstract. We prove existence and uniqueness of entropy solutions for the Cauchy problem for the
quasilinear parabolic equationut = div a(u,Du), wherea(z, ξ) = ∇ξf (z, ξ), andf is a convex
function ofξ with linear growth as‖ξ‖ → ∞, satisfying other additional assumptions. In particular,
this class includes a relativistic heat equation and a flux limited diffusion equation used in the theory
of radiation hydrodynamics.

1. Introduction

We are interested in the problem
∂u

∂t
= div a(u,Du) in QT = (0, T )× RN ,

u(0, x) = u0(x) in x ∈ RN ,
(1.1)

where 0≤ u0 ∈ L1(RN )∩L∞(RN ), a(z, ξ) = ∇ξf (z, ξ) andf is a function with linear
growth as‖ξ‖ → ∞.

Particular instances of problem (1.1) have been studied in [12] and [19], whenN = 1.
In these papers the authors considered the problem

∂u

∂t
= (ϕ(u)b(ux))x in (0, T )× R,

u(0, x) = u0(x) in x ∈ R,
(1.2)

corresponding to (1.1) whenN = 1 anda(u, ux) = ϕ(u)b(ux), whereϕ : R → R+

is smooth and strictly positive, andb : R → R is a smooth odd function such that
b′ > 0 and lims→∞ b(s) = b∞. Such models appear in the theory of phase transitions
where the corresponding free energy functional has a linear growth rate with respect to the
gradient [26]. As the authors observed, in general, there are no classical solutions of (1.1);
they defined the notion of entropy solution and proved existence ([12]) and uniqueness
([19]) of entropy solutions of (1.1). Existence was proved for bounded strictly increasing
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initial conditionsu0 : R → R such thatb(u′

0) ∈ C(R) (whereb(u′

0(x0)) = b∞ if u0
is discontinuous atx0) and b(u′

0(x)) → 0 asx → ±∞ [12]. The entropy condition
was written in Olĕınik’s form and uniqueness was proved using suitable test functions
constructed by regularizing the sign of the difference of two solutions.

In [13], Blanc considered the following Neumann problem in an interval ofR:
∂u

∂t
= (a(u, ux))x in (0, T )× (0,1),

ux(t,0) = ux(t,1) = 0 in t ∈ (0, T ),

u(0, x) = u0(x) in x ∈ (0,1),

(1.3)

wherea(u, v) is a function of classC1,α([0,∞)×R) satisfying other additional assump-
tions. He associated anm-accretive operator to−(a(u, ux))x with Neumann boundary
conditions, and proved the existence and uniqueness of a semigroup solution of (1.3). An
example of the equations considered in [13] is the so calledplasma equation(see [22])

∂u

∂t
=

(
u5/2ux

1 + u|ux |

)
x

in (0, T )× (0,1), (1.4)

where the initial conditionu0 is assumed to be positive. In this caseu represents the
temperature of electrons, and the form of the conductivitya(u, ux) = u5/2ux/(1+u|ux |)

has the effect of limiting the heat flux. But, as far as we know, existence and uniqueness
results for higher dimensional problems have not been considered in the literature. This
was the purpose of our papers [4] and [5] in which we studied the Neumann problem for
Lagrangiansf satisfying the following coercivity and linear growth condition:

C0‖ξ‖ −D0 ≤ f (z, ξ) ≤ M0(1 + ‖ξ‖) (1.5)

for some positive constantsC0,M0. Now, there are some relevant cases like therelativistic
heat equation(see [14], [27])

ut = ν div

(
|u|Du√

u2 + a2|Du|2

)
(1.6)

for which the Lagrangianf (z, ξ) = (ν/a2)|z|
√
z2 + a2|ξ |2 does not satisfy (1.5). Ob-

serve that, in this case,f (z, ξ) satisfies the following condition:

C0(z)‖ξ‖ −D0(z) ≤ f (z, ξ) ≤ M0(z)(‖ξ‖ + 1) (1.7)

for any (z, ξ) ∈ R × RN , and some positive and continuous functionsC0, D0, M0 such
thatC0(z) > 0 for anyz 6= 0. The equation (1.6) was introduced by Ph. Rosenau in
[27] to overcome the unphysical dependence of the flux on the gradient as predicted by
the classical transport theory. He imposed the acoustic speed as an upper bound of the
permitted propagation speed in a medium. This provides the means to control the growth
of the flux; flux saturates as the gradients become unbounded. Let us also mention that
equation (1.6) was recently derived by Y. Brenier by means of Monge–Kantorovich’s
mass transport theory ([14]). As Brenier pointed out in [14], this relativistic heat equation
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is one among the variousflux limited diffusion equationsused in the theory of radiation
hydrodynamics [25]. Indeed, a very similar equation

ut = ν div

(
uDu

u+
ν
c
|Du|

)
(1.8)

can be found in [25].
The results in [4] and [5] could provide existence and uniqueness for (1.1) when

u0 ∈ L1(RN ) ∩ L∞(RN ), andu0 ≥ a for some valuea > 0. The purpose of the present
paper is to extend the results in [4] and [5] to the case where the Lagrangianf satisfies
(1.7) and the initial condition is in(L1(RN ) ∩ L∞(RN ))+.

In [6] we have considered the elliptic problem

u− div a(u,Du) = v in RN . (1.9)

By introducing a notion of entropy solution for (1.9) we proved in [6] the existence and
uniqueness of an entropy solution of (1.9) whenv ∈ (L1(RN ) ∩ L∞(RN ))+. This per-
mits us to associate an accretive operatorB in L1(RN ) whose domain is contained in
(L1(RN ) ∩ L∞(RN ))+ (which amounts to considering the right hand sidev of (1.9) in
(L1(RN ) ∩ L∞(RN ))+) and whose closureB is m-accretive (hence, it generates a non-
linear contraction semigroupT (t)) in L1(RN )+ ([11], [17]). However, we have not been
able to characterizeB in distributional terms. In spite of this, the knowledge of the oper-
atorB and the fact that, ifu is the entropy solution of (1.9), then‖u‖∞ ≤ ‖v‖∞, permit
us to use Crandall–Ligget’s iteration scheme and define

u(t) := T (t)u0 = lim
n→∞

(
I +

t

n
B

)−n

u0, u0 ∈ (L1(RN ) ∩ L∞(RN ))+.

The main purpose of this paper is to prove thatu(t) is an entropy solution of (1.1) (a
notion that will be defined in Section 4), and that entropy solutions are unique. As a
technical tool we shall use some lower semicontinuity results (see [18] and [20]) for
energy functionals whose density is a functiong(x, u,Du) convex inDu with linear
growth rate as|Du| → ∞. The qualitative behavior of solutions (1.6) and the motion of
its support will be the object of a subsequent paper [7].

Finally, let us explain the plan of the paper. In Section 2 we recall some basic facts
about function spaces, functions of bounded variation, denoted by BV(�), Green’s for-
mula, and lower semicontinuity results for energy functionals defined in BV(�). In Sec-
tion 3 we state the main assumptions on the Lagrangianf , recall the meaning of expres-
sions of typef (u,Du) for functionsu in BV(RN ) and define an associated functional
calculus. We also recall the notion of entropy solution for the elliptic problem (1.9) and
the existence and uniqueness results for it proved in [6]. Then we translate this result
into the language of accretive operators to be able to apply Crandall–Liggett’s iteration
scheme to prove existence of solutions of (1.1) for initial datau0 ∈ L1(RN ) ∩ L∞(RN ),
u0 ≥ 0. This will be the main purpose of Section 4 where we define the notion of entropy
solution of (1.1) and we prove that Crandall–Liggett’s iteration scheme produces entropy
solutions of it. Then we prove uniqueness of entropy solutions by using Kruzhkov’s dou-
bling variables technique.
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2. Preliminaries

2.1. Some function spaces.BV functions

Let us start with some notation. We denote byLN andHN−1 theN -dimensional Lebesgue
measure and the(N − 1)-dimensional Hausdorff measure inRN , respectively. Given an
open set� in RN we shall denote byD(�), or C∞

0 (R
N ), the space of infinitely differ-

entiable functions with compact support in�. The space of continuous functions with
compact support inRN will be denoted byCc(RN ).

We shall use several notations borrowed from [10]. LetM(RN ) be the set of Lebesgue
measurable functions fromRN intoR. We denote byL(RN ) the spaceL(RN ) := L1(RN )
+ L∞(RN ), which equipped with the norm

‖u‖1+∞ := inf{‖u1‖1 + ‖u2‖∞ : u = u1 + u2, u1 ∈ L1(RN ), u2 ∈ L∞(RN )}

is a Banach space. If we set

L0(RN ) :=

{
u ∈ M(RN ) :

∫
RN
(|u| − k)+ < ∞ ∀k > 0

}
,

we haveL0(RN ) = L1(RN ) ∩ L∞(RN )
‖ ‖1+∞

([10]). The dual space ofL0(RN ) is iso-
metrically isomorphic toL1∩∞(RN ) := L1(RN ) ∩ L∞(RN ), whenL1∩∞(RN ) is en-
dowed with the norm‖u‖1∩∞ := max{‖u‖1, ‖u‖∞} ([10]).

