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The objective of the talk is to present 
an overview of fundamental dynamical 
models for the pattern formation in 
nonlinear two-dimensional (2D) media. 
The overview will present both the 
basic models and their basic solutions, 
which describe solitary patterns (2D 
solitons) in them. Physical realizations 
of the solutions will be considered too.  
    



Both conservative and dissipative 
models will be reviewed. Different 
parts of the talk are defined 
according to basic mechanisms 
which provide for the stability of 
the 2D solitons, as the stability is 
the main issue in this field: 

 



(A) Conservative systems with trapping 
potentials; 
(B) Conservative systems with the 
cubic-quintic (CQ) nonlinearity; 
(C) Dissipative models based on 2D 
complex Ginzburg-Landau (CGL) 
equations; 
(D): Stable 2D composite solitons in 
spin-orbit-coupled self-attractive Bose-
Einstein condensates in free space. 

 



Part A: Conservative systems with 
trapping potentials 

(1) Introduction. The simplest model which may give rise to 
solitons and solitary vortices: the 2D nonlinear Schrödinger 
equation (NLSE), alias the Gross-Pitaevskii equation (GPE): 
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Localized solutions, with asymptotic forms  
U(r) ~ r S at r →0, and U(r) ~ exp(-(-2μ)1/2r), 
exist even in the absence of the external potential, W = 0, 
but they all are completely unstable. The fundamental 
solitons [with S = 0, alias Townes’ solitons, R.Y. 
Chiao, E. Garmire & C. H. Townes, Phys . Rev. Lett . 
13, 479 (1964)] are unstable against the collapse, and 
vortical solitons (with S ≥ 1) are vulnerable to a still 
stronger instability against azimuthal perturbations 
which break their axial symmetry and split the vortices 
into a few separating segments (fundamental solitons, 
which will later be destroyed by the collapse).  



2. Stabilization of single-component vortices 
A fundamental issue: how can solitons and 
vortices be stabilized in physically relevant 
settings?  
The simplest possibility is to use an axially 
symmetric trapping potential. Typically, it is 
taken as the harmonic-oscillator potential, 
W(r)=(Ω 2/2)r 2. Here, basic results will be 
presented as per the following paper: 

 



The basic equation with the harmonic-
oscillator trapping potential is written as 

 
 
 
with g < 0 (which corresponds to the self-
attraction). The norm of solution (~ number of 
atoms in the BEC, or the total power in the 
optical model) is defined as 
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The main result of the analysis: families of fundamental 
solitons and vortices are represented  by N(μ) curves, in 
which stable subfamilies are shown by continuous curves. 
For   S = 1, the stability region (its edge is indicated by the 
arrow) amounts to ≈1/3 of the respective existence region: 



For the analysis of the stability of these solutions 
against small perturbations, perturbed solutions 
were looked for as 

 
 
 
 
(in the application to BEC, the res- 
pective linearization is called the 
Bogoliubov-de Gennes equations). 
As a result, the instability growth  
rates are calculated in the following  
form, featuring a stability window  
for S = 1, but not for S = 2: 

 



An example of direct simulations of the perturbed 
evolution of a stable vortex (intensity and phase 
fields are shown): 



In the interval of the norm between 1/3 and 0.43 of the 
existence region, the vortex with S = 1 is semi-unstable, 
periodically splitting into two fragments and recombining: 



3. Another general problem: a possibility of 
stabilizing two-component states with hidden 
vorticity in a system of two coupled 2D NLSEs 
with the axisymmetric trapping potential. The 
presentation is based on the following paper: 

  
 



The system of the coupled equations is set as: 



The hidden-vorticity solution is looked for as the 
one with opposite values of the angular 
momentum in the two components, so that the 
total angular momentum is zero: 
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The stability analysis was based on the use 
of the Bogoliubov – de Gennes equations 
for perturbed solutions, taken as  
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The main result of the analysis – the stability diagram for 
the hidden-vorticity (HV) modes. Note that both β > 0 and 
 β < 0 are included. 



