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At the fundamental (quantum) level, physics 
is governed by linear equations. In 
particular, the Schrödinger equation for 
wave function Ψ of a quantum particle in the 
three-dimensional space is linear : 
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The nonlinearity, which is common in classical 
mechanics, emerges from the Schrödinger equation 
in the semi-classical limit, which formally 
corresponds to treating the Planck’s constant, ħ, as a 
small parameter. In this limit, the semi-classical 
approximation is used to seek for a solution for the 
wave function as  

( , , , )( , , , ) ( , , , ) exp ,
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This result was obatined at order .
At the next orer, , one can derive the equation
for the real pre-exponential amplitude:
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On the other hand, effective nonlinearity is 
possible in many-body macroscopic 
quantum states. An important example is 
provided by Bose-Einstein condensates 
(BEC). In this case, all boson atoms in a 
rarefied ultracold gas fall into a ground state, 
and are described by a single-atom wave 
function. However, the corresponding 
Schrödinger equation does not take into 
account collisions between atoms. 



The collisions may be effectively taken into regard, 
in the mean-field approximation (which is a very 
accurate approach for rarefied BEC gases), by 
adding a cubic nonlinear local term to the 
respective linear Schrödinger equation. Thus one 
arrives at the Gross-Pitaevskii equation, GPE 
(alias the nonlinear Schrödinger, NLS, equation), 
which was derived in 1961 in the context of the 
liquid-helium theory: 
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In this notation, the total number of 
atoms in the BEC is given by the norm 
of wave function, which is a dynamical 
invariant (conserved quantity) of the 
Gross-Pitaevskii equation: 

2| ( , , ) | .N x y z dxdydz 



 
In most cases, interactions between atoms are 
repulsive, which corresponds to as > 0. 
However, the interaction may sometimes be 
attractive, which corresponds to as < 0. 
Accordingly, rescaling leads to two different 
NLS equations, with the repulsive (+) and 
attractive (-) cubic nonlinearity, respectively: 
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BEC as a quantum state of matter was predicted 
by Bose and Einstein in 1924-1925, and created 
experimentally in a vapor of atoms of Rb-87 in 
1995 (by the group of E. Cornell and C. Wieman), 
at temperature  71.7 10 K:T  



The inter-atomic interactions may be switched 
from repulsion to attraction by means of the 
Feshbach resonance, in an external dc 
magnetic field (predicted in 1958) – in 
particular, in condensates of Li-7 and Rb-85 
atoms. The condensate can be created in 
reduced one- and two-dimensional (1D and 
2D) geometries, using trapping fields which 
act in the transverse direction(s). The 
corresponding 1D NLS equations are, in the 
scaled form: 

2
2

2
1 ( ) | | .
2

i U x
t x

  
     

 



In the free space (no external potential, U = 0), 
the 1D NLS equation with the attractive cubic 
term gives rise to a family of stable 
elementary solutions in the form of solitary 
waves, alias fundamental solitons. The 
soliton family depends on two arbitrary 
parameters - amplitude η and velocity c: 
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The localized shape of the 
fundamental soliton  
[1/cosh²(x – ct)]: 



In experiments with BEC loaded into nearly 
one-dimensional (“cigar-shaped”) trapping 
potentials, matter-wave solitons (single 
ones and chains of several solitons) have 
been created in Li-7: 
K.E. Strecker, G.B. Partridge, A.G. Truscott, and R. 
G. Hulet, Nature 417, 150 (2002); 
L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. 
Cubizolles, L.D. Carr, Y. Castin, and C. Salomon, 
Science 296, 1290 (2002). 
Then,  solitons in a less anisotropic trap (with 
aspect ratio 2.5) were created in Rb-85: 
S.L. Cornish, S.T. Thompson, and C.E. Wieman, 
Phys. Rev. Lett. 96, 170401 (2006). 



The famous experimental picture of the density 
distribution in a chain of 7 solitons in Li-7 
(produced by the group of R. Hulet): 



Further experimental results for bright matter-
wave solitons 
Controlled formation and reflection of a soliton from a 
potential barrier in  Rb-85 (the soliton traveled a 
macroscopic distance 1.1 mm in the course of 150 
ms): 
A.L. Marchant, T.P. Billam, T.P. Wiles, M.M.H. Yu, S.A. 
Gardiner, and S.L. Cornish, Nature Comm. 4, 1865 
(2013). 
Creation of single and paired solitons in a magnetic 
waveguide by means of the evaporative technique in 
Li-7 (the Stanford-University group): 
P. Medley, M. A. Minar, N. C. Cizek, D. Berryrieser, 
and M. A. Kasevich, Phys. Rev. Lett. 112, 060401 
(2014). 

