EQUILIBRIO de PRECIPITACION

1. Escribir la expresión del producto de solubilidad de las siguientes sales:

a) AgCl b) Hg₂C₂

- c)Pb₃(AsO₄) $_2$
- d) Sulfato de bario

e) Hidróxido de hierro

- f)Fosfato cálcico
- Un litro de disolución saturada de oxalato cálcico, CaC₂O₄, se evapora totalmente y da un residuo sólido de 0.0061 g. Calcular el producto de solubilidad del oxalato cálcico. Sol: 2.27 10⁻⁹
- 3. Experimentalmente se obtiene que el ioduro de plomo(II) se disuelve en una proporción de $6\,10^{-4}$ moles en $0.50\,L$ de agua a $25\,^{\circ}C$. Calcular su producto de solubilidad.

Sol: 6.6 10⁻⁹

- 4. El arseniato de plomo, que a veces se utiliza como insecticida, es muy poco soluble en agua. Calcular su producto de solubilidad, sabiendo que se disuelve a razón de 3.0 10⁻⁵ g/L. Sol: 4 46 10⁻³⁶
- 5. El producto de solubilidad del cromato de plata vale 9.0 10⁻¹². Calcular la solubilidad de esta sal.

Sol: 1.31 10⁻⁴ M

6. La fluorita es un mineral compuesto por fluoruro de calcio. Calcular su solubilidad en g/L, sabiendo que su producto de solubilidad es 3.9 10⁻¹¹.

Sol: 1.668 10⁻² g/L

- 7. El agua de bebida fluorada contiene aproximadamente una parte por millón (ppm, 1g por 10^6 g de disolución) de F. ¿Es suficientemente soluble en agua el CaF2 como para utilizarse como fuente de iones fluoruro en la fluoración del agua de bebida? $K_{ps}(CaF_2) = 4\ 10^{-11}$. Sol: si
- 8. ¿Cual es la solubilidad molar del oxalato de calcio en una disolución 0.15M de cloruro de calcio? Comparar el resultado obtenido con el del problema 2 referente a su solubilidad en agua pura.

Sol: 1.5 10⁻⁸ M

- 9. El producto de solubilidad del HgF₂ vale 8 10⁻⁸. Calcular:
 - a) Cuantos grs de HgF₂ pueden disolverse en 0.25 litros de agua.

b) Cuantos gr
s de HgF_2 pueden disolverse en 0.25 litros de disolución 0.1 M de $Hg(NO_3)_2$.

Sol: a) 0.161 g/250 mL; b) 0.270 g/250 mL.

10. La concentración de iones calcio en el plasma sanguineo es 0.0025 mol/L. Si la concentración en iones oxalato es10⁻⁷ M. ¿Habrá precipitación?

Dato: Kps(, CaC_2O_4) = 2.27 10^{-9} .

Sol: No.

11. Cuando se mezclan 50 mL de cloruro de bario 10⁻³ M con 50 mL de sulfato sódico 10⁻⁴ M ¿habrá precipitado? Dato: Kps(BaSO4) = 1.1 10⁻¹⁰.

Sol: Si

- 12. La fluoración del agua potable se emplea en muchos lugares para ayudar a la prevención de la caries dental. Típicamente la concentración de ión fluor se ajusta aproximadamente a 0.001 ppm. Algunos suministros de agua son tambien "duros", es decir, contienen ciertos cationes como el Ca²⁺ que interfieren en la acción del jabón.

