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Appendix A: The Third Stage Equilibrium Outcomes.

a) The (1,0), (2,0), (0,1) and (0,2) distribution systems.

In any of these cases there is only one brand and one retailer present in the
market. The distribution system (i,0) means that M is distributing its brand
through R;, ¢ = 1,2, while M, is out of the market; similarly for (0,7). We analyze

for example the subgame (1,0). Ry chooses ¢i; to maximize,

Rl(Qn) = (Ch — bgi1 — w1)£]11

the equilibrium output, price and retailer’s profits are

Q1(1,0) = (]11(170) = ﬂﬁl p1<170) - ﬂ% Rl(luo) = ‘”12”1 -

while for R, it is obvious that it distributes zero and gets zero profits. The re-
striction on the parameter space to get interior (nonnegative) output equilibria

for subgames (1,0), (2,0), (0,1) and (0,2) is that (a; —w;) > 0 fori =1, 2.



b) The (1,1) and (2,2) distribution systems.
Under these distribution systems, both manufacturers have chosen the same

retailer which is a multi-product monopolist retailer. Take for example the case

(1,1), Ry chooses ¢11 21 to maximize

R1(CI11; Q21) = (al - b(hl - de - wi)Qn + (GQ - bq21 - dQH - w2)(l21

which results in the following equilibrium outcomes

a(1,1) =aqgi(1,1) +gn(1,1) =

0+ W for 0 < ap < %
=) Yoo | et o d < op < b
ﬁ%l +0 for 2 < ag

where ar = (a1 — wy)/(az — ws) denotes the relative per unit profitability of

brands for retailers..Retailers’ prices and profits are,

p1(1,1) = 938 py(1,1) = 22222 for ap > 0

as—ws)2 d
n for 0 <ag <3
2 )2 _ _
Ra1,1) = do—mlabop) o—mleu) for d <ap<?
(al*wl)2 b
— for p < R




In this case, to get interior equilibrium outputs, we need to restrict ar to the

next interval

>
VA
Q
=)
[\
Qo

Note that whenever 0 < ag < %, the retailer does not sell brand one and sells
the amount of brand 2 equal to that in under distribution system (0, 1). By the
same token, for ag > & we have ¢o1(1,1) = 0 and the retailer sells an amount of

brand 1 Q11(1, 1) = qH(]_,O).

c) The (12,0) and (0, 12) distribution systems.

In both cases we have a homogenous duopoly in the downstream market. One
of the manufacturers employs both retailers to distribute its brand while the other
manufacturer’s brand is not sold in the market. Take as an example the case of

(12,0). Retailers one and two maximize profits choosing ¢, and ¢i2, respectively.

Ri(qi1,q12) = (a1 —b(qu1 + q12) — wi)qu1

Ro(qi1,q12) = (a1 — b(qiz + q11) — w1)qr2

The equilibrium quantities are obtained by solving the two-equation system

of first order conditions for ¢;; and q5. These are:



a1 — w1

12 = 12 =
¢1(12,0) q1(12,0) 7
ar —w
©(12,0) = g1(12,0) = ——1
3b
2
m(12,0) = a1+ 2wy
3
. 2
R1(1270) = R2(1270):(a19—bw1)

with the same restriction as in the case presented in the first place.

d) The (1,2) and (2, 1) distribution systems.

Here, each manufacturer uses one retailer and a different one from the retailer
employed by the other manufacturer. Therefore, there is a differentiated duopoly
in the downstream market. Consider the case (1,2). Each retailer maximizes

profits by choosing quantities ¢;; and gos.

Rl(QllaQQQ} = (Gl —bgi1 — dgoa — wl)Qn

RQ(QllaQQQ} = (GQ — bgye — dqi1 — w2)Q22

We obtain the following equilibrium outcomes



0 f0r0<ozR<%

= — 2b(a1—w1)—d(a2—w
¢1(1,2) = qu(1,2) = (o1 4;2)_35 2-w2)  for % <ap< 27:
a;—w 2b
%l for i < OR
%l for 0 < ag < %
= — b(ag—wsg)—d(a; —w
©(1,2) = a(1,2) = | Bempmgmen) for £ < ap < 3§
0 for %b < ap

Retailers’ prices and profits are,

0 for 0 < ag < %
n(l,2) = 2b2“1+(2b2;§)f$2_bd(“2_“'2) for £ <ap<2
atu for 2 < ap
ot for 0 < ap < &
p2(1,2) — 2b2a2+(2b2;z£)7u;227bd(a1fwl) for % <ap< %b
0 for % < ap




