Datos de RNA-Seq

Guillermo Ayala Gallego

2025-02-27

Table of contents

Introducción	2
Flujo de trabajo	2
Objetivos	2
Repositorios	2
Formato FASTA	2
Formato FASTQ	3
Phred	3
Phred	4
Alineamiento de lecturas cortas sobre genoma de referencia	4
Nuestro flujo de trabajo	5
iQué necesitamos?	5
Experimento	5
Obtención de los identificadores, datos y metadatos	5
De SRA a FASTQ	5
Control de calidad	6
Alineamiento con STAR	6
Alineamiento con Bowtie2	6
SAM a BAM con samtools	7
Conteo	7
Ejemplos	8
SummarizedExperiment	8
Normalización	11
Efectos a corregir	11
Método TMM: Media ajustada de M-valores	
Mediana de los cocientes	
Bibliografía	

Introducción

Flujo de trabajo

- 1. Diseño experimental.
- 2. Protocolos de extracción del RNA.
- 3. Preparación de las librerías. Se convierte el RNA en cDNA y se añaden los adaptadores para la secuenciación.
- 4. Se secuencian las lecturas cDNA utilizando una plataforma de secuenciación.
- 5. Alineamiento de las lecturas secuenciadas a un genoma de referencia.
- 6. Resumen del número de lecturas alineadas a una región.
- 7. Normalización de las muestras para eliminar diferencias técnicas en la preparación.
- 8. Estudio estadístico de la expresión diferencial incluyendo en lo posible un modelo.
- 9. Interpretación de los resultados desde el punto de vista biológico.

Objetivos

- 1. ¿Dónde podemos obtener datos de secuenciación? De otro modo: ¿qué repositorios podemos utilizar?
- 2. ¿Cómo podemos realizar búsquedas en los metadatos con objeto de obtener experimentos que tenga que ver con lo que me interesa?
- 3. ¿Cómo bajarlos?
- 4. ¿Cómo contar las lecturas alineadas sobre regiones genómicas (genes, exones o ...)?

Repositorios

- 1. NCBI SRA
- 2. EBI ENA
- 3. DDBJ

Formato FASTA

- El formato **fasta** está basado en texto.
- Se utiliza representar secuencias bien de nucleótidos bien de aminoácidos.
- Tanto unos como otros son representados por una sola letra.
- También tiene símbolos para representar un hueco (gap) o parada en la traducción o bien que no se sabe el nucleótido o aminoácido.

- Tiene una línea que comienza con el símbolo > al que sigue una descripción de la secuencia.
- En la siguiente línea empieza la secuencia de bases o aminoácidos. Se recomienda que no tener más de 80 columnas y se pueden tener todas las filas que se precisen.
- Un ejemplo

>MCHU - Calmodulin - Human, rabbit, bovine, rat, and chicken MADQLTEEQIAEFKEAFSLFDKI
PEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADI*

Formato FASTQ

- El formato **fastq** es el más popular para datos de secuencias.
- Consiste de cuatro líneas por lectura.
- La primera que comienza con el carácter © y contiene el **nombre de la secuencia** con alguna descripción opcional de la misma.
- La segunda línea contiene la secuencia con las letras que correspondan dependiendo del tipo (nucleótidos, aminoácidos).
- La tercera línea que comienza con + contiene información opcional sobre la secuencia.
- La cuarta línea cuantifica la confianza o calidad en la determinación de cada base recogida en la segunda línea (**Phred**).

Phred

- ¿Cómo se cuantifica la confianza o precisión?
 - 1. Phred asigna los picos de fluorescencia a una de las cuatro bases: base call.
 - 2. P: probabilidad para una base dada de ser mal asignada o clasificada
 - 3. Se muestra:

$$Q = -10 \log_{10} P$$
.

- 4. Una probabilidad P muy pequeña de clasificación incorrecta se traduce en un valor grande de Q.
- 5. Se muestra el caracter ASCII que ocupa la posición 33 + Q.