 



In 1971, Zakharov and Shabat had discovered that the 1D 
NLS equations (with the attractive and repulsive 
nonlinearities alike) are integrable equations. The 
integrability is revealed by a mathematical technique called 
“inverse scattering transform”. In particular, collisions 
between moving solitons are completely elastic, i.e., they 
reappear after the collisions, either bouncing back from, or 
passing through each other, with precisely the same 
shapes, amplitudes, and velocities as they had before the 
collision:    



The only dynamical effect of the collision is a shift 
of trajectories of both solitons, without any change 
in their shapes:  



Experimentally, collisions of nearly-1D matter-wave quasi-
solitons were studied in detail only recently, in Li-7: 
J. H. V. Nguyen, P. Dyke, D. Luo, B. A. Malomed, and R. G. 
Hulet, Nature Phys. 10, 918-922 (2014). 
Images of in-phase (left) and out-of-phase (right) collisions:    



In addition to the fundamental solitons, the inverse-
scattering technique allows one to find exact analytical 
solutions for higher-order solitons, generated by initial 
conditions    Ψ(x,t=0) = Nη sech(ηx), with integer N. An 
example: the third-order soliton (N = 3), which oscillates, 
periodically splitting and recombining back into a single peak: 



An attempt of observation of breathers (bright solitons 
featuring regular oscillations) in Rb-85: 
P.J. Everitt,  M.A. Sooriyabandara, G.D. McDonald1 K.S. 
Hardman, C.Quinlivan, P.Manju, P.Wigley, J.E. Debs, J.D. 
Close, C.C.N. Kuhn, and N.P. Robins, arXiv:1509.06844. 



The NLS equations also emerge as universal models 
of nonlinear-wave propagation in numerous classical 
settings. A famous example is provided by solitons in 
nonlinear optical fibers. The real electric field in the 
electromagnetic wave (with fixed polarization e), 
coupled into the fiber, is approximated by the product 
of the rapidly oscillating carrier wave, exp(ikz – iωt), 
transverse eigenmode, f((x2 +y2)1/2), and a slowly 
varying complex envelope, U(z,τ): 
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The substitution of this ansatz in the Maxwell’s 
equations leads, after the separation of rapidly and 
slowly varying functions of z and τ, to the NLS 
equation in the following scaled form: 

2
2

2

1 | | 0,
2

with  and  corresponding to the  
and  group-velocity dispersion
(alias chromatic dispersion) in the fiber.
Thus,  may be expected in nonlinear
fibers

+

U Ui U U
z

anomalous
normal


 

 
 



bright solitons

-

 featuring the  dispersion. anomalous



These temporal solitons in optical fibers were 
predicted by Hasegawa and Tappert in 1973, 
and experimentally created by Mollenauer, 
Stolen and Gordon in 1980.  
The observed self-trapping of an input pulse 
into a fundamental or higher-order soliton 
(breather) with the increase of the peak power: 



Standard telecommunications fibers feature 
anomalous dispersion, hence they can carry 
soliton streams, which may be used to 
transmit data in fiber-optical telecom networks. 
The bit-rate of up to 100 GB/s per channel can 
be easily achieved, using currently available 
soliton technologies. The single so far built 
soliton-based commercial telecom link, about 
3,000 km long, was installed in Australia 
(between Adelaide and Perth) in 2003.  



Another possibility to realize the effectively 1D 
NLS equation in nonlinear optics, and create 
solitons in the spatial domain, is offered by the 
light transmission in a planar waveguide (a thin 
slab II), placed between materials (claddings) 
with a lower refractive index, I and III): 



The ansatz for the monochromatic electromagnetic field (with 
the single value of the frequency) and fixed polarization e in 
this case is 
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In a similar way, one can consider the transmission of an 
optical beam in the bulk (3D) nonlinear optical medium. In 
this case, the ansatz for the monochromatic wave is 
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The 2D NLS equation also gives rise to solitons with embedded 
vorticity, in the form of 
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e   are still 
more unstable than the fundamental ones, as, prior to the onset of the 
collapse, the vortices  into fragments, which actually are fundamental 
solitons (subsequently,

vortical solitons

split
 they collapse by themselves).