Givenu, v ∈ M(RN ), we shall write

u << v if and only if
∫

RN
j (u) dx ≤

∫
RN
j (v) dx

for all j ∈ J0 := {j : R → [0,∞], convex, l.s.c.,j (0) = 0}.
Due to the linear growth condition on the Lagrangian, the natural energy space to

study (1.1) is the space of functions of bounded variation. Recall that if� is an open
subset ofRN , a functionu ∈ L1(�) whose gradientDu in the sense of distributions
is a vector-valued Radon measure with finite total variation in� is called afunction
of bounded variation. The class of such functions will be denoted by BV(�). For u ∈

BV(�), the vector measureDu decomposes into its absolutely continuous and singular
parts,Du = Dau+Dsu. ThenDau = ∇uLN , where∇u is the Radon–Nikodym deriva-
tive of the measureDu with respect to the Lebesgue measureLN . We also splitDsu in
two parts: thejumppartDju and theCantorpartDcu. It is well known (see for instance
[1]) that

Dju = (u+
− u−)νuHN−1 Ju,

whereJu denotes the set of approximate jump points ofu, andνu(x) =
Du
|Du|

(x),Du/|Du|
being the Radon–Nikodym derivative ofDu with respect to its total variation|Du|.
For further information concerning functions of bounded variation we refer to [1], [23]
or [29].
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2.2. Lower semicontinuity of functionals defined onBV

Let� be an open subset ofRN . Given a Borel functiong : �× R × RN → [0,∞), we
consider the energy functional

G(u) :=
∫
�

g(x, u(x),∇u(x)) dx

defined in the Sobolev spaceW1,1(�). In order to get an integral representation of the
relaxed energy associated withG, i.e.,

G(u) := inf
{un}

{lim inf
n→∞

G(un) : un ∈ W1,1(�), un → u ∈ L1(�)},

Dal Maso introduced in [18] the following functional foru ∈ BV(�):

Rg(u) :=
∫
�

g(x, u(x),∇u(x)) dx +

∫
�

g0
(
x, ũ(x),

Du

|Du|
(x)

)
|Dcu|

+

∫
Ju

(∫ u+(x)

u−(x)

g0(x, s, νu(x)) ds

)
dHN−1(x), (2.1)

where therecession functiong0 of g is defined as

g0(x, z, ξ) = lim
t→0+

tg(x, z, ξ/t). (2.2)

In the case that� is a bounded set, and under standard continuity and coercivity
assumptions, Dal Maso proved in [18] thatG(u) = Rg(u) for all u ∈ BV(�). Recently,
De Cicco, Fusco, and Verde [20] have obtained a very general result about theL1-lower
semicontinuity ofRg in BV, which contains, in particular, the following statement.

Theorem 2.1. Let � be an open subset ofRN and g : � × R × RN → [0,∞) a
locally bounded Carath́eodory function such that, for every(z, ξ) ∈ R×RN , the function
g(·, z, ξ) is of classC1. Assume that

(i) g(x, z, ·) is convex inRN for every(x, z) ∈ �× R,
(ii) g(x, ·, ξ) is continuous inR for every(x, ξ) ∈ �× RN .

Then the functionalRg(u) is lower semicontinuous with respect to theL1(�)-conver-
gence.

Let f : R × RN → [0,∞) be a continuous function such thatf 0 exists and|f 0(z, ξ)| ≤

M‖ξ‖ for any z ∈ R, ξ ∈ RN . Given a functionu ∈ BV(RN ), we define the Radon
measuref (u,Du) in RN as

〈f (u,Du), φ〉 := Rφf (u), φ ∈ Cc(RN ). (2.3)



6 F. Andreu et al.

Observe that iff 0(z, ξ) = ϕ(z)ψ0(ξ), whereϕ is Lipschitz continuous andψ0 is a
homogeneous function of degree 1, by applying the chain rule for BV-functions (see [1]),
we have

Rφf (u) =

∫
RN
φ(x)f (u,∇u) dx +

∫
RN
φ(x)ψ0

(
Du

|Du|

)
|DsJϕ(u)|, (2.4)

whereJϕ(r) =
∫ r

0 ϕ(s) ds. Then, under these conditions, we have

f (u,Du)s = ψ0
(
Du

|Du|

)
|DsJϕ(u)|. (2.5)

2.3. A generalized Green formula

We shall need several results from [8] (see also [3]) in order to give a meaning to integrals
of bounded vector fields with divergence inL1 integrated with respect to the gradient of
a BV function. Following [8], we define

X1(RN ) = {z ∈ L∞(RN ,RN ) : div(z) ∈ L1(RN )}. (2.6)

If z ∈ X1(RN ) andw ∈ BV(RN ) ∩ L∞(RN ) we define the functional(z,Dw) :
C∞
c (RN ) → R by the formula

〈(z,Dw), ϕ〉 := −

∫
RN
w ϕ div(z) dx −

∫
RN
w z · ∇ϕ dx. (2.7)

Then(z,Dw) is a Radon measure inRN , and∫
RN
(z,Dw) =

∫
RN

z · ∇w dx, ∀w ∈ W1,1(RN ) ∩ L∞(RN ). (2.8)

Moreover,(z,Dw) is absolutely continuous with respect to|Dw|. Its Radon–Nikodym
derivative, denoted byθ(z,Dw, x), is a |Dw|-measurable function fromRN to R such
that ∫

B

(z,Dw) =

∫
B

θ(z,Dw, x)|Dw| for any Borel setB ⊆ RN . (2.9)

By writing

z ·Dsu := (z,Du)− (z · ∇u) dLN ,

we see thatz ·Dsu is a bounded measure.
We have the followingGreen formulafor z ∈ X1(RN ) andw ∈ BV(RN ) ∩ L∞(RN )

([8]): ∫
RN
w div(z) dx +

∫
RN
(z,Dw) = 0. (2.10)
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3. The elliptic problem

3.1. Assumptions on the Lagrangianf

Our purpose in this section is to introduce the main assumptions on the Lagrangianf and
recall the meaning of the expression

v = − div a(u,Du) in RN (3.1)

according to [6].
We assume that the Lagrangianf : R × RN → R+ satisfies the following assump-

tions, to which we refer collectively as (H):

(H1) f is continuous onR × RN and is a convex differentiable function ofξ such that
∇ξf (z, ξ) ∈ C(R×RN ). Further we requiref to satisfy the linear growth condition

C0(z)‖ξ‖ −D0(z) ≤ f (z, ξ) ≤ M0(z)(‖ξ‖ + 1) (3.2)

for any(z, ξ) ∈ R × RN , and some positive and continuous functionsC0,D0,M0,
such thatC0(z) > 0 for anyz 6= 0. Moreover, we assumef 0 exists.

We consider the functiona(z, ξ) = ∇ξf (z, ξ) associated to the Lagrangianf . By the
convexity off ,

a(z, ξ) · (η − ξ) ≤ f (z, η)− f (z, ξ), (3.3)

and the following monotonicity condition is satisfied:

(a(z, η)− a(z, ξ)) · (η − ξ) ≥ 0. (3.4)

Moreover, it is easy to see that for eachR > 0, there is a constantM = M(R) > 0 such
that

|a(z, ξ)| ≤ M ∀(z, ξ) ∈ R × RN , |z| ≤ R. (3.5)

We also assume thata(z,0) = 0 for all z ∈ R, anda(z, ξ) = zb(z, ξ) with

|b(z, ξ)| ≤ M0 ∀(z, ξ) ∈ R × RN , |z| ≤ R. (3.6)

We consider the functionh : R × RN → R defined by

h(z, ξ) := a(z, ξ) · ξ.

By (3.4), we have
h(z, ξ) ≥ 0 ∀ξ ∈ RN , z ∈ R. (3.7)

Moreover, from (3.3) and (3.2), it follows that

C0(z)‖ξ‖ −D1(z) ≤ h(z, ξ) ≤ M‖ξ‖ (3.8)
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for any(z, ξ) ∈ R × RN , |z| ≤ R, whereD1(z) = D0(z)+ f (z,0). We note that the left
inequality holds for any(z, ξ) ∈ R×RN . Moreover, we assume that there exist constants
A,B > 0 andα, β ≥ 1 such that

|D1(z)| ≤ A|z|α + B|z|β for anyz ∈ RN . (3.9)

This condition will be used to prove some estimates during the proof of existence, and we
assume it for simplicity, since a more general condition could be used.

We assume that

(H2) ∂a
∂ξi
(z, ξ) ∈ C(R × RN ) for anyi = 1, . . . , N .

(H3) h(z, ξ) = h(z,−ξ) for all z ∈ R andξ ∈ RN , andh0 exists.

Observe that

C0(z)‖ξ‖ ≤ h0(z, ξ) ≤ M‖ξ‖ for any(z, ξ) ∈ R × RN , |z| ≤ R.

(H4) f 0(z, ξ) = h0(z, ξ) for all ξ ∈ RN and allz ∈ R.
(H5) a(z, ξ) · η ≤ h0(z, η) for all ξ, η ∈ RN and allz ∈ R.
(H6) h0(z, ξ) can be written in the formh0(z, ξ) = ϕ(z)ψ0(ξ), whereϕ is a Lipschitz

continuous function such thatϕ(z) > 0 for anyz 6= 0, andψ0 is a convex function
which is homogeneous of degree 1.

(H7) For anyR > 0, there is a constantC > 0 such that

|(a(z, ξ)− a(ẑ, ξ)) · (ξ − ξ̂ )| ≤ C|z− ẑ| ‖ξ − ξ̂‖ (3.10)

for any(z, ξ), (ẑ, ξ̂ ) ∈ R × RN , |z|, |ẑ| ≤ R.

