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1 Introduction.

Let V be a nontrivial finite dimensional FG-module, where F is a field and
G is a finite group. In his Ph.D. thesis [5], P. M. Neumann proved that if G
is solvable and V is irreducible and nontrivial, then there exists an element of
G with small fixed-point subspace. Specifically, he showed that there exists
g ∈ G such that

dimCV (g) ≤ 7

18
dim V.

Neumann also conjectured that in fact, there should exist g ∈ G such that
dimCV (g) ≤ (1/3) dim V .

One of the goals of this note is to prove results like Neumann’s, but with
milder assumptions on G and V . In particular, we drop the assumption that
G is solvable and we weaken the condition that V is irreducible. Clearly, how-
ever, some assumption on V is essential since, for example, if V has some huge
direct summand on which G acts trivially, then the ratio dimCV (g)/ dim V
can be arbitrarily close to 1 for all elements g ∈ G. But even if CV (G) is
trivial, it is possible that no element of G has a small fixed-point space in V .
For example, let V be the n-dimensional row space over an arbitrary field F
of characteristic different from 2, and let G be the group of n × n matrices
over F with (1, 1)-entry equal to ±1; with all other diagonal entries equal to
1 and with (i, j) entry equal to 0 if j > 1 and j 6= i. Then in the natural
action by right multiplication of G on V , it is easy to check that CV (G) = 0
and that every nonidentity element of G centralizes a hyperplane in V .

We can obtain inequalities of the desired type, however, if we assume that
V is completely reducible. Our main result is the following.

Theorem A. Let V be a nonzero finite dimensional completely reducible
FG-module, where F is any field and G is any finite group. Assume that
CV (G) = 0 and let p be the smallest prime divisor of |G|. Then there exists
some element g ∈ G such that

dimCV (g) ≤ 1

p
dim V .

The fraction 1/p cannot, in general, be replaced by any smaller quantity.

In particular, this shows that Neumann’s conjecture is valid for odd-order
groups, at least, and without his assumption that the module is irreducible.
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We mention that our proof of Theorem A in the case where G is nonsolvable
relies on the classification of simple groups.

It also seems natural to look at the average dimension of the fixed-point
spaces. As pointed out in [6], one can show, by looking at the character that
corresponds to the module V , that if V is nonprincipal and irreducible and
(|G|, |V |) = 1, then

1

|G|
∑
g∈G

dimCV (g) ≤ 1

2
dim V.

It seems reasonable to hope that this also holds if |G| and |V | are not co-
prime, and indeed, this was proved for solvable groups in Theorem 6.1 of [6].
Proposition 2.1 of [7] proves a weaker inequality of this type for arbitrary
groups G and nonprincipal irreducible modules V :

1

|G|
∑
g∈G

dimCV (g) ≤ 3

4
dim V.

As a consequence of our Theorem A, we can obtain this inequality with a
weaker assumption on V .

Corollary B. Let V be a nonzero finite dimensional completely reducible
FG-module, where F is an arbitrary field and G is any finite group, and
assume that CV (G) = 0. Then

1

|G|
∑
g∈G

dimCV (g) ≤ p + 1

2p
dim V ,

where p is the smallest prime divisor of |G|.

In particular, in the situation of Corollary B, the average fixed-point-
space dimension can never exceed (3/4) dim V . Although we have no reason
to believe that the coefficient 3/4 is best possible here, we will see that in
general, it cannot be replaced by any number smaller than 1/2.

We now digress to explain our original motivation for considering these
questions. There are numerous parallels and analogies between theorems con-
cerning the of set irreducible character degrees of a finite group and theorems
concerning the set of conjugacy class sizes of such groups. This suggests that
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perhaps there are some subtle arithmetic connections between these two sets
of integers associated with a given group. One such connection that is easy
to see is that each prime number that divides an irreducible character degree
of G must also divide some class size of G. If G is solvable, then S. Dolfi
showed that more is true. He proved [2] that given any two distinct primes
p and q such that pq divides some irreducible character degree of a solvable
group G, then pq also divides some class size of G. One might conjecture
that the analogous assertion for three or more distinct primes is also true,
but as far as we know, this remains open.

