
A Dynamic Probabilistic
Multimedia Retrieval Model

Tzvetanka I. Ianeva
Departamento de Inforḿatica,
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Abstract— We describe the application of a probabilistic mul-
timedia model to video retrieval. From video shots, we compute
Gaussian-mixture models that capture correlations in time and
space, such as the appearance and disappearance of objects.
These models improve the precision of “query by example/s”
results in the TRECVID 2003 collection when compared to mod-
els that only make use of static visual information. Furthermore,
integrated with information from automatic speech recognition
(ASR) transcripts, they outperform ASR only results.

I. I NTRODUCTION

Video search systems can be compared by the open met-
rics based evaluation process at TRECVID 2003 funded by
ARDA and NIST. Formatted descriptions of information needs
(topics) are given to all participants and their video search
systems are asked to return a list of up to1000 shots which
meet the need, based on likelihood of relevance. The video
shot is considered as a basic unit of video data. In current
video retrieval systems, there are two video representation
schemes used for retrieval, which we classify asstatic and
spatio-temporal. A wide range of video retrieval models is
based on the static approach by representing the shot by its
keyframe [1], [2], so information about the temporal evolution
of the video is lost. But video is a temporal media, so
a ‘good’ model will be one that solves the limitation of
keyframe-based shot representation by exploiting the spatio-
temporal information of the video. Spatio-temporal models
attempt to extract backgrounds and independent objects in the
dynamic scenes captured in the sequences. Spatio-temporal
grouping techniques can be classified into two categories:
(1) segmentation with spatial priority and tracking of regions
from frame to frame, and (2) those based on joint spatial and
temporal segmentation. Our approach belongs to the second
category in which video is considered as a spatio-temporal
block of pixels, by treating the spatial and temporal dimensions
simultaneously. A good argument to follow this approach is
that human vision finds salient structures jointly in space and
time, as described by Gepshtein and Kubovy in [3].

A. Motivation

In [4], we demonstrated the limitations of our static model:
the models represent only keyframes rather than shots, and this
can hurt retrieval performance. Consequently, we built a new
dynamicretrieval model which we used for TRECVID2003.

Section II describes the dynamic retrieval model and presents
our two hypotheses. Section III-C reports on experimental re-
sults. Conclusions and directions for future work are described
in the final section.

B. Related work

DeMenton proposed spatio-temporal grouping in a vec-
tor space, using similarity clustering [5]. He uses seven-
dimensional feature vectors composed of three color and four
motion descriptors. Pixels with similar color and motion are
close in feature space and grouped by hierarchical mean shift
analysis over increasing large regions.

Spatio-temporal graph-based image segmentation methods
are based on a graph whose nodes are the image features
grouped using graph cut techniques. The edges connecting
pixels in spatial as well temporal directions are weighted
according to some measure of similarity (affinity) between
nodes. Similarity based on motion profiles is used by Shi
and Malik [6]. A motion profile represents the probability
distribution of the motion vector at a given point. Fowleks
et al. [7] define similarity based on spatio-temporal location
(x, y, t), color (L, a, b), and the optical flow feature vector
xi attached to each pixeli of the sequence. To compute
segmentations more efficiently they use the Nyström approx-
imation of the normalized cut algorithm. Greenspan et al. [8]
explore spatio-temporal grouping by fitting a mixture model
for linear motion detection by using the Gaussian covariance
coefficients between spatial and temporal dimensions. In [9],
they extend the spatio-temporal video-representation scheme
to a piecewise GMM framework in which a succession of
GMMs are extracted for the video sequence, for the description
of non-linear motion patterns.

Our approach is most similar to [8]. We also build mixture
models to describe the shots in the collection. Our contribution
is that for first time we applied these techniques in practice and
show they are useful for video retrieval from a large generic
heterogeneous collection.

II. BUILDING DYNAMIC GMMS

A. Gaussian Mixture Models

The Dynamic retrieval model we use to rank video shots
is a generative model built as an extension and optimization
of the static retrieval model [1], inspired by the probabilistic



approach to image retrieval [10] and the language modeling
approach to information retrieval [11]. We present concisely
the visual part of the dynamic model and the consideration
that we take into account. Details regarding the other parts
can be found in [1].

The visual part of the dynamic model ranks video shots by
their probability of generating the samples (pixel blocks) in
query example(s). The model is smoothed using background
probabilities, calculated by marginalization over the collection.
So, a collection video shotωi is compared to an example
document (video shot or image)x by computing its retrieval
status value (RSV), defined as:

RSV(ωi) =
1
N

N∑
j=1

log [κP (xj |ωi) + (1− κ)P (xj)], (1)

whereκ is a mixing parameter. The example image consists of
N samples (X = (x1,x2, . . . ,xN )), i.e., the example video
shot consist of29×N samples. Collection documentsωi are
modelled as mixtures of Gaussians with a fixed number of
components:

P (x|ωi) =
NC∑
c=1

P (Ci,c) G(x,µi,c,Σi,c), (2)

whereNC is the number of components in the mixture model,
Ci,c is componentc of class modelωi andG(x,µ,Σ) is the
Gaussian density with mean vectorµ and covariance matrix
Σ:

G(x,µ,Σ) =
1√

(2π)n|Σ|
e−

1
2 (x−µ)T Σ−1(x−µ),

wheren is the dimensionality of the feature space and(x −
µ)T is the matrix transpose of(x− µ).

