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Chapter 2

Foundations

Summary

The concept of rationality is explored in the context of representing beliefs or
choosing actions in situations of uncertainty. An axiomatic basis, with intuitive
operational appeal, is introduced for the foundations of decision theory. The dual
concepts of probability and utility are formally defined and analysed within this
context. The criterion of maximising expected utility is shown to be the only
decision criterion which is compatible with the axiom system. The analysis of
sequential decision problems is shown to reduce to successive applications of the
methodology introduced. Statistical inference is viewed as a particular decision
problem which may be analysed within the framework of decision theory. The
logarithmic score is established as the natural utility function to describe the
preferences of an individual faced with a pure inference problem. Within this
framework, the concept of discrepancy between probability distributions and the
quantification of the amount of information in new data are naturally defined in
terms of expected loss and expected increase in utility, respectively.

2.1 BELIEFS AND ACTIONS

We spend a considerable proportion of our lives, both private and professional, in
a state of uncertainty. This uncertainty may relate to past situations, where direct
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knowledge or evidence is not available, or has been lost or forgotten; or to present
and future developments which are not yet completed. Whatever the circumstances,
there is a sense in which all states of uncertainty may be described in the same way:
namely, an individual feeling of incomplete knowledge in relation to a specified
situation (a feeling which may, of course, be shared by other individuals). And yet
it is obvious that we do not attempt to treat all our individual uncertainties with the
same degree of interest or seriousness.

Many feelings of uncertainty are rather insubstantial and we neither seek to
analyse them, nor to order our thoughts and opinions in any kind of responsible
way. This typically happens when we feel no actual or practical involvement with
the situation in question. In other words, when we feel that we have no (or only
negligible) capacity to influence matters, or that the possible outcomes have no (or
only negligible) consequences so far as we are concerned. In such cases, we are not
motivated to think carefully about our uncertainty either because nothing depends
on it, or the potential effects are trivial in comparison with the effort involved in
carrying out a conscious analysis.

On the other hand, we all regularly encounter uncertain situations in which
we at least aspire to behave “rationally” in some sense. This might be because we
face the direct practical problem of choosing from among a set of possible actions,
where each involves a range of uncertain consequences and we are concerned to
avoid making an “illogical” choice. Alternatively, we might be called upon to
summarise our beliefs about the uncertain aspects of the situation, bearing in mind
that others may subsequently use this summary as the basis for choosing an action.
In this case, we are concerned that our summary be in a form which will enable
a “rational” choice to be made at some future time. More specifically, we might
regard the summary itself, i.e., the choice of a particular mode of representing and
communicating our beliefs, as being a form of action to which certain criteria of
“rationality” might be directly applied.

Our basic concern in this chapter is with exploring the concept of “rationality”
in the context of representing beliefs or choosing actions in situations of uncertainty.
To choose the best among a set of actions would, in principle, be immediate if we
had perfect information about the consequences to which they would lead. So far
as this work is concerned, interesting decision problems are those for which such
perfect information is not available, and we must take uncertainty into account as
a major feature of the problem.

It might be argued that there are complex situations where we do have complete
information and yet still find it difficult to take the best decision. Here, however,
the difficulty is technical, not conceptual. For example, even though we have,
in principle, complete information, it is typically not easy to decide what is the
optimal strategy to rebuild a Rubik cube or which is the cheapest diet fulfilling
specified nutritional requirements. We take the view that such problems are purely
technical. In the first case, they result from the large number of possible strategies;
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in the second, they reduce to the mathematical problem of finding a minimum
under certain constraints. But in neither case is there any doubt about the decision
criterion to be used. In this work we shall not consider these kinds of combinatorial
or mathematical programming problems, and we shall assume that in the presence
of complete information we can, in principle, always choose the best alternative.

Our concern, instead, is with the logical process of decision making in sit-
uations of uncertainty. In other words, with the decision criterion to be adopted
when we do not have complete information and are thus faced with, at least some,
elements of uncertainty.

To avoid any possible confusion, we should emphasise that we do not interpret
“actions in situations of uncertainty” in a narrow, directly “economic” sense. For
example, within our purview we include the situation of an individual scientist
summarising his or her own current beliefs following the results of an experiment;
or trying to facilitate the task of others seeking to decide upon their beliefs in the
light of the experimental results.

It is assumed in our approach to such problems that the notion of “rational
belief” cannot be considered separately from the notion of “rational action”. Either
a statement of beliefs in the light of available information is, actually or potentially,
an input into the process of choosing some practical course of action,

. . . it is not asserted that a belief . . . does actually lead to action, but would lead
to action in suitable circumstances; just as a lump of arsenic is called poisonous
not because it actually has killed or will kill anyone, but because it would kill
anyone if he ate it (Ramsey, 1926).

or, alternatively, a statement of beliefs might be regarded as an end in itself, in
which case the choice of the form of statement to be made constitutes an action,

Frequently, it is a question of providing a convenient summary of the data . . .
In such cases, the emphasis is on the inference rather than the decision aspect of
problem, although formally it can still be considered a decision problem if the
inferential statement itself is interpreted as the decision to be taken (Lehmann,
1959/1986).

We can therefore explore the notion of “rationality” for both beliefs and actions
by concentrating on the latter and asking ourselves what kinds of rules should govern
preference patterns among sets of alternative actions in order that choices made in
accordance with such rules commend themselves to us as “rational”, in that they
cannot lead us into forms of behavioural inconsistency which we specifically wish
to avoid.

In Section 2.2, we describe the general structure of problems involving choices
under uncertainty and introduce the idea of preferences between options. In Sec-
tion 2.3, we make precise the notion of “rational” preferences in the form of axioms.
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We describe these as principles of quantitative coherence because they specify the
ways in which preferences need to be made quantitatively precise and fit together,
or cohere, if “illogical” forms of behaviour are to be avoided. In Sections 2.4 and
2.5, we prove that, in order to conform with the principles of quantitative coherence,
degrees of belief about uncertain events should be described in terms of a (finitely
additive) probability measure, relative values of individual possible consequences
should be described in terms of a utility function, and the rational choice of an
action is to select one which has the maximum expected utility.

In Section 2.6, we discuss sequential decision problems and show that their
analysis reduces to successive applications of the maximum expected utility meth-
odology; in particular, we identify the design of experiments as a particular case
of a sequential decision problem. In Section 2.7, we make precise the sense in
which choosing a form of a statement of beliefs can be viewed as a special case
of a decision problem. This identification of inference as decision provides the
fundamental justification for beginning our development of Bayesian Statistics with
the discussion of decision theory. Finally, a general review of ideas and references
is given in Section 2.8.

2.2 DECISION PROBLEMS

2.2.1 Basic Elements

We shall describe any situation in which choices are to be made among alterna-
tive courses of action with uncertain consequences as a decision problem, whose
structure is determined by three basic elements:

(i) a set {ai, i ∈ I} of available actions, one of which is to be selected;

(ii) for each action ai, a set {Ej, j ∈ J} of uncertain events, describing the
uncertain outcomes of taking action ai;

(iii) corresponding to each set {Ej, j ∈ J}, a set of consequences {cj, j ∈ J}.

The idea is as follows. Suppose we choose action ai; then one and only one of
the uncertain events Ej, j ∈ J , occurs and leads to the corresponding consequence
cj, j ∈ J . Each set of events {Ej, j ∈ J} forms a partition (an exclusive and
exhaustive decomposition) of the total set of possibilities. Naturally, both the set
of consequences and the partition which labels them may depend on the particular
action considered, so that a more precise notation would be {Eij, j ∈ Ji} and
{cij , j ∈ Ji} for each action ai. However, to simplify notation, we shall omit this
dependence, while remarking that it should always be borne in mind. We shall
come back to this point in Section 2.6.

In practical problems, the labelling sets, I and J (for each i), are typically
finite. In such cases, the decision problem can be represented schematically by
means of a decision tree as shown in Figure 2.1.
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Figure 2.1 Decision tree

The square represents a decision node, where the choice of an action is re-
quired. The circle represents an uncertainty node where the outcome is beyond our
control. Following the choice of an action and the occurrence of a particular event,
the branch leads us to the corresponding consequence.

Of course, most practical problems involve sequential considerations but, as
shown in Section 2.6, these reduce, essentially, to repeated analyses based on the
above structure.

It is clear, either from our general discussion, or from the decision tree rep-
resentation, that we can formally identify any ai, i ∈ I , with the combination of
{Ej, j ∈ J} and {cj, j ∈ J} to which it leads. In other words, to choose ai is
to opt for the uncertain scenario labelled by the pairs (Ej, cj), j ∈ J . We shall
write ai = {cj |Ej, j ∈ J} to denote this identification, where the notation cj |Ej

signifies that event Ej leads to consequence cj , i.e., that ai(Ej) = cj .
An individual’s perception of the state of uncertainty resulting from the choice

of any particular ai is very much dependent on the information currently available.
In particular, {Ej, j ∈ J} forms a partition of the total set of relevant possibilities
as the individual decision-maker now perceives them to be. Further information,
of a kind which leads to a restriction on what can be regarded as the total set of
possibilities, will change the perception of the uncertainties, in that some of the
Ej’s may become very implausible (or even logically impossible) in the light of
the new information, whereas others may become more plausible. It is therefore
of considerable importance to bear in mind that a representation such as Figure 2.1
only captures the structure of a decision problem as perceived at a particular point
in time. Preferences about the uncertain scenarios resulting from the choices of
actions depend on attitudes to the consequences involved and assessments of the
uncertainties attached to the corresponding events. The latter are clearly subject to
change as new information is acquired and this may well change overall preferences
among the various courses of action.

The notion of preference is, of course, very familiar in the everyday context
of actual or potential choice. Indeed, an individual decision-maker often prefaces
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an actual choice (from a menu, an investment portfolio, a range of possible forms
of medical treatment, a textbook of statistical methods, etc.) with the phrase “I
prefer. . . ” (caviar, equities, surgery, Bayesian procedures, etc.). To prefer action
a1 to action a2 means that if these were the only two options available a1 would
be chosen (conditional, of course, on the information available at the time). In
everyday terms, the idea of indifference between two courses of action also has
a clear operational meaning. It signifies a willingness to accept an externally
determined choice (for example, letting a disinterested third party choose, or tossing
a coin).

In addition to representing the structure of a decision problem using the three
elements discussed above, we must also be able to represent the idea of preference
as applied to the comparison of some or all of the pairs of available options. We
shall therefore need to consider a fourth basic element of a decision problem:

(iv) the relation ≤ , which expresses the individual decision-maker’s preferences
between pairs of available actions, so that a1 ≤ a2 signifies that a1 is not
preferred to a2.

These four basic elements have been introduced in a rather informal manner.
In order to study decision problems in a precise way, we shall need to reformulate
these concepts in a more formal framework. The development which follows, here
and in Section 3.3, is largely based on Bernardo, Ferrándiz and Smith (1985).

2.2.2 Formal Representation

When considering a particular, concrete decision problem, we do not usually con-
fine our thoughts to only those outcomes and options explicitly required for the
specification of that problem. Typically, we expand our horizons to encompass
analogous problems, which we hope will aid us in ordering our thoughts by pro-
viding suggestive points of reference or comparison. The collection of uncertain
scenarios defined by the original concrete problem is therefore implicitly embedded
in a somewhat wider framework of actual and hypothetical scenarios. We begin by
describing this wider frame of discourse within which the comparisons of scenarios
are to be carried out. It is to be understood that the initial specification of any such
particular frame of discourse, together with the preferences among options within
it, are dependent on the decision-maker’s overall state of information at that time.
Throughout, we shall denote this initial state of mind by M0.

We now give a formal definition of a decision problem. This will be presented
in a rather compact form; detailed elaboration is provided in the remarks following
the definition.

Definition 2.1. (Decision problem). A decision problem is defined by the
elements (E , C,A,≤), where:

(i) E is an algebra of relevant events, Ej;
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(ii) C is a set of possible consequences, cj;

(iii) A is a set of options, or potential acts, consisting of functions which map
finite partitions of Ω, the certain event in E , to compatibly-dimensioned,
ordered sets of elements of C;

(iv) ≤ is a preference order, taking the form of a binary relation between
some of the elements of A.

We now discuss each of these elements in detail. Within this wider frame of
discourse, an individual decision-maker will wish to consider the uncertain events
judged to be relevant in the light of the initial state of information M0. However, it
is natural to assume that if E1 ∈ E and E2 ∈ E are judged to be relevant events then
it may also be of interest to know about their joint occurrence, or whether at least
one of them occurs. This means that E1 ∩E2 and E1 ∪E2 should also be assumed
to belong to E . Repetition of this argument suggests that E should be closed under
the operations of arbitrary finite intersections and unions. Similarly, it is natural
to require E to be closed under complementation, so that Ec ∈ E . In particular,
these requirements ensure that the certain event Ω and the impossible event ∅, both
belong to E . Technically, we are assuming that the class of relevant events has the
structure of an algebra. (However, it can certainly be argued that this is too rigid
an assumption. We shall provide further discussion of this and related issues in
Section 2.8.4.)

As we mentioned when introducing the idea of a wider frame of discourse,
the algebra E will consist of what we might call the real-world events (that is,
those occurring in the structure of any concrete, actual decision problem that we
may wish to consider), together with any other hypothetical events, which it may
be convenient to bring to mind as an aid to thought. The class E will simply be
referred to as the algebra of (relevant) events.

We denote by C the set of all consequences that the decision-maker wishes to
take into account; preferences among such consequences will later be assumed to
be independent of the state of information concerning relevant events. The class C
will simply be referred to as the set of (possible) consequences.

In our introductory discussion we used the term action to refer to each po-
tential act available as a choice at a decision node. Within the wider frame of
discourse, we prefer the term option, since the general, formal framework may in-
clude hypothetical scenarios (possibly rather far removed from potential concrete
actions).

So far as the definition of an option as a function is concerned, we note that
this is a rather natural way to view options from a mathematical point of view: an
option consists precisely of the linking of a partition of Ω, {Ej, j ∈ J}, with a
corresponding set of consequences, {cj, j ∈ J}. To represent such a mapping
we shall adopt the notation {cj |Ej, j ∈ J}, with the interpretation that event Ej

leads to consequence cj , j ∈ J .
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It follows immediately from the definition of an option that the ordering of the
labels within J is irrelevant, so that, for example, the options {c1 |E, c2 |Ec}, and
{c2 |Ec, c1 |E} are identical, and forms such as{c |E1, c |E2, cj |Ej, j ∈ J} and
{c |E1∪E2, cj |Ej, j ∈ J} are completely equivalent. Which form is used in any
particular context is purely a matter of convenience. Sometimes, the interpretation
of an option with a rather cumbersome description is clarified by an appropriate
reformulation. For example, a = {c1 |E ∩ G, c2 |Ec ∩ G, c3 |Gc} may be more
compactly written as a = {a1 |G, c3 |Gc}, with a1 = {c1 |E, c2 |Ec}. Thus, if

a = {ck(j) |Ek(j) ∩ Fj, k(j) ∈ Kj, j ∈ J}, aj = {ck(j) |Ek(j), k(j) ∈ Kj},

we shall use the composite function notation a = {aj |Fj, j ∈ J}. In all cases,
the ordering of the labels is irrelevant. The class A of options, or potential actions,
will simply be referred to as the action space.

In defining options, the assumption of a finite partition into events of E seems
to us to correspond most closely to the structure of practical problems. However,
an extension to admit the possibility of infinite partitions has certain mathematical
advantages and will be fully discussed, together with other mathematical extensions,
in Chapter 3.

In introducing the preference binary relation ≤, we are not assuming that all
pairs of options (a1, a2) ∈ A×A can necessarily be related by ≤. If the relation
can be applied, in the sense that either a1 ≤ a2 or a2 ≤ a1 (or both), we say that
a1 is not preferred to a2, or a2 is not preferred to a1 (or both). From ≤, we can
derive a number of other useful binary relations.

Definition 2.2. (Induced binary relations).

(i) a1 ∼ a2 ⇐⇒ a1 ≤ a2 and a2 ≤ a1.

(ii) a1 < a2 ⇐⇒ a1 ≤ a2 and it is not true that a2 ≤ a1.

(iii) a1 ≥ a2 ⇐⇒ a2 ≤ a1.

(iv) a1 > a2 ⇐⇒ a2 < a1.

Definition 2.2 is to be understood as referring to any options a1, a2 in A. To
simplify the presentation we shall omit such universal quantifiers when there is no
danger of confusion. The induced binary relations are to be interpreted to mean
that a1 is equivalent to a2 if and only if a1 ∼ a2, and a1 is strictly preferred to a2 if
and only if a1 > a2. Together with the interpretation of ≤, these suffice to describe
all cases where pairs of options can be compared.

We can identify individual consequences as special cases of options by writing
c = {c |Ω}, for any c ∈ C. Without introducing further notation, we shall simply
regard c as denoting either an element of C, or the element {c |Ω} of A. There
will be no danger of any confusion arising from this identification. Thus, we shall
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write c1 ≤ c2 if and only if {c1 |Ω} ≤ {c2 |Ω} and say that consequence c1 is
not preferred to consequence c2. Strictly speaking, we should introduce a new
symbol to replace ≤ when referring to a preference relation over C × C, since ≤
is defined over A × A. In fact, this parsimonious abuse of notation creates no
danger of confusion and we shall routinely adopt such usage in order to avoid a
proliferation of symbols. We shall proceed similarly with the binary relations ∼
and < introduced in Definition 2.2. To avoid triviality, we shall later formally
assume that there exist at least two consequences c1 and c2 such that c1 < c2.

The basic preference relation between options, ≤, conditional on the initial
state of information M0, can also be used to define a binary relation on E × E ,
the collection of all pairs of relevant events. This binary relation will capture the
intuitive notion of one event being “more likely” than another. Since, once again,
there is no danger of confusion, we shall further economise on notation and also
use the symbol ≤ to denote this new uncertainty binary relation between events.

Definition 2.3. (Uncertainty relation).

E ≤ F ⇐⇒ for all c1 < c2, {c2 |E, c1 |Ec} ≤ {c2 |F, c1 |Fc};

we then say that E is not more likely than F .

The intuitive content of the definition is clear. If we compare two dichotomised
options, involving the same pair of consequences and differing only in terms of their
uncertain events, we will prefer the option under which we feel it is “more likely”
that the preferred consequence will obtain. Clearly, the force of this argument ap-
plies independently of the choice of the particular consequences c1 and c2, provided
that our preferences between the latter are assumed independent of any considera-
tions regarding the events E and F .

Continuing the (convenient and harmless) abuse of notation, we shall also use
the derived binary relations given in Definition 2.2 to describe uncertainty relations
between events. Thus, E ∼ F if and only if E and F are equally likely, and E > F
if and only if E is strictly more likely than F . Since, for all c1 < c2,

c1 ≡ {c2 | ∅, c1 |Ω} < {c2 |Ω, c1 | ∅} ≡ c2,

it is always true, as one would expect, that ∅ < Ω.
It is worth stressing once again at this point that all the order relations over

A × A, and hence over C × C and E × E , are to be understood as personal, in
the sense that, given an agreed structure for a decision problem, each individual
is free to express his or her own personal preferences, in the light of his or her
initial state of information M0. Thus, for a given individual, a statement such
as E > F is to be interpreted as “this individual, given the state of information
described by M0, considers event E to be more likely than event F ”. Moreover,
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Definition 2.3 provides such a statement with an operational meaning since for all
c1 < c2, E > F is equivalent to an agreement to choose option {c2 |E, c1 |Ec} in
preference to option {c2 |F, c1 |Fc}.

To complete our discussion of basic ideas and definitions, we need to con-
sider one further important topic. Throughout this section, we have stressed that
preferences, initially defined among options but inducing binary relations among
consequences and events, are conditional on the current state of information. The
initial state of information, taking as an arbitrary “origin” the first occasion on
which an individual thinks systematically about the problem, has been denoted by
M0. Subsequently, however, we shall need to take into account further information,
obtained by considering the occurrence of real-world events. Given the assumed
occurrence of a possible event G, preferences between options will be described
by a new binary relation ≤G, taking into account both the initial information M0
and the additional information provided by G. The obvious relation between ≤
and ≤G is given by the following:

Definition 2.4. (Conditional preference). For any G > ∅,

(i) a1 ≤G a2 ⇐⇒ for all a{a1 |G, a |Gc} ≤ {a2 |G, a |Gc};

(ii) E ≤G F ⇐⇒ for c1 ≤G c2, {c2 |E, c1 |Ec} ≤G {c2 |F, c1 |Fc}.

The intuitive content of the definition is clear. If we do not prefer a1 to a2,
given G, then this preference obviously carries over to any pair of options leading,
respectively, to a1 or a2 if G occurs, and defined identically if Gc occurs. Con-
versely, comparison of options which are identical if Gc occurs depends entirely on
consideration of what happens if G occurs. Naturally, the induced binary relations
set out in Definition 2.2 have their obvious counterparts, denoted by ∼G and <G.

The induced binary relation between consequences is obviously defined by

c1 ≤G c2 ⇐⇒ {c1 |Ω} ≤G {c2 |Ω}.

However, when we come, in Section 2.3, to discuss the desirable properties of ≤
and ≤G we shall make formal assumptions which imply that, as one would expect,
c1 ≤G c2 if and only if c1 ≤ c2, so that preferences between pure consequences are
not affected by additional information regarding the uncertain events in E .

The definition of the conditional uncertainty relation≤G is a simple translation
of Definition 2.3 to a conditional preference setting. The conditional uncertainty
relation ≤G induced between events is of fundamental importance. This relation,
with its derived forms ∼G and <G, provides the key to investigating the way in
which uncertainties about events should be modified in the light of new informa-
tion. Obviously, if G = Ω , all conditional relations reduce to their unconditional
counterparts. Thus, it is only when ∅ < G < Ω that conditioning on G may yield
new preference patterns.
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2.3 COHERENCE AND QUANTIFICATION

2.3.1 Events, Options and Preferences

The formal representation of the decision-maker’s “wider frame of discourse” in-
cludes an algebra of events E , a set of consequences C, and a set of options A,
whose generic element has the form {cj |Ej, j ∈ J}, where {Ej, j ∈ J} is a finite
partition of the certain event Ω, Ej ∈ E , cj ∈ C, j ∈ J . The set A×A is equipped
with a collection of binary relations ≤G, G > ∅, representing the notion that one
option is not preferred to another, given the assumed occurrence of a possible event
G. In addition, all preferences are assumed conditional on an initial state of in-
formation, M0, with the binary relation ≤ (i.e., ≤Ω) representing the preference
relation on A×A conditional on M0 alone.

We now wish to make precise our assumptions about these elements of the
formal representation of a decision problem. Bearing in mind the overall objective
of developing a rational approach to choosing among options, our assumptions,
presented in the form of a series of axioms, can be viewed as responses to the
questions: “what rules should preference relations obey?” and “what events should
be included in E?”

Each formal axiom will be accompanied by a detailed discussion of the intu-
itive motivation underlying it.

It is important to recognise that the axioms we shall present are prescriptive, not
descriptive. Thus, they do not purport to describe the ways in which individuals
actually do behave in formulating problems or making choices, neither do they
assert, on some presumed “ethical” basis, the ways in which individuals should
behave. The axioms simply prescribe constraints which it seems to us imperative
to acknowledge in those situations where an individual aspires to choose among
alternatives in such a way as to avoid certain forms of behavioural inconsistency.

2.3.2 Coherent Preferences

We shall begin by assuming that problems represented within the formal framework
are non-trivial and that we are able to compare any pair of simple dichotomised
options.

Axiom 1. (Comparability of consequences and dichotomised options).

(i) There exist consequences c1, c2 such that c1 < c2.