Verification of the predicted stability by direct 
simulations, for N = 14.10 and β =+0.2: 



Verification of the predicted instability (splitting into 2 
segments which collapse later) for N = 13.49 and β = 
+0.5: 



Verification of the predicted instability 
(splitting into 4 segments which collapse 
later) for N = 26.98 and β = +0.5: 



4. The use of periodic potentials for the 
stabilization of 2D solitons and vortices: 
an overview 

 
Periodic potentials, that may be induced by 
material or photonic (virtual) lattices in 
optical media, or by optical lattices (OLs) in 
BECs, can create and/or stabilize various 
types of localized modes (solitons) which do 
not exist at all, or are definitely unstable, in 
the respective uniform media.   



 
A natural link between the description of continuous 
media with periodic potentials and discrete lattices 
is established by the consideration of the limit case 
of a very strong periodic (cellular) potential, which, 
in the tightly-binding approximation, effectively 
splits the wave field into an array of weakly 
coupled droplets/filaments.  

 
This mechanism underlies the concept of discrete 
nonlinear optics, which has grown into a huge 
research area, see a review: “Discrete solitons in 
optics”, by F. Lederer, G.I. Stegeman, D.N. 
Christodoulides, G. Assanto, M. Segev, and Y. 
Silberberg: Phys. Rep. 463, 1 (2008). 

 
 



This approach leads to the discrete nonlinear 
Schrödinger equation (DNLSE). In the 1D setting, 
this equation is 

 
 
 
It can be derived from the continual Gross-
Pitaevskii equation (GPE), which describes BEC 
trapped in a deep optical lattice: 
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5. Vortex solitons in continuous 
periodic media 
The fundamental model of the 2D continuous 
medium equipped with the periodic (lattice) 
potential, in optics and BEC alike, is based 
on the following continuous NLSE/GPE with 
the self-focusing cubic nonlinearity:  
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The possibility of the stabilization of both 
fundamental solitons and solitary vortices by 
means of lattice potentials was first 
demonstrated, independently, in the following 
works:  
 B.B. Baizakov, B.A. Malomed, and M. Salerno, 
Multidimensional solitons in periodic potentials, 
Europhys. Lett. 63, 642 (2003); 
J. Yang and Z.H. Musslimani, Fundamental and 
vortex solitons in a two-dimensional optical lattice, 
Opt. Lett. 28, 2094 (2003).  

 



Stable fundamental solitons found in these works 
are single-peak nearly isotropic objects, slightly 
deformed by the underlying square-lattice 
potential (this example is shown for the lattice’s 
strength ε = 0.92, and the integral norm N = 2π): 

   
 



 
 

 
Stable objects identified as vortex solitons were 
actually built as 4-peak complexes. The 
respective vorticity, S, is represented by phase 
shifts between the wave functions at adjacent 
peaks: ∆Φ = π/2, hence the total phase 
circulation around the pivot of the 4-peak 
complex is 2π, which corresponds to S = 1. 

 
Two different types of stable 4-peak vortical 
modes (with S = 1) can be thus built: on-site-
centered vortices, and off-site-centered 
vortices. 



A typical example of the stable on-site 
centered vortex (with norm N = 2π and ε = 
10). Note the presence of the empty site at 
the center:  

 



A typical example of the inter-site-centered square-
shaped vortex (a densely packed pattern, without 
an empty site in the middle), for   ε = 0.5, is shown by 
means of a contour plot for the 2D intensity 
distribution: 

 
 
 
 
 
 



6. Discrete vortex solitons  
The discovery of the stable vortex complexes, 
supported by the lattice potentials acting in the 
continuous media, suggests a possibility of the 
existence of stable vortex solitons in discrete 
lattices, obtained, as said above, from the 
continuum models as the limit case corresponding 
to a very strong lattice. Such a discrete lattice is 
described by the 2D DNLSE (recall the evolution 
variable is z in optics): 
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Stable solutions to the 2D DNLSE, which 
explicitly represent discrete vortex 
solitons, were reported by B.A. Malomed 
and P.G. Kevrekidis, Phys. Rev. E 64, 
026601 (2001). 