Could it be true that each irreducible character degree of a finite group G
divides some class size of G? Or failing that, we could ask if each irreducible
character degree of G divides the n th power of some class size for some fixed
integer n. As extraspecial p-groups show, however, no such assertion can
be true in general. But what if we insist that the irreducible character is
primitive? We know no counterexample to the following.

Conjecture C. Let χ be a primitive irreducible character of an arbitrary
finite group G. Then χ(1) divides | clG(g)| for some element g ∈ G.

Here, of course, we have written clG(g) to denote the class of g in G. We
have checked that Conjecture C holds for all irreducible characters (primitive
or not) of all groups in the Atlas [1].

As a consequence of our fixed-point-spaces theorem, we can work one
prime at a time to obtain a weak result in the direction of Conjecture C.
In the following, we use the notation np to denote the p-part of a positive
integer n, where p is a prime number.

Corollary D. Let χ be a primitive irreducible character of a solvable group
G, and let p be a prime divisor of |G|. Then χ(1)p divides (| clG(g)|p)3 for
some element g ∈ G.

Even though this result is quite weak, it shows that imposing the primi-
tivity assumption makes Conjecture C plausible.

We thank J. Sangroniz for helpful comments on an earlier draft of this
paper. Much of this work was done while the second author was on sabbatical
leave and both he and the fourth author were visiting the University of
Wisconsin, Madison. They thank the Mathematics Department there for its
hospitality.
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2 Centralizer dimensions.

In this section, we prove Theorem A. In fact, we establish a strong form of
this result. We show that an element with small fixed-point space can be
chosen in a specified coset of an appropriate normal subgroup. To recover
the inequality of Theorem A, we simply take K = G in the following. (We
will show later that the fraction 1/p in Theorem A is best-possible.)

Theorem 2.1. Let V be a nonzero FG-module, where G is an arbitrary
finite group, and let K be a normal subgroup of G. Assume that CV (K) = 0
and that V is completely reducible as an FK-module. Then each coset of K
in G contains an element t such that

dimCV (t) ≤ 1

p
dim V ,

where p is the smallest prime divisor of |G|.

In order to handle the case where K is nonsolvable in Theorem 2.1, we
will use the following result of Guralnick and Kantor, which is stated as a
corollary in Section 1 of [3]. Of course, the proof of this fact relies on the
simple group classification.

Lemma 2.2. Let G be a finite group whose socle S is nonabelian and simple,
and let g ∈ G be an arbitrary nonidentity element. Then there exists an
element h ∈ G such that S ⊆ 〈g, h〉.

Actually, we need a very slight refinement of this lemma.

Corollary 2.3. In the situation of the foregoing lemma, the element h can
be selected from the subgroup S.

Proof. Since CG(S) = 1, we see that S is also the socle of the subgroup
S〈g〉, and so it is no loss to assume that G = S〈g〉. Now choose h by
Lemma 2.2 and write h = sgn for some element s ∈ S and integer n ≥ 0.
Then 〈g, s〉 ⊇ 〈g, h〉 ⊇ S, as required.

The key to our proof of Theorem 2.1 is the following application of Corol-
lary 2.3.
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Theorem 2.4. Let N be a minimal normal subgroup of a finite group G,
and suppose that G/N is cyclic with generating coset Nt. Then there exist
elements x, y ∈ Nt such that G = 〈x, y〉.

Proof. First, suppose that N is abelian, and let t be any element of the given
generating coset. Choose an arbitrary nonidentity element n ∈ N and let
H = 〈nt, t〉 = 〈n, t〉, so that N ∩ H > 1. Now N ∩ H is normalized by H,
and because we are assuming that N is abelian, N ∩ H is also normalized
by N . Since NH ⊇ N〈t〉 = G, it follows that N ∩H / G. As N is minimal
normal in G, we have N ∩H = N , so N ⊆ H and G = NH = H, as wanted.