(ii) For all consequences c1, c2, and events E, F ,
either {c2 |E, c1 |Ec} ≤ {c2 |F, c1 |Fc}
or {c2 |E, c1 |Ec} ≥ {c2 |F, c1 |Fc}.
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Discussion of Axiom 1. Condition (i) is very natural. If all consequences were
equivalent, there would not be a decision problem in any real sense, since all choices
would certainly lead to precisely equivalent outcomes. We have already noted that,
in any given decision problem, C can be defined as simply the set of consequences
required for that problem. Condition (ii) does not therefore assert that we should
be able to compare any pair of conceivable options, however bizarre or fantastic.
In most practical problems, there will typically be a high degree of similarity in the
form of the consequences (e.g. all monetary), although it is easy to think of examples
where this form is complex (e.g. combinations of monetary, health and industrial
relations elements). We are trying to capture the essence of what is required for
an orderly and systematic approach to comparing alternatives of genuine interest.
We are not, at this stage, making the direct assumption that all options, however
complex, can be compared. But there could be no possibility of an orderly and
systematic approach if we were unwilling to express preferences among simple
dichotomised options and hence (with E = F = Ω) among the consequences
themselves. Condition (ii) is therefore to be interpreted in the following sense: “If
we aspire to make a rational choice between alternative options, then we must at
least be willing to express preferences between simple dichotomised options.”

There are certainly many situations where we find the task of comparing sim-
ple options, and even consequences, very difficult. Resource allocation among
competing health care programmes involving different target populations and
morbidity and mortality rates is one obvious such example. However, the diffi-
culty of comparing options in such cases does not, of course, obviate the need
for such comparisons if we are to aspire to responsible decision making.

We shall now state our assumptions about the ways in which preferences
should fit together or cohere in terms of the order relation over A×A.

Axiom 2. (Transitivity of preferences).

(i) a ≤ a.

(ii) If a1 ≤ a2 and a2 ≤ a3, then a1 ≤ a3.

Discussion of Axiom 2. Condition (i) has obvious intuitive support. It would
make little sense to assert that an option was strictly preferred to itself. It would
also seem strangely perverse to claim to be unable to compare an option with
itself! We note that, from Definition 2.2 (i), if a ≤ a, then a ∼ a. Condition (ii)
requires preferences to be transitive. The intuitive basis for such a requirement is
perhaps best illustrated by considering the consequences of intransitive preferences.
Suppose, therefore, that we found ourselves expressing the preferences a1 < a2,
a2 < a3 and a3 < a1 among three options a1, a2 and a3. The assertion of
strict preference rules out equivalence between any pair of the options, so that our
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expressed preferences reveal that we perceive some actual difference in value (no
matter how small) between the two options in each case. Let us now examine
the behavioural implications of these expressed preferences. If we consider, for
example, the preference a1 < a2, we are implicitly stating that there exists a “price”,
say x, that we would be willing to pay in order to move from a position of having
to accept option a1 to one where we have, instead, to accept option a2. Let y and
z denote the corresponding “prices” for switching from a2 to a3 and from a3 to
a1, respectively. Suppose now that we are confronted with the prospect of having
to accept option a1. By virtue of the expressed preference a1 < a2 and the above
discussion, we are willing to pay x in order to exchange option a1 for option a2.
But now, by virtue of the preference a2 < a3, we are willing to pay y in order
to exchange a2 for a3. Repeating the argument once again, since a3 < a1 we
are willing to pay z in order to avoid a3 and have, instead, the prospect of option
a1. We would thus have paid x + y + z in order to find ourselves in precisely
the same position as we started from! What is more, we could find ourselves
arguing through this cycle over and over again. Willingness to act on the basis
of intransitive preferences is thus seen to be equivalent to a willingness to suffer
unnecessarily the certain loss of something to which one attaches positive value.
We regard this as inherently inconsistent behaviour and recall that the purpose of
the axioms is to impose rules of coherence on preference orderings that will exclude
the possibility of such inconsistencies. Thus, Axiom 2(ii) is to be understood in the
following sense: “If we aspire to avoid expressing preferences whose behavioural
implications are such as to lead us to the certain loss of something we value, then
we must ensure that our preferences fit together in a transitive manner.”

Our discussion of this axiom is, of course, informal and appeals to directly
intuitive considerations. At this stage, it would therefore be inappropriate to
become involved in a formal discussion of terms such as “value” and “price”. It
is intuitively clear that if we assert strict preference there must be some amount
of money (or grains of wheat, or beads, or whatever), however small, having a
“value” less than the perceived difference in “value” between the two options. We
should therefore be willing to pay this amount to switch from the less preferred
to the more preferred option.

The following consequences of Axiom 2 are easily established and will prove
useful in our subsequent development.

Proposition 2.1. (Transitivity of uncertainties).

(i) E ∼ E.

(ii) E1 ≤ E2 and E2 ≤ E3 imply E1 ≤ E3.

Proof. This is immediate from Definition 2.3 and Axiom 2. �
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Proposition 2.2. (Derived transitive properties).

(i) If a1 ∼ a2 and a2 ∼ a3 then a1 ∼ a3.

If E1 ∼ E2 and E2 ∼ E3 then E1 ∼ E3.

(ii) If a1 < a2 and a2 ∼ a3 then a1 < a3.

If E1 < E2 and E2 ∼ E3 then E1 < E3.

Proof. To prove (i), leta1 ∼ a2 anda2 ∼ a3 so that, by Definition 2.2, a1 ≤ a2,
a2 ≤ a1 and a2 ≤ a3, a3 ≤ a2. Then, by Axiom 2(ii), a1 ≤ a3 and a3 ≤ a1, and
thus a1 ∼ a3. A similar argument applies to events using Proposition 2.1. Again,
part (ii) follows rather similarly. �

Axiom 3. (Consistency of preferences).

(i) If c1 ≤ c2 then, for all G > ∅, c1 ≤G c2.

(ii) If, for some c1 < c2, {c2 |E, c1 |Ec} ≤ {c2 |F, c1 |Fc}, then E ≤ F .

(iii) If, for some c and G > ∅, {a1 |G, c |Gc} ≤ {a2 |G, c |Gc},
then a1 ≤G a2.

Discussion of Axiom 3. Condition (i) formalises the idea that preferences
between pure consequences should not be affected by the acquisition of further
information regarding the uncertain events in E . Conditions (ii) and (iii) ensure
that Definitions 2.3 and 2.4 have operational content. Indeed, (ii) asserts that if
we have {c2 |E, c1 |Ec} ≤ {c2 |F, c1 |Fc} for some c1 < c2 then we should
have this preference for any c1 < c2. This formalises the intuitive idea that the
stated preference should only depend on the “relative likelihood” of E and F
and should not depend on the particular consequences used in constructing the
options. Similarly, (iii) asserts that if we have the preference {a1 |G, c |Gc} ≤
{a2 |G, c |Gc} for some c then, given G, a1 should not be preferred to a2, so that,
for any a, {a1 |G, a |Gc} ≤ {a2 |G, a |Gc}. This latter argument is a version
of what might be called the sure-thing principle: if two situations are such that
whatever the outcome of the first there is a preferable corresponding outcome of
the second, then the second situation is preferable overall.

An important implication of Axiom 3 is that preferences between conse-
quences are invariant under changes in the information “origin” regarding events
in E .

Proposition 2.3. (Invariance of preferences between consequences).
c1 ≤ c2 if and only if there exist G > ∅ such that c1 ≤G c2.

Proof. If c1 ≤ c2 then, by Axiom 3(i), c1 ≤G c2 for any event G. Conversely,
by Definition 2.4(i), for any G > ∅, c1 ≤G c2 implies that for any option a, one
has {c1 |G, a |Gc} ≤ {c2 |G, a |Gc}. Taking a = {c1 |G, c2 |Gc}, this implies
that {c1 |G, c2 |Gc} ≤ {c1 | ∅, c2 |Ω}. If c1 > c2 this implies, by Axiom 3(ii), that
G ≤ ∅, thus contradicting G > ∅. Hence, by Axiom 1(ii), c1 ≤ c2. �



2.3 Coherence and Quantification 27

Another important consequence of Axiom 3 is that uncertainty orderings of
events respect logical implications, in the sense that if E logically implies F , i.e.,
if E ⊆ F , then F cannot be considered less likely than E.

Proposition 2.4. (Monotonicity). If E ⊆ F then E ≤ F .

Proof. For any c1 < c2, define

a1 = {c2 |E, c1 |Ec} = {c1 |F − E, {c2 |E, c1 |Ec} | (F − E)c},
a2 = {c2 |F, c1 |Fc} = {c2 |F − E, {c2 |E, c1 |Ec} | (F − E)c}.

By Axiom 3(i) with G = F − E = F ∩ Ec, a1 ≤ a2. It now follows immediately
from Definition 2.2 that E ≤ F . �

This last result is an example of how coherent qualitative comparisons of
uncertain events in terms of the “not more likely” relation conform to intuitive
requirements.

If follows from Proposition 2.4 that, as one would expect, for any event E,
∅ ≤ E ≤ Ω. We shall mostly work, however, with “significant” events, for which
this ordering is strict.

Definition 2.5. (Significant events). An event E is significant given G > ∅
if c1 <G c2 implies that c1 <G {c2 |E, c1 |Ec} <G c2. If G = Ω, we shall
simply say that E is significant.

Intuitively, significant events given G are those operationally perceived by
the decision-maker as “practically possible but not certain” given the information
provided by G. Thus, given G > ∅ and assuming c1 <G c2, if E is judged to be
significant given G, one would strictly prefer the option {c2 |E, c1 |Ec} to c1 for
sure, since it provides an additional perceived possibility of obtaining the more
desirable consequence c2. Similarly, one would strictly prefer c2 for sure to the
stated option.

Proposition 2.5. (Characterisation of significant events). An event E is sig-
nificant given G > ∅, if and only if ∅ < E ∩ G < G. In particular, E is
significant if and only if ∅ < E < Ω.

Proof. Using Definitions 2.4 and 2.5, if E is significant given G then, for all
c1 ≤G c2 and for any option a,

{c1 |G, a |Gc} < {c2 |E ∩ G, c1 |Ec ∩ G, a |Gc} < {c2 |G, a |Gc} .

Taking a = c1, we have

c1 = {c2 | ∅, c1 |Ω} < {c2 |E ∩ G, c1 | (E ∩ G)c} < {c2 |G, c1 |Gc}
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and hence, by Definition 2.3, ∅ < E ∩ G < G. Conversely, if ∅ < E ∩ G < G,

{c1 |G, c1 |Gc} < {c2 |E ∩ G, c1 |Ec ∩ G, c1 |Gc} < {c2 |G, c1 |Gc}

and hence, by Axiom 3(iii), c1 <G {c2 |E, c1 |Ec} <G c2. If, in particular, G = Ω
then E is significant if and only if ∅ < E < Ω. �

The operational essence of “learning from experience” is that a decision-
maker’s preferences may change in passing from one state of information to a
new state brought about by the acquisition of further information regarding the
occurrence of events in E , which leads to changes in assessments of uncertainty.
There are, however, too many complex ways in which such changes in assessments
can take place for us to be able to capture the idea in a simple form. On the other
hand, the very special case in which preferences do not change is easy to describe
in terms of the concepts thus far available to us.

Definition 2.6. (Pairwise independence of events).
We say that E and F are (pairwise) independent, denoted by E ⊥ F , if, and
only if, for all c, c1, c2

(i) c • {c2 |E, c1 |Ec} ⇒ c •F {c2 |E, c1 |Ec},

(ii) c • {c2 |F, c1 |Fc} ⇒ c •E {c2 |F, c1 |Fc},

where • is any one of the relations < , ∼ or >.

The definition is given for the simple situation of preferences between pure
consequences and dichotomised options. Since by Proposition 2.3 preferences re-
garding pure consequences are unaffected by additional information, the condition
stated captures, in an operational form, the notion that uncertainty judgements about
E, say, are unaffected by the additional information F . We interpret E ⊥ F as
“E is independent of F ”. An alternative characterisation will be given in Proposi-
tion 2.13.

2.3.3 Quantification

The notion of preference between options, formalised by the binary relation ≤,
provides a qualitative basis for comparing options and, by extension, for comparing
consequences and events. The coherence axioms (Axioms 1 to 3) then provide a
minimal set of rules to ensure that qualitative comparisons based on ≤ cannot have
intuitively undesirable implications.

We shall now argue that this purely qualitative framework is inadequate for
serious, systematic comparisons of options. An illuminating analogy can be drawn
between≤ and a number of qualitative relations in common use both in an everyday
setting and in the physical sciences.
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Consider, for example, the relations not heavier than, not longer than, not
hotter than. It is abundantly clear that these cannot suffice, as they stand, as an
adequate basis for the physical sciences. Instead, we need to introduce in each case
some form of quantification by setting up a standard unit of measurement, such
as the kilogram, the metre, or the centigrade interval, together with an (implicitly)
continuous scale such as arbitrary decimal fractions of a kilogram, a metre, a
centigrade interval. This enables us to assign a numerical value, representing
weight, length, or temperature, to any given physical or chemical entity.

This can be achieved by carrying out, implicitly or explicitly, a series of
qualitative pairwise comparisons of the feature of interest with appropriately chosen
points on the standard scale. For example, in quantifying the length of a stick, we
place one end against the origin of a metre scale and then use a series of qualitative
comparisons, based on “not longer than” (and derived relations, such as “strictly
longer than”). If the stick is “not longer than” the scale mark of 2.5 metres, but is
“strictly longer than” the scale mark of 2.4 metres, we might lazily report that the
stick is “2.45 metres long”. If we needed to, we could continue to make qualitative
comparisons of this kind with finer subdivisions of the scale, thus extending the
number of decimal places in our answer. The example is, of course, a trivial one,
but the general point is extremely important. Precision, through quantification, is
achieved by introducing some form of numerical standard into a context already
equipped with a coherent qualitative ordering relation.

We shall regard it as essential to be able to aspire to some kind of quantitative
precision in the context of comparing options. It is therefore necessary that we
have available some form of standard options, whose definitions have close links
with an easily understood numerical scale, and which will play a role analogous to
the standard metre or standard kilogram. As a first step towards this, we make the
following assumption about the algebra of events, E .

Axiom 4. (Existence of standard events). There exists a subalgebra S of E
and a function µ : S → [0, 1] such that:

(i) S1 ≤ S2 if, and only if, µ(S1) ≤ µ(S2);
(ii) S1 ∩ S2 = ∅ implies that µ(S1 ∪ S2) = µ(S1) + µ(S2);

(iii) for any number α in [0, 1], and events E, F , there is a standard event S
such that µ(S) = α, E ⊥ S and F ⊥ S;

(iv) S1 ⊥ S2 implies that µ(S1 ∩ S2) = µ(S1)µ(S2).
(v) if E ⊥ S, F ⊥ S and E ⊥ F , then E ∼ S ⇒ E ∼F S.

Discussion of Axiom 4. A family of events satisfying conditions (i) and (ii)
is easily identified by imagining an idealised roulette wheel of unit circumference.
We suppose that no point on the circumference is “favoured” as a resting place for
the ball (considered as a point) in the sense that given any c1, c2 and events S1, S2
corresponding to the ball landing within specified connected arcs, or finite unions
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and intersections of such arcs, {c1 |S1, c2 |Sc
1} and {c1 |S2, c2 |Sc

2} are considered
equivalent if and only if µ(S1) = µ(S2), where µ is the function mapping the “arc-
event” to its total length. Conditions (i) and (ii) are then intuitively obvious, as is the
fact, in (iii), that for any α ∈ [0, 1] we can construct an S with µ(S) = α. Note that
S is required to be an algebra and thus both ∅ and Ω are standard events. It follows
from Proposition 2.4 and Axiom 4(i) that µ(∅) = 0 and µ(Ω) = 1. The remainder
of (iii) is intuitively obvious; we note first that the basic idea of an idealised roulette
wheel does assume that each “play” on such a wheel is “independent”, in the sense
of Definition 2.6, of any other events, including previous “plays” on the same wheel.
Thus, for any events E, F in E , we can always think of an “independent” play which
generates independent events S in S with µ(S) = α for any specified α in [0, 1]. In
this extended setting, if we think of the circumferences for two independent plays
as unravelled to form the sides of a unit square, with µ mapping events to the areas
they define, condition (iv) is clearly satisfied. Finally, (v) encapsulates an obviously
desirable consequence of independence; namely, that if E is independent of F and
S, and F is independent of S, a judgement of equivalence between E and S should
not be affected by the occurrence of F .

We will refer to S as a standard family of events in E and will think of E as
the algebra generated by the relevant events in the decision problem together with
the elements of S. Other forms of standard family satisfying (i) to (v) are easily
imagined. For example, it is obvious that a roulette wheel of unit circumference
could be imagined cut at some point and “unravelled” to form a unit interval. The
underlying image would then be that of a point landing in the unit interval and an
event S such that µ(S) = p would denote a subinterval of length p; alternatively,
we could imagine a point landing in the unit square, with S denoting a region of
area p. The obvious intuitive content of conditions (i) to (v) can clearly be similarly
motivated in these cases, the discussion for the unit interval being virtually identical
to that given for the roulette wheel. It is important to emphasise that we do not
require the assumption that standard families of events actually, physically exist,
or could be precisely constructed in accordance with conditions (i) to (v). We only
require that we can invoke such a set up as a mental image.

There is, of course, an element of mathematical idealisation involved in think-
ing about all p ∈ [0, 1], rather than, for example, some subset of the rationals,
corresponding to binary expansions consisting of zeros from some specified lo-
cation onwards, reflecting the inherent limits of accuracy in any actual procedure
for determining arc lengths or areas. The same is true, however, of all scientific
discourse in which measurements are taken, in principle, to be real numbers, rather
than a subset of the rationals chosen to reflect the limits of accuracy in the physical
measurement procedure being employed. Our argument for accepting this degree
of mathematical idealisation in setting up our formal system is the same as would
apply in the physical sciences. Namely, that no serious conceptual distortion is
introduced, while many irrelevant technical difficulties are avoided; in particular,
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those concerning the non-closure of a set of numbers with respect to operations of
interest. This argument is not universally accepted, however, and further, related
discussion of the issue is provided in Section 2.8.

Our view is that, from the perspective of the foundations of decision-making,
the step from the finite to the infinite implicit in making use of real numbers is
simply a pragmatic convenience, whereas the step from comparing a finite set of
possibilities to comparing an infinite set has more substantive implications. We
have emphasised this latter point by postponing infinite extensions of the decision
framework until Chapter 3.

Proposition 2.6. (Collections of disjoint standard events).
For any finite collection {α1, . . . , αn} of real numbers such that αi > 0 and
α1 + · · · + αn ≤ 1 there exists a corresponding collection {S1, . . . , Sn} of
disjoint standard events such that µ(Si) = αi, i = 1, . . . , n.

Proof. By Axiom 4(iii) there exists S1 such that µ(S1) = α1. For 1 < j ≤ n,
suppose inductively that S1, . . . , Sj−1 are disjoint, Bj = S1 ∪· · ·∪Sj−1 and define
βj = α1 + · · ·+αj−1 = µ(Bj). By Axiom 4 (iii, iv), there exists Tj in S such that
µ(Bj ∩ Tj) = µ(Bj){αj/(1 − βj)}. Define Sj = Tj ∩ Bc

j , so that Sj ∩ Si = ∅,
i = 1, . . . , j − 1. Then, Tj = Sj ∪ (Tj ∩ Bj) and hence, using Axiom 4(ii),
µ(Tj) = µ(Sj) + µ(Tj ∩Bj). Thus, µ(Sj) = αj/(1− βj)−αjβj/(1− βj) = αj

and the result follows. �

Axiom 5. (Precise measurement of preferences and uncertainties).

(i) If c1 ≤ c ≤ c2, there exists a standard event S such that
c ∼ {c2 |S, c1 |Sc}.

(ii) For each event E, there exists a standard event S such that E ∼ S.

Discussion of Axiom 5. In the introduction to this section, we discussed the
idea of precision through quantification and pointed out, using analogies with other
measurement systems such as weight, length and temperature, that the process is
based on successive comparisons with a standard. Let Sq denote a standard event
such that µ(Sq) = q. We start with the obvious preferences, {c2 |S0, c1 |Sc

0} ≤ c ≤
{c2 |S1, c1 |Sc

1}, for any c1 ≤ c ≤ c2, and then begin to explore comparisons with
standard options based on Sx, Sy with 0 < x < y < 1. In this way, by gradually
increasing x away from 0 and decreasing y away from 1, we arrive at comparisons
such as{c2 |Sx, c1 |Sc

x} ≤ c ≤ {c2 |Sy, c1 |Sc
y}, with the differencey−xbecoming

increasingly small. Intuitively, as we increase x, {c2 |Sx, c1 |Sc
x} becomes more

and more “attractive” as an option, and as we decrease y, {c2 |Sy, c1 |Sc
y} becomes

less “attractive”. Any given consequence c, such that c1 ≤ c ≤ c2, can therefore be
“sandwiched” arbitrarily tightly and, in the limit, be judged equivalent to one of the
standard options defined in terms of c1, c2. The essence of Axiom 5(i) is that we
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can proceed to a common limit, α, say, approached from below by the successive
values of x and above by the successive values of y. The standard family of options
is thus assumed to provide a continuous scale against which any consequence can
be precisely compared.

Condition (ii) extends the idea of precise comparison to include the assumption
that, for any event E and for all consequences c1, c2 such that c1 < c2, the option
{c2 |E, c1 |Ec} can be compared precisely with the family of standard options
{c2 |Sx, c1 |Sc

x}, x ∈ [0, 1], defined by c1 and c2. The underlying idea is similar
to that motivating condition (i). Indeed, given the intuitive content of the relation
“not more likely than”, we can begin with the obvious ordering {c2 |S0, c1 |Sc

0} ≤
{c2 |E, c1 |Ec} ≤ {c2 |S1, c1 |Sc

1} for any event E, and then consider refinements
of this of the form {c2 |Sx, c1 |Sc

x} ≤ {c2 |E, c1 |Ec} ≤ {c2 |Sy, c1 |Sc
y}, with x

increasing gradually from 0, y decreasing gradually from 1, and y − x becoming
increasingly small, so that, in terms of the ordering of the events, Sx ≤ E ≤ Sy .
Again, the essence of the axiom is that this “sandwiching” can be refined arbitrarily
closely by an increasing sequence of x’s and a decreasing sequence of y’s tending
to a common limit.

The preceding argument certainly again involves an element of mathematical
idealisation. In practice, there might, in fact, be some interval of indifference, in
the sense that we judge {c2 |Sx, c1 |Sc

x} ≤ c ≤ {c2 |Sy, c1 |Sc
y} for some (possibly

rational) x and y but feel unable to express a more precise form of preference. This
is analogous to the situation where a physical measuring instrument has inherent
limits, enabling one to conclude that a reading is in the range 3.126 to 3.135, say,
but not permitting a more precise statement. In this case, we would typically report
the measurement to be 3.13 and proceed as if this were a precise measurement. We
formulate the theory on the prescriptive assumption that we aspire to exact mea-
surement (exact comparisons in our case), whilst acknowledging that, in practice,
we have to make do with the best level of precision currently available (or devote
some resources to improving our measuring instruments!).

In the context of measuring beliefs, several authors have suggested that this
imprecision be formally incorporated into the axiom system. For many applica-
tions, this would seem to be an unnecessary confusion of the prescriptive and
the descriptive. Every physicist or chemist knows that there are inherent limits
of accuracy in any given laboratory context but, so far as we know, no one has
suggested developing the structures of theoretical physics or chemistry on the
assumption that quantities appearing in fundamental equations should be con-
strained to take values in some subset of the rationals. However, it may well be
that there are situations where imprecision in the context of comparing conse-
quences is too basic and problematic a feature to be adequately dealt with by an
approach based on theoretical precision, tempered with pragmatically acknowl-
edged approximation. We shall return to this issue in Section 2.8.
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The particular standard option to which c is judged equivalent will, of course,
depend on c, but we have implicitly assumed that it does not depend on any in-
formation we might have concerning the occurrence of real-world events. Indeed,
Proposition 2.3 implies that our “attitudes” or “values” regarding consequences are
fixed throughout the analysis of any particular decision problem. It is intuitively ob-
vious that, if the time-scale on which values change were not rather long compared
with the time-scale within which individual problems are analysed, there would be
little hope for rational analysis of any kind.

2.4 BELIEFS AND PROBABILITIES

2.4.1 Representation of Beliefs

It is clear that an individual’s preferences among options in any decision problem
should depend, at least in part, on the “degrees of belief” which that individual
attaches to the uncertain events forming part of the definitions of the options.

The principles of coherence and quantification by comparison with a standard,
expressed in axiomatic form in the previous section, will enable us to give a formal
definition of degree of belief, thus providing a numerical measure of the uncertainty
attached to each event.