 



An example of a stable vortex at C = 0.05 (the 
intensity and phase distributions are displayed): 



Generally, the stationary solutions are sought for as 
 
 
The solutions may be normalized by fixing Λ = 0.32 
(for instance) and varying C. The basic result is that 
the vortices are stable at 
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7. Experimental results for discrete vortices 
Quasi-discrete vortex solitons were created in 
photorefractive materials with a photonic lattice 
induced by the illumination of the sample in 
directions orthogonal to that of the probe beam by 
counter-propagating pairs of beams, launched in 
the ordinary polarization (while the probe beam 
carries the extraordinary polarization): 

D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y. 
S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, 
Phys. Rev. Lett. 92, 123903 (2004). 
J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, 
M. Segev, J. Hudock, and D.N. Christodoulides, 
Phys. Rev. Lett. 92, 123904 (2004). 

 



Characteristic examples of the experimentally observed 
stable localized vortex structures: 



8. Stable higher-order (S > 1) vortices  

In the 2D continuous models including the 
usual periodic potential, and the cubic 
self-focusing nonlinearity, stable multi-
peak vortex complexes, carrying the 
vorticity up to S = 6, were reported in: H. 
Sakaguchi and B.A. Malomed, Europhys. 
Lett. 72, 698 (2005). 



Examples of stable higher-order vortex solitons: 
(a) S = 2; (b) S = 3; (c,d) S = 4:  



 
The stability of the vortex soliton with S = 2 (and instability 
of the one with S = 1) in  a hexagonal photonic lattice was 
experimentally demonstrated by B. Terhalle, T. Richter,     
K. J. H. Law, D. Göries, P. Rose, T.J. Alexander, P.G. 
Kevrekidis, A.S. Desyatnikov, W. Krolikowski, F. Kaiser, C. 
Denz, and Y.S. Kivshar, Phys. Rev. A 79, 043821 (2009): 

 



9. Vortex solitons in quasi-periodic 2D lattices 
For the self-defocusing cubic nonlinearity, stable 
gap-mode vortex solitons were reported by H. 
Sakaguchi and B.A. Malomed, Phys. Rev. E 74, 
026601 (2006), in the 2D GPE/NLSE with the 
potential in the form of the  five-fold Penrose tiling: 
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An example of a stable vortex gap soliton 
with S = 1 [(a) and (b) display contour plots 
of |Φ(x,y)| and Re(Φ(x,y))]: 



10. Crater-shaped vortices in continuous 
models.  
“Crater” is a vortex soliton squeezed into a single 
cell of the underlying lattice potential. In many 
cases, unlike the multi-peak vortex complexes, 
such compact vortices are completely 
unstable.  



Nevertheless, in the usual 2D model with the 
cosinusoidal  cellular potential and self-
focusing cubic nonlinearity, a stability region 
for the “craters” was found, provided that the 
potential is deep (strong) enough [H. Sakaguchi 
and B.A. Malomed, Phys. Rev. A 79, 043606 
(2009)]. In this picture, A is the depth of the 
potential: 



Moreover, taking the compact crater-shaped 
vortices as building blocks, one can arrange 
them into a ring, onto which a global vorticity, S, 
may be imprinted. This yields patterns 
(“supervortices”) with two different vorticities, 
namely, individual vorticity s = 1 of each 
individual “crater”, and global vorticity S. 
Therefore, the supervortices with S = +1 and        
S = -1 are not equivalent, if s = +1 is fixed:            
H. Sakaguchi and B.A. Malomed, Europhys. Lett. 
72, 698 (2005); Phys. Rev. A 79, 043606 (2009). 