Observe that, by the monotonicity condition (3.4) and using (3.10), it follows that

(a(z, ξ)− a(ẑ, ξ̂ )) · (ξ − ξ̂ ) ≥ −C|z− ẑ| ‖ξ − ξ̂‖ (3.11)

for any(z, ξ), (ẑ, ξ) ∈ R × RN , |z|, |ẑ| ≤ R.
Observe that under assumptions (H4) and (H6), applying (2.5), we have

f (u,Du)s = h(u,Du)s = ψ0
(
Du

|Du|

)
|DsJϕ(u)|. (3.12)

Remark 3.1. There are physical models for plasma fusion by inertial confinement in
which the temperature evolution of the electrons satisfies an equation of type (1.1), where

a(z, ξ) =
|z|5/2ξ

1 + |z| |ξ |
,

which corresponds tof (z, ξ) = |z|3/2|ξ | − |z|1/2 ln(1 + |z| |ξ |) [22] (see also [13] for a
mathematical study in the one-dimensional case). It is easy to check that (H1) (in partic-
ular (3.2) and (3.8)) holds for any(z, ξ) ∈ R × RN . Notice that condition (H2) holds. We
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observe thath0(z, ξ) = |z|3/2|ξ | and (H3)–(H6) hold. Finally, to check (H7) we observe
that

∂a
∂z
(z, ξ) =

5

2

z3/2ξ

1 + z|ξ |
−

z5/2
|ξ |ξ

(1 + z|ξ |)2
,

and therefore ∣∣∣∣∂a
∂z
(z, ξ)

∣∣∣∣ ≤
7

2
|z|1/2

for any(z, ξ) ∈ R × RN . From this, it follows that

|a(z, ξ)− a(ẑ, ξ)| ≤
7

2
R1/2

|z− ẑ|

for any (z, ξ) ∈ R × RN , |z| ≤ R. Thus also (H7) holds. In this case, the results below
will prove existence and uniqueness of entropy solutions of (1.1) for any initial condition
u0 ∈ L∞(RN ) ∩ L1(RN ), u0 ≥ 0.

Remark 3.2. The functionf (z, ξ) = (ν/a2)|z|
√
z2 + a2|ξ |2 satisfies the assumptions

(H1)–(H7), with

a(z, ξ) = ν
|z|ξ√

z2 + a2|ξ |2
.

This particular case is related to the so-calledrelativistic heat equation(see [14], [27])

ut = ν div

(
|u|Du√

u2 + a2|Du|2

)
(3.13)

with a = ν/c, c being a bound of the propagation speed, andν being a constant repre-
senting a kinematic viscosity.

Let us mention that, as pointed out by Brenier in [14], this relativistic heat equation
can be derived using Monge–Kantorovich’s mass transport theory. On the other hand,
it is among the variousflux limited diffusion equationsused in the theory of radiation
hydrodynamics [25]. Indeed, a very similar equation

ut = ν div

(
uDu

u+
ν
c
|Du|

)
(3.14)

can be found in [25]. In this case, the Lagrangianf associated with the above equation is

f (z, ξ) := cz

(
|ξ | −

cz

ν
log

(
1 +

ν

cz
|ξ |

))
,

and satisfies the assumptions (H1)–(H7).



10 F. Andreu et al.

3.2. A functional calculus

We need to consider the following truncature functions. Fora < b, let Ta,b(r) :=
max(min(b, r), a). As usual, we writeTk = T−k,k. We also consider the truncature func-
tionsT la,b(r) := Ta,b(r)− l (l ∈ R). We set

Tr := {Ta,b : 0< a < b}, T + := {T la,b : 0< a < b, l ∈ R, T la,b ≥ 0}.

We need to consider the function space

TBV+(RN ) := {u ∈ L1(RN )+ : T (u) ∈ BV loc(RN ), ∀T ∈ Tr},

and to give a meaning to the Radon–Nikodym derivative∇u of a functionu∈TBV+(RN ).
Using the chain rule for BV functions (see, for instance, [1]), and with a similar proof to
the one given in Lemma 2.1 of [9], we obtain the following result.

Lemma 3.3. For everyu ∈ TBV+(RN ) there exists a unique measurable functionv :
RN → RN such that

∇Ta,b(u) = vχ[a<u<b] LN -a.e., ∀Ta,b ∈ Tr . (3.15)

Thanks to this result we define∇u for a functionu ∈ TBV+(RN ) as the unique function
v which satisfies (3.15). This notation will be used throughout.

We denote byP the set of Lipschitz continuous functionp : [0,∞) → R satisfying
p′(s) = 0 for s large enough. We writeP+ := {p ∈ P : p ≥ 0}. We recall the following
result ([2, Lemma 2]).

Lemma 3.4. If u ∈ TBV+(RN ), thenp(u) ∈ BV(RN ) for everyp ∈ P such that there
existsa > 0 with p(r) = 0 for all 0 ≤ r ≤ a. Moreover,∇p(u) = p′(u)∇u LN -a.e.

For any functionq, let Jq(r) denote the primitive ofq, i.e., Jq(r) =
∫ r

0 q(s) ds. Let
S ∈ P and T = T aa,b. Given a functionu ∈ TBV+(RN ), by Lemma 3.4, we have

S(u)T (u), JT ′S(u), JT S′(u) ∈ BV(RN ). Moreover, it is easy to see that

D(S(u)T (u)) = DJT ′S(u)+DJT S′(u). (3.16)

Hence, ifz ∈ X1(RN ), we have

(z,D(S(u)T (u))) = (z,DJT ′S(u))+ (z,DJT S′(u)). (3.17)

Let g : RN × R × RN → [0,∞) be a function satisfying the assumption of Theorem
2.1, andT ∈ T +. Then there is someTa,b ∈ Tr and a constantc ∈ R such thatT =

Ta,b − c. Observe that

r = T (r)+ c wheneverr ∈ R andT ′(r) = 1. (3.18)

Consider the functional

R(g, T )(u) :=
∫

RN
g(x, u(x),∇T (u(x))) dx, u ∈ W1,1(RN ).
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Foru ∈ TBV+(RN ), define

R(g, T )(u) := Rg(Ta,b(u))+

∫
[u≤a]

(g(x, u(x),0)− g(x, a,0)) dx

+

∫
[u≥b]

(g(x, u(x),0)− g(x, b,0)) dx. (3.19)

By Theorem 2.1,R(g, T ) is lower semicontinuous in TBV+(RN ) with respect to
L1(RN )-convergence. Observe that, with this notation, we have

R(g, T )(u) = R(g, Ta,b)(u).

Moreover, ifu ∈ W1,1(RN ), using (3.18) we have

R(g, T )(u) = R(g, T )(u).

It will be sufficient for our purposes to assume thatg does not depend onx. If u ∈

TBV+(RN ) andT ∈ T +, we define the Radon measureg(u,DT (u)) in RN by

〈g(u,DT (u)), φ〉 := R(φg, T )(u), φ ∈ Cc(RN ). (3.20)

If T ∈ Tr , thenT (r) = r for any r ∈ R such thatT ′(r) = 1, and, using (3.19), (3.20),
and (2.3), we have

〈g(u,DT (u)), φ〉 = 〈g(T (u),DT (u)), φ〉 +

∫
[u≤a]

φ (g(x, u(x),0)− g(x, a,0)) dx

+

∫
[u≥b]

φ (g(x, u(x),0)− g(x, b,0)) dx.

Let S ∈ P+ andT ∈ T +. We denote byfS(u,DT (u)) andhS(u,DT (u)) the Radon
measures defined by (3.20) withg(z, ξ) = S(z)f (z, ξ) andg(z, ξ) = S(z)h(z, ξ), re-
spectively. Sinceh(z,0) = 0 for all z ∈ R, if S, T ∈ T +, with T = Ta,b − c, we have

hS(u,DT (u)) = hS(Ta,b(u),DT (u)) = hS(Ta,b(u),DTa,b(u)). (3.21)

and, by (2.5),

(fS(u,DT (u)))
s

= (fS(Ta,b(u),DTa,b(u)))
s

= ψ0
(
DTa,b(u)

|DTa,b(u)|

)
|DsJSϕ(Ta,b(u))|. (3.22)

Similarly, we have

(hS(u,DT (u)))
s

= (hS(u,DTa,b(u)))
s

= ψ0
(
DTa,b(u)

|DTa,b(u)|

)
|DsJSϕ(Ta,b(u))|. (3.23)

Note that both singular parts are identical. By the representation formulas in Subsection
2.2, the absolutely continuous part ofhS(u,DT (u)) is S(u)h(u,∇T (u)). Similar identi-
ties are true whenS = 1.
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3.3. An existence and uniqueness result for the elliptic problem

Let us recall the following concept of solution for problem (3.1) introduced in [6].

Definition 3.5. Givenv ∈ L∞(RN ) ∩ L1(RN ), v ≥ 0, we say thatu ≥ 0 is anentropy
solutionof (3.1) if u ∈ TBV+(RN ) anda(u,∇u) ∈ X1(RN ) satisfies

v = − div a(u,∇u)) in D′(RN ), (3.24)

hS(u,DT (u)) ≤ (a(u,∇u),DJT ′S(u)) as measures∀S ∈ P+, T ∈ T +, (3.25)

h(u,DT (u)) ≤ (a(u,∇u),DT (u)) as measures∀T ∈ T +. (3.26)

Note that (3.25) and (3.26) are equivalent to

hS(u,DT (u))
s

≤ (a(u,∇u),DJT ′S(u))
s as measures∀S ∈ P+, T ∈ T +, (3.27)

and
h(u,DT (u))s ≤ (a(u,∇u),DT (u))s as measures∀T ∈ T +, (3.28)

respectively.
The main result of [6] is the following existence and uniqueness result.