The conceptual basis for this numerical measure will be seen to derive from
the formal rules governing quantitative, coherent preferences, irrespective of the
nature of the uncertain events under consideration. This is in vivid contrast to what
are sometimes called the classical and frequency approaches to defining numerical
measures of uncertainty (see Section 2.8), where the existence of symmetries and
the possibility of indefinite replication, respectively, play fundamental roles in
defining the concepts for restricted classes of events.

We cannot emphasise strongly enough the important distinction between defin-
ing a general concept and evaluating a particular case. Our definition will depend
only on the logical notions of quantitative, coherent preferences; our practical eval-
uations will often make use of perceived symmetries and observed frequencies.

We begin by establishing some basic results concerning the uncertainty relation
between events.

Proposition 2.7. (Complete comparability of events).
Either E1 > E2, or E1 ∼ E2, or E2 > E1.

Proof. By Axiom 5(ii), there exist S1 and S2 such that E1 ∼ S1 and E2 ∼ S2;
the complete ordering now follows from Axiom 4(i) and Proposition 2.1. �
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We see from Proposition 2.7 that, although the order relation ≤ between
options was not assumed to be complete (i.e., not all pairs of options were assumed
to be comparable), it turns out, as a consequence of Axiom 5 (the axiom of precise
measurement), that the uncertainty relation induced between events is complete.
A similar result concerning the comparability of all options will be established in
Section 2.5.

Proposition 2.8. (Additivity of uncertainty relations). If A ≤ B, C ≤ D
and A ∩ C = B ∩ D = ∅, then A ∪ C ≤ B ∪ D. Moreover, if A < B or
C < D, then A ∪ C < B ∪ D.

Proof. We first show that, for any G, if A∩G = B∩G = ∅ then A ≤ B ⇐⇒
A ∪ G ≤ B ∪ G. For any c2 > c1, A ∩ G = B ∩ G = ∅, define:

a1 = {c2 |A, c1 |Ac} = {c1 |G, {c2 |A, c1 |Ac} |Gc}
a2 = {c2 |B, c1 |Bc} = {c1 |G, {c2 |B, c1 |Bc} |Gc}
a3 = {c2 |A ∪ G, c1 | (A ∪ G)c} = {c2 |G, {c2 |A, c1 |Ac} |Gc}
a4 = {c2 |B ∪ G, c1 | (B ∪ G)c} = {c2 |G, {c2 |B, c1 |Bc} |Gc}.

Then, by Definition 2.3, A ≤ B ⇐⇒ a1 ≤ a2; by Axiom 3, a1 ≤ a2 ⇐⇒
a3 ≤ a4; and using again Definition 2.3, a3 ≤ a4 ⇐⇒ A ∪ G ≤ B ∪ G. Thus,

A ∪ (C − B) ≤ B ∪ (C − B) = B ∪ C = C ∪ (B − C) ≤ D ∪ (B − C),

A ∪ C = A ∪ (C − B) ∪ (C ∩ B) ≤ D ∪ (B − C) ∪ (C ∩ B) = B ∪ D.

The final statement follows from essentially the same argument. �

We now make the key definition which enables us to move to a quantitative
notion of degree of belief.

Definition 2.7. (Measure of degree of belief). Given an uncertainty relation
≤, the probability P (E) of an event E is the real number µ(S) associated
with any standard event S such that E ∼ S.

This definition provides a natural, operational extension of the qualitative
uncertainty relation encapsulated in Definition 2.3, by linking the equivalence of
any E ∈ E to some S ∈ S and exploiting the fact that the nature of the construction
of S provides a direct obvious quantification of the uncertainty regarding S.

With our operational definition, the meaning of a probability statement is clear.
For instance, the statement P (E) = 0.5 precisely means that E is judged to be
equally likely as a standard event of ‘measure’ 0.5, maybe a conceptual perfect coin
falling heads, or a computer generated ‘random’ integer being an odd number.
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It should be emphasised that, according to Definition 2.7, probabilities are
always personal degrees of belief, in that they are a numerical representation of
the decision-maker’s personal uncertainty relation ≤ between events. Moreover,
probabilities are always conditional on the information currently available. It makes
no sense, within the framework we are discussing, to qualify the word probability
with adjectives such as “objective”, “correct” or “unconditional”.

Since probabilities are obviously conditional on the initial state of information
M0, a more precise and revealing notation in Definition 2.7 would have been
P (E |M0). In order to avoid cumbersome notation, we shall stick to the shorter
version, but the implicit conditioning on M0 should always be borne in mind.

Proposition 2.9. (Existence and uniqueness). Given an uncertainty relation
≤, there exists a unique probability P (E) associated with each event E.

Proof. Existence follows from Axiom 5(ii). For uniqueness, if E ∼ S1 and
E ∼ S2 then by Proposition 2.2(ii), S1 ∼ S2. The result now follows from
Axiom 4(i). �

Definition 2.8. (Compatibility). A function f : E → � is said to be compat-
ible with an order relation ≤ on E × E if, for all events,

E ≤ F ⇐⇒ f(E) ≤ f(F ).

Proposition 2.10. (Compatibility of probability and degrees of belief ).
The probability function P (.) is compatible with the uncertainty relation ≤.

Proof. By Axiom 5(ii) there exist standard events S1 and S2 such that E ∼ S1
and F ∼ S2. Then, by Proposition 2.2(ii) , E ≤ F iff S1 ≤ S2 and hence, by
Axiom 4(i), iff µ(S1) ≤ µ(S2). The result follows from Definition 2.7. �

The following proposition is of fundamental importance. It establishes that
coherent, quantitative degrees of belief have the structure of a finitely additive prob-
ability measure over E . Moreover, it establishes that significant events, i.e., events
which are “practically possible but not certain”, should be assigned probability
values in the open interval (0, 1).

Proposition 2.11. (Probability structure of degrees of belief).

(i) P (∅) = 0 and P (Ω) = 1.

(ii) If E ∩ F = ∅, then P (E ∪ F ) = P (E) + P (F ).
(iii) E is significant if, and only if, 0 < P (E) < 1.
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Proof. (i) By Definition 2.7, 0 ≤ P (E) ≤ 1. Moreover, by Axiom 4(iii) there
exist S∗ and S∗ such that µ(S∗) = 0 and µ(S∗) = 1. By Proposition 2.4, ∅ ≤ S∗
and, by Proposition 2.10 P (∅) ≤ 0; hence, P (∅) = 0; similarly, S∗ ≤ Ω implies
that P (Ω) = 1.

(ii) If E = ∅ or F = ∅, or both, the result is trivially true. If E > ∅ and F > ∅,
then, by Proposition 2.8, E ∪ F > E; thus, if α = P (E) and β = P (E ∪ F ), we
have α < β and, by Proposition 2.6, there exist events S1, S2 such that S1∩S2 = ∅,
P (S1) = α and P (S2) = β−α. By Proposition 2.7, F > S2 or F ∼ S2 or F < S2.
If F > S2, then, by Proposition 2.8, E ∪ F > S1 ∪ S2 and hence P (E ∪ F ) > β,
which is impossible; similarly, if F < S2 then E∪F < S1∪S2 and P (E∪F ) < β
which, again, is impossible. Hence, F ∼ S2 and therefore P (F ) = β − α, so that
P (E ∪ F ) = P (E) + P (F ), as stated.

(iii) By Proposition 2.5, E is significant iff ∅ < E < Ω. The result then
follows immediately from Proposition 2.10. �

Corollary. (Finitely additive structure of degrees of belief).

(i) If {Ej, j ∈ J} is a finite collection of disjoint events, then

P

( ⋃
j∈J

Ej

)
=

∑
j∈J

P (Ej).

(ii) For any event E, P (Ec) = 1 − P (E).

Proof. The first part follows by induction from Proposition 2.11(iii); the sec-
ond part is a special case of (i) since if ∪jEj = Ω then, by Proposition 2.11(i),
ΣjP (Ej) = 1. �

Proposition 2.11 is crucial. It establishes formally that coherent, quantitative
measures of uncertainty about events must take the form of probabilities, therefore
justifying the nomenclature adopted in Definition 2.6 for this measure of degree of
belief. In short, coherent degrees of belief are probabilities.

It will often be convenient for us to use probability terminology, without
explicit reference to the fact that the mathematical structure is merely serving as a
representation of (personal) degrees of belief. The latter fact should, however, be
constantly borne in mind.

Definition 2.9. (Probability distribution). If {Ej, j ∈ J} form a finite parti-
tion of Ω, with P (Ej) = pj, j ∈ J , then {pj, j ∈ J} is said to be a probability
distribution over the partition.
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This terminology will prove useful in later discussions. The idea is that total
belief (in Ω, having measure 1) is distributed among the events of the partition,
{Ej, j ∈ J}, according to the relative degrees of belief {pj, j ∈ J}, with Σjpj =
ΣjP (Ej) = 1.

Starting from the qualitative ordering among events, we have derived a quanti-
tative measure, P (.) ≡ P (. |M0), over E and shown that, expressed in conventional
mathematical terminology, it has the form of a finitely additive probability measure,
compatible with the qualitative ordering ≤. We now establish that this is the only
probability measure over E compatible with ≤.

Proposition 2.12. (Uniqueness of the probability measure). P is the only
probability measure compatible with the uncertainty relation ≤.

Proof. If P ′ were another compatible measure, then by Proposition 2.8 we
would always have P ′(E) ≤ P ′(F ) ⇐⇒ P (E) ≤ P (F ); hence, there exists
a monotonic function f of [0, 1] into itself such that P ′(E) = f{P (E)}. By
Proposition 2.6, for all non-negative α, β such that α + β ≤ 1, there exist disjoint
standard events S1 and S2, such that P (S1) = α and P (S2) = β. Hence, by
Axiom 4(ii), f(α + β) = P ′(S1 ∪ S2) = P ′(S1) + P ′(S2) = f(α) + f(β)
and so (Eichhorn, 1978, Theorem 2.63), f(α) = kα for all α in [0, 1]. But, by
Proposition 2.9, P ′(Ω) = 1 and hence, k = 1, so that we have P ′(E) = P (E) for
all E. �

We shall now establish that our operational definition of (pairwise) indepen-
dence of events is compatible with its more standard, ad hoc, product definition.

Proposition 2.13. (Characterisation of independence).

E⊥F ⇐⇒ P (E ∩ F ) = P (E)P (F ).

Proof. Suppose E ⊥ F . By Axiom 4(iii), there exists S1 such that P (S1) =
P (E), E ⊥ S1 and F ⊥ S1. Hence, by Axiom 4(v), E ∼F S1, so that, for any
consequences c1 < c2, and any option a,

{c2 |E ∩ F, c1 |Ec ∩ F, a |Fc} ∼ {c2 |S1 ∩ F, c1 |Sc
1 ∩ F, a |Fc}.

Taking a = c1, we have

{c2 |E ∩ F, c1 | (E ∩ F )c} ∼ {c2 |S1 ∩ F, c1 | (S1 ∩ F )c},

so that E ∩ F ∼ S1 ∩ F . Again by Axiom 4(iii), given F , S1, there exists S2 such
that P (S2) = P (F ), F ⊥ S2 and S1 ⊥ S2. Hence, by an identical argument to the
above, and noting from Definition 2.6 the symmetry of ⊥, we have

S1 ∩ F ∼ S1 ∩ S2.
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By Propositions 2.1, 2.10, and Axiom 4(iv),

P (E ∩ F ) = P (S1 ∩ S2) = P (S1)P (S2),

and hence P (E ∩ F ) = P (E)P (F ).

Suppose P (E ∩ F ) = P (E)P (F ). By Axiom 4(iii), there exists S such that
P (S) = P (F ) and F ⊥ S, E ⊥ S. Hence, by the first part of the proof,

P (E ∩ S) = P (E)P (S) = P (E)P (F ) = P (E ∩ F ),

so that E ∩ F ∼ E ∩ S. Now suppose, without loss of generality, that c ≤
{c2 |E, c1 |Ec}. Then, by Definition 2.6,

{c |S, c1 |Sc} ≤ {c2 |E ∩ S, c1 | (E ∩ S)c}.

But {c |S, c1 |Sc} ∼ {c |F, c1 |Fc} and

{c2 |E ∩ S, c1 | (E ∩ S)c} ∼ {c2 |E ∩ F, c1 | (E ∩ F )c};

hence by Proposition 2.2,

{c |F, c1 |Fc} ≤ {c2 |E ∩ F, c1 | (E ∩ F )c},

so that c ≤F {c2 |E, c1 |Ec}. A similar argument can obviously be given reversing
the roles of E and F , hence establishing that E ⊥ F . �

2.4.2 Revision of Beliefs and Bayes’ Theorem

The assumed occurrence of a real-world event will typically modify preferences
between options by modifying the degrees of belief attached, by an individual, to the
events defining the options. In this section, we use the assumptions of Section 2.3
in order to identify the precise way in which coherent modification of initial beliefs
should proceed.

The starting point for analysing order relations between events, given the as-
sumed occurrence of a possible event G, is the uncertainty relation ≤G defined
between events. Given the assumed occurrence of G > ∅, the ordering ≤ between
acts is replaced by ≤G. Analogues of Propositions 2.1 and 2.2 are trivially estab-
lished and we recall (Proposition 2.3) that, for any G > ∅, c2 ≤ c1 iff c2 ≤G c1.

Proposition 2.14. (Properties of conditional beliefs).

(i) E ≤G F ⇐⇒ E ∩ G ≤ F ∩ G.

(ii) If there exist c1 < c2 such that {c2 |E, c1 |Ec} ≤G {c2 |F, c1 |Fc},
then E ≤G F .
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Proof. By Definition 2.4 and Proposition 2.3, E ≤G F iff, for all c2 ≥ c1,

{c2 |E, c1 |Ec} ≤G {c2 |F, c1 |Fc},
i.e., if, and only if, for all a,

{c2 |E ∩ G, c1 |Ec ∩ G, a |Gc} ≤ {c2 |F ∩ G, c1 |Fc ∩ G, a |Gc}.
Taking a = c1,

E ≤G F ⇐⇒ {c2 |E ∩ G, c1 | (E ∩ G)c} ≤ {c2 |F ∩ G, c1 | (F ∩ G)c},
and this is true iff E ∩ G ≤ F ∩ G.

Moreover, if there exist c2 > c1 such that {c2 |E, c1 |Ec} ≤G {c2 |F, c1 |Fc}
then, by Definition 2.4, with a = c1,

{c2 |E ∩ G, c1 |Ec ∩ G, c1 |Gc} ≤ {c2 |F ∩ G, c1 |Fc ∩ G, c1 |Gc},
so that

{c2 |E ∩ G, c1 | (E ∩ G)c} ≤ {c2 |F ∩ G, c1 | (F ∩ G)c}
and the result follows from Axiom 3(ii) and part (i) of this proposition. �

Definition 2.10. (Conditional measure of degree of belief). Given a condi-
tional uncertainty relation ≤G, G > ∅, the conditional probability P (E |G)
of an event E given the assumed occurrence of G is the real number µ(S)
such that E ∼G S, where S is an standard event independent of G.

Generalising the idea encapsulated in Definition 2.7, P (E |G) provides a
quantitative operational measure of the uncertainty attached to E given the assumed
occurrence of the event G. The following fundamental result provides the key to
the process of revising beliefs in a coherent manner in the light of new information.
It relates the conditional measure of degree of belief P (. |G) to the initial measure
of degree of belief P (.).

We have, of course, already stressed that all degrees of belief are conditional.
The intention of the terminology used above is to emphasise the additional con-
ditioning resulting from the occurrence of G; the initial state of information,
M0, is always present as a conditioning factor, although omitted throughout for
notational convenience.

Proposition 2.15. (Conditional probability). For any G > ∅,

P (E |G) =
P (E ∩ G)

P (G)
.

Proof. By Axiom 4(iii) and Proposition 2.13, there exists S⊥G such that
µ(S) = P (E ∩ G)/P (G). By Proposition 2.13,

P (S ∩ G) = P (S)P (G) = µ(S)P (G) = P (E ∩ G).
Thus, by Proposition 2.10, S ∩ G ∼ E ∩ G and, by Proposition 2.14, S ∼G E.
Thus, by Definition 2.10, P (E |G) = µ(S) = P (E ∩ G)/P (G). �
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Note that, in our formulation, P (E |G) = P (E ∩ G)/P (G) is a logical
derivation from the axioms, not an ad hoc definition. In fact, this is the simplest
version of Bayes’ theorem. An extended form is given later in Proposition 2.19.

Proposition 2.16. (Compatibility of conditional probability and conditional
degrees of belief).

E ≤G F ⇐⇒ P (E |G) ≤ P (F |G).

Proof. By Proposition 2.14(i), E ≤G F iff E ∩ G ≤ F ∩ G, which, by
Proposition 2.10, holds if and only if P (E ∩ G) ≤ P (F ∩ G); the result now
follows from Proposition 2.15. �

We now extend Proposition 2.11 to degrees of belief conditional on the occur-
rence of significant events.

Proposition 2.17. (Probability structure of conditional degrees of belief ).
For any event G > ∅,

(i) P (∅ |G) = 0 ≤ P (E |G) ≤ P (Ω |G) = 1;

(ii) if E ∩ F ∩ G = ∅, then P (E ∪ F |G) = P (E |G) + P (F |G);
(iii) E is significant given G ⇐⇒ 0 < P (E |G) < 1.

Proof. By Proposition 2.15, P (E |G) ≥ 0 and P (∅ |G) = 0; moreover,
since E ∩ G ≤ G, Proposition 2.10 implies that P (E ∩ G) ≤ P (G), so that,
by Proposition 2.15, P (E |G) ≤ 1. Finally, Ω ∩ G = G, so that, using again
Proposition 2.15 , P (Ω |G) = 1.

By Proposition 2.15,

P (E ∪ F |G) =
P

(
(E ∩ G) ∪ (F ∩ G)

)
P (G)

=
P (E ∩ G)

P (G)
+

P (F ∩ G)
P (G)

= P (E |G) + P (F |G).

Finally, by Proposition 2.5, E is significant given G iff ∅ < E ∩ G < G.
Thus, by Proposition 2.10, E is significant given G iff 0 < P (E ∩ G) < P (G).
The result follows from Proposition 2.15. �

Corollary. (Finitely additive structure of conditional degrees of belief ).
For all G > ∅,

(i) if {Ej ∩ G, j ∈ J} is a finite collection of disjoint events, then

P

( ⋃
j∈J

Ej

∣∣∣∣ G

)
=

∑
j∈J

P (Ej |G);

(ii) for any event E, P (Ec |G) = 1 − P (E |G).

Proof. This parallels the proof of the Corollary to Proposition 2.11. �



2.4 Beliefs and Probabilities 41

Proposition 2.18. (Uniqueness of the conditional probability measure).
P (. |G) is the only probability measure compatible with the conditional un-
certainty relation ≤G.

Proof. This parallels the proof of Proposition 2.12. �

Example 2.1. (Simpson’s paradox). The following example provides an instructive
illustration of the way in which the formalism of conditional probabilities provides a coherent
resolution of an otherwise seemingly paradoxical situation.

Suppose that the results of a clinical trial involving 800 sick patients are as shown in
Table 2.1, where T, T c denote, respectively, that patients did or did not receive a certain
treatment, and R, Rc denote, respectively, that the patients did or did not recover.

Table 2.1 Trial results for all patients

R Rc Total Recovery rate

T 200 200 400 50%
T c 160 240 400 40%

Intuitively, it seems clear that the treatment is beneficial, and were one to base proba-
bility judgements on these reported figures, it would seem reasonable to specify

P (R |T ) = 0.5, P (R |T c) = 0.4,

where recovery and the receipt of treatment by individuals are now represented, in an obvious
notation, as events. Suppose now, however, that one became aware of the trial outcomes for
male and female patients separately, and that these have the summary forms described in
Tables 2.2 and 2.3.

Table 2.2 Trial results for male patients

R Rc Total Recovery rate

T 180 120 300 60%
T c 70 30 100 70%

The results surely seem paradoxical. Tables 2.2 and 2.3 tell us that the treatment is
neither beneficial for males nor for females; but Table 2.1 tells us that overall it is beneficial!
How are we to come to a coherent view in the light of this apparently conflicting evidence?
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Table 2.3 Trial results for female patients

R Rc Total Recovery rate

T 20 80 100 20%
T c 90 210 300 30%

The seeming paradox is easily resolved by an appeal to the logic of probability which,
after all, we have just demonstrated to be the prerequisite for the coherent treatment of
uncertainty. With M, Mc denoting, respectively, the events that a patient is either male or
female, were one to base probability judgements on the figures reported in Tables 2.2 and
2.3, it would seem reasonable to specify

P (R |M ∩ T ) = 0.6, P (R |M ∩ T c) = 0.7 ,

P (R |Mc ∩ T ) = 0.2, P (R |Mc ∩ T c) = 0.3 .

To see that these judgements do indeed cohere with those based on Table 2.1, we note, from
the Corollary to Proposition 2.11, Proposition 2.15 and the Corollary to Proposition 2.17,
that

P (R |T ) = P (R |M ∩ T )P (M |T ) + P (R |Mc ∩ T )P (Mc |T )

P (R |T c) = P (R |M ∩ T c)P (M |T c) + P (R |Mc ∩ T c)P (Mc |T c),

where
P (M |T ) = 0.75, P (M |T c) = 0.25.

The probability formalism reveals that the seeming paradox has arisen from the confounding
of sex with treatment as a consequence of the unbalanced trial design. See Simpson (1951),
Blyth (1972, 1973) and Lindley and Novick (1981) for further discussion.

Proposition 2.19. (Bayes’ theorem).
For any finite partition {Ej, j ∈ J} of Ω and G > ∅,

P (Ei |G) =
P (G |Ei)P (Ei)∑

j∈J P (G |Ej)P (Ej)
.

Proof. By Proposition 2.15,

P (Ei |G) =
P (Ei ∩ G)

P (G)
=

P (G |Ei)P (Ei)
P (G)

.

The result now follows from the Corollary to Proposition 2.11 when applied to
G = ∪j(G ∩ Ej). �
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Bayes’ theorem is a simple mathematical consequence of the fact that quanti-
tative coherence implies that degrees of belief should obey the rules of probability.
From another point of view, it may also be established (Zellner, 1988b) that, under
some reasonable desiderata, Bayes’ theorem is an optimal information processing
system.

Since the {Ej, j ∈ J} form a partition and hence, by the Corollary to Propo-
sition 2.17,

∑
j P (Ej |G) = 1, Bayes’ theorem may be written in the form

P (Ej |G) ∝ P (G |Ej)P (Ej), j ∈ J,

since the missing proportionality constant is [P (G)]−1 = [ΣjP (G |Ej)P (Ej)]−1,
and thus it is always possible to normalise the products by dividing by their sum.
This form of the theorem is often very useful in applications.

Bayes’ theorem acquires a particular significance in the case where the uncer-
tain events {Ej, j ∈ J} correspond to an exclusive and exhaustive set of hypotheses
about some aspect of the world (for example, in a medical context, the set of possible
diseases from which a patient may be suffering) and the event G corresponds to a
relevant piece of evidence, or data (for example, the outcome of a clinical test). If we
adopt the more suggestive notation, Ej = Hj, j ∈ J, G = D, and, as usual, we omit
explicit notational reference to the initial state of information M0, Proposition 2.17
leads to Bayes’ theorem in the form P (Hj |D) = P (D |Hj)P (Hj)/P (D), j ∈ J ,
where P (D) = ΣjP (D |Hj)P (Hj), characterizing the way in which initial be-
liefs about the hypotheses, P (Hj), j ∈ J , are modified by the data, D, into a
revised set of beliefs, P (Hj |D), j ∈ J . This process is seen to depend crucially
on the specification of the quantities P (D |Hj), j ∈ J , which reflect how beliefs
about obtaining the given data, D, vary over the different underlying hypotheses,
thus defining the “relative likelihoods” of the latter. The four elements, P (Hj),
P (D |Hj), P (Hj |D) and P (D), occur, in various guises, throughout Bayesian
statistics and it is convenient to have a standard terminology available.

