
DETECTING CARTOONS: A CASE STUDY IN AUTOMATIC VIDEO-GENRE

CLASSIFICATION

Tzvetanka I. Ianeva∗

Departamento de Informática,
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ABSTRACT

This paper presents a new approach for classifying indivi-
dual video frames as being a ‘cartoon’ or a ‘photographic
image’. The task arose from experiments performed at the
TREC-2002 video retrieval benchmark: ‘cartoons’ are re-
turned unexpectedly at high ranks even if the query gave
only ‘photographic’ image examples. Distinguishing be-
tween the two genres has proved difficult because of their
large intra-class variation. In addition to image descrip-
tors used in prior cartoon-classification work, we introduce
novel descriptors like ones based on the pattern spectrum
of parabolic size distributions derived from parabolic gran-
ulometries and the complexity of the image signal approxi-
mated by its compression ratio. We evaluate the effective-
ness of the proposed feature set for classification (using Sup-
port Vector Machines) on a large set of keyframes from the
TREC-2002 video track collection and a set of web images.
The paper reports the identification error rates against the
number of images used as training set. The system is com-
pared with one that classifies Web images as photographs
or graphics and its superior performance is evident.

1. INTRODUCTION

TREC is a series of workshops for large scale evaluation
of information retrieval technology (e.g., see [1]). The goal
is to test retrieval technology on realistic test collections.
TREC-2001 has introduced a video retrieval task, on a
collection of (copyright free) videos produced between the
1930s and the 1970s (including advertising, educational, in-
dustrial, and amateur films). The videos vary in their age,
productional style, and quality [2].
Our experiments for the search task at the video track

studied a generic probabilistic retrieval model that ranks
shots based on the content of their keyframe image and
speech transcript [3]. Evaluating the results, we noticed
that the model does not distinguish sufficiently between
‘cartoons’ and other keyframe images.1 Of course, one gen-
erally does not expect a ‘cartoon’ as query result unless ex-
plicitly asked for; consequently, returning these ‘cartoons’
by mistake results in a lower precision of our system.
The objective of this study is to implement a classifier

that distinguishes ‘cartoon’ keyframes from ‘non-cartoons’.
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1The class ‘cartoon’ is defined more precisely in Section 1.2.

The problem can be viewed as a case study of automatic
genre classification. The paper describes an approach which
employs both grayscale and color image features. The out-
put from various feature extractions is combined in a Sup-
port Vector Machine (SVM) training process to produce a
classification model. The results demonstrate a small error
rate on both the TREC-2002 video corpus and a collection
of images gathered from the WWW.
The main contributions of this research are a rigorous

analysis of the classification results on a large corpus, the
use of image morphology in the feature set, as well as the
good results achieved in spite of difficult, inhomogeneous
data.

1.1. Related work

Roach et al. published an approach for the classification of
video fragments as cartoons using motion only [4]. Yet,
their database consisted of only 8 cartoon and 20 non-
cartoon sequences, so it is difficult to predict how it would
perform on the TREC corpus, and their data set is not pub-
licly available. Another recent effort addressed the classi-
fication of video into seven categories (including cartoons)
[5]. Two of our features are similar to theirs, but our ap-
proach is different and the experiments are incomparable.
A closely related problem is the automatic classification

of WWW images as photographs or graphics; examples are
the WebSeek search engine [6] and the systems described
in [7, 8]. Unfortunately, the most discriminative features
used in these works take advantage of some characteris-
tics of web images that do not exist in video keyframes,
notably the aspect ratio and the word occurrence in the
image URLs. We applied the farthest neighbor histogram
descriptor suggested by [8] to our data collection, but this
characteristic is expensive to compute without resulting in
improved error rates.
The photo/graphics classifier of [8] had been previously

implemented in our group as part of the Acoi system [9]. A
decision rule classifier (C4.5, [10]) has been trained on the
features given in [8] on varying quantities of training data.
However, as the results in Section 3 show, the features do
not provide enough (or even none) discriminating power
in the case of photo/cartoon classification on the TREC
video collection. Conversely, the same implementation has
a classification score of 0.9 on a data set of 14,040 photos
and 9,512 graphics harvested from the WWW.