Theorem 3.6. Assume that assumptions(H) hold. Then for any0 ≤ v ∈ L∞(RN ) ∩

L1(RN ) there exists a unique entropy solutionu ∈ TBV+(RN )∩L∞(RN ) of the problem

u− div a(u,Du) = v in RN . (3.29)

Moreover, givenv, v ∈ L∞(RN )+, if u, u are bounded entropy solutions of the problems

u− div a(u,Du) = v in RN

and
u− div a(u,Du) = v in RN ,

respectively, then ∫
RN
(u− u)+ ≤

∫
RN
(v − v)+.

3.4. Semigroup solution

Following [6], we associate to the formal differential expression− div a(u,∇u) the fol-
lowing operator inL1(RN ).

Definition 3.7. (u, v) ∈ B if and only if 0 ≤ u ∈ TBV+(RN ) ∩ L∞(RN ), 0 ≤ v ∈

L∞(RN ) ∩ L1(RN ) andu is the entropy solution of problem(3.1).

The following result was proved in [6].
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Proposition 3.8. Under assumptions(H), the operatorB is accretive inL1(RN ),

(L∞(RN ) ∩ L1(RN ))+ ⊂ R(I + B)

andD(B) is dense inL1(RN )+. Moreover, givenλ > 0 andv ∈ L1(RN )+,

u = (I + λB)−1v << v. (3.30)

From Proposition 3.8, if we denote byB the closure inL1(RN ) of the operatorB, it
follows thatB is accretive inL1(RN ), and satisfies the comparison principle and the range

conditionD(B)L
1(RN )

= L1(RN )+ ⊂ R(I + λB) for all λ > 0. Therefore, according
to Crandall–Liggett’s Theorem (cf., e.g., [11]), for any 0≤ u0 ∈ L1(RN ) there exists a
unique mild solutionu ∈ C([0, T ], L1(RN )) of the abstract Cauchy problem

u′(t)+ Bu(t) 3 0, u(0) = u0. (3.31)

Moreover,u(t) = T (t)u0 for all t ≥ 0, where(T (t))t≥0 is the semigroup inL1(RN )+
generated by Crandall–Liggett’s exponential formula, i.e.,

T (t)u0 = lim
n→∞

(
I +

t

n
B
)−n

u0.

On the other hand, by (3.30), and the results in [10], the comparison principle also holds
for T (t), i.e., if u0, u0 ∈ L1(RN )+, we have the estimate

‖(T (t)u0 − T (t)u0)
+
‖1 ≤ ‖(u0 − u0)

+
‖1. (3.32)

Remark 3.9. Since, by Proposition 3.8,(L∞(RN ) ∩ L1(RN ))+ ⊂ R(I + B), using
(3.30), we have

T (t)u0 ∈ (L∞(RN ) ∩ L1(RN ))+ ∀t ≥ 0, ∀u0 ∈ (L∞(RN ) ∩ L1(RN ))+. (3.33)

Remark 3.10. In the proof of the existence part of Theorem 3.6 (see [6]), we have proved
that the resolvent of the operatorBn associated to− div a(u,Du) −

1
n
1u converges to

the resolvent ofB, i.e., if v ∈ L1(RN ) ∩ L∞(RN ), v ≥ 0, andun are solutions of
(I + Bn)u = v, thenun → u in L1(RN ) (and inLp(RN ) for all 1 ≤ p < ∞) where
u = (I + B)−1v.

4. Existence and uniqueness of solutions of the parabolic problem

In this section we give the concept of entropy solution for the Cauchy problem (1.1) and
we state the existence and uniqueness result for this type of solution.

To make precise our notion of solution we need to recall several definitions given
in [2].

We define the space

Z(RN ) := {(z, ξ) ∈ L∞(RN ,RN )× BV(RN )∗ : div(z) = ξ in D′(RN )}.
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We need to consider the space BV(RN )2, defined as BV(RN ) ∩ L2(RN ) endowed
with the norm

‖w‖BV(RN )2 := ‖w‖L2(RN ) + |Dw|(RN ).

It is easy to see thatL2(RN ) ⊂ BV(RN )∗2 and

‖w‖BV(RN )∗2 ≤ ‖w‖L2(RN ) ∀w ∈ L2(RN ). (4.1)

It is well known (see [28]) that the dual space(L1(0, T ,BV(RN )2))∗ is isomet-
ric to the spaceL∞(0, T ; BV(RN )∗2,BV(RN )2) of all weak∗ measurable functionsf :
[0, T ] → BV(RN )∗2 such thatv(f ) ∈ L∞([0, T ]), wherev(f ) denotes the supremum of
the set{|〈w, f 〉| : ‖w‖BV(RN )2 ≤ 1} in the vector lattice of measurable real functions.
Moreover, the duality pairing is

〈w, f 〉 =

∫ T

0
〈w(t), f (t)〉 dt

for w ∈ L1(0, T ,BV(RN )2) andf ∈ L∞(0, T ; BV(RN )∗2,BV(RN )2).
We denote byL1

w(0, T ,BV(RN )) the space of weakly measurable functionsw :
[0, T ] → BV(RN ) (i.e., t ∈ [0, T ] 7→ 〈w(t), φ〉 is measurable for everyφ ∈ BV(RN )∗)
such that

∫ T
0 ‖w(t)‖ dt < ∞. Observe that, since BV(RN ) has a separable predual (see

[1]), it follows easily that the mapt ∈ [0, T ] 7→ ‖w(t)‖ is measurable. We denote by
L1

loc,w(0, T ,BV(RN )) the space of weakly measurable functionsw : [0, T ] → BV(RN )
such that the mapt ∈ [0, T ] 7→ ‖w(t)‖ is inL1

loc((0, T )).
Let us recall the following definitions given in [2].

Definition 4.1. Let9 ∈ L1(0, T ,BV(RN )). We say9 admits aweak derivativein the
spaceL1

w(0, T ,BV(RN ))∩L∞(QT ) if there is2 ∈ L1
w(0, T ,BV(RN ))∩L∞(QT ) such

that9(t) =
∫ t

0 2(s) ds, the integral being a Pettis integral([21]).

Definition 4.2. Let ξ ∈ (L1(0, T ,BV(RN )2))∗. We say thatξ is the time derivativein
the space(L1(0, T ,BV(RN )2))∗ of a functionu ∈ L1((0, T )× RN ) if∫ T

0
〈ξ(t), 9(t)〉 dt = −

∫ T

0

∫
RN
u(t, x)2(t, x) dx dt

for all test functions9 ∈ L1(0, T ,BV(RN )) with compact support in time, which admit
a weak derivative2 ∈ L1

w(0, T ,BV(RN )) ∩ L∞(QT ).

Note that ifw ∈ L1(0, T ,BV(RN )) ∩ L∞(QT ) andz ∈ L∞(QT ,RN ) is such that there
existsξ ∈ (L1(0, T ,BV(RN )))∗ with div(z) = ξ in D′(QT ), we can define, associated
to the pair(z, ξ), the distribution(z,Dw) in QT by

〈(z,Dw), φ〉 := −

∫ T

0
〈ξ(t), w(t)φ(t)〉 dt −

∫ T

0

∫
RN

z(t, x)w(t, x)∇xφ(t, x) dx dt

(4.2)
for all φ ∈ D(QT ).
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Definition 4.3. Let ξ ∈ (L1(0, T ,BV(RN )2))∗ andz ∈ L∞(QT ,RN ). We say thatξ =

div(z) in (L1(0, T ,BV(RN )2))∗ if (z,Dw) is a Radon measure inQT such that∫
QT

(z,Dw)+

∫ T

0
〈ξ(t), w(t)〉 dt = 0

for all w ∈ L1(0, T ,BV(RN )) ∩ L∞(QT ).

Our concept of solution for problem (1.1) is the following.

Definition 4.4. A measurable functionu : (0, T ) × RN → R is anentropy solutionof
(1.1) inQT = (0, T )×RN if u∈C([0, T ], L1(RN )), Ta,b(u(·)) ∈ L1

loc,w(0, T ,BV(RN ))
for all 0< a < b, and there existsξ ∈ (L1(0, T ,BV(RN )2)∗ such that:

(i) (a(u(t),∇u(t)), ξ(t)) ∈ Z(RN ) a.e. int ∈ [0, T ],
(ii) ξ is the time derivative ofu in (L1(0, T ,BV(RN )2))∗ in the sense of Definition4.2,

(iii) ξ = div a(u(t),∇u(t)) in the sense of Definition4.3, and
(iv) the following inequality is satisfied:∫ T

0

∫
RN
φhS(u,DT (u)) dt +

∫ T

0

∫
RN
φhT (u,DS(u)) dt

≤

∫ T

0

∫
RN
JT S(u(t))φ

′(t) dx dt −

∫ T

0

∫
RN

a(u(t),∇u(t)) · ∇φ T (u(t))S(u(t)) dx dt

for truncaturesS, T ∈ T + and any smooth functionφ of compact support, in par-
ticular of the formφ(t, x) = φ1(t)ρ(x), φ1 ∈ D((0, T )), ρ ∈ D(RN ).

We have the following existence and uniqueness result.