0 for 0 < ap < %
Ry(1,2) = b[Qb(alf(ﬁg):;(;rM)]Q for % <ap< %b
ﬁal%;’lﬁ for % < ap
(“22;"2)2 for 0 < ap < £
Ry(1,2) = b[%(a2—(z)22):;2(;21—w1)]2 for % <ap< %
0 for %b < ap

where the restriction in order to get interior equilibrium outputs becomes:

L.
2 YTy

e) The (12,1), (12,2) and (1,12), (2,12) distribution systems.

These are asymmetric cases where one of the manufacturers employs both
retailers, while the other employs only one. Then, we have a multi-product
retailer facing a single-product one. Take as an example the distribution system

(12,1). Each retailer maximizes,

max Rl((ln, q12, QQ1) = (al - b(CIn + Q12) —dgo — wl)fhl

411,921

+(as — bga1 — d(q11 + qr2) — w2)gan



nggx RQ(th q12, QQ1) = (al - b(CIn + Q12) —dgo — wl)(lu

The equilibrium outputs are the solution to the three-equation system of first

order conditions for ¢11, qi2, and go;. We obtain

¢1(12,1) = g11(12,1) + ¢21(12,1) =

2b(as—wa)—d(a1—w1) _3bd__
0+ T for 0 < ar < T

(2b2+d2)(al_wl)—3bd(a2—w2) b(a2—w2)—d(a1—w1) 3bd b
6b(b>—d?) + 2(b—d?) for i = AR S g

£%2—1—0 for 2 < ag

2b(a1—wi)—d(ag—w2) 3bd
B 122 for 0 < ar < z7 2
QQ(lza 1) = Q12(12, 1)
(a1—w1) 3bd
3b for 723 < an
Retailers’ prices and profits are,
202 a1 +(20% —d?) w1 —bd(as —w2) 3bd
T for 0 < ag < ST
p(12,1) =
a1 +2w 3bd
. for 1@ < ar
202 as+(20% —d?)ws —bd(a; —wy) 3bd
T —d2 fOI‘O<OéR<m
12.1) = 3b(ag+wg)—d(a;—wi) 3bd b
p2(12,1) = for 724> < ap < &
0 for % < ap




Ry(12,1) =

R2<127 1) =

b[2b(ag—w9)—d(a1 —w1)]?

3bd

(4b27d2)2
(4b24+5d?) (a1 —w1 )2 +9b2(ao—w2)% —18bd(a1 —w1 ) (a2 —w2)
36b(b2—d?)
(a1—wy)?
9b
b[2b(a1fwl)fd(agfwg)]2 3bd
(4b2—d2)2 fOI‘ O < OCR < 2b2+d2
(a1—wy)? 3bd
5% for 5257 < ar

3bd b
fOI' 202442 S aR S d

f0r§<OcR

where it is clear from above that the restriction to ensure that ¢11(12,1) =

¢12(1,12) are nonnegative is,

3bd
@z R

while, by a similar analysis as above, the restriction applying for g9;(12,2) =

QQ2<2, 12) iS,

20% + d?

AR < T3

Appendix B: Proof of Proposition 1.

We compute the Nash equilibrium in pure strategies in the payoff matrix given



by Table 3. The strategy of the proof consists of constructing the best-response
function for each manufacturer when the rival hires either one retailer or two
retailers. These best responses are presented in four lemmatas, the combination

of which yields the equilibria reported in the proposition.

Five different payoffs for each player need to be considered. For the sake of

the proof we will make use the following:

2_ g2
2b d] d,

1) ayr = £=Cbelongs to the interval [1, =

ii) 4 € (0,1) since b > d > 0.

1) In order to construct the best response function for M;, suppose

that:

A) M, chooses sy = 1 (respectively, s, = 2).

The best response for M; follows from ranking the next expressions:

2—d?)(a1—c)—bd(az—c))?
M1<17 1) = M1<27 2) = 2(?2),(6121)(41),2,()2&)3 I

2_d?)(a1—c)— as—c))?
M1<2; ]-) - M1<]-7 2) = Qb((Sb(4522223(16)()232);2()22 ))

2 2 2 _Ed2) (a1 —c)— ar—e))2
My (12,1) = M;(12,2) = WE=EUEEs o1 2o —hdler )

Note that the strategy s; = 0 is always dominated. We start by comparing



M;(2,1) and M;(1,1) (which is equivalent to comparing M (1,2) and M;(2,2)).