Definition 2.11. (Prior, posterior, and predictive probabilities).
If {Hj, j ∈ J} are exclusive and exhaustive events (hypotheses), then for any
event (data) D,

(i) P (Hj), j ∈ J , are called the prior probabilities of the Hj , j ∈ J;

(ii) P (D |Hj), j ∈ J , are called the likelihoods of the Hj , j ∈ J , given D;

(iii) P (Hj |D), j ∈ J , are called the posterior probabilities of the Hj , j ∈ J;

(iv) P (D) is called the predictive probability of D implied by the likelihoods
and the prior probabilities.

It is important to realise that the terms “prior” and “posterior” only have
significance given an initial state of information and relative to an additional piece of
information. Thus, P (Hj), which could be more properly be written asP (Hj |M0),
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represents beliefs prior to conditioning on data D, but posterior to conditioning
on whatever history led to the state of information described by M0. Similarly,
P (Hj |D), or, more properly, P (Hj |M0 ∩ D), represents beliefs posterior to
conditioning on M0 and D, but prior to conditioning on any further data which
may be obtained subsequent to D.

The predictive probability P (D), logically implied by the likelihoods and the
prior probabilities, provides a basis for assessing the compatibility of the data D
with our beliefs (see Box, 1980). We shall consider this in more detail in Chapter 6.

Example 2.2. (Medical diagnosis). In simple problems of medical diagnosis, Bayes’
theorem often provides a particularly illuminating form of analysis of the various uncertain-
ties involved. For simplicity, let us consider the situation where a patient may be characterised
as belonging either to state H1, or to state H2, representing the presence or absence, respec-
tively, of a specified disease. Let us further suppose that P (H1) represents the prevalence
rate of the disease in the population to which the patient is assumed to belong, and that further
information is available in the form of the result of a single clinical test, whose outcome is
either positive (suggesting the presence of the disease and denoted by D = T ), or negative
(suggesting the absence of the disease and denoted by D = T c).

P (H1 |T )

P (H1 |T c)

P (H1)

Figure 2.2 P (H1 |T ) and P (H1 |T c) as functions of P (H1)

The quantities P (T |H1) and P (T c |H2) represent the true positive and true negative
rates of the clinical test (often referred to as the test sensitivity and test specificity, respec-
tively) and the systematic use of Bayes’ theorem then enables us to understand the manner in
which these characteristics of the test combine with the prevalence rate to produce varying
degrees of diagnostic discriminatory power. In particular, for a given clinical test of known
sensitivity and specificity, we can investigate the range of underlying prevalence rates for
which the test has worthwhile diagnostic value.
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As an illustration of this process, let us consider the assessment of the diagnostic value
of stress thallium-201 scintigraphy, a technique involving analysis of Gamma camera image
data as an indicator of coronary heart disease. On the basis of a controlled experimental
study, Murray et al. (1981) concluded that P (T |H1) = 0.900, P (T c |H2) = 0.875 were
reasonable orders of magnitude for the sensitivity and specificity of the test.

Insight into the diagnostic value of the test can be obtained by plotting values of
P (H1 |T ), P (H1 |T c) against P (H1), where

P (H1 |D) =
P (D |H1)P (H1)

P (D |H1)P (H1) + P (D |H2)P (H2)
,

for D = T or D = T c, as shown in Figure 2.2.
As a single, overall measure of the discriminatory power of the test, one may consider

the difference P (H1 |T ) − P (H1 |T c). In cases where P (H1) has very low or very high
values (e.g. for large population screening or following individual patient referral on the basis
of suspected coronary disease, respectively), there is limited diagnostic value in the test.
However, in clinical situations where there is considerable uncertainty about the presence
of coronary heart disease, for example, 0.25 ≤ P (H1) ≤ 0.75, the test may be expected to
provide valuable diagnostic information.

One further point about the terms prior and posterior is worth emphasising.
They are not necessarily to be interpreted in a chronological sense, with the assump-
tion that “prior” beliefs are specified first and then later modified into “posterior”
beliefs. Propositions 2.15 and 2.17 do not involve any such chronological notions.
They merely indicate that, for coherence, specifications of degrees of belief must
satisfy the given relationships. Thus, for example, in Proposition 2.15 one might
first specify P (G) and P (E |G) and then use the relationship stated in the theo-
rem to arrive at coherent specification of P (E ∩ G). In any given situation, the
particular order in which we specify degrees of belief and check their coherence is
a pragmatic one; thus, some assessments seem straightforward and we feel com-
fortable in making them directly, while we are less sure about other assessments
and need to approach them indirectly via the relationships implied by coherence. It
is true that the natural order of assessment does coincide with the “chronological”
order in a number of practical applications, but it is important to realise that this is
a pragmatic issue and not a requirement of the theory.

2.4.3 Conditional Independence

An important special case of Proposition 2.15 arises when E and G are such
that P (E |G) = P (E), so that beliefs about E are unchanged by the assumed
occurrence of G. Not surprisingly, this is directly related to our earlier operational
definition of (pairwise) independence.

Proposition 2.20. For all F > ∅, E⊥F ⇐⇒ P (E |F ) = P (E).
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Proof. E⊥F ⇐⇒ P (E ∩ F ) = P (E)P (F ) and, by Proposition 2.15, we
have P (E ∩ F ) = P (E |F )P (F ). �

In the case of three events, E, F and G, the situation is somewhat more
complicated in that, from an intuitive point of view, we would regard our degree
of belief for E as being “independent” of knowledge of F and G if and only if
P (E |H) = P (E), for any of the four possible forms of H ,

{F ∩ G, F c ∩ G, F ∩ Gc, F c ∩ Gc},

describing the combined occurrences, or otherwise, of F and G (and, of course,
similar conditions must hold for the “independence” of F from E and G, and of
G from E and F ). These considerations motivate the following formal definition,
which generalises Definition 2.6 and can be shown (see e.g. Feller, 1950/1968,
pp. 125–128) to be necessary and sufficient for encapsulating, in the general case,
the intuitive conditions discussed above.

Definition 2.12. (Mutual independence).

Events {Ej, j ∈ J} are said to be mutually independent if, for any I ⊆ J ,

P

(⋂
i∈I

Ei

)
=

∏
i∈I

P (Ei).

An important consequence of the fact that coherent degrees of belief combine
in conformity with the rules of (finitely additive) mathematical probability theory
is that the task of specifying degrees of belief for complex combinations of events
is often greatly simplified. Instead of being forced into a direct specification, we
can attempt to represent the complex event in terms of simpler events, for which
we feel more comfortable in specifying degrees of belief. The latter are then
recombined, using the probability rules, to obtain the desired specification for the
complex event. Definition 2.12 makes clear that the judgement of independence for
a collection of events leads to considerable additional simplification when complex
intersections of events are to be considered. Note that Proposition 2.20 derives from
the uncertainty relation ≤F and therefore reflects an inherently personal judgement
(although coherence may rule out some events from being judged independent: for
example, any E, F such that ∅ ⊂ E ⊆ F ⊂ Ω).

There is a sense, however, in which the judgement of independence (given
M0) for large classes of events of interest reflects a rather extreme form of belief,
in that scope for learning from experience is very much reduced. This motivates
consideration of the following weaker form of independence judgement.
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Definition 2.13. (Conditional independence). The events {Ej, j ∈ J} are
said to be conditionally independent given G > ∅ if, for any I ⊆ J ,

P

(⋂
i∈I

Ei |G
)

=
∏
i∈I

P (Ei |G).

For any subalgebraF of E , the events {Ej, j ∈ J} are said to be conditionally
independent given F if and only if they are conditionally independent given
any G > ∅ in F .

Definitions 2.12 and 2.13 could, of course, have been stated in primitive terms
of choices among options, as in Definition 2.6. However, having seen in detail
the way in which the latter leads to the standard “product definition”, it will be
clear that a similar equivalence holds in these more general cases, but that the
algebraic manipulations involved are somewhat more tedious.

The form of degree of belief judgement encapsulated in Definition 2.13 is one
which is utilised in some way or another in a wide variety of practical contexts
and statements of scientific theories. Indeed, a detailed discussion of the kinds of
circumstances in which it may be reasonable to structure beliefs on the basis of
such judgements will be a main topic of Chapter 4. Thus, for example, in the prac-
tical context of sampling, with or without replacement, from large dichotomised
populations (of voters, manufactured items, or whatever), successive outcomes
(voting intention, marketable quality, . . .) may very often be judged independent,
given exact knowledge of the proportional split in the dichotomised population.
Similarly, in simple Mendelian theory, the genotypes of successive offspring are
typically judged to be independent events, given the knowledge of the two genotypes
forming the mating. In the absence of such knowledge, however, in neither case
would the judgement of independence for successive outcomes be intuitively plau-
sible, since earlier outcomes provide information about the unknown population
or mating composition and this, in turn, influences judgements about subsequent
outcomes. For a detailed analysis of the concept of conditional independence, see
Dawid (1979a, 1979b, 1980b).

2.4.4 Sequential Revision of Beliefs

Bayes’ theorem characterises the way in which current beliefs about a set of mu-
tually exclusive and exhaustive hypotheses, Hj , j ∈ J , are revised in the light of
new data, D. In practice, of course, we typically receive data in successive stages,
so that the process of revising beliefs is sequential.

As a simple illustration of this process, let us suppose that data are obtained
in two stages, which can be described by real-world events D1 and D2. Omitting,
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for convenience, explicit conditioning on M0, revision of beliefs on the basis of the
first piece of data D1 is described by P (Hj |D1) = P (D1 |Hj)P (Hj)/P (D1),
j ∈ J . When it comes to the further, subsequent revision of beliefs in the light of
D2, the likelihoods and prior probabilities to be used in Bayes’ theorem are now
P (D2 |Hj ∩ D1) and P (Hj |D1), j ∈ J , respectively, since all judgements are
now conditional on D1. We thus have, for all j ∈ J ,

P (Hj |D1 ∩ D2) =
P (D2 |Hj ∩ D1)P (Hj |D1)

P (D2 |D1)
,

where P (D2 |D1) =
∑

j P (D2 |Hj ∩ D1)P (Hj |D1).
From an intuitive standpoint, we would obviously anticipate that coherent

revision of initial belief in the light of the combined data, D1 ∩ D2, should not
depend on whether D1, D2 were analysed successively or in combination. This is
easily verified by substituting the expression for P (Hj |D1) into the expression for
P (Hj |D1 ∩ D2), whereupon we obtain

P (D2 |Hj ∩ D1)P (D1 |Hj)P (Hj)
P (D2 |D1)P (D1)

=
P (D1 ∩ D2 |Hj)P (Hj)

P (D1 ∩ D2)
,

the latter being the direct expression for P (Hj |D1 ∩ D2) from Bayes’ theorem
when D1 ∩ D2 is treated as a single piece of data.

The generalisation of this sequential revision process to any number of stages,
corresponding to data, D1, D2, . . . , Dn, . . . , proceeds straightforwardly. If we
write D(k) = D1∩D2∩· · ·∩Dk to denote all the data received up to and including
stage k, then, for all j ∈ J ,

P (Hj |D(k+1)) =
P (Dk+1 |Hj ∩ D(k))P (Hj |D(k))

P (Dk+1 |D(k))
,

which provides a recursive algorithm for the revision of beliefs.
There is, however, a potential practical difficulty in implementing this process,

since there is an implicit need to specify the successively conditioned likelihoods,
P (Dk+1 |Hj ∩ D(k)), j ∈ J , a task which, in the absence of simplifying assump-
tions, may appear to be impossibly complex if k is at all large. One possible
form of simplifying assumption is the judgement of conditional independence for
D1, D2, . . . , Dn, given any Hj , j ∈ J , since, by Definition 2.13, we then only need
the evaluations P (Dk+1 |Hj ∩ D(k)) = P (Dk+1 |Hj), j ∈ J . Another possibility
might be to assume a rather weak form of dependence by making the judgement
that a (Markov) property such as P (Dk+1 |Hj ∩ D(k)) = P (Dk+1 |Hj ∩ Dk),
j ∈ J , holds for all k. As we shall see later, these kinds of simplifying structural
assumptions play a fundamental role in statistical modelling and analysis.
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In the case of two hypotheses, H1, H2, the judgement of conditional indepen-
dence for D1, D2, . . . , Dn, . . . , given H1 or H2, enables us to provide an alternative
description of the process of revising beliefs by noting that, in this case,

P (H1 |D(k+1))
P (H2 |D(k+1))

=
P (H1 |D(k))
P (H2 |D(k))

× P (Dk+1 |H1)
P (Dk+1 |H2)

.

With due regard to the relative nature of the terms prior and posterior, we can
thus summarise the learning process (in “favour” of H1) as follows:

posterior odds = prior odds × likelihood ratio.

In Section 2.6, we shall examine in more detail the key role played by the
sequential revision of beliefs in the context of complex, sequential decision prob-
lems.

2.5 ACTIONS AND UTILITIES

2.5.1 Bounded Sets of Consequences

At the beginning of Section 2.4, we argued that choices among options are governed,
in part, by the relative degrees of belief that an individual attaches to the uncertain
events involved in the options. It is equally clear that choices among options should
depend on the relative values that an individual attaches to the consequencesflowing
from the events. The measurement framework of Axiom 5(i) provides us with a
direct, intuitive way of introducing a numerical measure of value for consequences,
in such a way that the latter has a coherent, operational basis. Before we do this,
we need to consider a little more closely the nature of the set of consequences C.
The following special case provides a useful starting point for our development of
a measure of value for consequences.

Definition 2.14. (Extreme consequences). The pair of consequences c∗ and
c∗ are called, respectively, the worst and the best consequences in a decision
problem if, for any other consequence c ∈ C, c∗ ≤ c ≤ c∗.

It could be argued that all real decision problems actually have extreme con-
sequences. Indeed, we recall that all consequences are to be thought of as relevant
consequences in the context of the decision problem. This eliminates pathological,
mathematically motivated choices of C, which could be constructed in such a way
as to rule out the existence of extreme consequences. For example, in mathematical
modelling of decision problems involving monetary consequences, C is often taken
to be the real line � or, in a no-loss situation with current assets k, to be the interval
[k,∞). Such C’s would not contain both a best and a worst consequence but, on the
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other hand, they clearly do not correspond to concrete, practical problems. In the
next section, we shall consider the solution to decision problems for which extreme
consequences are assumed to exist.

Nevertheless, despite the force of the pragmatic argument that extreme conse-
quences always exist, it must be admitted that insisting upon problem formulations
which satisfy the assumption of the existence of extreme consequences can some-
times lead to rather tedious complications of a conceptual or mathematical nature.

Consider, for example, a medical decision problem for which the consequences
take the form of different numbers of years of remaining life for a patient. Assuming
that more value is attached to longer survival, it would appear rather difficult to
justify any particular choice of realistic upper bound, even though we believe there
to be one. To choose a particular c∗ would be tantamount to putting forward c∗

years as a realistic possible survival time, but regarding c∗ +1 years as impossible!
In such cases, it is attractive to have available the possibility, for conceptual and
mathematical convenience, of dealing with sets of consequences not possessing
extreme elements (and the same is true of many problems involving monetary
consequences). For this reason, we shall also deal (in Section 2.5.3) with the
situation in which extreme consequences are not assumed to exist.

2.5.2 Bounded Decision Problems

Let us consider a decision problem (E , C,A,≤) for which extreme consequences
c∗ < c∗ are assumed to exist. We shall refer to such decision problems as bounded.

Definition 2.15. (Canonical utility function for consequences). Given a
preference relation ≤, the utility u(c) = u(c | c∗, c∗) of a consequence c,
relative to the extreme consequences c∗ < c∗, is the real number µ(S) asso-
ciated with any standard event S such that c ∼ {c∗ |S, c∗ |Sc}. The mapping
u : C → � is called the utility function.

It is important to note that the definition of utility only involves comparison
among consequences and options constructed with standard events. Since the
preference patterns among consequences is unaffected by additional information,
we would expect the utility of a consequence to be uniquely defined and to remain
unchanged as new information is obtained. This is indeed the case.

Proposition 2.21. (Existence and uniqueness of bounded utilities). For any
bounded decision problem (E , C,A,≤) with extreme consequences c∗ < c∗,

(i) for all c, u(c | c∗, c∗) exists and is unique;

(ii) the value of u(c | c∗, c∗) is unaffected by the assumed occurrence of an
event G > ∅;

(iii) 0 = u(c∗ | c∗, c∗) ≤ u(c | c∗, c∗) ≤ u(c∗ | c∗, c∗) = 1.
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Proof. (i) Existence follows immediately from Axiom 5(i). For uniqueness,
note that if c ∼ {c∗ |S1, c∗ |Sc

1} and c ∼ {c∗ |S2, c∗ |Sc
2} then, by transitivity

and Axiom 3(ii), {c∗ |S1, c∗ |Sc
1} ∼ {c∗ |S2, c∗ |Sc

2} and S1 ∼ S2; the result now
follows from Axiom 4(i).

(ii) To establish this, let c ∼ {c∗ |S1, c∗ |Sc
1}, so that u(c | c∗, c∗) = µ(S1);

using Axiom 4(iii), for any G > ∅ choose S2 such that G ⊥ S2 and µ(S2) = µ(S1).
Then, by Definition 2.6, c ∼G {c∗ |S2, c∗ |Sc

2} and so the utility of c given G is
just the original value µ(S2).

(iii) Finally, since c∗ ≡ {c∗ | ∅, c∗ |Ω}, c∗ ≡ {c∗ |Ω, c∗ | ∅}, and both ∅ and Ω
belong to the algebra of standard events, we have u(c∗ | c∗, c∗) = µ(∅) = 0 and
u(c∗ | c∗, c∗) = µ(Ω) = 1. It then follows, from Definition 2.15 and Axiom 4(i),
that 0 ≤ u(c | c∗, c∗) ≤ 1. �

It is interesting to note that u(c | c∗, c∗), which we shall often simply denote
by u(c), can be given an operational interpretation in terms of degrees of belief.
Indeed, if we consider a choice between the fixed consequence c and the option
{c∗ |E, c∗ |Ec}, for some event E, then the utility of c can be thought of as defining
a threshold value for the degree of belief in E, in the sense that values greater than
u would lead an individual to prefer the uncertain option, whereas values less than
u would lead the individual to prefer c for certain. The value u itself corresponds to
indifference between the two options and is the degree of belief in the occurrence
of the best, rather than worst, consequence.

This suggests one possible technique for the experimental elicitation of utilities, a
subject which has generated a large literature (with contributions from economists
and psychologists, as well as from statisticians). We shall illustrate the ideas in
Example 2.3.

Using the coherence and quantification principles set out in Section 2.3, we
have seen how numerical measures can be assigned to two of the elements of
a decision problem in the form of degrees of belief for events and utilities for
consequences. It remains now to investigate how an overall numerical measure of
value can be attached to an option, whose form depends both on the events of a
finite partition of the certain event Ω and on the particular consequences to which
these events lead.

Definition 2.16. (Conditional expected utility).
For any c∗ < c∗, G > ∅, and a ≡ {cj |Ej, j ∈ J},

u(a | c∗, c∗, G) =
∑
j∈J

u(cj | c∗, c∗)P (Ej |G)

is the expected utility of the option a, given G, with respect to the extreme
consequences c∗, c∗. If G = Ω, we shall simply write u(a | c∗, c∗) in place of
u(a | c∗, c∗,Ω).
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In the language of mathematical probability theory (see Chapter 3), if the utility
value of a is considered as a “random quantity”, contingent on the occurrence of
a particular event Ej , then u is simply the expected value of that utility when the
probabilities of the events are considered conditional on G.

Proposition 2.22. (Decision criterion for a bounded decision problem).
For any bounded decision with extreme consequences c∗ < c∗, and G > ∅,

a1 ≤G a2 ⇐⇒ u(a1 | c∗, c∗, G) ≤ u(a2 | c∗, c∗, G).

Proof. Let ai = {cij |Eij, j = 1, . . . , ni}, i = 1, 2. By Axioms 5(ii), 4(iii),
and Proposition 2.13, for all (i, j) there exist Sij and S ′

ij such that

cij ∼ {c∗ |S ′
ij , c∗ |S ′c

ij}, Sij⊥(Eij ∩ G), P (S ′
ij) = P (Sij).

Hence, by Proposition 2.10, cij ∼ {c∗ |Sij, c∗ |Sc
ij} with Sij⊥(Eij ∩ G) and

P (Sij) = u(cij | c∗, c∗). By Definition 2.6, for i = 1, 2 and any option a,

{[cij |Eij ∩ G], j = 1, . . . , ni, a |Gc}

∼ {[(c∗ |Sij, c∗ |Sc
ij) |Eij ∩ G], j = 1, . . . , ni, a |Gc},

which may be written as {c∗ |Ai, c∗ |Bi, a |Gc}, where Ai = ∪j(Eij ∩ G ∩ Sij)
and Bi = ∪j(Eij ∩ G ∩ Sc

ij). By Propositions 2.14(ii) and 2.16, and using
Definition 2.5, a1 ≤G a2 ⇒ A1 ≤G A2 ⇒ P (A1 |G) ≤ P (A2 |G). But, by
Proposition 2.15, P (Eij∩G∩Sij) = P (Eij∩G)P (Sij) = P (Sij)P (Eij |G)P (G).
Hence,

P (Ai |G) =
ni∑

j=1

u(cij | c∗, c∗)P (Eij |G) = u(ai | c∗, c∗, G)

and so a1 ≤G a2 ⇔ u(a1 | c∗, c∗, G) ≤ u(a2 | c, c∗, G). �

The result just established is sometimes referred to as the principle of max-
imising expected utility. In our development, this is clearly not an independent
“principle”, but rather an implication of our assumptions and definitions. In sum-
mary form, the resulting prescription for quantitative, coherent decision-making is:
choose the option with the greatest expected utility.

Technically, of course, Proposition 2.22 merely establishes, for each ≤G, a
complete ordering of the options considered and does not guarantee the existence
of an optimal option for which the expected utility is a maximum. However, in
most (if not all) concrete, practical problems the set of options considered will be
finite and so a best option (not necessarily unique) will exist. In more abstract
mathematical formulations, the existence of a maximum will depend on analytic
features of the set of options and on the utility function u : C → �.



-17.5 0. 17.5 35. 52.5 70.

20.

-200 0 200 400 600 800

1

0

2.5 Actions and Utilities 53

Example 2.3. (Utilities of oil wildcatters). One of the earliest reported systematic
attempts at the quantification of utilities in a practical decision-making context was that of
Grayson (1960), whose decision-makers were oil wildcatters engaged in exploratory searches
for oil and gas. The consequences of drilling decisions and their outcomes are ultimately
changes in the wildcatters’ monetary assets, and Grayson’s work focuses on the assessment
of utility functions for this latter quantity.

For the purposes of illustration, suppose that we restrict attention to changes in monetary
assets ranging, in units of one thousand dollars, from−150 (the worst consequence) to +825
(the best consequence). Assuming u(−150) = 0, u(825) = 1, the above development
suggests ways in which we might try to elicit an individual wildcatter’s values of u(c) for
various c in the range −150 < c < 825. For example, one could ask the wildcatter, using a
series of values of c, which option he or she would prefer out of the following:

(i) c for sure,
(ii) entry into a venture having outcome 825 with probability p and an outcome −150 with

probability 1 − p, for some specified p.

If cp emerges from such interrogation as an approximate “indifference” value, the theory
developed above suggests that, for a coherent individual,

u(cp) = p u(825) + (1 − p) u(−150) = p.

Repeating this exercise for a range of values of p, provides a series of (cp, p) pairs, from
which a “picture” of u(c) over the range of interest can be obtained. An alternative procedure,
of course, would be to fix c, perform an interrogation for various p until an “indifference”
value, pc is found, and then repeat this procedure for a range of values of c to obtain a series
of (c, pc) pairs.

Thousands of dollars

Utility

Figure 2.3 William Beard’s utility function for changes in monetary assets
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Figure 2.3 shows the results obtained by Grayson using procedures of this kind to
interrogate oil company executive, W. Beard, on October 23, 1957. A “picture” of Beard’s
utility function clearly emerges from the empirical data. In particular, over the range con-
cerned, the utility function reflects considerable risk aversion, in the sense that even quite
small asset losses lead to large (negative) changes in utility compared with the (positive)
changes associated with asset gains.