We can now assume that N = S1 × · · · × Sn is a direct product of n ≥ 1
nonabelian simple subgroups Si. These factors are transitively permuted by
〈t〉, and so N〈tn〉 is the normalizer in G of each of the subgroups Si. If tn

centralizes S1, we argue that (ut)n does not centralize S1, where u ∈ S1 is an
arbitrary nonidentity element. To see this, observe that (ut)n has the form
u1u2 · · ·unt

n, where ui is a conjugate of u lying in Si. We are assuming that
tn centralizes S1, and we know that each of the factors ui with i > 1 also
centralizes S1, and thus since u1 does not centralize S1, it follows that (ut)n

does not centralize S1, as claimed. We can thus replace t by ut and assume
that tn does not centralize S1.

For notational simplicity now, write S = S1 and z = tn, and let M =
N〈z〉, so that M = NG(S). Let C = CG(S) and observe that SC/C is
a simple normal subgroup of M/C. In fact, SC/C is the unique minimal
normal subgroup of M/C since if K/C is any other minimal normal subgroup,
then [S, K] ⊆ C. But also [S, K] ⊆ S since S / M , and thus [S, K] ⊆ S∩C =
1. Then K ⊆ CG(S) = C, which is not the case.

The group M = M/C has the simple socle S, and we know that z is
a nonidentity element of M . By Corollary 2.3, there exists a necessarily
nonidentity element s ∈ S such that 〈z, s〉 contains S. Let H = 〈z, s〉, where
s is any preimage of s in S.

Now S ⊆ 〈z, s〉 = H, so S ⊆ HC, and in fact, S / HC since HC ⊆ M .
As both H and C = CG(S) normalize H ∩ S, it follows that H ∩ S / S,
and thus H ∩ S = S, since S is simple and H ∩ S contains s, and so is
nontrivial. Then S ⊆ H = 〈s, z〉 ⊆ 〈s, t〉, and thus N ⊆ 〈s, t〉 since each of
the factors Si of N is conjugate to S via an element of 〈t〉. We now have
G = N〈t〉 ⊆ 〈s, t〉 = 〈st, t〉, as required.
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Proof of Theorem 2.1. We proceed by induction on dim V , and we assume
(as we may) that K acts faithfully on V and that G = K〈t〉, where Kt is the
given coset of K. By hypothesis, CV (K) = 0, and hence K > 1 and we can
choose N ⊆ K so that N is minimal normal in G. Also, since V is completely
reducible as an FK-module and N / K, Clifford’s theorem guarantees that
V is completely reducible as an FN -module. Thus if CV (N) = 0, we can
replace K by N and assume that K is minimal normal in G.

Otherwise, write U = CV (N) > 0, and observe that U < V and that
U admits the action of G. By complete reducibility, U has an N -invariant
complement W in V , and since N acts trivially on U , it follows that [V, N ] ⊆
W . Also [V, N ] has an N -invariant complement in V , and we see that N
must centralize this complement. Then V = [V, N ] + U , and it follows that
[V, N ] = W . In particular, we conclude that W admits the action of G, and
thus V is the direct sum of proper FG-submodules U and W .

We continue to assume that U > 0. Since U < V and CU(K) = 0, we can
apply the inductive hypothesis with U in place of V . We conclude that there
exists an element x ∈ Kt such that dimCU(x) ≤ (1/p) dim U , where p is the
smallest prime divisor of |G|. Also CW (N) = 0, and we apply the inductive
hypothesis with W in place of V , and with N and x in place of K and t.
We obtain an element y ∈ Nx ⊆ Kt, such that dimCW (y) ≤ (1/p) dim W .
Now y = nx for some element n ∈ N , and since n centralizes U , it follows
that CU(y) = CU(x). Since V is the direct sum of the FG-submodules U
and W , and the fixed-point-space dimensions of y in each of U and W is
at most (1/p) times the dimension of U and W , respectively, it follows that
dimCV (y) ≤ (1/p) dim V , as required.