 



An example of two stable non-equivalent 
supervortices with global vorticities S = +1 
(a,b) and S = -1 (c) in the 2D GPE/NLSE 
equation: 



Part B: Conservative systems with  
the cubic-quintic nonlinearity  

 
Besides the use of trapping potentials, 
the stabilization of 2D fundamental and 
vortical solitons can be provided, in the 
uniform space, by a combination of self-
focusing cubic and self-defocusing 
quintic nonlinear terms.  



The model equation is written in the normalized 
form, for the spatial-domain propagation of a 
stationary optical beam in a bulk medium: 
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At r →∞, the radial equation becomes 
asymptotically one-dimensional, which gives rise 
to the well-known exact soliton solution (Kh.I. 
Pushkarov, D.I. Pushkarov, and I.V. Tomov, Opt. 
Quant. Electr. 11, 471 (1979)): 
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Numerous theoretical and experimental works 
demonstrate that the cubic-quintic nonlinearity 
occurs in real optical media, such as chalcogenide 
glasses, some organic materials, and suspensions 
of metallic nanoparticles: 



Experimentally, the stability of (2+1)D 
fundamental (m = 0) solitons in an optical 
cubic-quintic medium was demonstrated in 



 
 
The stability of fundamental solitons (m = 0) in the 
framework of this equation is obvious. A nontrivial problem is 
the stability of vortex solitons against splitting by azimuthal 
perturbations.  For the first time, this possibility was reported, 

on the basis of direct simulations, in:   



Accurate results for this problem have been 
reported in the following paper: 

 



The vortex solitons with topological charge m 
are stable if their radius is large enough, in 
intervals kcr < k < kmax ≡ 0.1875. Values  of kcr 
≡ ωcr are collected in the table (the relative 
width of the stability region is (kmax - kcr)/ kmax 
=0.21 for m = 1, and only 0.04 for m = 5):   



Profiles of the vortices with different topological 
charges m at the respective stability boundaries: 



Thus far, no experimental 
observation of stable or quasi-
stable 2D soliton with embedded 
vorticity has been reported. 
Experimental demonstration of 
such (effectively) stable spatial 
vortex solitons would be a 
great achievement.  



Part C: localized vortices in dissipative 
media described by complex Ginzburg-
Landau equations (CGLEs). 
1. The 2D model in free space 
First, we consider the stability of vortex (spiral) 
2D solitons in the framework of the CGLE with 
the cubic-quintic nonlinearity. This class of 
models was introduced in: 
V. I. Petviashvili and A. M. Sergeev, “Spiral 
solitons in active media with excitation 
thresholds,” Dokl. AN SSSR (Sov. Phys. 
Dokl.) 276, 1380–1384 (1984).  

 
 

 



The equation may be generalized as a model of laser 
cavities. In this case, it includes linear loss, δ > 0 (to 
secure the stability of the zero background around the 
soliton), cubic gain, ε > 0, and quintic loss, μ > 0 (to 
secure the overall stability of the system).  
The equation also includes the diffusion term ~β, 
which actually does not occur in optical models: 



The presentation of results for the 2D 
model will follow a rather old paper on 
this topic: 



Examples of the self-trapping of stable vortical solitons 
with vorticities S = 1 (a) and S = 2 (b): 



The illustration of the spiral form of the phase 
field in the stable vortex soliton (s = 1 and 2): 



2. Stabilization of 2D vortices in the cubic-
quintic CGLE with the cellular (lattice) 
potential 
 
The stabilization of dissipative vortex complexes, 
built of 4 peaks, of both the on-site-centered 
and off-site-centered types, in the 2D spatial-
domain model of laser cavities, was 
demonstrated in: 
H. Leblond, B. A. Malomed, and D. Mihalache, 
Stable vortex solitons in the Ginzburg-Landau 
model of a two-dimensional lasing medium with 
a transverse grating, Phys. Rev. A 80, 033835 
(2009). 