Theorem 4.5. Under assumptions(H), for any initial datum0 ≤ u0 ∈ L∞(RN ) ∩

L1(RN ) there exists a unique entropy solutionu of (1.1) in QT = (0, T ) × RN for
everyT > 0 such thatu(0) = u0. Moreover, ifu(t), u(t) are the entropy solutions corre-
sponding to initial datau0, u0 ∈ (L∞(RN ) ∩ L1(RN ))+, respectively, then

‖(u(t)− u(t))+‖1 ≤ ‖(u0 − u0)
+
‖1 for all t ≥ 0. (4.3)

Proof. Existence of entropy solutions.Given 0≤ u0 ∈ L∞(RN ) ∩ L1(RN ), let u(t) =

T (t)u0, where(T (t))t≥0 is the semigroup inL1(RN )+ generated by the accretive opera-
torB. Then, according to the general theory of nonlinear semigroups ([11]),u(t) is a mild
solution of the abstract Cauchy problem

u′(t)+ Bu(t) 3 0, u(0) = u0. (4.4)

Let us prove thatu is an entropy solution of (1.1) inQT . We divide the proof into several
steps.
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Step 1. Approximation with Crandall–Liggett’s scheme.LetT > 0,K ≥ 1,1t = T/K,
tn = n1t , n = 0, . . . , K−1. We define inductivelyun+1, n = 0, . . . , K, to be the unique
entropy solution of

un+1
− un

1t
− div a(un+1,Dun+1) = 0 in RN (4.5)

whereu0
= u0. Recall that‖un‖q ≤ ‖u0‖q for all n ∈ N andq = 1,∞. We define

uK(t) = u0χ[t0,t1](t)+

K−1∑
n=1

unχ(tn,tn+1](t).

We know thatuK converges uniformly tou ∈ C([0, T ], L1(RN )) and

‖u(t)‖p ≤ ‖u0‖p ∀p ∈ [1,∞]. (4.6)

Define

ξK(t) :=
K−1∑
n=0

un+1
− un

1t
χ(tn,tn+1](t)

and

zK(t) = a(u1,∇u1)χ[t0,t1](t)+

K−1∑
n=1

a(un+1,∇un+1)χ(tn,tn+1](t).

Sinceun+1 is the entropy solution of (4.5), we have

ξK(t) = div(zK(t)) in D′(RN ) (4.7)

and for allS, T ∈ T +, we have

hS(u
K(t +1t),DT (uK(t +1t))) ≤ (zK(t),DJT ′S(u

K(t +1t))) as measures, (4.8)

h(uK(t +1t),DT (uK(t +1t))) ≤ (zK(t),DT (uK(t +1t))) as measures. (4.9)

Since‖zK(t)‖∞ ≤ M for all K ∈ N and a.e.t ∈ [0, T ], we may assume that

zK → z ∈ L∞(QT ,RN ) weak∗. (4.10)

Moreover, sincezK(t) = uK(t + 1t)b(∇uK(t + 1t)) with ‖b(∇uK(t + 1t)‖ ≤ M0
(where the constantM0 is independent ofn and t) anduK converges uniformly tou in
C([0, T ], L1(RN )), we may also assume that

b(∇uK(t +1t)) → zb(t) ∈ L∞(QT ,RN ) weak∗

and
z(t) = u(t)zb(t) for almost allt ∈ [0, T ]. (4.11)
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Step 2. Working as in the proof of Theorem 5.5 of [5], we can prove the following facts.

Lemma 4.6. We have
ξ = divx(z) in D′(QT ). (4.12)

Moreover
ξ(t) = divx(z(t)) in D′(RN ) for a.e.t ∈ [0, T ]. (4.13)

Hence,(z(t), ξ(t)) ∈ Z(RN ) for almost allt ∈ [0, T ].

Lemma 4.7. ξ is the time derivative ofu in the sense of Definition4.2.

Lemma 4.8. ξ = div(z) in (L1(0, T ,BV(RN )2))∗ in the sense of Definition4.3.

Step 3.Some auxiliary inequalities.LetM(RN ) be the space of Radon measures inRN .
Fix p = Ta,b ∈ Tr , and letj be the primitive ofp. Working as in the proof of Step 5 of
Theorem 5.5 in [5], we obtain the following result.

Lemma 4.9. We have∫ T

0

∫
RN
(zK(t),D(p(uK(t +1t))φ)) dt ≤

∫ T

0

∫
RN
j (uK(t))

φ(t)− φ(t −1t)

1t
dx dt

(4.14)
for anyφ ∈ D((0, T ) × RN ). The same inequality holds for any0 ≤ φ ∈ D((0, T )). As
a consequence,

{(zK(t),Dp(uK(t +1t)))} is a bounded sequence inL1
loc((0, T ),M(RN )). (4.15)

Moreover,p(u(·)) ∈ L1
loc,w(0, T ,BV(RN )).

By (4.15), by extracting a subsequence if necessary we may assume that there isµp ∈

M(QT ) such that

lim
K

∫ T

0

∫
RN
φ(zK(t),Dp(uK(t +1t))) = 〈µp, φ〉 ∀φ ∈ Cc(QT ).

Let φ ∈ D((0, T )× RN ). Writing (4.14) as∫ T

0

∫
RN
φ(zK(t),Dp(uK(t +1t))) dt

≤

∫ T

0

∫
RN
j (uK(t))

φ(t)− φ(t −1t)

1t
dx dt

−

∫ T

0

∫
RN

zK(t) · ∇φ p(uK(t +1t)) dx dt (4.16)

and lettingK → ∞ we obtain

〈µp, φ〉 ≤

∫ T

0

∫
RN
j (u(t))φ′(t) dx dt −

∫ T

0

∫
RN

z(t) · ∇φp(u(t)) dx dt. (4.17)
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Fix S, T ∈ T + andφ ∈ D(QT ). Working as in the proof of Step 5 of Theorem 5.5 in
[5] we obtain both the analogue of (4.16),∫ T

0

∫
RN
φ(zK(t),D(T (uK(t +1t)S(uK(t +1t)))) dt

≤

∫ T

0

∫
RN
JT S(u

K(t))
φ(t)− φ(t −1t)

1t
dx dt

−

∫ T

0

∫
RN

zK(t) · ∇φ S(uK(t +1t))T (uK(t +1t)) dx dt (4.18)

and the fact that
{(zK(t),D(T (uK(t +1t)S(uK(t +1t)))}

is a bounded sequence inL1
loc((0, T ),M(RN )). Now, by (3.17), we have

(zK(t),D(T (uK(t +1t)S(uK(t +1t)))))

= (zK(t),DJT ′S(u
K(t +1t)))+ (zK(t),DJS′T (u

K(t +1t))),

and, by (4.8), the measures(zK(t),DJT ′S(u
K(t+1t))) and(zK(t),DJS′T (u

K(t+1t)))

are positive. Hence

{(zK(t),DJT ′S(u
K(t +1t)))} and {(zK(t),DJS′T (u

K(t +1t)))}

are bounded sequences inL1
loc((0, T ),M(RN )). By extracting a subsequence if neces-

sary, we may assume that there existµTS , µ
S
T ∈ M(QT ) such that

lim
K

∫ T

0

∫
RN
φ(zK(t),DJT ′S(u

K(t +1t))) = 〈µTS , φ〉, ∀φ ∈ Cc(QT ), (4.19)

and

lim
K

∫ T

0

∫
RN
φ(zK(t),DJS′T (u

K(t +1t))) = 〈µST , φ〉, ∀φ ∈ Cc(QT ). (4.20)

Now, passing to the limit in (4.18), and using (4.19) and (4.20), we obtain

〈µTS , φ〉 + 〈µST , φ〉 ≤

∫ T

0

∫
RN
JT S(u(t))φ

′(t) dx dt

−

∫ T

0

∫
RN

z(t) · ∇φT (u(t))S(u(t)) dx dt, (4.21)

and this holds for allφ ∈ D(QT ).

Step 5. Identification of the vector field.Let us now prove that

z(t) = a(u(t),∇u(t)) for a.e. t ∈ (0, T ). (4.22)

We use Minty–Browder’s technique. Let 0< a < b, let 0 ≤ φ ∈ C1
0((0, T ) × RN ) and

g ∈ C2(RN ) ∩W1,∞(RN ). Let

Jai (x, r) :=
∫ r

0
ai(s,∇g(x)) ds, J∂ai/∂xj (x, r) :=

∫ r

0

∂

∂xj
ai(s,∇g(x)) ds,
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for i, j ∈ {1, . . . , N}. For simplicity, write

D2Ja(x, Ta,b(u
K(t +1t)))

:=
N∑
i=1

[
∂

∂xi
Jai (x, Ta,b(u

K(t +1t)))− J∂ai/∂xi (x, Ta,b(u
K(t +1t)))

]
. (4.23)

Let us make some remarks concerning the measureD2Ja(x, Ta,b(u
K(t + 1t))). Using

Volpert’s averaged superposition

a(Ta,b(uK(t +1t)),∇g(x))

=

∫ 1

0
a(τ (Ta,b(uK(t +1t)))+ + (1 − τ)(Ta,b(u

K(t +1t)))−,∇g(x)) dτ,

and the chain rule for BV functions ([1, Theorem 3.96]), and working as we did in the
proof of Theorem 3.6 (see [6]), we obtain

D2Ja(x, Ta,b(u
K(t +1t))) = a(Ta,b(uK(t +1t)),∇g) · ∇Ta,b(u

K(t +1t))

+ a(Ta,b(uK(t +1t)),∇g(x)) ·DsTa,b(u
K(t +1t)).

In particular, we observe that the absolutely continuous part ofD2Ja(x, Ta,b(u
K(t+1t)))

is

a(Ta,b(uK(t +1t)),∇g) · ∇Ta,b(u
K(t +1t))LN

= a(uK(t +1t),∇g) · ∇Ta,b(u
K(t +1t))LN .