The difference M;(2,1) — M;(1,1) defines a concave quadratic function in
C. Since the roots of the quadratic function set the range of C for which the
function is either positive or negative and since it is assumed that the range of
C is bounded, the strategy of the proof amounts to ranking the roots and the
boundaries of [1, %]. Let r4 be the upper root of that function (the lower

root, whenever it exists, is the same expression as the upper one up to a negative

sign before the term with the square root),

b[256° + 32b"d? — T0b%d" + Td® + 2(166 — d?)(4b? + d?) /(462 — d)(b* — d2)]
d(38415 — 204b%d2 + 48b2d* — 3d°)

rTa =

It is easily proven that r, is greater than one since b > d and it is smaller

than szd;dQ if % < 0.708. Likewise, the lower root is smaller than one since b > d.

Therefore, it follows that

either ¢ € (0,0.708] and C € [1,74]

or € (0.708,1)  and O € [1, 254

while,

207 — dQ]
b

d
Mi(1,1) > My(2,1)if 7 € (0,0.708] and O € [r,

By the same token, the difference M;(12,1)—M; (1, 1) defines a convex quadratic

function in C'. Since the upper root of that equation,

10



bd[3d* (14b%—5d?)+2b(16b%—7d?)(4b2—d?)4/ 3(4b2—d?)]
102453 —1408b6 d2 + 756b*d* —208b2d6 +25d3

, is always smaller than one,

we conclude that:

20° — dQ]
b

My(12,1) > My(1,1) if% € (0,1)and C € [1,

Finally, the difference M;(12,1)— M;(2, 1) defines a convex quadratic function
in C'. It is easily proven that the lower root is always smaller than one. The upper

one, denoted by r¢,

3bd (16384010 — 8192b%d% — 4288b%d* 4 2360b*d® — 184b%d® — 5d'°)
65536012 — 73728b10d2 + 36096b8d4 — 12992666 + 3780b%d® — 492b2d10 + 25412
202d(4b% — d?)(16b? — d?)(16b* — 7d?)(8b2 + 7d?),/3(b? — d?)
55536012 — 737286100 + 36096LSd" — 129926°00 + 37300 dS — 49262410 + 25412

is increasing with the ratio %, and satisfies the following:

0<re<1 if ¢¢€(0,0.682]
1<re < 2= if 4 ¢ (0.682,0.907]
Bl < e if e (0.907,1)

Therefore, it is true that:

either ¢ € (0,0.682] and C € [1, 22|

or % € (0.682,0.907] and C € [r¢, 2b2d;d2]

11



while,

cither ¢ € (0.682,0.907] and C € [1,7¢]
M (2,1) > M;(12,1) if

or 4 € (0.907,1) and C € [1, 23]

The above discussion in summarized in the following lemma:

Lemma 1 The best response to so =1 (respectively, to so = 2) is,
a) s =12 if

either 4 € (0,0.682] and C € [1, Z5L],

or ¢ € (0.682,0.907] and C € [r¢, Qdeng].

b) s1 =2 (respectively, s = 1) if

either 4 € (0.682,0.907] and C € [1,7¢],

or 4 €(0.907,1) and C € [1, 2b2d;d2].

B) M, chooses s; = 12.

The best response for M; follows from comparing;:

b(8b%2—5d?) (a1 —c)—d(4b2—d?)(as—c))2
Ml(la 12) = M1(2, 12) =X 2b()b(2id2))(162()2—7d2)%( —

2 —d?)(a; —c)—bd(az—c))?
M (12,12) = 2EGo by <)

The difference M;(12,12) — M;(1,12) (or equivalently M;(12,12) — M;(2,12)
) defines a convex quadratic function in C. Let rp denote the upper root of that
equation,

12



d[5120% — 704b5d? + 280b*d* + 8b>d® — 15d° + 2d?(64b° — 108b*d? + 51b*d* — 7d°)\/3]
b(1024b8 — 2304b5d2 + 2080b*d* — 840b2d6 + 121d8)

'p =

This root is smaller or equal than one if ¢ € (0, 0.909] while it belongs to the

interval |1, Qde;dQ] when £ € (0.909, 1). Then, the next lemma is stated:

Lemma 2 The best response to s = 12 is

a) s =12 if

either & € (0,0.909] and C € [1, ZoL],

or 4 € (0.909,1] and C € [rp, QdeEdQ].

b) s1 =1 and s; =2 if ¢ € (0.909,1] and C € [1,rp).