Since the expected utility u is a linear combination of values of the utility
function, Proposition 2.22 guarantees that preferences among options are invariant
under changes in the origin and scale of the utility measure used; i.e., invariant
with respect to transformations of the form Au(.) + B, provided we take A > 0 ,
so that the orientation of “best” and “worst” is not changed. In general, therefore,
such an origin and scale can be chosen for convenience in any given problem,
and we can simply refer to the expected utility of an option without needing to
specify the (positive linear) transformation of the utility function which has been
used. However, there may be bounded decision problems where the probabilistic
interpretation discussed above makes it desirable to work in terms of canonical
utilities, derived by referring to the best and worst consequences.

In the next section, we shall provide an extension of these ideas to more general
decision problems where extreme consequences are not assumed to exist.

2.5.3 General Decision Problems

We begin with a more general definition of the utility of a consequence which
preserves the linear combination structure and the invariance discussed above.

Definition 2.17. (General utility function). Given a preference relation ≤,
the utility u(c | c1, c2) of a consequence c, relative to the consequences c1 < c2,
is defined to be the real number u such that

if c < c1 and c1 ∼ {c2 |Sx, c |Sc
x}, then u = −x/(1 − x);

if c1 ≤ c ≤ c2 and c ∼ {c2 |Sx, c1 |Sc
x}, then u = x;

if c > c2 and c2 ∼ {c |Sx, c1 |Sc
x}, then u = 1/x

where x = µ(Sx) is the measure associated with the standard event Sx.

Our restricted definition of utility (Definition 2.15) relied on the existence
of extreme consequences c∗, c∗, such that c∗ ≤ c ≤ c∗ for all c ∈ C. In the
absence of this assumption, we have to select some reference consequences, c1, c2
to play the role of c∗, c∗. However, we cannot then assume that c1 ≤ c ≤ c2 for
all c, and this means that if c1, c2 are to define a utility scale by being assigned
values 0, 1, respectively, we shall require negative assignments for c < c1 and
assignments greater than one for c > c2. The definition is motivated by a desire
to maintain the linear features of the utility function obtained in the case where
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extreme consequences exist. It can be checked straightforwardly that if c(1), c(2),
c(3) denote any permutation of c, c1, c2, where c1 < c2 and c(1) ≤ c(2) ≤ c(3), the
definition given ensures that for any G > ∅, c(2) ∼G {c(3) |Sx, c(1) |Sc

x} implies
that

u(c(2) | c1, c2) = x u(c(3) | c1, c2) + (1 − x) u(c(1) | c1, c2).
The following result extends Proposition 2.21 to the general utility function

defined above.

Proposition 2.23. (Existence and uniqueness of utilities). For any decision
problem, and for any pair of consequences c1 < c2,

(i) for all c, u(c | c1, c2) exists and is unique;

(ii) the value of u(c | c1, c2) is unaffected by the occurrence of an event G > ∅;

(iii) u(c1 | c1, c2) = 0 and u(c2 | c1, c2) = 1.

Proof. This is virtually identical to the proof of Proposition 2.21. �

The following results guarantee that the utilities of consequences are linearly
transformed if the pair of consequences chosen as a reference is changed.

Proposition 2.24. (Linearity). For all c1 < c2 and c3 < c4 there exist A > 0
and B such that, for all c, u(c | c1, c2) = Au(c | c3, c4) + B.

Proof. Suppose first that c3 ≥ c1, c4 ≤ c2, and c1 ≤ c ≤ c2. By Ax-
iom 5(ii), c3 ≤ c ≤ c4 implies that there exists a standard event Sx such that
c ∼ {c4 |Sx, c3 |Sc

x}. Hence, by Proposition 2.22,

u(c | c1, c2) = xu(c4 | c1, c2) + (1 − x)u(c3 | c1, c2),

where x = P (Sx) and, by Definition 2.17, u(c | c3, c4) = x. Hence, u(c | c1, c2) =
Au(c | c3, c4) + B, where A = u(c4 | c1, c2)− u(c3 | c1, c2) and B = u(c3 | c1, c2).

By Axiom 5(ii), if c3 > c there exists Sy such that c3 ∼ {c4 |Sy, c |Sc
y}.

Hence, by Proposition 2.22,

u(c3 | c1, c2) = yu(c4 | c1, c2) + (1 − y)u(c | c1, c2),

where y = P (Sy) and, by Definition 2.17, u(c | c3, c4) = −y/(1 − y). Hence,
u(c | c1, c2) = Au(c | c3, c4)+B, with A and B as above. Similarly, if c > c4 there
exists Sz such that c4 ∼ {c |Sz, c3 |Sc

z} and

u(c4 | c1, c2) = yu(c | c1, c2) + (1 − y)u(c3 | c1, c2),

where y = P (Sy) and, by Definition 2.17, u(c | c3, c4) = 1/y. Hence, we have
u(c | c1, c2) = Au(c | c3, c4) + B, with A and B as above.

Now suppose that the c’s have arbitrary order, subject to c2 > c1, c4 > c3.
Let c∗, c∗ be the minimum and maximum, respectively, of {c1, c2, c3, c4, c}. Then,
by the above, there exist A1, B1, A2, B2 such that, for c(i) ∈ {c1, c2, c3, c4, c},
u(c(i) | c∗, c∗) = A1u(c(i) | c1, c2)+B1 and u(c(i) | c∗, c∗) = A2u(c(i) | c3, c4)+B2;
hence, u(c(i) | c1, c2) = (A2/A1)u(c(i) | c3, c4) + (B2 − B1)/A1. �
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Finally, we generalise Proposition 2.22 to unbounded decision problems;

Proposition 2.25. (General decision criterion).
For any decision problem, pair of consequences c1 < c2, and event G > ∅,

a1 ≤G a2 ⇐⇒ u(a1 | c1, c2, G) ≤ u(a2 | c1, c2, G).

Proof. Suppose ai = {cij |Eij, j = 1, . . . , ni}, i = 1, 2, and let c∗, c∗ be
such that for all cij , c∗ ≤ cij ≤ c∗. Then, by Proposition 2.22, a2 ≤G a1 iff
u(a2 | c∗, c∗, G) ≤ u(a1 | c∗, c∗, G). But, by Proposition 2.24, there exists A > 0
and B such that u(c | c∗, c∗) = Au(c | c1, c2) + B, and so the result follows. �

An immediate implication of Proposition 2.25 is that all options can be com-
pared among themselves. We recall that we did not directly assume that compar-
isons could be made between all pair of options (an assumption which is often
criticised as unjustified; see, for example, Fine 1973, p. 221). Instead, we merely
assumed that all consequences could be compared among themselves and with the
(very simply structured) standard dichotomised options, and that the latter could
be compared among themselves.

This completes our elaboration of the axiom system set out in Section 2.3.
Starting from the primitive notion of preference,≤, we have shown that quantitative,
coherent comparisons of options must proceed as if a utility function has been
assigned to consequences, probabilities to events and the choice of an option made
on the basis of maximising expected utility.

If we begin by defining a utility function over u : C → �, this induces in turn
a preference ordering which is necessarily coherent. Any function can serve as a
utility function (subject only to the existence of the expected utility for each option,
a problem which does not arise in the case of finite partitions) and the choice is a
personal one. In some contexts, however, there are further formal considerations
which may delimit the form of function chosen. An important special case is
discussed in detail in Section 2.7.

2.6 SEQUENTIAL DECISION PROBLEMS

2.6.1 Complex Decision Problems

Many real decision problems would appear to have a more complex structure than
that encapsulated in Definition 2.1. For instance, in the fields of market research
and production engineering investigators often consider first whether or not to
run a pilot study and only then, in the light of information obtained (or on the
basis of initial information if the study is not undertaken), are the major options
considered. Such a two-stage process provides a simple example of a sequential



2.6 Sequential Decision Problems 57

decision problem, involving successive, interdependent decisions. In this section,
we shall demonstrate that complex problems of this kind can be solved with the
tools already at our disposal, thus substantiating our claim that the principles of
quantitative coherence suffice to provide a prescriptive solution to any decision
problem.

Before explicitly considering sequential problems, we shall review, using a
more detailed notation, some of our earlier developments.

LetA = {ai, i ∈ I} be the set of alternative actions we are willing to consider.
For each ai, there is a class {Eij, j ∈ Ji} of exhaustive and mutually exclusive
events, which label the possible consequences {cij , j ∈ Ji} which may result from
action ai. Note that, with this notation, we are merely emphasising the obvious
dependence of both the consequences and the events on the action from which they
result. If M0 is our initial state of information and G > ∅ is additional information
obtained subsequently, the main result of the previous section (Proposition 2.25)
may be restated as follows.

For behaviour consistent with the principles of quantitative coherence, action
a1 is to be preferred to action a2, given M0 and G, if and only if

u(a1 |G) > u(a2 |G),

where
u(ai |G) =

∑
j∈Ji

u(cij)P (Eij | ai, M0, G),

u(cij) is the value attached to the consequence foreseen if action ai is taken and the
event Eij occurs, and P (Eij | ai, M0, G) is the degree of belief in the occurrence of
event Eij , conditional on action ai having been taken, and the state of information
being (M0, G).

We recall that the probability measure used to compute the expected utility is taken
to be a representation of the decision-maker’s degree of belief conditional on the
total information available. By using the extended notation P (Eij | ai, G, M0),
rather than the more economical P (Ej |G) used previously, we are emphasising
that (i) the actual events considered may depend on the particular action envisaged,
(ii) the information available certainly includes the initial information together
with G > ∅, and (iii) degrees of belief in the occurrence of events such as Eij are
understood to be conditional on action ai having been assumed to be taken, so
that the possible influence of the decision-maker on the real world is taken into
account.

For any action ai, it is sometimes convenient to describe the relevant events
Eij , j ∈ J , in a sequential form. For example, in considering the relevant events
which label the consequences of a surgical intervention for cancer, one may first
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think of whether the patient will survive the operation and then, conditional on
survival, whether or not the tumour will eventually reappear were this particular
form of surgery to be performed.

These situations are most easily described diagrammatically using decision
trees, such as that shown in Figure 2.4, with as many successive random nodes
as necessary. Obviously, this does not represent any formal departure from our
previous structure, since the problem can be restated with a single random node
where relevant events are defined in terms of appropriate intersections, such as
Eij ∩ Fijk in the example shown. It is also usually the case, in practice, that it
is easier to elicit the relevant degrees of belief conditionally, so that, for example,
P (Eij ∩Fijk | ai, G, M0) would often be best assessed by combining the separately
assessed terms P (Fijk |Eij, ai, G, M0) and P (Eij | ai, G, M0).

ai

Eij

Fijk

cijk

Figure 2.4 Conditional description of relevant events

Conditional analysis of this kind is usually necessary in order to understand the
structure of complicated situations. Consider, for instance, the problem of placing
a bet on the result of a race after which the total amount bet is to be divided up
among those correctly guessing the winner. Clearly, if we bet on the favourite we
have a higher probability of winning; but, if the favourite wins, many people will
have guessed correctly and the prize will be small. It may appear at first sight that
this is a decision problem where the utilities involved in an action (the possible
prizes to be obtained from a bet) depend on the probabilities of the corresponding
uncertain events (the possible winning horses), a possibility not contemplated
in our structure. A closer analysis reveals, however, that the structure of the
problem is similar to that of Figure 2.4. The prize received depends on the bet
you place (ai) the related betting behaviour of other people (Eij) and the outcome
of the race (Fijk). It is only natural to assume that our degree of belief in the
possible outcomes of the race may be influenced by the betting behaviour of other
people. This conditional analysis straightforwardly resolves the initial, apparent
complication.

We now turn to considering sequences of decision problems. We shall consider
situations where, after an action has been taken and its consequences observed, a
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new decision problem arises, conditional on the new circumstances. For exam-
ple, when the consequences of a given medical treatment have been observed, a
physician has to decide whether to continue the same treatment, or to change to an
alternative treatment, or to declare the patient cured.

If a decision problem involves a succession of decision nodes, it is intuitively
obvious that the optimal choice at the first decision node depends on the optimal
choices at the subsequent decision nodes. In colloquial terms, we typically cannot
decide what to do today without thinking first of what we might do tomorrow,
and that, of course, will typically depend on the possible consequences of today’s
actions. In the next section, we consider a technique, backward induction, which
makes it possible to solve these problems within the framework we have already
established.

2.6.2 Backward Induction

In any actual decision problem, the number of scenarios which may be contemplated
at any given time is necessarily finite. Consequently, and bearing in mind that the
analysis is only strictly valid under certain fixed general assumptions and we cannot
seriously expect these to remain valid for an indefinitely long period, the number of
decision nodes to be considered in any given sequential problem will be assumed to
be finite. Thus, we should be able to define a finite horizon, after which no further
decisions are envisaged in the particular problem formulation. If, at each node, the
possibilities are finite in number, the situation may be diagrammatically described
by means of a decision tree like that of Figure 2.5.

a
(1)
i

Eij , j ∈ J
(1)
i

a
(2)
k , k ∈ Kij

Ejk, j ∈ J
(2)
k

Figure 2.5 Decision tree with several decision nodes

Let n be the number of decision stages considered and let a(m) denote an
action being considered at the mth stage. Using the notation for composite options
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introduced in Section 2.2, all first-stage actions may be compactly described in the
form

a
(1)
i =

{
max
k∈Kij

a
(2)
k |Eij, j ∈ J

(1)
i

}
,

where {Eij, j ∈ J
(1)
i } is the partition of relevant events which corresponds to

a
(1)
i and the notation “max a

(2)
k ” refers to the most preferred of the set of options

{a(2)
k , k ∈ Kij} which we would be confronted with were the event Eij to occur.

The “maximisation” is naturally to be understood in the sense of our conditional
preference ordering among the available second-stage options, given the occurrence
of Eij . Indeed, the “consequence” of choosing a

(1)
i and having Eij occur is that we

are confronted with a set of options {a(2)
k , k ∈ Kij} from which we can choose that

option which is preferred on the basis of our pattern of preferences at that stage.
Similarly, second-stage options may be written in terms of third-stage options, and
the process continued until we reach the nth stage, consisting of “ordinary” options
defined in terms of the events and consequences to which they may lead. Formally,
we have

a
(m)
i =

{
max
k∈Kij

a
(m+1)
k |Eij, j ∈ J

(m)
i

}
, m = 1, 2, . . . , n − 1 ,

a
(n)
i =

{
cij |Eij, j ∈ J

(n)
i

}
.

It is now apparent that sequential decision problems are a special case of the general
framework which we have developed.

It follows from Proposition 2.25 that, at each stage m, if Gm is the relevant
information available, and u(.) is the (generalised) utility function, we may write

a
(m)
i ≤Gm a

(m)
j ⇐⇒ u

{
a

(m)
i |Gm

}
≤ u

{
a

(m)
j |Gm

}
,

where

u
{

a
(m)
i |Gm

}
=

∑
j∈J

(m)
i

[
max
k∈Kij

u
{

a
(m+1)
k |Gm+1

}]
P (Eij |Gm),

u
{

a
(n)
i |Gn

}
=

∑
j∈J

(n)
i

u(cij)P (Eij |Gn).

This means that one has to first solve the final (nth) stage, by maximising the
appropriate expected utility; then one has to solve the (n−1)th stage by maximizing
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the expected utility conditional on making the optimal choice at the nth stage; and
so on, working backwards progressively, until the optimal first stage option has
been obtained, a procedure often referred to as dynamic programming.

This process of backward induction satisfies the requirement that, at any stage
of the procedure, the mth, say, the continuation of the procedure must be identical
to the optimal procedure starting at the mth stage with information Gm. This re-
quirement is usually known as Bellman’s optimality principle (Bellman, 1957). As
with the “principle” of maximising expected utility, we see that this is not required
as a further assumed “principle” in our formulation, but is simply a consequence
of the principles of quantitative coherence.

Example 2.4. (An optimal stopping problem). We now consider a famous problem,
which is usually referred to in the literature as the “marriage problem” or the “secretary
problem”. Suppose that a specified number of objects n ≥ 2 are to be inspected sequentially,
one at a time, in order to select one of them. Suppose further that, at any stage r, 1 ≤ r ≤ n,
the inspector has the option of either stopping the inspection process, receiving, as a result,
the object currently under inspection, or of continuing the inspection process with the next
object. No backtracking is permitted and if the inspection process has not terminated before
the nth stage the outcome is that the nth object is received. At each stage, r, the only
information available to the inspector is the relative rank (1=best, r=worst) of the current
object among those inspected so far, and the knowledge that the n objects are being presented
in a completely random order.

When should the inspection process be terminated? Intuitively, if the inspector stops
too soon there is a good chance that objects more preferred to those seen so far will remain
uninspected. However, if the inspection process goes on too long there is a good chance that
the overall preferred object will already have been encountered and passed over.

This kind of dilemma is inherent in a variety of practical problems, such as property
purchase in a limited seller’s market when a bid is required immediately after inspection,
or staff appointment in a skill shortage area when a job offer is required immediately after
interview. More exotically—and assuming a rather egocentric inspection process, again
with no backtracking possibilities—this stopping problem has been suggested as a model
for choosing a mate. Potential partners are encountered sequentially; the proverb “marry in
haste, repent at leisure” warns against settling down too soon; but such hesitations have to
be balanced against painful future realisations of missed golden opportunities.

Less romantically, let ci, i = 1, . . . , n, denote the possible consequences of the inspec-
tion process, with ci = i if the eventual object chosen has rank i out of all n objects. We
shall denote by u(ci) = u(i), i = 1, . . . , n, the inspector’s utility for these consequences.

Now suppose that r < n objects have been inspected and that the relative rank among
these of the object under current inspection is x, where 1 ≤ x ≤ r. There are two actions
available at the rth stage: a1 = stop, a2 = continue (where, to simplify notation, we have
dropped the superscript, r). The information available at the rth stage is Gr = (x, r);
the information available at the (r + 1)th stage would be Gr+1 = (y, r + 1), where y,
1 ≤ y ≤ r + 1, is the rank of the next object relative to the r + 1 then inspected, all values
of y being, of course, equally likely since the n objects are inspected in a random order. If
we denote the expected utility of stopping, given Gr, by us(x, r) and the expected utility
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of acting optimally, given Gr, by u0(x, r), the general development given above establishes
that

u0(x, r) = max
{

us(x, r),
1

r + 1

r+1∑
y=1

u0(y, r + 1)
}

,

where

us(x, r) =
n−r+x∑

z=x

u(z)

(
z − 1
x − 1

)(
n − z

r − x

)
(

n

r

) ,

u0(x, n) = us(x, n) = u(x), x = 1, . . . , n.

Values of u0(x, r) can be found from the final condition and the technique of backwards
induction. The optimal procedure is then seen to be:

(i) continue if u0(x, r) > us(x, r),

(ii) stop if u0(x, r) = us(x, r).

For illustration, suppose that the inspector’s preference ordering corresponds to a “noth-
ing but the best” utility function, defined by u(1) = 1, u(x) = 0, x = 2, . . . , n. It is then
easy to show that

us(1, r) =
r

n
,

us(x, r) = 0, x = 2, . . . , n ;

thus, if x > 1,
u0(x, r) > us(x, r), r = 1, . . . , n − 1 .

This implies that inspection should never be terminated if the current object is not the best
seen so far. The decision as to whether to stop if x = 1 is determined from the equation

u0(x, r) = max
{

r

n
,

r

n

( 1
n − 1

+ · · · + 1
r

)}
,

which is easily verified by induction. If r∗ is the smallest positive integer for which

1
n − 1

+
1

n − 2
+ · · · + 1

r∗
≤ 1 ,

the optimal procedure is defined as follows:

(i) continue until at least r∗ objects have been inspected;

(ii) if the r∗th object is the best so far, stop;

(iii) otherwise, continue until the object under inspection is the best so far, then stop (stop-
ping in any case if the nth stage is reached).

If n is large, approximation of the sum in the above inequality by an integral readily
yields the approximation r∗ ≈ n/e. For further details, see DeGroot (1970, Chapter 13),
whose account is based closely on Lindley (1961a). For reviews of further, related work on
this fascinating problem, see Freeman (1983) and Ferguson (1989).
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Applied to the problem of “choosing a mate”, and assuming that potential partners are
encountered uniformly over time between the ages of 16 and 60, the above analysis suggests
delaying a choice until one is at least 32 years old, thereafter ending the search as soon as one
encounters someone better than anyone encountered thus far. Readers who are suspicious
of putting this into practice have the option, of course, of staying at home and continuing
their study of this volume.

Sequential decision problems are now further illustrated by considering the
important special case of situations involving an initial choice of experimental
design.

2.6.3 Design of Experiments

A simple, very important example of a sequential problem is provided by the
situation where we have available a class of experiments, one of which is to be
performed in order to provide information for use in a subsequent decision problem.
We want to choose the “best” experiment. The structure of this problem, which
embraces the topic usually referred to as the problem of experimental design, may
be diagrammatically described by means of a sequential decision tree such as that
shown in Figure 2.6.

e

e0

a

Ej

Di

u(a, e0, Ej)

a

Ej

u(a, e, Di, Ej)

Figure 2.6 Decision tree for experimental design

We must first choose an experiment e and, in light of the data D obtained,
take an action a, which, were event E to occur, would produce a consequence
having utility which, modifying earlier notation in order to be explicit about the
elements involved, we denote by u(a, e, D, E). Usually, we also have available
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the possibility, denoted by e0 and referred to as the null experiment, of directly
choosing an action without performing any experiment.

Within the general structure for sequential decision problems developed in the
previous section, we note that the possible sets of data obtainable may depend on
the particular experiment performed, the set of available actions may depend on
the results of the experiment performed, and the sets of consequences and labelling
events may depend on the particular combination of experiment and action chosen.
However, in our subsequent development we will use a simplified notation which
suppresses these possible dependencies in order to centre attention on other, more
important, aspects of the problem.

We have seen, in Section 2.6.2, that to solve a sequential decision problem
we start at the last stage and work backwards. In this case, the expected utility of
option a, given the information available at the stage when the action is to be taken,
is

u(a, e, Di) =
∑
j∈J

u(a, e, Di, Ej)P (Ej | e, Di, a).

For each pair (e, Di) we can therefore choose the best possible continuation;
namely, that action a∗

i which maximises the expression given above. Thus, the
expected utility of the pair (e, Di) is given by

u(e, Di) = u(a∗
i , e, Di) = max

a
u(a, e, Di).

We are now in a position to determine the best possible experiment. This is
that e which maximises, in the class of available experiments, the unconditional
expected utility

u(e) =
∑
i∈I

u(a∗
i , e, Di)P (Di | e),

where P (Di | e) denotes the degree of belief attached to the occurrence of data
Di if e were the experiment chosen. On the other hand, the expected utility of
performing no experiment and choosing that action a∗

0 which maximises the (prior)
expected utility is

u(e0) = u(a∗
0, e0) = max

a

∑
j∈J

u(a, e0, Ej, )P (Ej | e0, a),

so that an experiment e is worth performing if and only if u(e) > u(e0).
Naturally, u(a, e, Di), u(e, Di) and u(e) are different functions defined on

different spaces. However, to simplify the notation and without danger of confusion
we shall always use u to denote an expected utility.

Proposition 2.26. (Optimal experimental design). The optimal action is to
perform the experiment e∗ if u(e∗) > u(e0) and u(e∗) = maxe u(e); other-
wise, the optimal action is to perform no experiment.

Proof. This is immediate from Proposition 2.25. �
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It is often interesting to determine the value which additional information
might have in the context of a given decision problem.

The expected value of the information provided by new data may be computed
as the (posterior) expected difference between the utilities which correspond to
optimal actions after and before the data have been obtained.

Definition 2.18. (The value of additional information).

(i) The expected value of the data Di provided by an experiment e is

v(e, Di) =
∑
j∈J

{
u(a∗

i , e, Di, Ej) − u(a∗
0, e0, Ej)

}
P (Ej | e, Di, a

∗
i );

where a∗
i , a∗

0 are, respectively, the optimal actions given Di, and with no
data.

(ii) the expected value of an experiment e is given by

v(e) =
∑
i∈I

v(e, Di)p(Di | e).

It is sometimes convenient to have an upper bound for the expected value v(e)
of an experiment e. Let us therefore consider the optimal actions which would be
available with perfect information, i.e., were we to know the particular event Ej

which will eventually occur, and let a∗
(j) be the optimal action given Ej , i.e., such

that, for all Ej ,
u(a∗

(j), e0, Ej) = max
a

u(a, e0, Ej).