B. Selecting frames

Our approach to extending the static Gaussian-mixture
model to a dynamic model has been to retain the computation
of feature vectors for 2D images, augmented with a new
temporal feature. Shots consist of a large number of frames
(in our collection, shot sizes range from24 to 66629 frames),
so it was not feasible to consider all frames in a shot.

In selecting a sub-sequence of frames, we considered the
following two approaches: (1) modeling the video shot as one-
second video sequence around the keyframe or (2) modeling
the entire video shot as sequence of frames sampled at regular
intervals. The first one captures even small changes in time
around the keyframe, but is very sensitive to the choice of
the keyframe in long-duration shots. In the second approach,
the dependency on the keyframe is completely removed, we
will have information of what is going on at the beginning
and at the end even in very long shots. On the other hand, we
lose precision if the chosen frames are too diverse. Another
disadvantage is that the computation cost scales with the length
of the shot.

We determined experimentally the retrieval performance of
the two approaches on the TRECVID2003 search development

collection. We always obtained better results when applying
the first approach. As a consequence, we model a one-second
video sequence around the keyframe (29 frames) as a single
entity. Next, we explain the retrieval process.

C. Features

The samples are8× 8 blocks described by discrete cosine
transform (DCT) coefficients and spatio-temporal position. In
a given shot, like the one in Figure 1), we obtain a set
of feature vectors by the following process, as outlined in
Figure 2: each frame of a shot is decomposed into blocks of
size 8 × 8 pixels; for each of those blocks, we compute a
15-dimensional feature vector: the Y, Cb, Cr color channels
of each block are transformed by the DCT. The first 10 DCT
coefficients from the Y channel, the first coefficient from the
Cb channel, and the first coefficient from the Cr channel make
up the first 12 features. Three more features for each block
describe thex and y coordinates of the block in the frame,
and temporal position of the frame inside the shot; the time
is normalized between0 and1. Using the EM algorithm, we
compute the parameters of the GMM (µ,Σ, and P (C)) for
this set of feature vectors.

To handle the case when we have as query example a single
image, i.e., we do not have the time dimension, we tried again
two alternative approaches: (1) We artificially made a sequence
of 29 images same as the query example where the time is
normalized between0 and1. The intuitive explanation in this
case is that we observe the same image all the time. (2) We
extend the query example image’s feature vector with a fixed
temporal feature value of0.5. The intuitive explanation in this
case is that we do not know what happens before and after the
central moment, when matching the keyframe. Experiments
on the TRECVID2003 training data set gave slightly better
results using the second approach, so the second approach has
been implemented. It has the additional advantage of lower
computational cost.

D. Motion

To reduce the complexity of our model, the Gaussians are
axis-aligned, i.e., their covariance matrix (Σ) is diagonal.
Therefore, we can decompose a 15-dimensional Gaussian into
15 independent1-dimensional models for each component.
In particular, this means that a single Gaussian in our 15-
dimensional model cannot capture correlations, e.g., between
time and space. However, with multiple Gaussians, motion
does give rise to different models under certain circumstances:
a moving object is one that is visible in locationx1, y1 at
time t1 and visible atx1, y2 at time t2 (with t1 < t2).
With two Gaussians with means(x1, y1, t1) and (x2, y2, t2),
respectively, we can distinguish linear motion in one direction
from linear motion in the opposite direction. This is impossible
with static models. On the other hand, many shots without
linear motion, e.g., with “jumping” objects, also fit such
GMMs, so arguably we do not capture motion in an intrinsic
way.



Fig. 1. A shot represented by 29 frames around the keyframe

Fig. 2. The process of obtaining feature vectors.

In any case, spatio-temporal correlations are captured in the
3D GMMs; we capture the appearance and disappearance of
objects. An example of resulting Gaussians for the shot given
in Figure 1 is given in Figure 3;1 in the visualization, the 15-
dimensional Gaussians are reduced to 3 spatial dimensions (for
the location and time), and their mean color and texture are
visualized. It is possible to correlate Gaussians with objects
in the shot, which appear and disappear at given times: e.g.,
the grass is only visible at the beginning of the sequence
and the corresponding component, the green dynamic space-
time blob, also disappears at aboutt = 0.4. In other words,
the GMM captures the disappearing of the grass. This effect
cannot be captured in the static model where time is not taken
into account.