2)The next step is to obtain the best response function for M,, sup-

pose that:

A) M, chooses either s; = 1 (respectively s; = 2).

To compute the best response for M, the relevant payoffs are:

13



2 —d?)(ag—c)—bd(a1—c))?
My(1,1) = Mp(2,2) = A5 )G, elay )

2b((8b2—d?)(az—c)—2bd(a1 —c))?
My(1,2) = My(2,1) = 2 e 2y <)

2_ 42 2_542)(ao—c)— ar—e))2
My (1,12) = My (2, 12) = LEEREE e o)

The difference Ms(1,2) — My(1,1) (equivalently M5(2,1) — M(2,2)) defines
a concave quadratic function in C. It is easily proven that the upper root of that

equation,

_ 256b°4-32b%d% —7062d? +7d®+2(166% —d?) (4b%+d?) 4/ (4b2—d2) (b2 —d2)] . ter th 2h2_ 2
Ta = 3bd (64671 166242 —5d3) 1S greater than ==z

and that the lower root is smaller than one since b > d. It follows that

20% — d?

d
M2<1,2) = M2<2, 1) > Mg(]_, 1) = M2(2,2) if E € (0, ].) and C € [1, ab ]

Similarly, the difference Ms(1,12)—Ms(1, 1) (equivalently Ms(2,12)— M(2,2)

) defines a concave quadratic function in C'. Since the upper root of that equation,

—3d*(14b%2—5d2)+2b(16b2—7d2) (4b% —d?) 4/ 3(4b2 —d?)

ry = D(I02 TSP 5T , is always greater than 2b2d;d2 and
the lower one is smaller than one, we conclude that:

. d 2% — d?
Mg(l, 12) = MQ(Q, 12) > MQ(L 1) = M2(2,2) if Z € (0, 1) and C € [1, T]

Finally, the difference M5(1,12) — M;(1,2) (equivalently Ms(2,12) — M>(2,1)

) defines a convex quadratic function in C. Tt is easily proven that the upper root

14



202 —d2
db

is always greater than . The lower one, denoted by 7.,

3(16384b10 — 8192682 — 4288b5d* + 2360b*d® — 184b2d® — 5d10)
3bd (819208 — 2784b1d* + 664b2dS + 3dF)
2b(4b? — d2)(16b2 — d2)(16b2 — 7d2)(8b2 + 7d2),/3(b? — d?)
a 3bd (819268 — 2784bd* + 664b2d6 + 3d®)

e =

is decreasing with the ratio %, and satisfies the following:

1<r,< 2= if ¢ (0,0.682]

O<r.<1 if

SylISH

€ (0.682,1]

Therefore, it follows that:

either ¢ € (0,0.682] and C € [r,, 222
My(1,2) > My(1,12) if

or £ € (0.682, 1] and O € [1, 224

while,

d
My(1,12) = My(1,2) if 3 € (0,0.682) and C € [1,7.]

The following lemma summarizes the above analysis:

Lemma 3 The best response to sy = 1 (respectively, to s; = 2) is,
a) s2 =12 if 4 € (0,0.682] and C € [1,r.]

b) s =2 (respectively, so = 1) if

either ¢ € (0,0.682] and C € [re, QdeZdQ],

or 4 € (0.682,1] and C € [1,2L].

15



B) M; chooses s; = 12.

The best response for M, follows from comparing of the next expressions:

2_ 42 2_ 542 (a0 —c)— a1—c))2
My(12,1) = My(12,2) = WE=EUE -5 0ac)—ahdlon—o)

2 —d?)(as—c)—bd(a1—c))?
My(12,12) = 2b((2b3(bg_)222)(417)2_1952()21 )

The difference My(12,12) — M5(12,1) (equivalently My(12,12) — My(12,2)
) defines a convex quadratic function in C. Let r4 be the lower root of that

equation,

b(512b8 — T04b5d2 + 280b*d* + 8b%dS — 15d%) — 2d(64L° — 108b*d? + 5162d* — 7d°)/3

= d(2560° — 12860d2 — 92b4d4 + 48b2d° — 3d°)

This root is smaller than one if ¢ € (0.909, 1) while it belongs to the interval

(1, 2b2b;d2) when % € (0, 0.909). The upper root is always greater than 2" —d”

bd

Then, the next lemma states M,’s best response to s; = 12.