Phred

• Simulamos las probabilidades de clasificación incorrecta y generamos al azar las bases.

• Calculamos los Q valores.

```
(Q = round(-10 * log10(y)))

C T C T C C C T G T
33 32 31 38 33 32 34 39 33 33
```

• Codificación Sanger

```
intToUtf8(Q+33)
```

[1] "BA@GBACHBB"

Alineamiento de lecturas cortas sobre genoma de referencia

- Wikipedia
- Tomamos una lectura o secuencia corta.
- Pretendemos encontrar en una secuencia larga donde es similar, en que punto hay una mayor similitud respecto de la secuencia larga o de referencia.

4

- Alienamiento global o local.
- Utilizamos : Bowtie2 o STAR.

Nuestro flujo de trabajo

¿Qué necesitamos?

- Mucha paciencia.
- Asegurarse de que tenemos (muchísima) memoria disponible en nuestro disco.
- SRA-Toolkit si vamos a bajar el experimento de la base de datos NCBI-SRA.

Experimento

- Elegimos un experimento en NCBI SRA.
- Hemos seleccionado PRJNA218851.

Obtención de los identificadores, datos y metadatos

- 1. En esta página tenemos el menú SRA Run Selector
- 2. En nuestro caso corresponde con este enlace
- 3. Aquí tenemos información sobre el experimento.
- 4. Con la pestaña Select podemos seleccionar información de toda la muestra o bien de una parte.
- 5. En Accession List generamos un fichero texto SRR_Acc_List.txt en donde aparecen los nombres de los Run. Lo guardamos, por ejemplo, con dicho nombre.
- 6. En la misma página elegimos en la pestaña Metadata el fichero SraRunTable.txt. Contiene las variables fenotípicas o covariables para cada una de las muestras. Lo bajamos y guardamos con el mismo nombre.
- 7. Bajamos los datos con prefetch de SRA-Toolkit.

```
prefetch --option-file SRR_Acc_List.txt
```

- 8. Los ficheros con las lecturas los guarda por defecto en ~/ncbi/public/sra/.
- 9. En mi caso los he movido (nada de copiar) al directorio PRJNA218851/sra.

De SRA a FASTQ

1. Utilizamos la función fastq-dump de SRA-Toolkit.

```
fastq-dump -I --split-files nombre_fichero.sra
```

- 2. Y lo repetimos para cada fichero SRA.
- 3. Una opción que nos lo hace para todos es

```
cat files | parallel -j 7 fastq-dump --split-files {}.sra
```

donde files es el fichero SRR_Acc_List.txt, es decir, los nombres de los ficheros sin la extensión.

4. Puede ser útil tami::StarSamtools_sh().

Control de calidad

Más adelante

Alineamiento con STAR

1. Generación de fichero de índices

En el siguiente código hemos de sustituir genomeDirO por el directorio donde queremos guardar el fichero de índices y GRCh38.p13.genome.fa por el nombre del fichero fastq donde tenemos el genoma de referencia.

```
STAR --runMode genomeGenerate --runThreadN 10 --genomeDir genomeDir0 --genomeFastaFiles GR
```

2. Alineamiento de las secuencias

1. El siguiente ejemplo supone lecturas apareadas en los ficheros f_1.fastq y f_2.fastq y name_file es el nombre del fichero de salida.

```
STAR --genomeDir genomeDir0 --runThreadN 14 starIndex --readFilesIn f_1.fastq f_2.fastq --
```

Alineamiento con Bowtie2

1. Fichero de índices

- 1. Bajamos el fichero de índices.
- 2. Aquí los tenemos para distintas especies.
- 3. Descomprimimos el fichero de índices y sacamos los ficheros.