 Considere un caso en que la concentración de Ca²⁺ es 0.008 ppm, ¿se podrá fluorar este agua sin que aparezca un precipitado de CaF₂ en estas condiciones? K_{ps}(CaF₂) = 4 10⁻¹¹. ¿Cuántos Kg de NaF hay que añadir a los depósitos de agua de una población de 20000 habitantes que consume al dia, por término medio, 2L de agua por persona?
- 13. ¿Cuántas moles de cloruro de calcio se pueden añadir a 1.5 L de sulfato de potasio 0.02 molar antes de observar la precipitación del sulfato de calcio? Dato: Kps(CaSO4)=2.4 10⁻⁵. Sol: 1.8 10⁻³
- 14. Calcular la concentración de CO₃²⁻ necesaria para precipitar CaCO₃ a partir de un agua dura que contiene 50 mg de Ca²⁺ por litro. El Kps para el CaCO₃ es 5 10⁻⁹ Sol: 4 10⁻⁶M
- 15. De acuerdo con el real decreto 1423/1982 (B.O.E. 29-6-1982) para que un agua de bebida envasada pueda ser comercializada como minero medicimal la cantidad de SO₄²⁻ no puede superar los 250 mg/L.
 Un alumno siente curiosidad por saber si un agua comercializada cumple los requisítos exigidos para los sulfatos. Para comprobarlo, prepara una disolución de BaCl₂ 0.005 M.

exigidos para los sulfatos. Para comprobarlo, prepara una disolución de BaCl₂ 0.005 M. Parte de 100 mL de agua y va añadiendo BaCl₂ hasta que se inicia la precipitación, gastando hasta dicho punto 10 mL de la sal de bario. ¿Cumple este agua los requisítos exigidos para los sulfatos? Kps (BaSO₄) = 1 10⁻¹⁰

16. Unas determinada muestra de agua saturada con CaF_2 tiene un contenido de Ca^{2+} de 115 ppm(es decir 115g de Ca^{2+} por 10^6 g de agua) ¿Cuál es el contenido de ion F del agua en ppm?

Sol: 27 ppm

- 17. Se mezclan 50 mL de cloruro de bario 10^{-3} M con 50 mL de sulfato de sodio 10^{-4} M. ¿Cuál será la concentración residual de iones sulfato en la disolución despues de la precipitación? ¿Cuál será el porcentaje de sulfato no precipitado? Dato: Kps(BaSO4) = 1.1 10^{-10} . Sol: 0.49%
- 18. Cuando se añaden 25 mL de AgNO₃ 0.1M a 25 mL de K₂CrO₄ 0.1M ¿Cúal será la concentración y el porcentaje de iones plata en disolución despues de la precipitación del cromato de plata?

Dato: $Kps(Ag_2CrO_4) = 9.0 \cdot 10^{-12}$. Sol: $[Ag+] = 1.90 \cdot 10^{-5} M$; 0.038%

19. ¿Cuál será la concentración final de todos los iones en una disolución que contiene 1.5 10^{-2} moles de nitrato de estroncio y 3 10-3 moles de fluoruro de sodio en 0.2 L de disolución? Kps(SrF₂)=7.9 10^{-10} .

Sol: a) Cl⁻; [Cl⁻]=3.51 10⁻⁵ M.

20. Se agrega AgNO₃ a una disolución 10⁻² M en NaCl y 5 10⁻² M en K₂CrO₄. Calcular: a) El anión que precipita inicialmente.

- b) La concentración de dicho anión cuando empiece a precipitar el otro anión. Datos: Kps(AgCl) = $1.72\ 10^{-10}$; Kps(Ag₂CrO₄)= $1.2\ 10^{-12}$ Sol: [F-] = $1.082\ 10^{-4}$ M; [Sr²⁺] = 6.755^{-10-2} M; [NO3-] = 0.15M; [Na+] = 0.015 M.
- 21. El producto de solubilidad del Fe(OH)₃ vale 6.3 10⁻³⁸. ¿Cuántos moles/litro de Fe³⁺ deben estar presentes para que empiece a precipitar el Fe(OH)₃ en una disolución de pH = 8? Sol: 6 10⁻²⁰ M.
- 22. La precipitación del Al(OH)₃ se emplea a veces para purificar el agua.
 - a) ¿A qué pH se iniciará la precipitación del Al(OH) $_3$ si se añaden 0.908 Kg de Al $_2$ (SO $_4$) $_3$ a 3785L de agua? Kps(Al(OH) $_3$) = 3.7 10^{-15} .
 - b) ¿Aproximadamente qué cantidad de CaO se debe agregar al agua para alcanzar este pH?
- 23. Explique por qué precipita Mg(OH)₂ cuando se añade CO₃²⁻ a una disolución que contiene Mg²⁺.