Image Descriptor Dim. E(p) E(c) E(t)
average saturation 1 0.26 0.45 0.27
threshold brightness 1 0.27 0.48 0.29
color histogram 45 0.19 0.28 0.19
edge-direction histogram 40 0.48 0.24 0.46
compression ratio 1 0.36 0.42 0.36
multi-scale pat.spectrum 30 0.36 0.44 0.36

Table 1. Overview of Image Descriptors. Training set 500
photos and 500 cartoons; test set 12,526 photos and 1,120
cartoons; all sets disjoint random samples from TREC-2002
keyframes.

1.2. What is a Cartoon?

We call images or parts of images photographic material or
photos if they have been obtained by means of a photo-
graphic camera (movie or still). We call images cartoons

if they do not contain any photographic material. Some
distinguishing features of cartoons are:2

Few, simple, and strong colors: The abstraction in
transforming a real-world scene into the cartoon world
leads to a reduction of colors and exaggeration in sat-
uration.

Patches of uniform color: Textures are often simplified
to uniform color.

Strong black edges: The large patches of uniform color
are often surrounded by strong black edges.

Text: Educational cartoons, charts, etc. often contain large
text that is typically horizontal and not distorted by
a perspective transformation. Moreover, the fonts
are chosen to be readable and the colors to give good
contrast.

Given this list, it may seem easy to separate the cartoons
from the other keyframes. But in practice the problem is
not as simple as expected. Part of the problem lies in the
low quality of the video streams in the collection. More
problematically, keyframes may contain an artificial build-
ing, or, people in an theatrical scene. Clearly, by the defi-
nition given before, both are in the ‘photograph’ class, but
such ‘mixed’ images cause quite a challenge for the ma-
chine. We invite the reader to look at the examples shown
in Figure 1 to see some keyframes that sparked some heated
discussion in our group while making the ground truth.

2. IMAGE DESCRIPTORS

We first outline the image descriptors used previously and
then explain our innovations. Refer to Table 1 for an overview
of the image descriptors. Their individual ‘naive’ usefulness
is given by the error on photos E(p), error on cartoons E(c),
and total error E(t), when performing classification with
machine learning (as outlined in Section 3) using the given
image descriptor alone.

2.1. Saturation, Brightness, and Color Histogram

We compute average color saturation (the S channel of the
image in the HSV color space) and the ratio of pixels with

2Since in this work we were only concerned with single frames,
we did not consider time-dependent properties of cartoons.

brightness greater than 0.4. Similar descriptors were used
in [5], and we observed a good correlation with class mem-
bership alike. We compute a 3×3×5 histogram of the image
in the HSV color space and use the 45 numbers (normalized
by the number of pixels) as 45 image descriptors.

2.2. Edge Detection

Cartoons are expected to have strong black edges. We mea-
sure the distribution of edges in an image by a histogram
of the angles and absolute values of the gradient in each
point: we approximate the horizontal and vertical deriva-
tives by separately filtering the image with the horizontal
and vertical Sobel filters. Let ∂/∂xI(x, y) and ∂/∂yI(x, y)
denote the horizontal and vertical derivatives of the image
I at point (x, y). Then the angle θ(x, y) of the gradient at
(x, y) satisfies tan θ(x, y) = (∂/∂yI)/(∂/∂xI) and for the
absolute value m(x, y) holds m(x, y) = ((∂/∂xI(x, y))2 +

(∂/∂yI(x, y))2)1/2. From our approximations of θ(x, y) and
m(x, y) we compute a two-dimensional histogram with eight
bins for angles and five bins for absolute value; this yields
40 image descriptors normalized to values between 0 and 1.
This approach is inspired by [11] where a similar technique
is outlined.

2.3. Compression

Cartoons are expected to have a more simple composition
than photographic images: they typically have few colors,
simple geometric shapes, etc. As an approximation to the
generic minimum description-length (Kolmogorov complex-
ity [12]) of the image, we considered compression ratios with
common lossy and lossless image-compression techniques.
Experiments with lossy compression with JPEG at vari-

ous quality settings gave little correlation. This is probably
due to our source material, which was captured from TV
signals (blurring sharp edges and adding noise to uniform
colors) and stored in the JPEG format. On the other hand,
quantizing to 256 colors and lossless compression using the
PNG format gave compression ratios with high predictive
power.