Then, given Ej , the loss suffered by choosing any other action a will be

u(a∗
(j), e0, Ej) − u(a, e0, Ej).

For a = a∗
0, the optimal action under prior information, this difference will mea-

sure, conditional on Ej , the value of perfect information and, under appropriate
conditions, its expected value will provide an upper bound for the increase in utility
which additional data about the Ej’s could be expected to provide.

Definition 2.19. (Expected value of perfect information). The opportunity
loss which would be suffered if action a were taken and event Ej occurred is

l(a, Ej) = max
ai

u(ai, e0, Ej) − u(a, e0, Ej);

the expected value of perfect information is then given by

v∗(e0) =
∑
j∈J

l(a∗
0, Ej)P (Ej | a∗

0).
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It is important to bear in mind that the functions v(Di), v(e) and the number
v∗(e0), all crucially depend on the (prior) probability distributions {(P (Ej | a),
a ∈ A} although, for notational convenience, we have not made this dependency
explicit.

In many situations, the utility function u(a, e, Di, Ej) may be thought of as
made up of two separate components. One is the (experimental) cost of performing
e and obtaining Di; the other is the (terminal) utility of directly choosing a and then
finding that Ej occurs. Often, the latter component does not actually depend on the
preceding e and Di, so that, assuming additivity of the two components, we may
write u(a, e, Di, Ej) = u(a, e0, Ej) − c(e, Di) where c(e, Di) ≥ 0. Moreover,
the probability distributions over the events are often independent of the action
taken. When these conditions apply, we can establish a useful upper bound for the
expected value of an experiment in terms of the difference between the expected
value of complete data and the expected cost of the experiment itself.

Proposition 2.27. (Additive decomposition). If the utility function has the
form

u(a, e, Di, Ej) = u(a, e0, Ej) − c(e, Di),

with c(e, Di) ≥ 0, and the probability distributions are such that

p(Ej | e, Di, a) = p(Ej | e, Di), p(Ej | e0, a) = p(Ej | e0),

then, for any available experiment e,

v(e) ≤ v∗(e0) − c(e),

where
c(e) =

∑
i∈I

c(e, Di)P (Di | e)

is the expected cost of e.

Proof. Using Definitions 2.18 and 2.19, v(e) may be written as∑
i∈I

[ ∑
j∈J

{
u(a∗

i , e0, Ej) − c(e, Di) − u(a∗
0, e0, Ej)

}
P (Ej | e, Di)

]
P (Di | e)

=
∑
i∈I

[
max

a

∑
j∈J

{
u(a, e0, Ej) − u(a∗

0, e0, Ej)
}

P (Ej | e, Di)
]
P (Di | e) − c(e)

≤
∑
i∈I

∑
j∈J

[
max

a
u(a, e0, Ej) − u(a∗

0, e0, Ej)
]
P (Ej ∩ Di | e) − c(e)
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and, hence,

v(e) ≤
{∑

j∈J

l(a, Ej)P (Ej | e0)
}{∑

i∈I

P (Di |Ej, e)
}
− c(e)

=
{∑

j∈J

l(a, Ej)P (Ej | e0)
}
− c(e)

= v∗(e0) − c(e),

as stated. �

In Section 2.7, we shall study in more detail the special case of experimental
design in situations where data are being collected for the purpose of pure inference,
rather than as an input into a directly practical decision problem.

We have shown that the simple decision problem structure introduced in Sec-
tion 2.2, and the tools developed in Sections 2.3 to 2.5, suffice for the analysis of
complex, sequential problems which, at first sight, appear to go beyond that simple
structure. In particular, we have seen that the important problem of experimental
design can be analysed within the sequential decision problem framework. We
shall now use this framework to analyse the very special form of decision problem
posed by statistical inference, thus establishing the fundamental relevance of these
foundational arguments for statistical theory and practice.

2.7 INFERENCE AND INFORMATION

2.7.1 Reporting Beliefs as a Decision Problem

The results on quantitative coherence (Sections 2.2 to 2.5) establish that if we aspire
to analyse a given decision problem, {E , C,A,≤}, in accordance with the axioms of
quantitative coherence, we must represent degrees of belief about uncertain events
in the form of a finite probability measure over E and values for consequences in
the form of a utility function over C. Options are then to be compared on the basis
of expected utility.

The probability measure represents an individual’s beliefs conditional on his or
her current state of information. Given the initial state of information described by
M0 and further information in the form of the assumed occurrence of a significant
event G, we previously denoted such a measure by P (. |G). We now wish to
specialise our discussion somewhat to the case where G can be thought of as a
description of the outcome of an investigation (typically a survey, or an experiment)
involving the deliberate collection of data (usually, in numerical form). The event
G will then be defined directly in terms of the counts or measurements obtained,
either as a precise statement, or involving a description of intervals within which
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readings lie. To emphasise the fact that G characterises the actual data collected,
we shall denote the event which describes the new information obtained by D.
An individual’s degree of belief measure over E will then be denoted P (. |D)
representing the individual’s current beliefs in the light of the data obtained (where,
again, we have suppressed, for notational convenience, the explicit dependence on
M0). So far as uncertainty about the events of E is concerned, P (. |D) constitutes
a complete encapsulation of the information provided by D, given the initial state
of information M0. Moreover, in conjunction with the specification of a utility
function, P (. |D) provides all that is necessary for the calculation of the expected
utility of any option and, hence, for the solution of any decision problem defined
in terms of the frame of reference adopted.

Starting from the decision problem framework, we thus have a formal justifi-
cation for the main topic of this book; namely, the study of models and techniques
for analysing the ways in which beliefs are modified by data. However, many em-
inent writers have argued that basic problems of reporting scientific inferences do
not fall within the framework of decision problems as defined in earlier sections:

Statistical inferences involve the data, a specification of the set of possible pop-
ulations sampled and a question concerning the true population. . . Decisions
are based on not only the considerations listed for inferences, but also on an
assessment of the losses resulting from wrong decisions. . . (Cox, 1958);

. . . a considerable body of doctrine has attempted to explain, or rather to reinter-
pret these (significance) tests on the basis of quite a different model, namely as
means to making decisions in an acceptance procedure. The differences between
these two situations seem to the author many and wide, . . . (Fisher, 1956/1973).

If views such as these were accepted, they would, of course, undermine our
conclusion that problems concerning uncertainty are to be solved by revising de-
grees of belief in the light of new data in accordance with Bayes’ theorem. Our
main purpose in this section is therefore to demonstrate that the problem of reporting
inferences is essentially a special case of a decision problem.

By way of preliminary clarification, let us recall from Section 2.1 that we
distinguished two, possibly distinct, reasons for trying to think rationally about
uncertainty. On the one hand, quoting Ramsey (1926), we noted that, even if an
immediate decision problem does not appear to exist, we know that our statements
of uncertainty may be used by others in contexts representable within the decision
framework. In such situations, our conclusion holds. On the other hand, quoting
Lehmann (1959/1986), we noted that the inference, or inference statement, may
sometimes be regarded as an end in itself, to be judged independently of any
“practical” decision problem. It is this case that we wish to consider in more detail
in this section, establishing that, indeed, it can be regarded as falling within the
general framework of Sections 2.2 to 2.5.
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Formalising the first sentence of the remark of Cox, given above, a pure
inference problem may be described as one in which we seek to learn which of a
set of mutually exclusive “hypotheses” (“theories”, “states of nature”, or “model
parameters”) is true. From a strictly realistic viewpoint, there is always, implicitly,
a finite set of such hypotheses, say {Hj, j ∈ J}, although it may be mathematically
convenient to work as if this were not the case. We shall regard this set of hypotheses
as equivalent to a finite partition of the certain event into events {Ej, j ∈ J},
having the interpretation Ej ≡ “the hypothesis Hj is true”. The actions available
to an individual are the various inference statements that might be made about
the events {Ej, j ∈ J}, the latter constituting the uncertain events corresponding
to each action. To complete the basic decision problem framework, we need to
acknowledge that, corresponding to each inference statement and each Ej , there
will be a consequence; namely, the record of what the individual put forward as an
appropriate inference statement, together with what actually turned out to be the
case.

If we aspire to quantitative coherence in such a framework, we know that
our uncertainty about the {Ej, j ∈ J} should be represented by {P (Ej |D),
j ∈ J}, where P (. |D) denotes our current degree of belief measure, given data
D in addition to the initial information M0. It is natural, therefore, to regard the
set of possible inference statements as the class of probability distributions over
{Ej, j ∈ J} compatible with the information D. The inference reporting problem
can thus be viewed as one of choosing a probability distribution to serve as an
inference statement. But there is nothing (so far) in this formulation which leads to
the conclusion that the best action is to state one’s actual beliefs. Indeed, we know
from our earlier development that options cannot be ordered without an (implicit
or explicit) specification of utilities for the consequences. We shall consider this
specification and its implications in the following sections. A particular form
of utility function for inference statements will be introduced and it will then be
seen that the idea of inference as decision leads to rather natural interpretations of
commonly used information measures in terms of expected utility. In the discussion
which follows, we shall only consider the case of finite partitions {Ej, j ∈ J}.
Mathematical extensions will be discussed in Chapter 3.

2.7.2 The Utility of a Probability Distribution

We have argued above that the provision of a statistical inference statement about
a class of exclusive and exhaustive “hypotheses” {Ej, j ∈ J}, conditional on
some relevant data D, may be precisely stated as a decision problem, where the
set of “hypotheses” {Ej, j ∈ J} is a partition consisting of elements of E , and the
action space A relates to the class Q of conditional probability distributions over
{Ej, j ∈ J}; thus,

Q =
{

q ≡ (qj, j ∈ J); qj ≥ 0,
∑

j∈J
qj = 1

}
,
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where qj is assumed to be the probability which, conditional on the available data
D, an individual reports as the probability of Ej ≡ Hj being true. The set of
consequences C, consists of all pairs (q, Ej), representing the conjunctions of
reported beliefs and true hypotheses. The action corresponding to the choice of q
is defined as {(q, Ej) |Ej, j ∈ J}.

To avoid triviality, we assume that none of the hypotheses is certain and that,
without loss of generality, all are compatible with the available data; i.e., that all
the Ej’s are significant given D, so that (Proposition 2.5) ∅ < Ej ∩D < D for all
j ∈ J . If this were not so, we could simply discard any incompatible hypotheses.
It then follows from Proposition 2.17(iii) that each of the personal degrees of belief
attached by the individual to the conflicting hypotheses given the data must be
strictly positive. Throughout this section, we shall denote by

p ≡ (pj = P (Ej |D), j ∈ J) , pj > 0,
∑

j∈J
pj = 1,

the probability distribution which describes, conditional again on the available data
D, the individual’s actual beliefs about the alternative “hypotheses”.

We emphasise again that, in the structure described so far, there is no logical
requirement which forces an individual to report the probability distribution p
which describes his or her personal beliefs, in preference to any other probability
distribution q in Q.

We complete the specification of this decision problem by inducing the prefer-
ence ordering through direct specification of a utility function u(.), which describes
the “value” u(q, Ej) of reporting the probability distribution q as the final inferen-
tial summary of the investigation, were Ej to turn out to be the true “state of nature”.
Our next task is to investigate the properties which such a function should possess
in order to describe a preference pattern which accords with what a scientific com-
munity ought to demand of an inference statement. This special class of utility
functions is often referred to as the class of score functions (see also Section 2.8)
since the functions describe the possible “scores” to be awarded to the individual
as a “prize” for his or her “prediction”.

Definition 2.20. (Score function). A score function u for probability distri-
butions q = {qj, j ∈ J} defined over a partition {Ej, j ∈ J} is a mapping
which assigns a real number u{q, Ej} to each pair (q, Ej). This function is
said to be smooth if it is continuously differentiable as a function of each qj .

It seems natural to assume that score functions should be smooth (in the intuitive
sense), since one would wish small changes in the reported distribution to produce
only small changes in the obtained score. The mathematical condition imposed
is a simple and convenient representation of such smoothness.
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We have characterised the problem faced by an individual reporting his or her
beliefs about conflicting “hypotheses” as a problem of choice among probability
distributions over {Ej, j ∈ J}, with preferences described by a score function.
This is a well specified problem, whose solution, in accordance with our devel-
opment based on quantitative coherence, is to report that distribution q which
maximises the expected utility∑

j∈J

u(q, Ej) P (Ej |D).

In order to ensure that a coherent individual is also honest, we need a form of
u(.) which guarantees that the expected utility is maximised if, and only if, qj =
pj = P (Ej |D), for each j; otherwise, the individual’s best policy could be to
report something other than his or her true beliefs. This motivates the following
definition:

Definition 2.21. (Proper score function). A score function u is proper if, for
each strictly positive probability distribution p = {pj, j ∈ J} defined over a
partition {Ej, j ∈ J},

sup
q∈Q

∑
j∈J

u(q, Ej)pj

 =
∑
j∈J

u(p, Ej)pj ,

where the supremum, taken over the class Q of all probability distributions
over {Ej, j ∈ J}, is attained if, and only if, q = p.

It would seem reasonable that, in a scientific inference context, one should require
a score function to be proper. Whether a scientific report presents the inference
of a single scientist or a range of inferences, purporting to represent those that
might be made by some community of scientists, we should wish to be reassured
that any reported inference could be justified as a genuine current belief.

Smooth, proper score functions have been successfully used in practice in the
following contexts: (i) to determine an appropriate fee to be paid to meteorologists
in order to encourage them to report reliable predictions (Murphy and Epstein,
1967); (ii) to score multiple choice examinations so that students are encouraged
to assign, over the possible answers, probability distributions which truly describe
their beliefs (de Finetti, 1965; Bernardo, 1981b, Section 3.6); (iii) to devise general
procedures to elicit personal probabilities and expectations (Savage, 1971); (iv)
to select best subsets of variables for prediction purposes in political or medical
contexts (Bernardo and Bermúdez, 1985).

The simplest proper score function is the quadratic function (Brier, 1950; de
Finetti, 1962) defined as follows.
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Definition 2.22. (Quadratic score function). A quadratic score function for
probability distributions q = {qj, j ∈ J}defined over a partition{Ej, j ∈ J}
is any function of the form

u{q, Ej} = A

{
2qj −

∑
i∈J

q2
i

}
+ Bj, A > 0,

where q = {qj, j ∈ J} is any probability distribution over {Ej, j ∈ J}.

Using the indicator function for Ej , 1Ej , an alternative expression for the
quadratic score function is given by

u{q, Ej} = A

{
1 −

∑
i∈J

(
qi − 1Ej

)2

}
+ Bj, A > 0,

which makes explicit the role of a ‘penalty’ equal to the squared euclidean distance
from q to a perfect prediction.

Proposition 2.28. A quadratic score function is proper.

Proof. We have to maximise, over q, the expected score∑
j∈J

u{q, Ej} pj =
∑
j∈J

{
A

(
2qj −

∑
i∈J

q2
i

)
+ Bj

}
pj .

Taking derivatives with respect to the qj’s and equating them to zero, we have the
system of equations 2pj − 2qj{

∑
k pk} = 0, j ∈ J , and since

∑
i pi = 1, we have

qj = pj for all j. It is easily checked that this gives a maximum. �

Note that in the proof of Proposition 2.28 we did not need to use the condition∑
j qj = 1; this is a rather special feature of the quadratic score function.

A further condition is required for score functions in contexts, which we shall
refer to as “pure inference problems”, where the value of a distribution, q, is only
to be assessed in terms of the probability it assigned to the actual outcome.

Definition 2.23. (Local score function). A score function u is local if, for
each element q = {qj, j ∈ J} of the class Q of probability distributions
defined over a partition {Ej, j ∈ J}, there exist functions {uj(.), j ∈ J}
such that u{q, Ej} = uj(qj).

It is intuitively clear that the preferences of an individual scientist faced with a
pure inference problem should correspond to the ordering induced by a local score
function. The reason for this is that, by definition, in a “pure” inference problem
we are solely concerned with “the truth”. It is therefore natural that if Ej , say, turns
out to be true, the individual scientist should be assessed (i.e., scored) only on the
basis of his or her reported judgement about the plausibility of Ej .
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This can be contrasted with the forms of “score” function that would typically
be appropriate in more directly practical contexts. In stock control, for example,
probability judgements about demand would usually be assessed in the light of the
relative seriousness of under- or over-stocking, rather than by just concentrating
on the belief previously attached to what turned out to be the actual level of
demand.

Note that, in Definition 2.23, the functional form uj(pj) of the dependence
of the score on the probability attached to the true Ej is allowed to vary with the
particular Ej considered. By permitting different uj(.)’s for each Ej , we allow for
the possibility that “bad predictions” regarding some “truths” may be judged more
harshly than others.

The situation described by a local score function is, of course, an idealised,
limit situation, but one which seems, at least approximately, appropriate in reporting
pure scientific research. In addition, later in this section we shall see that certain
well-known criteria for choosing among experimental designs are optimal if, and
only if, preferences are described by a smooth, proper, local score function.

Proposition 2.29. (Characterisation of proper local score functions). If u
is a smooth, proper, local score function for probability distributions q =
{qj, j ∈ J} defined over a partition {Ej, j ∈ J} which contains more than
two elements, then it must be of the form u{q, Ej} = A log qj + Bj , where
A > 0 and the Bj’s are arbitrary constants.

Proof. Since u(.) is local and proper, then for some {uj(.), j ∈ J}, we must
have

sup
q

∑
j∈J

u(q, Ej) pj = sup
q

∑
j∈J

uj(qj) pj =
∑
j∈J

uj(pj) pj,

where pj > 0,
∑

j pj = 1 and the supremum is taken over the class of probability
distributions q = (qj, j ∈ J), qj ≥ 0,

∑
j qj = 1.

Writing p = {p1, p2, . . .} and q = {q1, q2, . . .}, with

p1 = 1 −
∑
j>1

pj, q1 = 1 −
∑
j>1

qj,

we seek {uj(.) , j ∈ J}, giving an extremal of

F{q2, q3, . . .} =

(
1 −

∑
j>1

pj

)
u1

(
1 −

∑
j>1

qj

)
+

∑
j>1

pjuj(qj) ,

For {q2, q3, . . .} to make F stationary it is necessary (see e.g. Jeffreys and Jeffreys,
1946, p. 315) that

∂

∂α
F{q2 + αε2, q3 + αε3, . . .}

∣∣∣
α=0

= 0
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for any ε = {ε2, ε3, . . .} such that all the εj are sufficiently small. Calculating this
derivative, the condition is seen to reduce to

∑
j>1

{(
1 −

∑
i>1

pi

)
u′

1

(
1 −

∑
j>1

qj

)
− pju

′
j(qj)

}
εj = 0

for all εj’s sufficiently small, where u′ stands for the derivative of u. Moreover,
since u is proper, {p2, p3, . . .} must be an extremal of F and thus we have the
system of equations

pj u′
j(pj) =

(
1 −

∑
i>1

pi

)
u′

1

(
1 −

∑
i>1

pi

)
, j = 2, 3, . . .

so that all the functions uj, j = 1, 2, . . . satisfy the same functional equation,
namely

pj u′
j(pj) = p1 u′

1(p1), j = 2, 3, . . . ,

for all {p2, p3, . . .} and, hence,

p u′
j(p) = A, 0 < p ≤ 1, for all j = 1, 2, . . .

so that uj(p) = A log p + Bj . The condition A ≥ 0 suffices to guarantee that the
extremal found is indeed a maximum. �

Definition 2.24. (Logarithmic score function). A logarithmic score function
for strictly positive probability distributions q = {qj, j ∈ J} defined over a
partition {Ej, j ∈ J} is any function of the form

u{q, Ej} = A log qj + Bj, A > 0.

If the partition {Ej, j ∈ J} only contains two elements, so that the partition
is simply {H, Hc}, the locality condition is, of course, vacuous. In this case,
u{q, Ej} = u{(q1, 1 − q1), 1H } = f(q1, 1H), say, where 1H is the indicator
function for H , and the score function only depends on the probability q1 attached
to H , whether or not H occurs.

For u{(q1, 1 − q1), 1H } to be proper we must have

sup
q1∈[0,1]

{p1 f(q1, 1) + (1 − p1) f(q1, 0)} = p1 f(p1, 1) + (1 − p1) f(p1, 0)

so that, if the score function is smooth, then f must satisfy the functional equation

x f ′(x, 1) + (1 − x) f ′(x, 0) = 0.
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The logarithmic function f(x, 1) = A log x + B1, f(x, 0) = A log(1− x) + B2 is
then just one of the many possible solutions (see Good, 1952).

We have assumed that the probability distributions to be considered as options
assign strictly positive qj to each Ej . This means that, given any particular q ∈ Q,
we have no problem in calculating the expected utility arising from the logarithmic
score function. It is worth noting, however, that since we place no (strictly positive)
lower bound on the possible qj , we have an example of an unbounded decision
problem; i.e., a decision problem without extreme consequences.

2.7.3 Approximation and Discrepancy

We have argued that the optimal solution to an inference reporting problem (either
for an individual, or for each of several individuals) is to state the appropriate actual
beliefs, p, say. From a technical point of view, however, particularly within the
mathematical extensions to be considered in Chapter 3, the precise computation of
p may be difficult and we may choose instead to report an approximation to our
beliefs, q, say, on the grounds that q is “close” to p, but much easier to calculate.
The justification of such a procedure requires a study of the notion of “closeness”
between two distributions.

Proposition 2.30. (Expected loss in probability reporting). If preferences
are described by a logarithmic score function, the expected loss of utility in
reporting a probability distribution q = {qj, j ∈ J} defined over a partition
{Ej, j ∈ J}, rather than the distribution p = {pj, j ∈ J} representing
actual beliefs, is given by

δ{q |p} = A
∑
j∈J

pj log (pj/qj), A > 0.

Moreover, δ{q |p} ≥ 0 with equality if and only if q = p.

Proof. Using Definition 2.24, the expected utility of reporting q when p is the
actual distribution of beliefs is u(q) =

∑
j{A log qj + Bj}pj , and thus

δ{q |p} = u(p) − u(q)

=
∑
j∈J

{
(A log pj + Bj) − (A log qj + Bj)

}
pj = A

∑
j∈J

pj log
pj

qj

.

The final statement in the theorem is a consequence of Proposition 2.29 since,
because the logarithmic score function is proper, the expected utility of reporting q
is maximised if, and only if, q = p, so that u(p) ≥ u(q), with equality if, and only
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if, p = q. An immediate direct proof is obtained using the fact that for all x > 0,
log x ≤ x − 1 with equality if, and only if, x = 1. Indeed, we then have

−δ{q |p} =
∑
j∈J

pj log
qj

pj

≤
∑

j

pj{(qj/pj) − 1} =
∑
j∈J

qj −
∑
j∈J

pj = 1 − 1 = 0,

with equality if, and only if, qj = pj for all j. �

The quantity δ{q |p}, which arises here as a difference between two expected
utilities, was introduced by Kullback and Leibler (1951) as an ad hoc measure of
(directed) divergence between two probability distributions.

Combining Propositions 2.29 and 2.30, it is clear that an individual with
preferences approximately described by a proper local score function should beware
of approximating by zero. This reflects the fact that the “tails” of the distribution
are, generally speaking, extremely important in pure inference problems. This
is in contrast to many practical decision problems where the form of the utility
function often makes the solution robust with respect to changes in the “tails” of
the distribution assumed.

Proposition 2.30 suggests a natural, general measure of “lack offit”, or discrep-
ancy, between a distribution and an approximation, when preferences are described
by a logarithmic score function.

Definition 2.25. (Discrepancy of an approximation). The discrepancy be-
tween a strictly positive probability distribution p = {pj, j ∈ J} over a
partition {Ej, j ∈ J} and an approximation p̂ = {p̂j , j ∈ J} is defined by

δ{p̂ |p} =
∑
j∈J

pj log
pj

p̂j

.

Example 2.5. (Poisson approximation to a binomial distribution). The behaviour
of δ{p̂ |p} is well illustrated by a familiar, elementary example. Consider the binomial
distribution

pj =
(

n

j

)
θj(1 − θ)n−j , j = 0, 1, . . . , n ,

= 0 , otherwise

and let

p̂j = exp{−nθ} (nθ)j

j!
, j = 0, 1, . . .
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δ{Poisson |Binomial} n = 1

n = 2

n = 10

θ

Figure 2.7 Discrepancy between a binomial distribution and its Poisson approxima-
tion (logarithms to base 2).

be its Poisson approximation. It is apparent from Figure 2.7 that δ{p̂ |p} decreases as either
n increases or θ decreases, or both, and that the second factor is far more important than the
first. However, it follows from our previous discussion that it would not be a good idea to
reverse the roles and try to approximate a Poisson distribution by a binomial distribution.