¿Precipitará $Mg(OH)_2$ cuando se agregan 5.0 g de Na_2CO_3 a 1.0 L de una solución que contiene 150 ppm de Mg^{2+} ? $Kps(Mg(OH)_2) = 1.8 \ 10^{-11}$.

Sol: El CO₃²⁻ es una base fuerte; si.

24. 18.Si se añade 1 g de nitrato de plata a 500 mL de ácido acético 0.05 M, ¿precipitará el acetato de plata de la disolución?

Datos: $Kps(CH_3COOAg) = 2 \cdot 10^{-3}$. $Ka(CH_3COOH) = 1.8 \cdot 10^{-5}$.

25. Calcular la concentración máxima de Mg²⁺ en 100 mL una disolución que contiene 10 mL de amoniaco de 25 % de riqueza y densidad 0.91 g/mL junto con 1 g de cloruro amónico disuelto

Datos: $Kps(Mg(OH)_2) = 1.5 \cdot 10^{-11}$. $Ka(NH^{4+}) = 5.5 \cdot 10^{-10}$. Sol: $8.9 \cdot 10^{-4}$ M.

26. La formulación de las Unidades Nutrientes Parenterles (UNP) en envase único (glucidos, lípidos, aminoácidos y electrolitos) es un reto que se mantiene desde hace varios años. La complejidad de las UNP, mas de 50 especies, exige disponer de conocimientos y datos fiables respecto a la estabilidad físico química de todos los nutrientes a mezclar.

En un laboratorio se estudia, in vitro, la compatibilidad de los electrolitos calcio y fosfato, por el pelgro que representa la precipitación de sales fosfato-cálcicas.

Se plantean diversas alternativas para proporcionar calcio como CaCl2, citrato cálcico, gluconato cálcico... y asi mismo se estudia la posibilidad de administrar el fosfato como NaH₂PO₄, glucosa-6-fosfato, glucosa-1-fosfato de arginina....

Establecido el protocolo, en una primera etapa se desea estudiar las condiciones en que puede aparecer el precipitado amorfo de $Ca_3(PO_4)_2$, para ello se prepara una bolsa de 1L de UNP que contiene inicialmente 4.98 mM de Ca^{2+} utilizado como $CaCl_2 \cdot 2H_2O$, y 5.06 mM en NaH_2PO_4

Determinar hasta que pH se puede elevar la disolución sin que aparezca precipitado de $Ca_3(PO_4)_2$.

Datos: $Kps(Ca_3(PO_4)_2) = 1.25 \ 10^{-26}$ $K_{a1} = 7.1 \ 10^{-3}; \quad K_{a2} = 6.2 \ 10^{-8}; \quad K_{a3} = 4.4 \ 10^{-13}$ Sol: 6.2

- 27. A una disolución que contiene iones Ba^{2+} y Ca^{2+} , cuya concentración es 0.010 M, se añade en pequeñas dosis SO_4^{2-} (en forma de Na_2SO_4).

 a) Determinar la concentración de iones SO_4^{2-} a la que el $BaSO_4$ comienza a precipitar.

 b) Determinar la concentración de iones SO_4^{2-} a la que el $CaSO_4$ comienza a precipitar.

 c) Determinar la concentración de iones Ba^{2+} a la que el $CaSO_4$ comienza a precipitar.

 d) Determinar el intervalo de valores de la concentración de iones SO_4^{2-} para la cual el Ba2+ se puede separar cuantitativamente del Ca^{2+} .

 Datos: $Kps(CaSO_4)=2.4\ 10^{-5}$. $Kps(BaSO_4)=1.1\ 10^{-10}$.

 Sol: a) $1.11\ 10^{-8}$ M. b) $2.4\ 10^{-3}$ M. c) $4.58\ 10^{-8}$ M. d) $1\ 10^{-5}$ M $< [SO_4^{2-}] < 2.4\ 10^{-3}$ M.