2.4. Pattern Spectrum

Granulometry is a widely used tool in mathematical mor-
phology for determining the size distribution of objects in
an image without explicitly segmenting each object first.
Intuitively, granulometry treats image objects as particles
whose sizes can be established by sifting them through sieves
of increasing mesh width, and collecting what remains in
the sieve after each pass. One pass of sifting and retain-
ing the residue is analogous to the morphological ‘opening’
of an image using a ‘structuring element’ of a certain size.
Morphological opening of the image performs an erosion
followed by a dilation using the same structuring element.
In mathematical terms, a granulometry is defined by

a transformation Φλ with size parameter λ that satisfies
the Anti-extensivity, Increasingness and Absorption axioms
[13]. Of particular interest are granulometries generated by
openings by scaled versions of a single convex structuring
element B, i.e., Φλ(I) = I ◦ λB. There exist many appli-
cations that use flat structuring elements; e.g., rectangular



(a) (b) (c)

Fig. 1. Sample keyframes from TREC-2002. (a) a ‘clear’ cartoon image, but the exaggerated light beams are the only
distinguishing feature. (b) illustrates the difficulty of mixed images. For (c), only the sparkle of the metallic parts and the
shadows justify the classification as ‘photograph.’

size distributions are used to characterize visual similarity
of document images [14]. However, in our case the objects
do not have a particular geometric shape and therefore we
need a generic and nonflat structuring element. For nonflat
structuring elements B, the erosion εB(I) of the grayscale
image I is defined as [εB(I)](x, y) = min(a,b)∈domB{I(x +
a, y+ b)−B(a, b)}, and dilation δB(I) analogously, i.e., the
nonflat “shape” is subtracted or added before taking the
minimum or maximum, respectively [13].
Van den Boomgaard and Smeulders [15] have shown

that the Gaussian function used in linear convolutions has
as morphological analogue the parabola. We use a parabola
as structuring element because it is the unique structuring
function that is both rotational symmetric as well as di-
mensional decomposable [16]. Erosion (and analogously di-
lation) with a n-dimensional parabola can be decomposed
into the erosion (dilation) with n one-dimensional parabo-
lae, reducing the complexity by a factor n [17].
Formally, the two-dimensional parabola of scale λ is

Bλ(x, y) = −(x2 + y2)/λ. The decomposition property al-
lows us to compute erosion with Bλ efficiently using one-
dimensional structuring elements: εBλ(I) = εVλ(εHλ(I))
for Hλ and Vλ the one-dimensional horizontal and vertical
scale-λ parabolae, respectively: Hλ(x, y) = −∞ for y 6= 0,
Hλ(x, 0) = −x2/λ, and Vλ(x, y) = Hλ(y, x). Of course, the
same optimizations also apply to dilation δBλ(I).
Let Φλ(I) denote the opening of the grayscale image

I with parabola Bλ. For values λ1 < · · · < λk, the nor-
malized size distribution induced by the granulometry Φλ
is s(i) = 1 −

∑
x,y[Φλi(I)](x, y)/

∑
x,y I(x, y). The corre-

sponding pattern spectrum is p(i) = s(i+ 1)− s(i). Based
on the distinguishing features of cartoons like large patches
of uniform color we expect differences between cartoons
and photographs in the pattern spectrum: a peak in the
pattern spectrum at a given size indicates that there are
many objects of that size in the image. Hence, we store
as image descriptors a ‘small scale’ pattern spectrum with
λi = 2.55i, i = 1, . . . , 20 and a ‘large scale’ pattern spec-
trum with λi = 1275i, i = 1, . . . 10.