What remains is to consider the case where K is a minimal normal sub-
group of G. Since G/K is cyclic, it follows by Theorem 2.4 that we can
write G = 〈x, y〉, where both x and y lie in Kt. But CV (G) = 0, and thus
CV (x) ∩ CV (y) = 0. It follows that at least one of CV (x) or CV (y) has
dimension no greater than (1/2) dim V . This completes the proof in the case
where p = 2.

We can now assume p > 2, and so G is solvable by the Feit-Thompson
Theorem. The minimal normal subgroup K, therefore, is an elementary
abelian q-group for some prime q ≥ p. Also, since CV (K) = 0, we know that
q is not the characteristic of F . We can extend the field F without affecting
dimensions of fixed-point spaces, and so it is no loss to assume that F is
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algebraically closed. (Of course, by Maschke’s theorem, this does not affect
the complete reducibility of V as an FK-module.)

Write V as the direct sum of its “isotypic” components Vi. In other
words, each of the Vi is a homogeneous FK-submodule of V , and if i 6= j,
then the unique simple component of Vi is not isomorphic to the unique
simple component of Vj. These isotypic components are permuted by the
action of G on V .

Suppose first that none of the isotypic components Vi is 〈t〉-invariant and
consider the subspace W of V obtained by summing the Vi in a single 〈t〉-
orbit. (Note that since this is a nontrivial orbit and the size m of this orbit
divides |G|, it follows that m ≥ p.) The subspace W is the direct sum of
m subspaces of the form Vi, and these are transitively permuted by 〈t〉. If
w ∈ CW (t) has a trivial projection into one of the summands Vi then by
the transitivity of 〈t〉 on the summands, it follows that w also has a trivial
projection into every other summand of W , and so w = 0. In other words,
the projection map from CW (t) into Vi is injective, and we have

dimCW (t) ≤ dim Vi =
1

m
dim W ≤ 1

p
dim W .

Since V is a direct sum of orbit sums like W , it follows that dimCV (t) ≤
(1/p) dim V , and the proof is complete in this case.

Finally, suppose that one of the isotypic components Vi is 〈t〉-invariant.
Since K is abelian and F is algebraically closed and Vi is a homogeneous FK-
module, it follows that each element of K acts via scalar multiplication on
Vi and thus [K, t] acts trivially on Vi. But CV (K) = 0, and thus [K, t] < K.
Since K is minimal normal in G, and [K, t] / G, we have [K, t] = 1, and thus
G is abelian. In particular, |K| = q and we can write K = 〈k〉.

Now let Uj = CV (kjt) for 0 ≤ j ≤ q−1, and note that since G is abelian,
each of these subspaces is G-invariant. If we can show that

∑
Uj is direct, it

will follow that at least one of the subspaces Uj has dimension not exceeding
(1/q) dim V , and since q ≥ p, the proof will be complete.

Suppose, by way of contradiction, that there exist vectors xj ∈ Uj, not
all 0, and such that

∑
xj = 0. Choose these vectors so that as few of them

as possible are nonzero, and suppose that xa is nonzero. Apply kat to the
equation

∑
xj = 0 and subtract the result from the original equation. Since
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kat fixes xa and stabilizes each of the spaces Uj, what results is an equation of
the form

∑
yj = 0, where yj ∈ Uj and yj = 0 if xj = 0. Also, ya = 0, and by

the choice of the xj, it follows that all yj = 0, and thus kat fixes all xj. Now
since

∑
xj = 0, there must exist xb 6= 0 with b 6= a. This vector is fixed by

both kat and kbt, and it follows that xb is fixed by k. This is a contradiction,
since CV (K) = 0 and K = 〈k〉. The proof is now complete.