4. Supongamos que lo hemos colocado en el directorio indexDirO y queremos alinear el fichero name_file.fastq.

```
bowtie2 -x indexDir0 -U name_file.fastq -S name_file_1.sam
```

SAM a BAM con samtools

1. Ejecutamos para cada fichero name_file.

```
samtools view -S -b name_file.sam > name_file.bam
```

2. Ordenamos las lecturas: sustituimos name_file por cada nombre original.

```
samtools sort name_file.bam -o name_file_sort.bam
```

3. Puede ser útil tami::StarSamtools_sh().

Conteo

• Podemos usar el siguiente código de R adaptado para nuestros datos.

Ejemplos

• tamidata::PRJNA266927

```
• tamidata::PRJNA297664
  • tamidata::PRJNA297798
{\tt SummarizedExperiment}
  • Cargamos el paquete.
  library(SummarizedExperiment)
  • Leemos unos datos de tamidata
  data(PRJNA297664,package = "tamidata")
  • ¿Qué clase es?
  class(PRJNA297664)
[1] "RangedSummarizedExperiment"
attr(,"package")
[1] "SummarizedExperiment"
  • ¿Cuántos genes y muestras tenemos?
  dim(PRJNA297664)
[1] 7126
            6
  • La matriz de conteos es
  head(assay(PRJNA297664))
  • ¿Qué devuelve assay?
  class(assay(PRJNA297664))
```

```
[1] "matrix" "array"
  head(which(apply(assay(PRJNA297664),1,sum) > 10))
  ICR1
         LSR1
                NME1 RDN5-1 RDN5-6 RNA170
            5
                         42
                                 47
                                        50
  • Variables fenotípicas
  colData(PRJNA297664)
DataFrame with 6 rows and 4 columns
   SampleName
                                treatment replication
                      Run
  <character> <character>
                                 <factor>
                                            <numeric>
1 GSM1900735 SRR2549634 Wild
                                                     1
2 GSM1900737 SRR2549636 Wild
                                                     3
                                                     2
3 GSM1900739 SRR2549638 SEC66 deletion
4 GSM1900736 SRR2549635 Wild
                                                     2
5 GSM1900738 SRR2549637 SEC66 deletion
                                                     1
6 GSM1900740 SRR2549639 SEC66 deletion
                                                     3
  • ¿Y es?
  class(colData(PRJNA297664))
[1] "DFrame"
attr(,"package")
[1] "S4Vectors"
  • Nombres de las variables fenotípicas.
  names(colData(PRJNA297664))
[1] "SampleName"
                  "Run"
                                 "treatment"
                                               "replication"
  • Y accedemos a los valores de la variable treatment con
```

colData(PRJNA297664)[,"treatment"]

[1] Wild Wild SEC66 deletion Wild SEC66 deletion

[6] SEC66 deletion

Levels: Wild SEC66 deletion

• Datos relativos a las filas o características o genes.

```
head(rownames(PRJNA297664))
```

```
[1] "15S_rRNA" "21S_rRNA" "HRA1" "ICR1" "LSR1" "NME1"
```

• ¿Hay más? Pues sí.

```
head(rowData(PRJNA297664))
```

DataFrame with 6 rows and 4 columns

	ORF	SGD	ENTREZID	ENSEMBL
	<character></character>	<character></character>	<character></character>	<character></character>
$15S_rRNA$	15S_rRNA	NA	NA	NA
$21S_rRNA$	21S_rRNA	NA	NA	NA
HRA1	HRA1	S000119380	9164866	NA
ICR1	ICR1	S000132612	9164906	NA
LSR1	LSR1	S000006478	9164871	NA
NME1	NME1	S000007436	9164967	NA

• ¿Algo más? De hecho, mucho más.

```
rowRanges(PRJNA297664)[345]
```

```
GRangesList object of length 1:
```

\$YBRO31W

GRanges object with 1 range and 2 metadata columns:

seqinfo: 17 sequences (1 circular) from an unspecified genome; no seqlengths

Normalización

Efectos a corregir

- Profundidad de secuenciación o tamaño de la librería
- Composición de RNA
- Contenido GC
- Longitud del gen

Método TMM: Media ajustada de M-valores

- Y_{ij} (y_{ij}) el conte
o aleatorio (observado) del gen i en la muestra j.
- Denotamos L_i la longitud del gen i y m_j es el total de lecturas de la librería j (o tamaño de la librería j).
- En (Robinson and Oshlack 2010) se asume que la media de Y_{ij} verifica

$$E\Big[Y_{ij}\Big] = \frac{\mu_{ij}L_i}{c_i}m_j,$$

siendo $c_j = \sum_{i=1}^N \mu_{ij} L_i$. Notemos que c_j nos está representando el total de RNA en la muestra.