Using (4.9) and (3.4), after some calculation we get∫ T

0

∫
RN
φ(zK(t),DTa,b(uK(t +1t)− ∇g)) dt

−

∫ T

0

∫
RN
φ[D2Ja(x, Ta,b(u

K(t +1t)))− a(uK(t +1t),∇g) · ∇g] dt

≥ −

∫ T

0

∫
RN
φzK(t) · ∇g(1 − T ′

a,b(u
K(t +1t))) dx dt

+

∫ T

0

∫
RN
φ[h(Ta,b(u

K(t+1t),DTa,b(u
K(t+1t))s−(D2Ja(x,Ta,b(u

K(t+1t)))s ]dt.

On the other hand, by (H5), (H6) and using the chain rule for BV functions, it is not
difficult to prove that

(D2Ja(x, Ta,b(u
K(t +1t))))s = h(Ta,b(u

K(t +1t)),DTa,b(u
K(t +1t)))s .
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Consequently,∫ T

0

∫
RN
φ[h(Ta,b(u

K(t +1t)),DTa,b(u
K(t +1t)))s

− (D2Ja(x, Ta,b(u
K(t +1t))))s ] dt ≥ 0.

Moreover, we have∫ T

0

∫
RN
φzK(t) · ∇g(1 − T ′

a,b(u
K(t +1t))) dx dt

≤

∫ T

0

∫
RN
φzK(t) · ∇g(1 − T ′

a,b(u
K(t +1t)))T ′

a,b(u(t)) dx dt

+M‖∇g‖∞

∫ T

0

∫
RN
φ(1 − T ′

a,b(u(t))) dx dt.

Therefore, we obtain∫ T

0

∫
RN
φ(zK(t),D(Ta,b(uK(t +1t))− g)) dt

−

∫ T

0

∫
RN
φ[D2Ja(x, Ta,b(u

K(t +1t)))− a(uK(t +1t),∇g) · ∇g] dt

+

∫ T

0

∫
RN
φzK(t) · ∇g(1 − T ′

a,b(u
K(t +1t)))T ′

a,b(u(t)) dx dt

+M‖∇g‖∞

∫ T

0

∫
RN
φ(1 − T ′

a,b(u(t))) dx dt ≥ 0. (4.24)

Our purpose is to take limits asK → ∞ in the above inequality. We assume that
φ(t, x) = η(t)ρ(x), whereη ∈ D((0, T )), ρ ∈ D(RN ), η ≥ 0, ρ ≥ 0. Let j denote the
primitive of Ta,b. First, integrating by parts in the first term, for1t small enough we have∫ T

0

∫
RN
φ(zK(t),D(Ta,b(uK(t +1t))− g)) dt

= −

∫ T

0

∫
RN
(Ta,b(u

K(t +1t))− g)zK(t) · ∇xφ(t) dx dt

−

∫ T

0

∫
RN
φ(t)(Ta,b(u

K(t +1t))− g)div(zK(t)) dx dt

= −

∫ T

0

∫
RN
(Ta,b(u

K(t +1t))− g)zK(t) · ∇xφ(t) dx dt

−

∫ T

0

∫
RN
φ(t)(Ta,b(u

K(t +1t))− g)ξK(t) dx dt.
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Now,∫ T

0

∫
RN
φ(t)(Ta,b(u

K(t +1t))− g)ξK(t) dx dt

=

∫ T

0

∫
RN
φ(t)Ta,b(u

K(t +1t))
uK(t +1t)− uK(t)

1t
dt

−

∫ T

0

∫
RN
φ(t)gξK(t) dt

≥

∫ T

0

∫
RN
φ(t)

j (uK(t +1t))− j (uK(t))

1t
dt −

∫ T

0

∫
RN
φ(t)gξK(t) dt

=

∫ T

0

∫
RN

φ(t −1t)− φ(t)

1t
j (uK(t)) dt −

∫ T

0

∫
RN
φ(t)gξK(t) dt.

Hence,∫ T

0

∫
RN
φ(zK(t),D(uK(t +1t)− g))

≤ −

∫ T

0

∫
RN

φ(t −1t)− φ(t)

1t
j (uK(t)) dt

+

∫ T

0

∫
RN
φ(t)gξK(t) dt

−

∫ T

0

∫
RN
(Ta,b(u

K(t +1t))− g)zK(t) · ∇xφ(t) dx dt.

Then from (4.24) it follows that

−

∫ T

0

∫
RN

φ(t −1t)− φ(t)

1t
j (uK(t)) dt +

∫ T

0

∫
RN
φ(t)gξK(t) dt

−

∫ T

0

∫
RN
(Ta,b(u

K(t +1t))− g)zK(t) · ∇xφ(t) dx dt

+

∫ T

0

∫
RN
φ[−D2Ja(x, Ta,b(u

K(t +1t)))+ a(uK(t +1t),∇g) · ∇g] dt

+

∫ T

0

∫
RN
φzK(t) · ∇g (1 − T ′

a,b(u
K(t +1t)))T ′

a,b(u(t)) dx dt

+M‖∇g‖∞

∫ T

0

∫
RN
φ(1 − T ′

a,b(u(t))) dx dt ≥ 0. (4.25)

LettingK → ∞ in (4.25), observing that the integral in the next to last line goes to zero,
and having in mind that

D2Ja(x, Ta,b(u
K(t +1t))) → D2Ja(x, Ta,b(u(t +1t))) weakly as measures,
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working as in the proof of Theorem 3.6 (see [6] and also [4]), we obtain

∫ T

0

∫
RN
φ′(t)j (u(t)) dt +

∫ T

0
〈φ(t)g, ξ(t)〉 dt

−

∫ T

0

∫
RN
(Ta,b(u(t))− g)z(t) · ∇xφ(t) dx dt

+

∫ T

0

∫
RN
φ[−D2Ja(x, Ta,b(u(t)))+ a(u(t),∇g) · ∇g] dt

+M‖∇g‖∞

∫ T

0

∫
RN
φ(1 − T ′

a,b(u(t))) dx dt ≥ 0.

Now, using Lemma 4.8, we get

∫ T

0

∫
RN
φ′(t)j (u(t)) dt −

∫ T

0

∫
RN
φ(t)z(t) · ∇g dx dt

−

∫ T

0

∫
RN
Ta,b(u(t))z(t) · ∇xφ(t) dx dt

+

∫ T

0

∫
RN
φ[−D2Ja(x, Ta,b(u(t)))+ a(u(t),∇g) · ∇g] dt

+M‖∇g‖∞

∫ T

0

∫
RN
φ(1 − T ′

a,b(u(t))) dx dt ≥ 0. (4.26)

For anyτ > 0, we define the functionητ as the Dunford integral (see [21])

ητ (t) :=
1

τ

∫ t

t−τ

η(s)Ta,b(u(s)) ds ∈ BV(RN )∗∗.

Using this function as in the proof of Theorem 5.5 of [5], we obtain the following result.

Lemma 4.10. We have

∫ T

0

∫
RN
φ′(t)j (u(t)) dt ≤

∫ T

0
η(t)

∫
RN
Ta,b(u(t))z(t) · ∇xρ dx dt

+

∫ T

0
η(t)

∫
RN
ρz(t) · ∇Ta,b(u(t)) dx dt

+

∫ T

0
η(t)

∫
RN
ρM|Ds(Ta,b(u(t)))| dt.
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Now, we may conclude the proof of (4.22). Using Lemma 4.10, and taking into account
(4.26), we obtain

0 ≤

∫ T

0
η(t)

∫
RN
Ta,b(u(t))z(t) · ∇xρ dx dt

+

∫ T

0
η(t)

∫
RN
ρz(t) · ∇Ta,b(u(t)) dx dt +

∫ T

0
η(t)

∫
RN
ρM|Ds(Ta,b(u(t)))| dt

−

∫ T

0

∫
RN
φ(t)z(t) · ∇g dx dt −

∫ T

0

∫
RN
Ta,b(u(t))z(t) · ∇xφ(t) dx dt

+

∫ T

0

∫
RN
φ[−D2Ja(x, Ta,b(u(t)))+ a(u(t),∇g) · ∇g] dt

+M‖∇g‖∞

∫ T

0

∫
RN
φ(1 − T ′

a,b(u(t))) dx dt

=

∫ T

0
η(t)

∫
RN
ρz(t) · ∇Ta,b(u(t)) dx dt

+

∫ T

0
η(t)

∫
RN
ρM|Ds(Ta,b(u(t)))| dt −

∫ T

0
η(t)

∫
RN
ρ(x)z(t) · ∇g dx dt

+

∫ T

0
η(t)

∫
RN
ρ(x)[−a(u,∇g) · (∇Ta,b(u(t))− ∇g)] dx dt

−

∫ T

0
η(t)

∫
RN
ρ(D2Ja(x, Ta,b(u(t))))

s dt

+M‖∇g‖∞

∫ T

0

∫
RN
φ(1 − T ′

a,b(u(t))) dx dt

=

∫ T

0
η(t)

∫
RN
ρ(x)(z(t)− a(u(t),∇g)) · (∇Ta,b(u(t))− ∇g) dx dt

+

∫ T

0
η(t)

∫
RN
ρ(M|Ds(Ta,b(u(t)))| − (D2Ja(x, u(t)))

s) dt

+M‖∇g‖∞

∫ T

0

∫
RN
φ(1 − T ′

a,b(u(t))) dx dt

for all φ(t, x) = η(t)ρ(x), η ∈ D((0, T )), ρ ∈ D(RN ), η, ρ ≥ 0. Thus, the measure

[z(t)− a(u(t),∇g)] · ∇(Ta,b(u(t))− g)+M|Ds(Ta,b(u(t)))|

− (D2Ja(x, Ta,b(u(t))))
s
+M‖∇g‖∞(1 − T ′

a,b(u(t))) ≥ 0.