III. R ETRIEVAL USING DYNAMIC GMMS

A. The TRECVID 2003 collection

The TRECVID2003 video search collection contained113
broadcast news videos, from which32318 shots have been
extracted. TRECVID 2003 provides25 topics described by

1A version of this paper with color figures is available fromhttp://
www.cwi.nl/projects/trecvid/trecvid2003.html

Fig. 3. Visualization of the Gaussian model for the shot depicted in Figure 1

video shots and image examples. Given the topics the different
video search systems were asked to return a list of up to1000
shots based on likelihood of relevance with the topic. Returned
shots are pooled, judged for relevance, and, performance of a
search run is measured by recall, precision, and mean average
precision. As part of the Lowlands Group, we participated
in the TRECVID 2003 search task with runs based on the
dynamic models and one static run for comparison purposes.

B. Experimental setup

The video sequences in the TRECVID search collection
are already segmented into shots. For each shot, we build a
static model, a dynamic model (see Section II) and a language
model. Details about the language models can be found in [12]

For the TRECVID search task, topic descriptions provide
images and shots as query examples. The selection of images
and videos to be used as query examples for ranking is the
only manual action. From there on, the retrieval process is
fully automatic; we compute the retrieval status value for each
document model using equation 1 from Subsection II-A. To
combine models with ASR we (unrealistically) assume textual
and visual information are independent. Under this assumption
we easily compute the joint probability of observing query
text and visual example by the sum of the individual log
probabilities [13].

C. Experimental Results

Table I shows the results for static models, dynamic models
and language models (based on ASR transcripts provided by
LIMSI [14]). We report here mean average precision (MAP)
and precision at 10 (P@10). Although static and dynamic
models have the same MAP, dynamic models appear to be
more useful because they have higher initial precision (see
Table I). An example of a dynamic query with higher initial
precision than the static variant is shown in Figure 4, where
we search for anchor persons.

Initial precision is important, not only because users are
often interested in finding just a few good shots, but also



TABLE I

PERFORMANCE OF THESTATIC /DYNAMIC MODELS

Description MAP P@10
ASR only .130 .268
static only .022 .076
static + ASR .105 .220
dynamic only .022 .096
dynamic + ASR .132 .272

Mean Average Precision (MAP) and precision at 10 (P@10) for ASR only,
visual only and combined runs (static and dynamic models).

→

· · · · · ·→

Fig. 4. Top 5 results for static and dynamic runs; only keyframes are shown.

because it allows for a useful combination with ASR results. In
previous experiments [12], we found a combination of textual
and visual results is useful if both modalities have useful
results. For the dynamic models run, this seems to be the
case. Apart from the fact that the dynamic model outperforms
the static model in a visual-only setting, perhaps even more
important is the fact that it can improve on the ASR-only
results (see Table I). For most topics, the ASR run is better
than the visual run, but for some topics, this is reversed.
Apparently, the combined run is able to automatically select
the best modality per topic without letting the inferior modality
disturbing the results too much. This lifts the burden of
selecting the appropriate modality from the user, and ensures
robustness against choosing the wrong modality.

IV. CONCLUSION

In general, from a larger number of frames much more
solid evidence about the visual content of the shot can be
accumulated than from a single keyframe. Another advantage
of spatio-temporal modeling is the reduced dependency on
choosing an appropriate keyframe: sometimes the keyframe is
not well chosen, e.g., it is completely black, but the immediate
vicinity of the keyframe still contains valuable information in
the one-second sequence around it.

The resulting models capture the appearance and disappear-
ance of objects and simple linear motion, but cannot describe
complicated non-linear temporal events like movement of
water. The extracted space-time blobs are not appropriate for
representing non-convex regions in the 3D space-time domain
due their Gaussian nature. In our current extension of the
model we are looking for an approximation of non-linear
motion appropriate for video retrieval. A balance between the
computational processing cost and the complexity of the cap-
tured motion has to be found to be able to handle generic and
large search collections as provided by TRECVID. According
the official TRECVID2003 results, the main advantage of our
dynamic model has been that the combination of dynamic
shot models with language models of the ASR transcripts
outperforms both individual runs. The combination with the

static models performed however worse than the ASR only
run. Thus, we conclude that the dynamic models are useful
for the integration of different modalities. Currently, we are
investigating the integration of audio in the model.

A number of open questions remain to be addressed by
future research:

(1) We already optimized the process of building GMMs
for a shot in three ways: by selecting a subset of the frames in
the shot, by operating on8× 8 blocks of pixels, and by only
considering Gaussians that are axis-aligned. However, we are
looking for further ways to speed up the process of generating
GMMs without sacrificing precision.

(2) We found out that choosing a dense interval of frames
around the keyframe gives better results than a sparse regular
sample of frames from the entire shot. This suggests that
modeling spatio-temporal correlations is more important than
to model all objects in a shot. Therefore extending our model
with better modeling of motion may be a way to improve
precision significantly. How this can be done within reasonable
constraints on computing time remains to be seen. One pos-
sibility would be to consider Gaussians that are axis-aligned
except for the spatial and temporal axes.
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