Lemma 4 The best response to s; = 12 is
a) so =1 and sy = 2 if

either ¢ € (0,0.909] and C € [rq, QdeEdQ],

or 4 € (0.909,1] and C € [1,2£=L].

b) so =12 if ¢ € (0,0.909] and C € [1,74)].

Taking into account the above lemmatas the range of % is partitioned into four

intervals: i) 4 € (0,0.682]; ii) 4 € (0.682,0.907]; iii) ¢ € (0.907, 0.909] and iv)

16



4€(0.909, 1). Now, we establish the Nash equilibrium for each of these intervals

as a function of C.

1)Let us assume that ¢ € (0,0.682].

By Lemmatas 1 and 2, the best response of M; to so =1, so = 2 and sy = 12

is sy =12 forall C €[ 1, 2b2b;d2]. That is, s; = 12 is a dominant strategy.

By Lemma 3 the best response of M, to s; = 1 (respectively, to s; = 2) is
either sy = 12 if C' € [1,r.] or sy = 2 (respectively, so = 1) if C € [r,, %]. By

Lemma 4 the best response of M, to s; = 12 is either so = 12 if C' € [1,r4] or

so =1 and so =2 if C' € [ry, 2b2b;d2]. Furthermore, it can be proven that r. < ry4

for ¢ € (0,0.682]. Therefore we conclude that:

1.1) for ¢ € (0,0.682] and C € [1,r] the Nash Equilibrium is the pair of

strategies (12, 12).

1.2) for ¢ € (0,0.682] and C € [r,r4) the Nash Equilibrium is also (12,12).

1.3) for 4 € (0,0.682] and C € [ry, 2b2b;d2] the Nash Equilibria are both (12, 1)

and (12,2).

17



2)Let us assume that ¢ € (0.682,0907].

Both r4 and r¢ appear as relevant in this interval. Remind that r, is decreas-
ing with ¢ in the interval (0.682,0.907] and it equals one for ¢ = 0.909, while r¢
is increasing with % in the same interval, being equal to one for % = 0.682 and
equal to #(: 1.298) for ¢ = 0.907. Then it is easy to find that ry and r¢ cross
each other at ¢ = 0.805, and therefore, we analyze the cases 4 € (0.682,0.805]

and ¢ € (0.805,0907] separately.

2.1) For ¢ € (0.682,0.805] it is the case that ro < rq and we conclude that:

2.1.a) for ¢ € (0.682,0.805] and C' € [1,r¢] the Nash Equilibria are (12,12),

(1,2) and (2,1).

2.1.b) for ¢ € (0.682,0.805] and C' € [r¢, ry] the Nash Equilibrium is (12,12).

2.1.c) for 4 € (0.682,0.805] and C € [ry, QbeEdQ] the Nash Equilibria are both

(12,1) and (12,2).

2.2) For 4 € (0.805,0.907] it is the case that rqy < rc. Then, we conclude that:

2.2.a) for 4 € (0.805,0.907] and C € [1,74] the Nash Equilibria are (12,12),

18



(1,2) and (2,1).

2.2.b) for £ € (0.805,0.907] and C' € [ry,rc] the Nash Equilibria are (1,2)

Sl

and (2,1).

ii.2.c) for

o

€ (0.805,0.907] and C € [r¢, 2222] the Nash Equilibria are both

(12,1) and (12,2).

3) Let us assume that ¢ € (0.907,0.909).

Two different conclusions are reached depending on the size of C.

3.1) for ¢ € (0.907,0.909] and C' € [1,74] the Nash Equilibria are (12,12),

(1,2) and (2,1).

3.2)for ¢ € (0.907,0.909] and C € [rq, QbeQdQ] the Nash Equilibria are (1, 2)

and (2,1).

4) Let us assume that ¢ € (0.909, 1).

Following the lemmatas above we conclude that for 4 € (0.909,1) and C €

1, #] the Nash Equilibria are (1,2) and (2, 1).

19



The different Nash equilibria presented above are shown in Proposition 1
noting the difference between a unique equilibrium system at equilibrium and a

multiplicity of them. Q.E.D.
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