Both the fundamental and vortical solitons can be , against the 
collapse and splitting alike, by means of a transverse  (an effective 
periodic potential)

stabilized
grating
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Examples of fundamental (S = 0) and vortical (S = 1) 2D solitons stabilized 
by the grating (the same mechanism was predicted to stabilize 2D matter-wave 
solitons and vortices in BEC, where the periodic potential is readily provided 
by the optical lattice), as per the paper: B.B. Baizakov, B.A. Malomed, and M. 
Salerno, Multidimensional solitons in periodic potentials. Europhys. Lett. 63, 
642 (2003) [see also J. Yang, Z.H. Musslimani, Opt. Lett. 28, 2094 (2003)]: 

 



Experimentally, effectively 1D spatial solitons in 
planar waveguides made of materials with the 
Kerr  (cubic self-focusing) nonlinearity were first 
created in a liquid medium: 
S. Maneuf, R. Dassailly, and C. Froehly, Opt. 
Commun. 65, 193 (1988), 
and then in a planar silica-glass waveguide: 
J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. 
Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, 
and P. W. E. Smith, Opt. Lett. 15, 471 (1993). 



Another physically important generalization of the 
NLS equation is its discrete version. It directly 
describes, in particular, arrays of weakly 
coupled nonlinear optical waveguides, as well as 
BEC fragmented in a deep optical-lattice potential: 



 
                    The discrete NLS equation 
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Many results for discrete NLS equations and 
respective discrete solitons were collected in a book 
(Springer, 2009): 



Other fundamental nonlinear-wave equations of modern 
physics.  
                                   The sine-Gordon (SG) equation: 
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the phase of the wave function of superconducting electrons 
across the junction. This equation is  too (actually, its 
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as kink-antikink bound states.



Typical experimentally implemented structures 
of linear and circular long Josephson 
junctions: 



The topological charge of kinks and antikinks is 
represented by the difference of their fields at x = ±∞, 
normalized to 2π: 
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The collisions of a two sine-Gordon kinks (in fact, they 
bounce back from each other): 

 
 



The elastic collision between a kink and an 
antikink, which pass through each other: 



The exact analytical solution for 
a sine-Gordon breather:  
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An image of the periodically oscillating 
sine-Gordon breather: 



The Korteweg - de Vries (KdV) equation (actually, for 
the first time derived by Boussinesq) was the equation 
for which the inverse-scattering transform was 
discovered (Gardner, Kruskal, Greene, Miura, 1967):
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Integrable two-dimensional (2D) equations are known too. 
Most important are the Kadomtsev-Petviashvili equations 
(2D extensions of the KdV equation): 
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An exact solution for the collision of two 
stable quasi-1D solitons of KP-II: 



A stable lump soliton of KP-I: 
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Another ramification of the studies: equations for 
dissipative nonlinear media. 

The corresponding generalization of the NLS 
equation is its counterpart with complex 
coefficients, alias the complex Ginzburg-
Landau (CGL) equation, which, in particular, is 
the simplest model of fiber lasers in optics: 
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The CGL equation, unlike its NLS counterpart, is not 
integrable; nevertheless, it admits a (single) exact solitary-
pulse solution (a “dissipative soliton”), as found by 
Pereira and Stenflo (1977):  
 
 
 
 
However, this solitary pulse is definitely unstable, 
because of the obvious instability of its zero 
background, in the presence of the linear gain (γ0 > 0). 
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An extended version of the CGL equation, which 
admits stable solutions for solitary pulses (although 
they are not available in an exact analytical form), 
features a combination of linear loss (instead of the 
linear gain) with cubic gain and quintic loss. This 
cubic-quintic (CQ) CGL equation was first 
introduced by Petviashvili and Sergeev (1984) (in 
fact, in a two-dimensional form): 
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Stable solitary-pulse solutions to this equation 
(dissipative solitons) can be found numerically, 
and also in an approximate analytical form, in the 
limit when the dissipative coefficients are either 
very small or very large. 
The CQ CGL equation is a model of fiber lasers 
which include a combination of linear amplifiers 
and saturable absorbers, that gives rise to the 
effective nonlinear amplification. Stable 
solitary pulses in real fiber lasers have been 
created in many experimental works. Stable 
multidimensional dissipative solitons have 
also been predicted in 2D and 3D versions of 
the CQ CGL equation. 