3. EXPERIMENTAL RESULTS

As mentioned in the introduction, we used keyframes ex-
tracted by Westerveld et al. [3] from the TREC-2002 video
track [2]. These keyframes consist of some 24,000 JPEG im-

classifier from [8, 9]
our classifier
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Fig. 2. Size of learning set versus error. Test set constant
size 1,000 photos and 1,000 cartoons.

ages of dimension 340×252 and average file size 46 kBytes.
14,000 of these images were classified manually into the cat-
egories ‘photograph’ (13,026), ‘cartoon’ (1,620), and ‘bor-
derline’ (354). From this data we randomly selected subsets
of equal numbers of photographs and cartoons for training
and cross-validation.
For some of our one-dimensional image descriptors, we

have a clear intuition how they distinguish cartoons from
photographs and ‘learning’ to use such a descriptor reduces
to determining a good threshold value. For others (es-
pecially the various histograms) it is more convenient to
classify automatically the patterns that are typical for car-
toons or photographs. For such generic classification tasks,
a popular and often successful technique is Support Vec-
tor Machine (SVM) learning [18], which has built-in guards
against overfitting and can be tailored to known structure
in the data by the choice of the kernel.
We used the OSU SVM Classifier Toolbox for Matlab

[19]; after initial experiments with both polynomial and
RBF kernels, we opted for a Gaussian RBF kernel with
variance σ2 = 0.25. The smaller σ2, the more complex
will the resulting model be, hence the more training data
is needed and the greater is the danger of overfitting. Fig-
ure 2 shows that the classification error obtained does not
depend much on the size of the training set.
For comparison, we also trained a classifier on the previ-

ously mentioned Web data (23,552 images). Even without



Image Descriptors E(p) E(c) E(t)
all 0.17 0.25 0.18
all w/o brightness 0.16 0.27 0.17
all w/o saturation 0.16 0.27 0.17
all w/o color histogram 0.25 0.27 0.25
all w/o edge direction 0.19 0.24 0.19
all w/o compression 0.18 0.24 0.18
all w/o multi-scale pat.spect. 0.18 0.25 0.18

Table 2. Relative power of descriptors. Sets as in Table 1

using image descriptors depending on file type, dimension
ratio, or smallest dimension (very good indicators of lo-
gos, banners, etc.), we obtain a 92% correct classification
(slightly better than the decision tree classifier mentioned
before [8] that uses file type and image size). When adding
these properties to the feature vectors, our classification
rate improves marginally (to 94%); unlike [8], we have not
noticed a significant difference in accuracy depending on the
image file type (JPEG or GIF). Conversely, when training
and testing the decision tree on our data, the classification
accuracy suffers severely from the fact that all keyframes
are of the same size; the error rate goes up to over 45%.
We believe that this comparison demonstrates that the ap-
proach outlined in the paper is generic and can be applied
equally well to distinguish graphics from photos — with-
out using derived properties like image size: only the visual

content is modeled in our characteristics!

4. CONCLUSIONS AND OUTLOOK

We have shown that a generic image classifier based on well-
chosen visual features can distinguish cartoons from photos
on a difficult video corpus, and identify the graphics in a
collection of Web images. The results can most likely be
improved further only using higher level, semantic descrip-
tions. Even for an anticipated easy problem like this one,
our experience shows that people use a significant amount
of world knowledge (like shining objects, shadows, human
body parts, and so on). Low-level characteristics that we
have not used (like the temporal structure of the shot) may
help a little bit further, but it is unlikely that this can bridge
the semantic gap (again, see Figure 1).
Recall our original goal: filter out cartoons from the re-

turned results in the TREC-2002 results. Although we re-
duced the error significantly, only one out of ten keyframes
in the corpus is a cartoon; hence, always deciding the im-
age is photographic is still better than using the classifier.
If we wanted to never miss a cartoon, the classifier is quite
useful; unfortunately, most queries prefer not to miss pho-
tographic keyframes more than to view some cartoons by
mistake. This problem is not unique to our current sce-
nario. The ‘feature detection task’ at TREC has shown
similar accuracy of classifiers for other events (like ‘people’,
‘outdoors’, and ‘landscape’). The example query ‘give me
outdoors images without people’ will thus throw out too
many outdoors images. We conclude that current systems
have inherent problems when facing infrequent events and
therefore cannot answer requests with negative conditions.
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