Recall that the assertion of Corollary B is that

1

|G|
∑
g∈G

dimCV (g) ≤ p + 1

2p
dim V ,

where p is the smallest prime divisor of |G|. (We are assuming here that V is
a nonzero, completely reducible FG-module and that CV (G) = 0.) To prove
this we use the following lemma of D. Segal and A. Shalev.

Lemma 2.5 (Segal and Shalev). Let V be an FG-module, where F and
G are arbitrary, and let m be the minimum of dimCV (g) for g ∈ G. Then

1

|G|
∑
g∈G

dimCV (g) ≤ 1

2
(dim V + m) .

In our case, we know by Theorem A that the quantity m of Lemma 2.5
is at most (1/p) dim V . Corollary B is then immediate.

Next, we show that the fraction 1/p in Theorem A cannot be replaced
by any smaller quantity. To do this, we fix a prime p and a positive number
ε. We must find a group G with smallest prime divisor p, a field F and a
completely reducible nonzero FG-module V such that CV (G) = 0 and

dimCV (g) > (
1

p
− ε) dim V

for each element g ∈ G.

Let G be an elementary abelian p-group of order pd with d > 0, and let
F be any algebraically closed field of characteristic different from p. Then
there exist pd− 1 pairwise nonisomorphic nonprincipal one-dimensional FG-
modules, and we let V be the direct sum of these, so that dim V = pd − 1.
(Note that CV (G) = 0 since the principal module is not a component of V .)
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If 1 6= g ∈ G, then the direct summands of V with kernel containing g
correspond exactly to the pd−1 − 1 nonprincipal one-dimensional modules of
G/〈g〉. Thus dimCV (g) = pd−1 − 1, and it follows that for each nonidentity
element g of G, we have

dimCV (g) =
pd−1 − 1

pd − 1
dim V .

Since (pd−1− 1)/(pd− 1) approaches 1/p as d gets large, we see that for each
choice of ε > 0, a sufficiently large elementary abelian p-group provides the
desired example. This completes the proof of Theorem A.

Finally, in this example, we compute that∑
g∈G

dimCV (g) = (pd − 1) + (pd − 1)(pd−1 − 1) = (pd − 1)pd−1 ,

and so
1

|G|
∑
g∈G

dimCV (g) =
1

p
(pd − 1) =

1

p
dim V .

If we take p = 2, we see that (as we stated in the introduction) the fraction
3/4 that appears in Corollary B cannot be reduced to a number less than 1/2.
We stress, however, that we do not know that 3/4 is the smallest possible
coefficient.

3 Character degrees and class sizes.

In this section, we show the connection between the dimension problem for
fixed-point-spaces and Conjecture C.

Proof of Corollary D. Since χ is primitive and G is solvable, we can write
χ = αβ, where α is p-special and β is p′-special, and each of these characters
is primitive. (See, for instance, [4].) Since α(1) = χ(1)p, we can replace χ
by α and assume that χ is p-special. Also, it is clear that we can assume
that the p-special character χ is faithful, and it follows that Op′(G) is trivial,
and hence the Fitting subgroup F(G) is a p-group. Also, since G has a
faithful primitive character, we know that every abelian normal subgroup
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of G is central and cyclic. Since G is solvable and nonabelian, we see that
F(G) must also be nonabelian, and so it is a central product of the cyclic
center of G with an extraspecial p-group E, normal in G. Also, it is not hard
to see that E/Z(E) is completely reducible as a G-module, and we write
V = E/Z(E).

We know that

χ(1) ≤ |E : Z|1/2|G : F |p ≤ |E : Z|3/2 = |V |3/2,

where we have used, for instance, [8] to obtain the second inequality.

On the other hand, we see that CV (G) = 0, and it follows from Theorem A
that there exists g ∈ G such that

dimCV (g) ≤ 1

2
dim V .

This means that |CV (g)| ≤ |V |1/2, and so

| clG(g)|p ≥ |V |1/2 ≥ (χ(1)(2/3))(1/2) = χ(1)1/3 .

The result now follows.
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