The 2D CGLE with the cubic-quintic 
nonlinearity and cellular potential is 
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On the other hand, if the lattice potential is too weak       
(V0 = 0.15), the 4-peak complexes are unstable: 

 



 
Another possibility: stabilization of various types 
of vortical modes in the 2D CGLE without 
diffusion and without trapping potentials, but 
with spatial modulation of the linear loss:  



The model equation (which can 
also be realized in laser cavities): 

 
 
 
 
 
 
Here the profile of the modulation of the local 
linear loss is given by g(r) = γ + Vr 

2 , with γ > 0 
and V > 0. 



The model gives rise to a great variety of stable 
vortex solitons. An example of self-trapping of a 
simple stable vortex soliton: 



An example of another species of stable vortical 
modes, viz., a rotating elliptically deformed vortex: 



Another stable species: an eccentric spinning 
vortex periodically orbiting around the center:  



Still another stable species – a rotating deformed 
crescent-shaped vortex: 



The last stable species – an elliptically-shaped 
“slanted crater”:  



Part D: Stable two-dimensional composite 
solitons in spin-orbit (SO)-coupled
self-attractive Bose-Einstein condensates 
(BEC) in free space

A result of a collaborative work with: 
Hidetsugu Sakaguchi and Ben Li 
Interdisciplinary Graduate School of Engineering 
Sciences,  Kyushu University, Fukuoka, Japan 



A paper reporting basic results to be 
presented in this part: 



(1) Introduction and objectives 
 
The concept of emulation (alias simulation) of 
complex physical effects, known in condensed-
matter physics, by much simpler settings 
available in BEC (matter waves) and 
photonics (optical waves), has drawn a great 
deal of interest: 

 
P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch, 
and M. Lewenstein, Rep. Prog. Phys. 75, 082401 
(2012).  

 
 
 
 
 
 
 

 



A new topic has emerged in the framework of this 
approach: the emulation of spin-orbit (SO) 
interactions in semiconductors, such as those 
accounted for by the Rashba and Dresselhaus 
terms, by mapping the spinor wave function of 
electrons into the pseudo-spinor two-component 
wave function of a binary BEC gas:  
Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman, 
Nature 471, 83 (2011); 
Y. Zhang, L. Mao, and C. Zhang, Phys. Rev. Lett. 
108, 035302 (2012); 
A brief review: H. Zhai, Int. J. Mod. Phys. B 26, 
1230001 (2012). 



The SO coupling is a linear feature of the system. 
Its combination with the natural self-repulsive cubic 
nonlinearity of the atomic BEC gives rise to 
nonlinear effects, such as delocalized vortices: 
C. J. Wu, Mod. Phys. Lett. B 23, 1 (2009);  
X.-Q. Xu and J. H. Han, Phys. Rev. Lett. 107, 
200401 (2011);  
J. Radic', T. A. Sedrakyan, I. B. Spielman, and V. 
Galitski, Phys. Rev. A 84, 063604 (2011);  
X.-J. Liu, H. Pu, P. D. Drummond, and H. Hu, Phys. 
Rev. A 85, 023606 (2012);  
H. Sakaguchi and B. Li, Phys. Rev. A 87, 015602 
(2013);  
A. Fetter, Phys. Rev. A 89, 023629 (2014).   

  



The objective here is to construct self-trapped 
(localized) stable 2D vortical modes in the SO-
coupled BEC with attractive SPM and XPM 
nonlinearities, in the free space (without any 
trapping potential).  

 



At the first glance, this objective seems absolutely 
impossible. Formal 2D vortex-soliton solutions (alias the 
above-mentioned “vortex Townes’ solitons”) of the NLSE 
with the self-attractive cubic term are well known: 

 
 
  



However, such solitons are subject to the above-
mentioned strong instability, against splitting 
and collapse.  