When, as in Figure 2.7, logarithms to base 2 are used, the utility and discrepancy
are measured on the well-known scale of bits of information (or entropy), which
can be interpreted in terms of the expected number of yes-no questions required
to identify the true event in the partition (see, for example, de Finetti, 1970/1974,
p. 103, or Renyi, 1962/1970, p. 564).

Clearly, Definition 2.25 provides a systematic approach to approximation in
pure inference contexts. The best approximation within a given family will be that
which minimises the discrepancy.

2.7.4 Information

In Section 2.4.2, we showed that, for quantitative coherence, any new information D
should be incorporated into the analysis by updating beliefs via Bayes’ theorem, so
that the initial representation of beliefs P (.) is updated to the conditional probability
measure P (. |D). In Section 2.7.2, we showed that, within the context of the pure
inference reporting problem, utility is defined in terms of the logarithmic score
function.
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Proposition 2.31. (Expected utility of data). If preferences are described by
a logarithmic score function for the class of probability distributions defined
over a partition {Ej, j ∈ J}, then the expected increase in utility provided
by data D, when the initial probability distribution {P (Ej), j ∈ J} is strictly
positive, is given by

A
∑
j∈J

P (Ej |D) log
P (Ej |D)

P (Ej)
,

where A > 0 is arbitrary, and {P (Ej |D), j ∈ J} is the conditional prob-
ability distribution, given D. Moreover, this expected increase in utility is
non-negative and is zero if, and only if, P (Ej |D) = P (Ej) for all j.

Proof. By Definition 2.24, the utilities of reporting P (.) or P (. |D), were
Ej known to be true, would be A log P (Ej) + Bj and A log P (Ej |D) + Bj ,
respectively. Thus, conditional on D, the expected increase in utility provided by
D is given by∑

j∈J

{(A log P (Ej |D) + Bj) − (A log P (Ej) + Bj)}P (Ej |D)

= A
∑
j∈J

P (Ej |D) log
P (Ej |D)

P (Ej)
,

which, by Proposition 2.30, is non-negative and is zero if and only if, for all j,
P (Ej |D) = P (Ej). �

In the context of pure inference problems, we shall find it convenient to un-
derline the fact that, because of the use of the logarithmic score function, utility
assumes a special form and establishes a link between utility theory and classical
information theory. This motivates Definitions 2.26 and 2.27.

Definition 2.26. (Information from data). The amount of information about
a partition {Ej, j ∈ J} provided by the data D, when the initial distribution
over {Ej, j ∈ J} is p0 = {P (Ej), j ∈ J}, is defined to be

I(D |p0) =
∑
j∈J

P (Ej |D) log
P (Ej |D)

P (Ej)
,

where {P (Ej |D), j ∈ J} is the conditional probability distribution given
the data D.
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It follows from Definition 2.26 that the amount of information provided by
data D is equal to δ(p0 |pD), the discrepancy measure if p0 = {P (Ej), j ∈ J} is
considered as an approximation to pD = {P (Ej |D), j ∈ J}. Another interesting
interpretation of I(D |p0) arises from the following analysis. Conditional on Ej ,
log P (Ej) and log P (Ej |D) measure, respectively, how good the initial and the
conditional distributions are in “predicting” the “true hypothesis” Ej = Hj , so
that log P (Ej |D) − log P (Ej) is a measure of the value of D, were Ej known to
be true; I(D |p0) is simply the expected value of that difference calculated with
respect to pD.

It should be clear from the preceding discussion that I(D |p0) measures indi-
rectly the information provided by the data in terms of the changes produced in the
probability distribution of interest. The amount of information is thus seen to be
a relative measure, which obviously depends on the initial distribution. Attempts
to define absolute measures of information have systematically failed to produce
concepts of lasting value.

In the finite case, the entropy of the distribution p = {p1, . . . , pn}, defined by

H{p} = −
n∑

j=1

pj log pj,

has been proposed and widely accepted as an absolute measure of uncertainty.
The recognised fact that its apparently natural extension to the continuous case
does not make sense (if only because it is heavily dependent on the particular
parametrisation used) should, however, have raised doubts about the universality
of this concept. The fact that, in the finite case, H{p} as a measure of uncertainty
(and −H{p} as a measure of “absolute” information) seems to work correctly is
explained (from our perspective) by the fact that

n∑
j=1

pj log
pj

n−1 = log n − H{p},

so that, in terms of the above discussion,−H{p}may be interpreted, apart from an
unimportant additive constant, as the amount of information which is necessary
to obtain p = {p1, . . . , pn} from an initial discrete uniform distribution (see
Section 3.2.2), which acts as an “origin” or “reference” measure of uncertainty.
As we shall see in detail later, the problem of extending the entropy concept
to continuous distributions is closely related to that of defining an “origin” or
“reference” measure of uncertainty in the continuous case, a role unambiguously
played by the uniform distribution in the finite case. For detailed discussion of
H{p} and other proposed entropy measures, see Renyi (1961).

We shall on occasion wish to consider the idea of the amount of information
which may be expected from an experiment e, the expectation being calculated
before the results of the experiment are actually available.
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Definition 2.27. (Expected information from an experiment). The expected
information to be provided by an experiment e about a partition {Ej, j ∈ J},
when the initial distribution over {Ej, j ∈ J} is p0 = {P (Ej), j ∈ J}, is
given by

I(e |p0) =
∑
i∈I

I(Di |p0) P (Di),

where the possible results of the experiment e, {Di, i ∈ I}, occur with prob-
abilities {P (Di), i ∈ I}.

Proposition 2.32. An alternative expression for the expected information is

I(e |p0) =
∑
i∈I

∑
j∈J

P (Ej ∩ Di) log
P (Ej ∩ Di)
P (Ej)P (Di)

,

where P (Ej ∩ Di) = P (Di) P (Ej |Di), and {P (Ej |Di), j ∈ J} is the
conditional distribution, given the occurrence of Di, corresponding to the
initial distribution p0 = {P (Ej), j ∈ J}. Moreover, I(e |p0) ≥ 0, with
equality if and only if, for all Ei and Dj , P (Ej ∩ Di) = P (Ej)P (Di).

Proof. Let qi = P (Di), pj = P (Ej) and pji = P (Ej |Di). Then, by
Definition 2.27,

I(e |p0) =
∑
i∈I

∑
j∈J

pji log
pji

pj

 qi =
∑
i∈I

∑
j∈J

pjiqi log
pjiqi

pjqi

and the result now follows from the fact that, by Bayes’ theorem,

P (Ej ∩ Di) = P (Ej |Di)P (Di) = pjiqi.

Since, by Proposition 2.31, I(Di |p0) ≥ 0 with equality iff, P (Ej |Di) = P (Ej),
it follows from Definition 2.27 that I(e |p0) ≥ 0 with equality if, and only if, for
all Ej and Di, P (Ej ∩ Di) = P (Ej)P (Di). �

The expression for I(e |p0) given by Proposition 2.32 is Shannon’s (1948)
measure of expected information. We have thus found, in a decision theoretical
framework, a natural interpretation of this famous measure of expected information:
Shannon’s expected information is the expected utility provided by an experiment
in a pure inference context, when an individual’s preferences are described by a
smooth, proper, local score function.

In conclusion, we have suggested that the problem of reporting inferences
can be viewed as a particular decision problem and thus should be analysed within



2.8 Discussion and Further References 81

the framework of decision theory. We have established that, with a natural char-
acterisation of an individual’s utility function when faced with a pure inference
problem, preferences should be described by a logarithmic score function. We
have also seen that, within this framework, discrepancy and amount of information
are naturally defined in terms of expected loss of utility and expected increase in
utility, respectively, and that maximising expected Shannon information is a par-
ticular instance of maximising expected utility. We shall see in Section 3.4 how
these results, established here for finite partitions, extend straightforwardly to the
continuous case.

2.8 DISCUSSION AND FURTHER REFERENCES

2.8.1 Operational Definitions

In everyday conversation, the way in which we use language is typically rather in-
formal and unselfconscious, and we tolerate each other’s ambiguities and vacuities
for the most part, occasionally seeking an ad hoc clarification of a particular state-
ment or idea if the context seems to justify the effort required in trying to be a little
more precise. (For a detailed account of the ambiguities which plague qualitative
probability expressions in English, see Mosteller and Youtz, 1990.)

In the context of scientific and philosophical discourse, however, there is
a paramount need for statements which are meaningful and unambiguous. The
everyday, tolerant, ad hoc response will therefore no longer suffice. More rigorous
habits of thought are required, and we need to be selfconsciously aware of the
precautions and procedures to be adopted if we are to arrive at statements which
make sense.

A prerequisite for “making sense” is that the fundamental concepts which
provide the substantive content of our statements should themselves be defined in
an essentially unambiguous manner. We are thus driven to seek for definitions of
fundamental notions which can be reduced ultimately to the touchstone of actual
or potential personal experience, rather than remaining at the level of mere words
or phrases.

This kind of approach to definitions is closely related to the philosophy of
pragmatism, as formulated in the second half of the nineteenth century by Peirce,
who insisted that clarity in thinking about concepts could only be achieved by con-
centrating attention on the conceivable practical effects associated with a concept,
or the practical consequence of adopting one form of definition rather than another.
In Peirce (1878), this point of view was summarised as follows:

Consider what effects, that might conceivably have practical bearings, we con-
ceive the object of our conception to have. Then, our conception of these effects
is the whole of our conception of the object.
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In some respects, however, this position is not entirely satisfactory in that it fails
to go far enough in elaborating what is to be understood by the term “practical”. This
crucial elaboration was provided by Bridgman (1927) in a book entitled The Logic
of Modern Physics, where the key idea of an operational definition is introduced
and illustrated by considering the concept of “length”:

. . . what do we mean by the length of an object? We evidently know what we
mean by length if we can tell what the length of any and every object is and for
the physicist nothing more is required. To find the length of an object, we have
to perform certain physical operations. The concept of length is therefore fixed
when the operations by which length is measured are fixed: that is, the concept
of length involves as much as, and nothing more, than the set of operations by
which length is determined. In general, we mean by any concept nothing more
than a set of operations; the concept is synonymous with the corresponding set
of operations. If the concept is physical, . . . the operations are actual physical
measurements . . . ; or if the concept is mental, . . . the operations are mental
operations. . .

Throughout this work, we shall seek to adhere to the operational approach to
defining concepts in order to arrive at meaningful and unambiguous statements in
the context of representing beliefs and taking actions in situations of uncertainty.
Indeed, we have stressed this aspect of our thinking in Sections 2.1 to 2.7, where we
made the practical, operational idea of preference between options the fundamental
starting point and touchstone for all other definitions.

We also noted the inevitable element of idealisation, or approximation, implicit
in the operational approach to our concepts, and we remarked on this at several
points in Section 2.3. Since many critics of the personalistic Bayesian viewpoint
claim to find great difficulty with this feature of the approach, often suggesting
that it undermines the entire theory, it is worth noting Bridgman’s very explicit
recognition that all experience is subject to error and that all we can do is to take
sufficient precautions when specifying sets of operations to ensure that remaining
unspecified variations in procedure have negligible effects on the results of interest.
This is well illustrated by Bridgman’s account of the operational concept of length
and its attendant idealisations and approximations:

. . .we take a measuring rod, lay it on the object so that one of its ends coincides
with one end of the object, mark on the object the position of the rod, then move
the rod along in a straight line extension of its previous position until the first
end coincides with the previous position of the second end, repeat this process as
often as we can, and call the length the total number of times the rod was applied.
This procedure, apparently so simple, is in practice exceedingly complicated, and
doubtless a full description of all the precautions that must be taken would fill a
large treatise. We must, for example, be sure that the temperature of the rod is
the standard temperature at which its length is defined, or else we must make a
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correction for it; or we must correct for the gravitational distortion of the rod if
we measure a vertical length; or we must be sure that the rod is not a magnet or is
not subject to electrical forces . . . we must go further and specify all the details
by which the rod is moved from one position to the next on the object, its precise
path through space and its velocity and acceleration in getting from one position
to another. Practically, of course, precautions such as these are not taken, but
the justification is in our experience that variations of procedure of this kind are
without effect on the final result. . .

This pragmatic recognition that there are inevitable limitations in any concrete
application of a set of operational procedures is precisely the spirit of our discussion
of Axioms 4 and 5 in Section 2.3. In practical terms, we have to stop somewhere,
even though, in principle, we could indefinitely refine our measurement operations.
What matters is to be able to achieve sufficient accuracy to avoid unacceptable
distortion in any analysis of interest.

2.8.2 Quantitative Coherence Theories

In a comprehensive review of normative decision theories leading to the expected
utility criterion, Fishburn (1981) lists over thirty different axiomatic formulations
of the principles of coherence, reflecting a variety of responses to the underlying
conflict between axiomatic simplicity and structural flexibility in the representation
of decision problems. Fishburn sums up the dilemma as follows:

On the one hand, we would like our axioms to be simple, interpretable, intu-
itively clear, and capable of convincing others that they are appealing criteria
of coherency and consistency in decision making under uncertainty, but to do
this it seems essential to invoke strong structural conditions. On the other hand,
we would like our theory to adhere to the loose structures that often arise in
realistic decision situations, but if this is done then we will be faced with fairly
complicated axioms that accommodate these loose structures.

In addition, we should like the definitions of the basic concepts of probability
and utility to have strong and direct links with practical assessment procedures, in
conformity with the operational philosophy outlined above.

With these considerations in mind, our purpose here is to provide a brief
historical review of the foundational writings which seem to us the most significant.
This will serve in part to acknowledge our general intellectual indebtedness and
orientation, and in part to explain and further motivate our own particular choice
of axiom system.

The earliest axiomatic approach to the problem of decision making under
uncertainty is that of Ramsey (1926), who presented the outline of a formal system.
The key postulate in Ramsey’s theory is the existence of a so-called ethically neutral
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event E, say, which, expressed in terms of our notation for options, has the property
that {c1 |E, c2 |Ec} ∼ {c1 |Ec, c2 |E}, for any consequences c1, c2. It is then
rather natural to define the degree of belief in such an event to be 1/2 and, from
this quantitative basis, it is straightforward to construct an operational measure of
utility for consequences. This, in turn, is used to extend the definition of degree of
belief to general events by means of an expected utility model.

From a conceptual point of view, Ramsey’s theory seems to us, as indeed it
has to many other writers, a revolutionary landmark in the history of ideas. From
a mathematical point of view, however, the treatment is rather incomplete and it
was not until 1954, with the publication of Savage’s (1954) book The Foundations
of Statistics that the first complete formal theory appeared. No mathematical com-
pletion of Ramsey’s theory seems to have been published, but a closely related
development can be found in Pfanzagl (1967, 1968).

Savage’s major innovation in structuring decision problems is to define what
he calls acts (options, in our terminology) as functions from the set of uncertain
possible outcomes into the set of consequences. His key coherence assumption
is then that of a complete, transitive order relation among acts and this is used
to define qualitative probabilities. These are extended into quantitative probabili-
ties by means of a “continuously divisible” assumption about events. Utilities are
subsequently introduced using ideas similar to those of von Neumann and Mor-
genstern (1944/1953), who had, ten years earlier, presented an axiom system for
utility alone, assuming the prior existence of probabilities.

The Savage axiom system is a great historical achievement and provides the
first formal justification of the personalistic approach to probability and decision
making; for a modern appraisal see Shafer (1986) and lively ensuing discussion.
See, also, Hens (1992). Of course, many variations on an axiomatic theme are pos-
sible and other Savage-type axiom systems have been developed since by Stigum
(1972), Roberts (1974), Fishburn (1975) and Narens (1976). Suppes (1956) pre-
sented a system which combined elements of Savage’s and Ramsey’s approaches.
See, also, Suppes (1960, 1974) and Savage (1970). There are, however, two major
difficulties with Savage’s approach, which impose severe limitations on the range
of applicability of the theory.

The first of these difficulties stems from the “continuously divisible” assump-
tion about events, which Savage uses as the basis for proceeding from qualitative
to quantitative concepts. Such an assumption imposes severe constraints on the
allowable forms of structure for the set of uncertain outcomes: in fact, it even
prevents the theory from being directly applicable to situations involving a finite or
countably infinite set of possible outcomes.

One way of avoiding this embarrassing structural limitation is to introduce
a quantitative element into the system by a device like that of Ramsey’s ethically
neutral event. This is directly defined to have probability 1/2 and thus enables
Ramsey to get the quantitative ball rolling without imposing undue constraints on
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the structure. All he requires is that (at least) one such event be included in the
representation of the uncertain outcomes. In fact, a generalisation of Ramsey’s
idea re-emerges in the form of canonical lotteries, introduced by Anscombe and
Aumann (1963) for defining degrees of belief, and by Pratt, Raiffa and Schlaifer
(1964, 1965) as a basis for simultaneously quantifying personal degrees of belief
and utilities in a direct and intuitive manner.

The basic idea is essentially that of a standard measuring device, in some sense
external to the real-world events and options of interest. It seems to us that this
idea ties in perfectly with the kind of operational considerations described above,
and the standard events and options that we introduced in Section 2.3 play this
fundamental operational role in our own system. Other systems using standard
measuring devices (sometimes referred to as external scaling devices) are those of
Fishburn (1967b, 1969) and Balch and Fishburn (1974). A theory which, like ours,
combines a standard measuring device with a fundamental notion of conditional
preference is that of Luce and Krantz (1971).

The second major difficulty with Savage’s theory, and one that also exists in
many other theories (see Table I in Fishburn, 1981), is that the Savage axioms
imply the boundedness of utility functions (an implication of which Savage was
apparently unaware when he wrote The Foundations of Statistics, but which was
subsequently proved by Fishburn, 1970). The theory does not therefore justify
the use of many mathematically convenient and widely used utility functions; for
example, those implicit in forms such as “quadratic loss” and “logarithmic score”.

We take the view, already hinted at in our brief discussion of medical and
monetary consequences in Section 2.5, that it is often conceptually and mathemat-
ically convenient to be able to use structural representations going beyond what we
perceive to be the essentially finitistic and bounded characteristics of real-world
problems. And yet, in presenting the basic quantitative coherence axioms it is
important not to confuse the primary definitions and coherence principles with the
secondary issues of the precise forms of the various sets involved. For this reason,
we have so far always taken options to be defined by finite partitions; indeed, within
this simple structure, we hope that the essence of the quantitative coherence theory
has already been clearly communicated, uncomplicated by structural complexities.
Motivated by considerations of mathematical convenience, however, we shall, in
Chapter 3, relax the constraint imposed on the form of the action space. We shall
then arrive at a sufficiently general setting for all our subsequent developments and
applications.

2.8.3 Related Theories

Our previous discussion centred on complete axiomatic approaches to decision
problems, involving a unified development of both probability and utility concepts.
In our view, a unified treatment of the two concepts is inescapable if operational
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considerations are to be taken seriously. However, there have been a number of at-
tempted developments of probability ideas separate from utility considerations, as
well as separate developments of utility ideas presupposing the existence of prob-
abilities. In addition, there is a considerable literature on information-theoretic
ideas closely related to those of Section 2.7. In this section, we shall provide a
summary overview of a number of these related theories, grouped under the fol-
lowing subheadings: (i) Monetary Bets and Degrees of Belief, (ii) Scoring Rules and
Degrees of Belief, (iii) Axiomatic Approaches to Degrees of Belief, (iv) Axiomatic
Approaches to Utilities and (v) Information Theories.

For the most part, we shall simply give what seem to us the most important
historical references, together with some brief comments. The first two topics will,
however, be treated at greater length; partly because of their close relation with
the main concerns of this book, and partly because of their connections with the
important practical topic of the assessment of beliefs.

Monetary Bets and Degrees of Belief

An elegant demonstration that coherent degrees of belief satisfy the rules of (finitely
additive) probability was given by de Finetti (1937/1964), without explicit use of
the utility concept. Using the notation for options introduced in Section 2.3, de
Finetti’s approach can be summarised as follows.

If consequences are assumed to be monetary, and if, given an arbitrary mone-
tary sum m and uncertain event E, an individual’s preferences among options are
such that {pm |Ω} ∼ {m |E, 0 |Ec}, then the individual’s degree of belief in E is
defined to be p.

This definition is virtually identical to Bayes’ own definition of probability
(see our later discussion under the heading of Axiomatic Approaches to Degrees of
Belief). In modern economic terminology, probability can be considered to be a
marginal rate of substitution or, more simply, a kind of “price”.

Given that an individual has specified his or her degrees of belief for some
collection of events by repeated use of the above definition, either it is possible
to arrange a form of monetary bet in terms of these events which is such that the
individual will certainly lose, a so-called “Dutch book”, or such an arrangement is
impossible. In the latter case, the individual is said to have specified a coherent set
of degrees of belief. It is now straightforward to verify that coherent degrees of
belief have the properties of finitely additive probabilities.

To demonstrate that 0 ≤ p ≤ 1, for any E and m, we can argue as follows. An
individual who assigns p > 1 is implicitly agreeing to pay a stake larger than m to
enter a gamble in which the maximum prize he or she can win is m; an individual
who assigns p < 0 is implicitly agreeing to offer a gamble in which he or she will
pay out either m or nothing in return for a negative stake, which is equivalent to
paying an opponent to enter such a gamble. In either case, a bet can be arranged
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which will result in a certain loss to the individual and avoidance of this possibility
requires that 0 ≤ p ≤ 1.

To demonstrate the additive property of degrees of belief for exclusive and
exhaustive events, E1, E2, . . . , En, we proceed as follows. If an individual specifies
p1, p2, . . . , pn, to be his or her degrees of belief in those events, this is an implicit
agreement to pay a total stake of p1m1 + p2m2 + · · · + pnmn in order to enter a
gamble resulting in a prize of mi if Ei occurs and thus a “gain”, or “net return”,
of gi = mi −

∑
j pjmj , which could, of course, be negative. In order to avoid the

possibility of the mj’s being chosen in such a way as to guarantee the negativity
of the gi’s for fixed pj’s in this system of linear equations, it is necessary that the
determinant of the matrix relating the mj’s to the gi’s be zero so that the linear
system cannot be solved; this turns out to require that p1 + p2 + · · · + pn = 1.
Moreover, it is easy to check that this is also a sufficient condition for coherence:
it implies

∑
j pjgj = 0, for any choice of the mj’s, and hence the impossibility of

all the returns being negative.
The extension of these ideas to cover the revision of degrees of belief con-

ditional on new information proceeds in a similar manner, except that an indi-
vidual’s degree of belief in an event E conditional on an event F is defined to
be the number q such that, given any monetary sum m, we have the equivalence
{qm |Ω} ∼ {m |E ∩ F, 0 |Ec ∩ F, qm |Fc}, according to the individual’s pref-
erence ordering among options. The interpretation of this definition is straightfor-
ward: having paid a stake of qm, if F occurs we are confronted with a gamble with
prizes m if E occurs, and nothing otherwise; if F does not occur the bet is “called
off” and the stake returned.

However, despite the intuitive appeal of this simple and neat approach, it has
two major shortcomings from an operational viewpoint.

In the first place, it is clear that the definitions cannot be taken seriously in
terms of arbitrary monetary sums: the “perceived value” of a stake or a return is
not equivalent to its monetary value and the missing “utility” concept is required in
order to overcome the difficulty. This point was later recognised by de Finetti (see
Kyburg and Smokler, 1964/1980, p. 62, footnote (a)), but has its earlier origins
in the celebrated St. Petersburg paradox (first discussed in terms of utility by
Daniel Bernoulli, 1730/1954). For further discussion of possible forms of “utility
for money”, see, for example, Pratt (1964), Lavalle (1968), Lindley (1971/1985,
Chapter 5) and Hull et al. (1973). Additionally, one may explicitly recognise that
some people have a positive utility for gambling (see, for instance, Conlisk, 1993).