- La producción total de RNA, c_j , no es conocida.
- Podemos estimar el cociente de estos valores para dos muestras

$$f_j = \frac{c_j}{c_{j'}}$$

- Elegimos una muestra como muestra de referencia. Por ejemplo, la muestra r denota a partir de ahora la muestra tomada (arbitrariamente) como de referencia.
- Nos fijamos en la muestra j y vamos a determinar la constante por la que multiplicaremos los conteos originales.
- En lo que sigue tanto j como r son fijos y las cantidades definidas dependen de i que denota el gen.
- Se define

$$M_{ij}^{(r)} = \log_2 \frac{y_{ij}/m_j}{y_{ir}/m_r} = \log_2 (y_{ij}/m_j) - \log_2 (y_{ir}/m_r),$$

У

$$A_{ij}^{(r)} = \frac{1}{2} \bigg(\log_2(y_{ij}/m_j) + \log_2(y_{ir}/m_r) \bigg)$$

- Se eliminan los valores extremos tanto de los $M_{ij}^{(r)}$ como de los $A_{ij}^{(r)}$.
- En concreto eliminamos un porcentaje de los M_i más pequeños y el mismo porcentaje de los más grandes.
- Lo mismo hacemos para los valores A_i .
- El conjunto de índices i restante lo denotamos por G^* .
- Finalmente, el factor de normalización sería

$$\log_2(TMM_j^{(r)}) = \frac{\sum_{i \in G^*} w_{ij}^{(r)} M_{ij}^{(r)}}{\sum_{i \in G^*} w_{ij}^{(r)}}$$

con

$$w_{ij}^{(r)} = \frac{m_j - y_{ij}}{m_j y_{ij}} + \frac{m_r - y_{ir}}{m_r y_{ir}}.$$

- La muestra de referencia r es fija y lo que acabamos de calcular es el factor por el que multiplicamos los conteos originales de la muestra j. Este factor viene dado por $TMM_i^{(r)}$.
- Obviamente tenemos que $TMM_r^{(r)}=1$ y esta muestra de referencia no se normaliza.

Mediana de los cocientes

- Se propuso en Anders and Huber (2010).
- Se consideran los factores de normalización

$$s_j = mediana_{\{i: \tilde{m}_i \neq 0\}} \frac{y_{ij}}{\tilde{m}_i}$$

siendo

$$\tilde{m}_i = \left(\prod_{j=1}^n y_{ij}\right)^{\frac{1}{n}}.$$

- La idea es normalizar para cada gen diviendo el conteo por la correspondiente media geométrica de los distintos conteos para un mismo gen.
- Una vez que tenemos los datos normalizados intra gen buscamos una constante de normalización por muestra como la correspondiente mediana en la muestra.
- Estas constantes son utilizadas no para normalizar directamente el conteo sino para incorporarlo como factor que multiplica a la media del conteo en los métodos DESeq y DESeq2.

Bibliografía

Anders, Simon, and Wolfgang Huber. 2010. "Differential Expression Analysis for Sequence Count Data." *Genome Biology* 11 (10): R106. https://doi.org/10.1186/gb-2010-11-10-r106.

Robinson, M. D., and A. Oshlack. 2010. "A Scaling Normalization Method for Differential Expression Analysis of RNA-Seq Data." *Genome Biol* 11 (3): R25. https://doi.org/10.1186/gb-2010-11-3-r25.