 
Therefore, as already discussed previously, a 
problem of fundamental interest is to introduce 
physically meaningful settings, in which both the 
fundamental and vortical solitons can be 
stabilized, against the collapse and splitting.  

 

 



(2) The model 
The system of GPES for the (pseudo-) spinor wave function 
(Φ+, Φ-) of the binary BEC coupled by the SO terms of the 
Rashba type with strength λ ≡ 1, coefficient of the SPM 
self-attraction ≡ 1, coefficient of the XPM inter-component 
attraction γ ≥ 0, and (for the time being) the strength of the 
HO trapping potential Ω:  



(3) Semi-vortex states 

The coupled GPEs admit a family of solutions for semi-
vortices, with vorticities m+ = 0 in one component, and m- = 1 
in the other. The exact ansatz for these solutions is 
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A numerically found cross-section (along y = 0) of a 
stable semi-vortex, at γ = 0 and Ω = 0, obtained by 
means of the imaginary-time integration, as a 
stationary soliton in the free space: 



The numerically found dependence between the total norm of the semi-
vortices and their chemical potential demonstrates that (1) the norm of the 
semi-vortex indeed falls below the critical value and (2) there is no finite 
minimum (threshold) value of the norm necessary for the existence of the 
semi-vortex; (3) the norm is bounded from above precisely by the critical 
value; (4) the dependence satisfies the Vakhitov-Kolokolov (VK) criterion, 
dμ/dN < 0, which is a necessary condition for the stability:   

 
 
 
 
 



Direct simulations demonstrate that the semi-vortices are 
completely stable at γ < 1 (XPM/SPM < 1), but they are 
unstable at γ > 1 . 
In the limit of N → Ncritical ≈ 5.85, the semi-vortex 
degenerates into the usual (unstable) Townes’ soliton 
with an infinitely large chemical potential, in the first 
component, leaving the second (formerly vortical) 
component empty: 



(4) Mixed modes 

1 2

Another class of localized states can be constructed in the form of , 
so called because they  fundamental and vortical terms in each component, 
namely, (0, 1) and (0, 1),  as per thm m   
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A typical example of the cross-section of the mixed mode:
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The dependence between the chemical potential  and norm 
demonstrates that the mixed-mode family also complies 
with the VK criterion, hence it may be stable. In the limit of 
N → Ncritical ≈ 2·5.85/(1 + γ), the mixed mode degenerates 
into a two-component Townes’ soliton, while the vortical 
terms in both components vanish. 

 
 
 



Direct simulations demonstrate that the mixed mode is 
unstable at γ < 1, and stable at γ > 1, i.e., exactly where 
the semi-vortex is stable or unstable, respectively. 
This stability switch between the semi-vortex and mixed 
mode with the increase of γ ≡ XPM/SPM is explained by 
the fact that the semi-vortex  and mixed mode are ground 
states, which realize the minimum of the system’s energy, 
E, precisely at γ < 1 and γ > 1, respectively. 

 
 



The dependence of the energy of the semi-vortex 
(“0”) and mixed mode (“01”) on γ ≡ XPM/SPM, for two 
different fixed values of the total norm, N = 3.7, and N = 3.0 
(precisely at γ = 1, both the semi-vortex and mixed mode 
are stable):  
 
 



Conclusions of Part D 
The main result is that the system of two 2D GPEs with the 
self-attracting nonlinearity, coupled by the linear SO terms 
of the Rashba type, gives rise to two families of 
composite (half-fundamental, half-vortical) solitons: semi-
vortices, which are stable, and realize the ground state 
of the system, at γ ≡ XPM/SPM < 1, and mixed modes, 
which do the same at γ > 1. 
This is the first example of a model in which 2D solitons, 
supported by the cubic self-focusing in the free space, 
are stable. This may be explained by the fact that the 
solitons exist with values of the total norm falling below 
the critical value necessary for the onset of the collapse. 
In the limit of the norm approaching the critical value, the 
solitons degenerate into unstable Townes’ solitons.  