Then its absolutely continuous part is

[z(t)− a(u(t),∇g)] · ∇(Ta,b(u(t))− g)+M‖∇g‖∞(1 − T ′

a,b(u(t))) ≥ 0.

In particular, we have

[z(t)− a(u(t),∇g)] · ∇(u(t)− g) ≥ 0 a.e. on [a < u < b].
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Since we may take a countable set inC2(RN ) ∩W1,∞(RN ) which is dense inC1(RN ),
the above inequality holds for all(t, x) ∈ S∩ [a < u < b] whereS ⊆ (0, T )×RN is such
thatLN ((0, T )× RN \ S) = 0, and allg ∈ C1(RN ). Now, fix (t, x) ∈ S ∩ [a < u < b].
Giveny ∈ RN , there isg ∈ C1(RN ) such that∇g(x) = y. Then

(z(t, x)− a(u(t), y)) · (∇u(t, x)− y) ≥ 0 ∀y ∈ RN , ∀(t, x) ∈ S ∩ [a < u < b].

By an application of Minty–Browder’s method inRN , it follows that

z(t, x) = a(u(t, x),∇u(t, x)) for a.e. (t, x) ∈ QT ∩ [a < u < b].

Since this holds for any 0< a < b, we obtain (4.22) at a.e. point(t, x) of QT such
that u(t, x) 6= 0. Now, by our assumptions ona and (4.11) we deduce thatz(t, x) =

a(u(t, x),∇u(t, x)) = 0 a.e. on [u = 0]. We have proved (4.22).

Step 6. A final lemma and conclusion

Lemma 4.11. For the functionsS, T ∈ T + used above, we have

µTS ≥ hS(u,DT (u)). (4.27)

Proof. By (4.8), we have

zK(t) ·DsJT ′S(u
K(t +1t)) ≥ fS(u

K(t +1t),DT (uK(t +1t)))s

for all t ∈ (0, T ). Let 0≤ φ ∈ Cc(QT ). Using this inequality and the convexity off , we
compute∫ T

0

∫
RN
φS(uK(t +1t))a(uK(t +1t),∇T (uK(t +1t)) · ∇T (u(t))) dx dt

≤

∫ T

0

∫
RN
φS(uK(t +1t)) zK(t) · ∇T (uK(t +1t)) dx dt

+

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),∇T (u)) dx dt

−

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),∇T (uK(t +1t))) dx dt

=

∫ T

0

∫
RN
φ (zK(t),DJT ′S(u

K(t +1t))) dt

−

∫ T

0

∫
RN
φ zK(t) ·DsJT ′S(u

K(t +1t)) dt

+

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),∇T (u)) dx dt

−

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),∇T (uK(t +1t))) dx dt
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≤

∫ T

0

∫
RN
φ(zK(t),DJT ′S(u

K(t +1t))) dt

−

∫ T

0

∫
RN
φfS(u

K(t +1t),DT (uK(t +1t)))s dt

+

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),∇T (u)) dx dt

−

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),∇T (uK(t +1t))) dx dt

=

∫ T

0

∫
RN
φ(zK(t),DJT ′S(u

K(t +1t))) dt

+

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),∇T (u)) dx dt

−

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),D(uK(t +1t))) dx dt.

On the other hand,

∫ T

0

∫
RN
φS(uK(t +1t)) zK(t) · ∇T (u(t)) dx dt

=

∫ T

0

∫
RN
φS(uK(t +1t))a(uK(t +1t),∇T (uK(t +1t))) · ∇T (u(t)) dx dt + aK ,

with

aK :=∫ T

0

∫
RN
φS(uK(t +1t)) (zK(t)− a(uK(t +1t),∇T (uK(t +1t)))) · ∇T (u(t)) dx dt.

Hence,

∫ T

0

∫
RN
φS(uK(t +1t)) zK(t) · ∇T (u(t)) dx dt

≤

∫ T

0

∫
RN
φ(zK(t),DJT ′S(u

K(t +1t))) dt

+

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),∇T (u)) dx dt

−

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),D(uK(t +1t))) dx dt + aK .
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LettingK → ∞, using the fact that limK→+∞ aK = 0, (4.19), and∫ T

0

∫
RN
φfS(u(t),DT (u(t))) dt

≤ lim inf
K

∫ T

0

∫
RN
φS(uK(t +1t)) f (uK(t +1t),D(uK(t +1t))) dt,

we obtain∫ T

0

∫
RN
φS(u(t))a(u(t),∇u(t)) · ∇T (u(t)) dx dt

≤ 〈µTS , φ〉 +

∫ T

0

∫
RN
φS(u(t)) f (u(t),∇T (u(t))) dx dt

−

∫ T

0

∫
RN
φfS(u(t),DT (u(t))) dt

= 〈µTS , φ〉 −

∫ T

0

∫
RN
φfS(u(t),DT (u(t)))

s dt.

Since the absolutely continuous part ofhS(u,DT (u)) isS(u(t))a(u(t),∇u(t))·∇T (u(t))
we obtain (4.27). ut

From the above lemma, using (4.21) we infer that the mild solutionu satisfies the entropy
inequalities∫ T

0

∫
RN
φhS(u,DT (u)) dt +

∫ T

0

∫
RN
φhT (u,DS(u)) dt

≤

∫ T

0

∫
RN
JT S(u(t))φ

′(t) dx dt −

∫ T

0

∫
RN

a(u(t),∇u(t)) · ∇φT (u(t))S(u(t)) dx dt.

(4.28)

for the truncaturesS, T ∈ T + and any smooth functionφ of compact support in time, in
particular of the formφ(t, x) = φ1(t)ρ(x), φ1 ∈ D((0, T )), ρ ∈ D(RN ). This concludes
the proof of existence of solutions of (1.1).

Uniqueness of entropy solutions.Let b > a > 2ε > 0 andT (r) = Ta,b(r)− a. Set

Rε,l(r) := Tε(r − l)+ ε = Tl−ε,l+ε(r)+ ε − l,

JT ,ε,l(r) :=
∫ r

0
T (s)Rε,l(s) ds, jT ,ε,l(r) :=

∫ r

l

T (s)Tε(s − l) ds.

Let u, u be two entropy solutions of (1.1) corresponding to the initial conditionsu0, u0 ∈

(L1(RN ) ∩ L∞(RN ))+, respectively. Then there existξ, ξ ∈ (L1(0, T ,BV(RN )2))∗
such that if z(t) := a(u(t),∇u(t)) and z(t) := a(u(t),∇u(t)), then we have
(z(t), ξ(t)), (z(t), ξ(t)) ∈ Z(RN ) for almost allt ∈ [0, T ] and
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ξ, ξ are the time derivatives ofu, u in (L1(0, T ,BV(RN )2))∗, resp., (4.29)

ξ = div z(t) andξ = div z(t) in the sense of Definition 4.3, (4.30)

and if l1, l2 > ε, then

−

∫ T

0

∫
RN
JT ,ε,l1(u(t))ηt

+

∫ T

0

∫
RN
η(t)(hT (u(t),DRε,l1(u(t)))+ hRε,l1

(u(t),DT (u(t))))

+

∫ T

0

∫
RN

z(t) · ∇η(t) T (u(t))Rε,l1(u(t)) ≤ 0 (4.31)

and

−

∫ T

0

∫
RN
JT ,ε,l2(u(t))ηt

+

∫ T

0

∫
RN
η(t)(hT (u(t),DRε,l2(u(t)))+ hRε,l2

(u(t),DT (u(t))))

+

∫ T

0

∫
RN

z(t) · ∇η(t) T (u(t))Rε,l2(u(t)) ≤ 0 (4.32)

for all η ∈ C∞(QT )with η ≥ 0,η(t, x) = φ(t)ρ(x), whereφ ∈ D((0, T )), ρ ∈ D(RN ).
Now, we can rewrite (4.31) and (4.32) as

−

∫ T

0

∫
RN
jT ,ε,l1(u(t))ηt − ε

∫ T

0

∫
RN
JT (u(t))ηt

+

∫ T

0

∫
RN
η(t)(hT (u(t),DRε,l1(u(t)))+ hRε,l1

(u(t),DT (u(t))))

+

∫ T

0

∫
RN

z(t) · ∇η(t)T (u(t))Rε,l1(u(t)) ≤ 0 (4.33)

and

−

∫ T

0

∫
RN
jT ,ε,l2(u(t))ηt − ε

∫ T

0

∫
RN
JT (u(t))ηt

+

∫ T

0

∫
RN
η(t)(hT (u(t),DRε,l2(u(t)))+ hRε,l2

(u(t),DT (u(t))))

+

∫ T

0

∫
RN

z(t) · ∇η(t)T (u(t))Rε,l2(u(t)) ≤ 0, (4.34)

We choose two different pairs of variables(t, x), (s, y) and consideru, z as functions of
(t, x) andu, z as functions of(s, y). Let 0 ≤ φ ∈ D((0, T )), ρm a classical sequence of
mollifiers inRN andρ̃n a sequence of mollifiers inR. Define

ηm,n(t, x, s, y) := ρm(x − y)ρ̃n(t − s)φ

(
t + s

2

)
.