 
An example of a stable 3D dissipative vortex soliton with 
embedded vorticity S = 1 (taken from Stable Vortex Tori 
in the Three-Dimensional Cubic-Quintic Ginzburg-Landau 
Equation, by D. Mihalache, D. Mazilu, F. Lederer, Y.V. 
Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, 
Phys. Rev. Lett. 97, 073904 (2006)): 

 



An example of periodic metamorphoses of robust five- 
and six-point star patterns in the 2D CQ CGL equation 
with localized linear gain placed at the center [as per V. 
Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. 
Mihalache, and H. Leblond, Formation of complex two-
dimensional dissipative solitons via spontaneous symmetry 
breaking, Phys. Rev. A 90, 023845 (2014)]:   



CONCLUSION 
Systematic analysis of the nonlinear wave 
propagation in various physical media, both 
classical and quantum ones, makes it 
possible to identify several fundamentally 
important nonlinear equations that emerge 
in a very broad range of applications: two 
different NLS equations (with the positive 
and negative signs of the nonlinearity and/or 
dispersion), the SG equation, the KdV 
equation, two different KP equations in the 
2D geometry, and others. 



Not only are these equations universal, but 
also their fundamental solutions – 
solitons (including multi-soliton 
complexes) are profoundly important in all 
physical realizations where they can be 
predicted. In the most fundamental form 
(without additional terms), all the above-
mentioned equations are integrable. In 
the presence of small terms which break 
the integrability, the solitons can be 
studied by means of the appropriate 
perturbation theory. 



In 1D, both the theoretical analysis and 
experimental studies of solitons – in 
optics, BEC, long Josephson junctions, 
fluid flows, plasmas, etc. – are close to the 
completion. A challenge is the study of 
two- and three-dimensional solitons, 
especially in the experiment, which lags 
far behind the theoretical results for 
multidimensional results. 



Some review articles on the topic of multidimensional 
solitons and solitary vortices: 
B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, 
Spatiotemporal optical solitons. J. Optics B: Quant. 
Semicl. Opt. 7, R53-R72 (2005); 
Viewpoint (update): On multidimensional solitons and 
their legacy in contemporary Atomic, Molecular and 
Optical physics, J. Phys. B: At. Mol. Opt. Phys. 49, 
170502 (2016). 
B. A. Malomed, Multidimensional solitons: Well-
established results and novel findings, Eur. Phys. J. 
Special Topics 225, 2507-2532 (2016) 



Addition: some recent results (obtained by 
the present speaker and his coauthors). 
(1) Not solitons but something similar: stable 
bound states of the 3D bosonic gas of atoms with 
repulsive inter-atomic interactions between them, 
pulled to the attractive center with potential - U0 /r2. 
The respective 3D Gross-Pitaevskii equation, in 
the scaled form:   
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The quantum collapse, generated by the single-particle linear 
Schrödinger equation if U0 exceeds a critical value, (U0)cr = 
¼, is replaced, in the framework of the mean-field Gross-
Pitaevskii equation, by a newly formed ground state: 
H. Sakaguchi and B. A. Malomed, Suppression of the 
quantum-mechanical collapse by repulsive interactions in a 
quantum gas, Phys. Rev. A 83, 013607 (2011). 
The same setting, considered in the framework of the many-
body quantum theory, gives rise, instead of the ground 
state, to a metastable state (the quantum collapse cannot 
be completely suppressed, but a stable bound state 
emerges): 
G. E. Astrakharchik and B. A. Malomed, Quantum versus 
mean-field collapse in a many-body system, Phys. Rev. A 
92, 043632 (2015). 



(2) Very robust solitons mixing matter waves and an electromagnetic field 
can be created in a two-component BEC with or without contact 
interactions, if the components are linearly coupled by a 
radio/microwave field (the Rabi coupling):  

J. Qin, G. Dong, and B. A. Malomed, Hybrid matter-wave-microwave solitons 
produced by the local-field effect, Phys. Rev. Lett. 115, 023901 (2015): 

 



The illustration of the interaction between the two-
component BEC state and the microwave state: 



An extension of the model to two dimensions the creation of 
stable giant vortex solitons – for instance, with topological 
charge S = 5: 
J. Qin, G. Dong, and B. A. Malomed, Stable giant vortex annuli 
in microwave-coupled atomic condensates, Phys. Rev. A 94, 
053611 (2016). 



(3) Stable 2D and 3D solitons can be created in two-component (spinor)  
BEC with attractive interactions and spin-orbit coupling in the free space  

H. Sakaguchi, B. Li, and B. A. Malomed, Creation of two-dimensional 
composite solitons in spin-orbit-coupled self-attractive Bose-Einstein 
condensates in free space, Phys. Rev. E 89, 032920 (2014). 
Y.-C. Zhang, Z.-W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three 
dimensional free space without the ground state: Self-trapped Bose-Einstein 
condensates with spin-orbit coupling, Phys. Rev. Lett. 115, 253902 (2015). 

 