28 F. Andreu et al.

For (s, y) fixed, if we takel1 = u(s, y) in (4.33), we get

−

∫ T

0

∫
RN
jT ,ε,u(s,y)(u(t, x))(ηm,n)t dx dt − ε

∫ T

0

∫
RN
JT (u(t, x))(ηm,n)t dx dt

+

∫ T

0

∫
RN
ηm,n(hT (u(t, x),DxRε,u(s,y)(u(t, x)))+ hRε,u(s,y)(u(t),DxT (u(t)))) dt

+

∫ T

0

∫
RN

z(t, x) · ∇xηm,n T (u(t, x))Rε,u(s,y)(u(t, x)) dx dt ≤ 0. (4.35)

Similarly, for (t, x) fixed, if we takel2 = u(t, x) in (4.34), we get

−

∫ T

0

∫
RN
jT ,ε,u(t,x)(u(s, y))(ηm,n)s dy ds − ε

∫ T

0

∫
RN
JT (u(s, y))(ηm,n)s dy ds

+

∫ T

0

∫
RN
ηm,n(hT (u(s, y),DyRε,u(t,x)(u(s, y)))+ hRε,u(t,x)(u(s),DyT (u(s)))) ds

+

∫ T

0

∫
RN

z(s, y) · ∇yηm,nT (u(s, y)) Rε,u(t,x)(u(s, y)) dy ds ≤ 0. (4.36)

Integrating (4.35) in(s, y), (4.36) in(t, x), adding the two inequalities, using the fact
thata > 2ε, and taking into account that∇xηm,n + ∇yηm,n = 0, we have

−

∫
QT×QT

(jT ,ε,u(s,y)(u(t, x))(ηm,n)t + jT ,ε,u(t,x)(u(s, y))(ηm,n)s)

− ε

∫
QT×QT

(JT (u(t, x))(ηm,n)t + JT (u(s, y))(ηm,n)s)

+

∫
QT×QT

ηm,nhT (u(t, x),DxRε,u(s,y)(u(t, x)))

+

∫
QT×QT

ηm,nhT (u(s, y),DyRε,u(t,x)(u(s, y)))

+

∫
QT×QT

ηm,nhRε,u(s,y)(u(t),DxT (u(t)))

+

∫
QT×QT

ηm,nhRε,u(t,x)(u(s),DyT (u(s)))

−

∫
QT×QT

z(s, y) · ∇xηm,nT (u(s, y))Rε,u(t,x)(u(s, y))

−

∫
QT×QT

z(t, x) · ∇yηm,nT (u(t, x))Rε,u(s,y)(u(t, x)) ≤ 0.

Then, since ∫
QT×QT

ηm,nhRε,u(s,y)(u(t),DxT (u(t))) ≥ 0
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and ∫
QT×QT

ηm,nhRε,u(t,x)(u(s),DyT (u(s))) ≥ 0,

we get

−

∫
QT×QT

(jT ,ε,u(s,y)(u(t, x))(ηm,n)t + jT ,ε,u(t,x)(u(s, y))(ηm,n)s)

−ε

∫
QT×QT

(JT (u(t, x))(ηm,n)t + JT (u(s, y))(ηm,n)s)

+

∫
QT×QT

ηm,nhT (u(t, x),DxRε,u(s,y)(u(t, x)))

+

∫
QT×QT

ηm,nhT (u(s, y),DyRε,u(t,x)(u(s, y)))

−

∫
QT×QT

z(s, y) · ∇xηm,nT (u(s, y))Rε,u(t,x)(u(s, y))

−

∫
QT×QT

z(t, x) · ∇yηm,nT (u(t, x))Rε,u(s,y)(u(t, x)) ≤ 0. (4.37)

Let I1, I2 be, respectively, the sum of the first two terms and the sum of the remaining
terms on the left hand side of the above inequality. From now on, sinceu, z are always
functions of(t, x), andu, z are always functions of(s, y), for brevity we shall omit the
arguments except when they appear as subscripts and in some additional cases where
we find it useful to recall them. Now, by Green’s formula and the identitiesz(t, x) =

a(u(t, x),∇u(t, x)), z(s, y) = a(u(s, y),∇u(s, y)), we have

I2 :=
∫
QT×QT

ηm,nhT (u,DxRε,u(s,y)(u))+

∫
QT×QT

ηm,nhT (u,DyRε,u(t,x)(u))

−

∫
QT×QT

z · ∇xηm,nT (u)Rε,u(t,x)(u)−

∫
QT×QT

z · ∇yηm,nT (u)Rε,u(s,y)(u)

=

∫
QT×QT

ηm,nhT (u,DxRε,u(s,y)(u))−

∫
QT×QT

ηm,n z ·DxTε(u− u)T (u)

+

∫
QT×QT

ηm,nhT (u,DyRε,u(t,x)(u))−

∫
QT×QT

ηm,n z ·DyTε(u− u)T (u).

Let us write
I2 = I2(ac)+ I2(s),

whereI2(ac) contains the absolutely continuous parts ofI2, andI2(s) contains its singular
parts. Now, working as in the proof of uniqueness of Theorem 3.6 (see [6]), we obtain

1

ε
I2 ≥ ‖φ‖∞o(ε).
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Hence, by (4.37), it follows that

−
1

ε

∫
QT×QT

(jT ,ε,u(s,y)(u)(ηm,n)t + jT ,ε,u(t,x)(u)(ηm,n)s)

≤ ‖φ‖∞o(ε)+

∫
QT×QT

(JT (u)(ηm,n)t + JT (u)(ηm,n)s). (4.38)

Therefore, lettingε → 0 in (4.38) we obtain

−

∫
QT×QT

(jT ,sign,u(s,y)(u)(ηm,n)t + jT ,sign,u(t,x)(u)(ηm,n)s)

≤

∫
QT×QT

(JT (u)(ηm,n)t + JT (u)(ηm,n)s), (4.39)

where

jT ,sign,l(r) =

∫ r

l

T (r ′)sign0(r
′
− l) dr ′, l ∈ R, r ≥ 0.

Now, lettingm → ∞ we have

−

∫
(0,T )×(0,T )×RN

(jT ,sign,u(s,x)(u(t, x))(χn)t + jT ,sign,u(t,x)(u(s, x))(χn)s)

≤

∫
(0,T )×(0,T )×RN

(JT (u(t, x))(χn)t + JT (u(s, x))(χn)s), (4.40)

where

χn = ρ̃n(t − s)φ

(
t + s

2

)
.

Lettinga → 0+ in (4.40) we get

−

∫
(0,T )×(0,T )×RN

(jT0,b,sign,u(s,x)(u(t, x))(χn)t + jT0,b,sign,u(t,x)(u(s, x))(χn)s)

≤

∫
(0,T )×(0,T )×RN

(JT0,b (u(t))(χn)t + JT0,b (u(s))(χn)s). (4.41)

Observe that
1

b
jT0,b,sign,l(r) → j (r) = |r − l| asb → 0+.

Hence, dividing (4.41) byb and lettingb → 0+, we obtain

−

∫
(0,T )×(0,T )×RN

|u(t, x)− u(s, x)| ((χn)t + (χn)s)

≤

∫
(0,T )×(0,T )×RN

(u(t)(χn)t + u(s)(χn)s). (4.42)
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Sinceχn has compact support in time, we have∫
QT

u(t)(χn)t = −

∫
QT

〈ξ, χn〉 = −

∫
QT

〈div z, χn〉 = 0,

asχn does not depend onx. Similarly, we have∫
QT

u(s)(χn)s = 0.

Since

(χn)t + (χn)s = ρ̃n(t − s)φ′

(
t + s

2

)
we may write (4.42) as

−

∫
(0,T )×(0,T )×RN

|u(t, x)− u(s, x)| ρ̃n(t − s)φ′

(
t + s

2

)
≤ 0. (4.43)

Now, lettingn → ∞, we obtain

−

∫
(0,T )×RN

|u(t, x)− u(t, x)|φ′(t) dt dx ≤ 0. (4.44)

Since this is true for all 0≤ φ ∈ D((0, T )), we have

d

dt

∫
RN

|u(t, x)− u(t, x)| dx ≤ 0.

Hence ∫
RN

|u(t, x)− u(t, x)| dx ≤

∫
RN

|u0(x)− u0(x)| dx for all t ≥ 0.

This implies the uniqueness of entropy solutions. Since semigroup solutions with initial
conditions in(L1(RN ) ∩ L∞(RN ))+ are entropy solutions, it follows that entropy so-
lutions coincide with semigroup solutions for those initial data. Then estimate (4.3) is a
consequence of (3.32). 2

Remark 4.12. The above result will permit us to explore the qualitative behavior of so-
lutions of the flux limited diffusion equations (3.13), (3.14), and give the evolution of the
support of its solutions in a subsequent paper [7].

Remark 4.13. The convergence of resolvents described in Remark 3.10 and the char-
acterization of semigroup solutions of (1.1) as entropy solutions implies that solutions
of

∂u

∂t
= div a(u,Du)+

1

n
1u

converge asn → ∞ to the entropy solution of (1.1) (see [11]).
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Remark 4.14. Using similar techniques to the above ones for the Cauchy problem we
may prove an existence and uniqueness result for the following Neumann problem

∂u

∂t
= div a(u,Du) in QT = (0, T )×�,

∂u

∂η
= 0 onST = (0, T )× ∂�,

u(0, x) = u0(x) in x ∈ �,

(4.45)

where� is a bounded set inRN with boundary∂� of classC1, u0 ∈ L∞(�)+, a(z, ξ) =

∇ξf (z, ξ), andf satisfies similar assumptions to the ones considered in the Cauchy prob-
lem.
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