An ad hoc modification of de Finetti’s approach would be to confine attention
to “small” stakes (thus, in effect, restricting attention to a range of outcomes over
which the “utility” can be taken as approximately linear) and the argument, thus
modified, has considerable pedagogical and, perhaps, practical use, despite its rather
informal nature. A more formal argument based on the avoidance of certain losses
in betting formulations has been given by Freedman and Purves (1969). Related
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arguments have also been used by Cornfield (1969), Heath and Sudderth (1972)
and Buehler (1976) to expand on de Finetti’s concept of coherent systems of bets.

In addition to the problem of “non-linearity in the face of risk”, alluded to
above, there is also the difficulty that unwanted game-theoretic elements may enter
the picture if we base a theory on ideas such as “opponents” choosing the levels of
prizes in gambles. For this reason, de Finetti himself later preferred to use an ap-
proach based on scoring rules, a concept we have already introduced in Section 2.7.

Scoring Rules and Degrees of Belief

The scoring rule approach to the definition of degrees of belief and the derivation of
their properties when constrained to be coherent is due to de Finetti (1963, 1964),
with important subsequent generalisations by Savage (1971) and Lindley (1982a).

In terms of the quadratic scoring rule, the development proceeds as follows.
Given an uncertain event E, an individual is asked to select a number, p, with
the understanding that if E occurs he or she is to suffer a penalty (or loss) of
L = (1 − p)2, whereas if E does not occur he or she is to suffer a penalty of
L = p2. Using the indicator function for E, the penalty can be written in the
general form, L = ( 1E − p)2. The number, p, which the individual chooses is
defined to be his or her degree of belief in E.

Suppose now that E1, E2, . . . , En are an exclusive and exhaustive collection of
uncertain events for which the individual, using the quadratic scoring rule scheme,
has to specify degrees of belief p1, p2, . . . , pn, respectively, subject now to the
penalty

L = ( 1E1 − p1)2 + ( 1E2 − p2)2 + · · · + ( 1En − pn)2.

Given a specification, p1, p2, . . . , pn, either it is possible to find an alternative
specification, q1, q2, . . . , qn, say, such that

n∑
i=1

( 1Ei
− qi)2 <

n∑
i=1

( 1Ei
− pi)2,

for any assignment of the value 1 to one of the Ei’s and 0 to the others, or it is
not possible to find such q1, q2, . . . , qn. In the latter case, the individual is said
to have specified a coherent set of degrees of belief. The underlying idea in this
development is clearly very similar to that of de Finetti’s (1937/1964) approach
where the avoidance of a “Dutch book” is the basic criterion of coherence.

A simple geometric argument now establishes that, for coherence we must
have 0 ≤ pi ≤ 1, for i = 1, 2, . . . , n, and p1 + p2 + · · ·+ pn = 1. To see this, note
that the n logically compatible assignments of values 1 and 0 to the Ei’s define
n points in �n. Thinking of p1, p2, . . . , pn as defining a further point in �n, the
coherence condition can be reinterpreted as requiring that this latter point cannot
be moved in such a way as to reduce the distance from all the other n points. This
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means that p1, p2, . . . , pn must define a point in the convex hull of the other n points,
thus establishing the required result.

The extension of this approach to cover the revision of degrees of belief con-
ditional on new information proceeds as follows. An individual’s degree of belief
in an event E conditional on the occurrence of an event F is defined to be the
number q, which he or she chooses when confronted with a penalty defined by
L = 1F ( 1E − q)2. The interpretation of this penalty is straightforward. Indeed,
if F occurs, the specification of q proceeds according to the penalty ( 1E − q)2;
if F does not occur, there is no penalty, a formulation which is clearly related to
the idea of “called-off” bets used in de Finetti’s 1937 approach. Suppose now
that, in addition to the conditional degree of belief q, the numbers p and r are the
individual’s degrees of belief, respectively, for the events E ∩ F and F , specified
subject to the penalty

L = 1F ( 1E − q)2 + ( 1E 1F − p)2 + ( 1F − r)2.

To derive the constraints on p, q and r imposed by coherence, which de-
mands that no other choices will lead to a strictly smaller L, whatever the logically
compatible outcomes of the events are, we argue as follows.

If u, v, w, respectively, are the values which L takes in the cases where E∩F ,
Ec ∩ F and Fc occur, then p, q, r satisfy the equations

u = (1 − q)2 + (1 − p)2 + (1 − r)2

v = q2 + p2 + (1 − r)2

w = p2 + r2.

If p, q, r defined a point in�3 where the Jacobian of the transformation defined
by the above equations did not vanish, it would be possible to move from that point
in a direction which simultaneously reduced the values u, v and w. Coherence
therefore requires that the Jacobian be zero. A simple calculation shows that this
reduces to the condition q = p/r, which is, again, Bayes’ theorem.

De Finetti’s ‘penalty criterion’ and related ideas have been critically re-exam-
ined by a number of authors. Relevant additional references are Myerson (1979),
Regazzini (1983), Gatsonis (1984), Eaton (1992) and Gilio (1992a). See, also,
Piccinato (1986).

Axiomatic Approaches to Degrees of Belief

Historically, the idea of probability as “degree of belief” has received a great deal of
distinguished support, including contributions from James Bernoulli (1713/1899),
Laplace (1774/1986, 1814/1952), De Morgan (1847) and Borel (1924/1964). How-
ever, so far as we know, none of these writers attempted an axiomatic development
of the idea.

The first recognisably “axiomatic” approach to a theory of degrees of belief
was that of Bayes (1763) and the magnitude of his achievement has been clearly
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recognised in the two centuries following his death by the adoption of the adjective
Bayesian as a description of the philosophical and methodological developments
which have been inspired, directly or indirectly, by his essay.

By present day standards, Bayes’ formulation is, of course, extremely infor-
mal, and a more formal, modern approach only began to emerge a century and a
half later, in a series of papers by Wrinch and Jeffreys (1919, 1921). Formal axiom
systems which whole-heartedly embrace the principle of revising beliefs through
systematic use of Bayes’ theorem, are discussed in detail by Jeffreys (1931/1973,
1939/1961), whose profound philosophical and methodological contributions to
Bayesian statistics are now widely recognised; see for example, the evaluations
of his work by Geisser (1980a), by Good (1980a) and by Lindley (1980a), in the
volume edited by Zellner (1980).

From a foundational perspective, however, the flavour of Jeffreys’ approach
seems to us to place insufficient emphasis on the inescapably personal nature of de-
grees of belief, resulting in an over-concentration on “conventional” representations
of degrees of belief derived from “logical” rather than operational considerations
(despite the fact that Jeffreys was highly motivated by real world applications!).
Similar criticisms seem to us to apply to the original and elegant formal develop-
ment given by Cox (1946, 1961) and Jaynes (1958), who showed that the probability
axioms constitute the only consistent extension of ordinary (Aristotelian) logic in
which degrees of belief are represented by real numbers.

We should point out, however, that our emphasis on operational considerations
and the subjective character of degrees of belief would, in turn, be criticised by
many colleagues who, in other respects, share a basic commitment to the Bayesian
approach to statistical problems. See Good (1965, Chapter 2) for a discussion of the
variety of attitudes to probability compatible with a systematic use of the Bayesian
paradigm.

There are, of course, many other examples of axiomatic approaches to quanti-
fying uncertainty in some form or another. In the finite case, this includes work by
Kraft et al. (1959), Scott (1964), Fishburn (1970, Chapter 4), Krantz et al. (1971),
Domotor and Stelzer (1971), Suppes and Zanotti (1976, 1982), Heath and Sudderth
(1978) and Luce and Narens (1978). The work of Keynes (1921/1929) and Car-
nap (1950/1962) deserves particular mention and will be further discussed later in
Section 2.8.4. Fishburn (1986) provided an authoritative review of the axiomatic
foundations of subjective probability, which is followed by a long, stimulating
discussion. See, also, French (1982) and Chuaqui and Malitz (1983).

Axiomatic Approaches to Utilities

Assuming the prior existence of probabilities, von Neumann and Morgenstern
(1944/1953) presented axioms for coherent preferences which led to a justification
of utilities as numerical measures of value for consequences and to the optimality
criterion of maximising expected utility. Much of Savage’s (1954/1972) system
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was directly inspired by this seminal work of von Neumann and Morgenstern and
the influence of their ideas extends into a great many of the systems we have men-
tioned. Other early developments which concentrate on the utility aspects of the
decision problem include those of Friedman and Savage (1948, 1952), Marschak
(1950), Arrow (1951a), Herstein and Milnor (1953), Edwards (1954) and Debreu
(1960). Seminal references are reprinted in Page (1968). General accounts of
utility are given in the books by Blackwell and Girshick (1954), Luce and Raiffa
(1957), Chernoff and Moses (1959) and Fishburn (1970). Extensive bibliographies
are given in Savage (1954/1972) and Fishburn (1968, 1981).

Discussions of the experimental measurement of utility are provided by Ed-
wards (1954), Davison et al. (1957), Suppes and Walsh (1959), Becker et al. (1963),
DeGroot (1963), Becker and McClintock (1967), Savage (1971) and Hull et al.
(1973). DeGroot (1970, Chapter 7) presents a general axiom system for utilities
which imposes rather few mathematical constraints on the underlying decision
problem structure. Multiattribute utility theory is discussed, among others, by
Fishburn (1964) and Keeney and Raiffa (1976). Other discussions of utility theory
include Fishburn (1967a, 1988b) and Machina (1982, 1987). See, also, Schervish
et al. (1990).

Information Theories

Measures of information are closely related to ideas of uncertainty and probability
and there is a considerable literature exploring the connections between these topics.

The logarithmic information measure was proposed independently by Shannon
(1948) and Wiener (1948) in the context of communication engineering; Lindley
(1956) later suggested its use as a statistical criterion in the design of experiments.
The logarithmic divergency measure was first proposed by Kullback and Leibler
(1951) and was subsequently used as the basis for an information-theoretic approach
to statistics by Kullback (1959/1968). A formal axiomatic approach to measures
of information in the context of uncertainty was provided by Good (1966), who
has made numerous contributions to the literature of the foundations of decision
making and the evaluation of evidence. Other relevant references on information
concepts are Renyi (1964, 1966, 1967) and Särndal (1970).

The mathematical results which lead to the characterisation of the logarithmic
scoring rule for reporting probability distributions have been available for some
considerable time. Logarithmic scores seem to have been first suggested by Good
(1952), but he only dealt with dichotomies, for which the uniqueness result is not
applicable. Thefirst characterisation of the logarithmic score for afinite distribution
was attributed to Gleason by McCarthy (1956); Aczel and Pfanzagl (1966), Arimoto
(1970) and Savage (1971) have also given derivations of this form of scoring rule
under various regularity conditions.

By considering the inference reporting problem as a particular case of a de-
cision problem, we have provided (in Section 2.7) a natural, unifying account of
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the fundamental and close relationship between information-theoretic ideas and
the Bayesian treatment of “pure inference” problems. Based on work of Bernardo
(1979a), this analysis will be extended, in Chapter 3, to cover continuous distribu-
tions.

2.8.4 Critical Issues

We shall conclude this chapter by providing a summary overview of our position
in relation to some of the objections commonly raised against the foundations of
Bayesian statistics. These will be dealt with under the following subheadings: (i)
Dynamic Frame of Discourse, (ii) Updating Subjective Probability, (iii) Relevance
of an Axiomatic Approach, (iv) Structure of the Set of Relevant Events, (v) Pre-
scriptive Nature of the Axioms, (vi) Precise, Complete, Quantitative Preference,
(vii) Subjectivity of Probability, (viii) Statistical Inference as a Decision Problem
and (ix) Communication and Group Decision Making.

Dynamic Frame of Discourse

As we indicated in Chapter 1, our concern in this volume is with coherent beliefs
and actions in relation to a limited set of specified possibilities, currently assumed
necessary and sufficient to reflect key features of interest in the problem under
study. In the language of Section 2.2, we are operating in terms of a fixed frame
of discourse, defined in the light of our current knowledge and assumptions, M0.
However, as many critics have pointed out, this activity constitutes only one static
phase of the wider, evolving, scientific learning and decision process. In the more
general, dynamic, context, this activity has to be viewed, either potentially or
actually, as sandwiched between two other vital processes. On the one hand, the
creative generation of the set of possibilities to be considered; on the other hand, the
critical questioning of the adequacy of the currently entertained set of possibilities
(see, for example, Box, 1980). We accept that the mode of reasoning encapsulated
within the quantitative coherence theory as presented here is ultimately conditional,
and thus not directly applicable to every phase of the scientific process. But we
do not accept, as Box (1980) appears to, that alternative formal statistical theories
have a convincing, complementary role to play.

The problem of generating the frame of discourse, i.e., inventing new mod-
els or theories, seems to us to be one which currently lies outside the purview of
any “statistical” formalism, although some limited formal clarification is actually
possible within the Bayesian framework, as we shall see in Chapter 4. Substantive
subject-matter inputs would seem to be of primary importance, although infor-
mal, exploratory data analysis is no doubt a necessary adjunct and, particularly
in the context of the possibilities opened up by modern computer graphics, offers
considerable intellectual excitement and satisfaction in its own right.
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The problem of criticising the frame of discourse also seems to us to remain
essentially unsolved by any “statistical” theory. In the case of a “revolution”, or
even “rebellion”, in scientific paradigm (Kuhn, 1962), the issue is resolved for
us as statisticians by the consensus of the subject-matter experts, and we simply
begin again on the basis of the frame of discourse implicit in the new paradigm.
However, in the absence of such “externally” directed revision or extension of the
current frame of discourse, it is not clear what questions one should pose in order
to arrive at an “internal” assessment of adequacy in the light of the information thus
far available.

On the one hand, exploratory diagnostic probing would seem to have a role to
play in confirming that specific forms of local elaboration of the frame of discourse
should be made. The logical catch here, however, is that such specific diagnostic
probing can only stem from the prior realisation that the corresponding specific
elaborations might be required. The latter could therefore be incorporated ab initio
into the frame of discourse and a fully coherent analysis carried out. The issue
here is one of pragmatic convenience, rather than of circumscribing the scope of
the coherent theory.

On the other hand, the issue of assessing adequacy in relation to a total absence
of any specific suggested elaborations seems to us to remain an open problem.
Indeed, it is not clear that the “problem” as usually posed is well-formulated. For
example, is the key issue that of “surprise”; or is some kind of extension of the
notion of a decision problem required in order to give an operational meaning to
the concept of “adequacy”?

Readers interested in this topic will find in Box (1980), and the ensuing dis-
cussion, a range of reactions. We shall return to these issues in Chapter 6. Related
issues arise in discussions of the general problem of assessing, or “calibrating”,
the external, empirical performance of an internally coherent individual; see, for
example, Dawid (1982a).

Overall, our responses to critics who question the relevance of the coherent
approach based on a fixed frame of reference can be summarised as follows. So
far as the scope and limits of Bayesian theory are concerned: (i) we acknowledge
that the mode of reasoning encapsulated within the quantitative coherence theory
is ultimately conditional, and thus not directly applicable to every phase of the
scientific process; (ii) informal, exploratory techniques are an essential part of the
process of generating ideas; there can be no purely “statistical” theory of model
formulation; this aspect of the scientific process is not part of the foundational
debate, although the process of passing from such ideas to their mathematical
representation can often be subjected to formal analysis; (iii) we all lack a decent
theoretical formulation of and solution to the problem of global model criticism in
the absence of concrete suggested alternatives.

However, critics of the Bayesian approach should recognise that: (i) an enor-
mous amount of current theoretical and applied statistical activity is concerned
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with the analysis of uncertainty in the context of models which are accepted, for
the purposes of the analysis, as working frames of discourse, subject only to local
probing of specific potential elaborations, and (ii) our arguments thus far, and those
to follow, are an attempt to convince the reader that within this latter context there
are compelling reasons for adopting the Bayesian approach to statistical theory and
practice.

Updating Subjective Probability

An issue related to the topic just discussed is that of the mechanism for updating
subjective probabilities.

In Section 2.4.2, we defined, in terms of a conditional uncertainty relation,
≤G, the notion of the conditional probability, P (E |G), of an event E given the
assumed occurrence of an event G. From this, we derived Bayes’ theorem, which
establishes that p(E |G) = P (G |E)P (E)/P (G). If we actually know for certain
that G has occurred, P (E |G) becomes our actual degree of belief in E. The prior
probability P (E), has been updated to the posterior probability P (E |G).

However, a number of authors have questioned whether it is justified to identify
assessments made conditional on the assumed occurrence of G with actual beliefs
once G is known. We shall not pursue this issue further, although we acknowledge
its interest and potential importance. Detailed discussion and relevant references
can be found in Diaconis and Zabell (1982), who discuss, in particular, Jeffrey’s
rule (Jeffrey, 1965/1983), and Goldstein (1985), who examines the role of temporal
coherence. See, also, Good (1977).

Relevance of the Axiomatic Approach

Arguments against over-concern with foundational issues come in many forms.
At one extreme, we have heard Bayesian colleagues argue that the mechanics and
flavour of the Bayesian inference process have their own sufficient, direct, intuitive
appeal and do not need axiomatic reinforcement. Another form of this argument
asserts that developments from axiom systems are “pointless” because the con-
clusions are, tautologically, contained in the premises. Although this is literally
true, we simply do not accept that the methodological imperatives which flow from
the assumptions of quantitative coherence are in any way “obvious” to someone
contemplating the axioms. At the other extreme, we have heard proponents of
supposedly “model-free” exploratory methodology proclaim that we can evolve
towards “good practice” by simply giving full encouragement to the creative imag-
ination and then “seeing what works”.

Our objection to both these attitudes is that they each implicitly assume, albeit
from different perspectives, the existence of a commonly agreed notion of what
constitutes “desirable statistical practice”. This does not seem to us a reasonable
assumption at all, and to avoid potential confusion, an operational definition of the
notion is required. The quantitative coherence approach is based on the assumption
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that, within the structured framework set out in Section 2.2, desirable practice
requires, at least, to avoid Dutch-book inconsistencies, an assumption which leads
to the Bayesian paradigm for the revision of belief.

Structure of the Set of Relevant Events

But is the structure assumed for the set of relevant events too rigid? In particular,
is it reasonable to assume that, in each and every context involving uncertainty,
the logical description of the possibilities should be forced into the structure of
an algebra (or σ-algebra), in which each event has the same logical status? It
seems to us that this may not always be reasonable and that there is a potential
need for further research into the implications of applying appropriate concepts of
quantitative coherence to event structures other than simple algebras. For example,
this problem has already been considered in relation to the foundations of quantum
mechanics, where the notion of “sample space” has been generalised to allow for
the simultaneous representation of the outcomes of a set of “related” experiments
(see, for example, Randall and Foulis, 1975). In that context, it has been established
that there exists a natural extension of the Bayesian paradigm to the more general
setting.

Another area where the applicability of the standard paradigm has been ques-
tioned is that of so-called “knowledge-based expert systems”, which often operate
on knowledge representations which involve complex and loosely structured spaces
of possibilities, including hierarchies and networks. Proponents of such systems
have argued that (Bayesian) probabilistic reasoning is incapable of analysing these
structures and that novel forms of quantitative representations of uncertainty are
required (see Spiegelhalter and Knill-Jones, 1984, and ensuing discussion, for refer-
ences to these ideas). However, alternative proposals, which include “fuzzy logic”,
“belief functions” and “confirmation theory”, are, for the most part, ad hoc and
the challenge to the probabilistic paradigm seems to us to be elegantly answered
by Lauritzen and Spiegelhalter (1988). We shall return to this topic later in this
section.

Finally, another form of query relating to the logical status of events is some-
times raised (see, for example, Barnard, 1980a). This draws attention to the in-
terpretational asymmetry between a statement like “the underlying distribution is
normal” and its negation. This raises questions about their implicitly symmetric
treatment within the framework given in Section 2.2. Choices of the elements to
be included in E are, of course, bound up with general questions of “modelling”
and the issue here seems to us to be one concerning sensible modelling strategies.
We shall return to this topic in Chapters 4 and 6.

Prescriptive Nature of the Axioms

When introducing our formal development, we emphasised that the Bayesian foun-
dational approach is prescriptive and not descriptive. We are concerned with un-
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derstanding how we ought to proceed, if we wish to avoid a specified form of
behavioural inconsistency. We are not concerned with sociological or psychologi-
cal description of actual behaviour. For the latter, see, for example, Wallsten (1974),
Kahneman and Tversky (1979), Kahneman et al. (1982), Machina (1987), Bordley
(1992), Luce (1992) and Yilmaz (1992). See, also, Savage (1980).

Despite this, many critics of the Bayesian approach have somehow taken
comfort from the fact that there is empirical evidence, from experiments involving
hypothetical gambles, which suggests that people often do not act in conformity
with the coherence axioms; see, for example, Allais (1953) and Ellsberg (1961).

Allais’ criticism is based on a study of the actual preferences of individuals
in contexts where they are faced with pairs of hypothetical situations, like those
described in Figure 2.8, in each of which a choice has to be made between the two
options where C stands for current assets and the numbers describe thousands of
units of a familiar currency.

Situation 1

Situation 2

a1

a2

a3

a4

1.00

0.10

0.89

0.01

0.11

0.89

0.10

0.90

500 + C

2500 + C

500 + C

C

500 + C

C

2500 + C

C

Figure 2.8 An illustration of Allais’ paradox

It has been found (see, for example, Allais and Hagen, 1979) that there are a
great many individuals who prefer option 1 to option 2 in the first situation, and at
the same time prefer option 4 to option 3 in the second situation.

To examine the coherence of these two revealed preferences, we note that,
if they are to correspond to a consistent utility ordering, there must exist a utility
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function u(.), defined over consequences (in this case, total assets in thousands of
monetary units), satisfying the inequalities

u(500 + C) > 0.10 u(2, 500 + C) + 0.89 u(500 + C) + 0.01 u(C)

0.10 u(2, 500 + C) + 0.90 u(C) > 0.11 u(500 + C) + 0.89 u(C).

But simple rearrangement reveals that these inequalities are logically incom-
patible for any function u(.), and, therefore, the stated preferences are incoherent.

How should one react to this conflict between the compelling intuitive attrac-
tion (for many individuals) of the originally stated preferences, and the realisation
that they are not in accord with the prescriptive requirements of the formal theory?
Allais and his followers would argue that the force of examples of this kind is so
powerful that it undermines the whole basis of the axiomatic approach set out in
Section 2.3. This seems to us a very peculiar argument. It is as if one were to argue
for the abandonment of ordinary logical or arithmetic rules, on the grounds that
individuals can often be shown to perform badly at deduction or long division.

The conclusion to be drawn is surely the opposite: namely, the more liable
people are to make mistakes, the more need there is to have the formal prescription
available, both as a reference point, to enable us to discover the kinds of mistakes
and distortions to which we are prone in ad hoc reasoning, and also as a suggestive
source of improved strategies for thinking about and structuring problems.

Table 2.4 Savage’s reformulation of Allais’ example

Ticket number 1 2–11 12–100

situation 1 option 1 500 + C 500 + C 500 + C

option 2 C 2500 + C 500 + C

situation 2 option 3 500 + C 500 + C C

option 4 C 2500 + C C

In the case of Allais’ example, Savage (1954/1972, Chapter 5) pointed out
that a concrete realisation of the options described in the two situations could be
achieved by viewing the outcomes as prizes from a lottery involving one hundred
numbered tickets, as shown in Table 2.4. Indeed, when the problem is set out in
this form, it is clear that if any of the tickets numbered from 12 to 100 is chosen it
will not matter, in either situation, which of the options is selected. Preferences in
both situations should therefore only depend on considerations relating to tickets in
the range from 1 to 11. But, for this range of tickets, situations 1 and 2 are identical
in structure, so that preferring option 1 to option 2 and at the same time preferring
option 4 to option 3 is now seen to be indefensible.
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Viewed in this way, Allais’ problem takes on the appearance of a decision-
theoretic version of an “optical illusion” achieved through the distorting effects of
“extreme” consequences, which go far beyond the ranges of our normal experience.
The lesson of Savage’s analysis is that, when confronted with complex or tricky
problems, we must be prepared to shift our angle of vision in order to view the
structure in terms of more concrete and familiar images with which we feel more
comfortable.

Ellsberg’s (1961) criticism is of a similar kind to Allais’, but the “distorting”
elements which are present in his hypothetical gambles stem from the rather vague
nature of the uncertainty mechanisms involved, rather than from the extreme nature
of the consequences. In such cases, where confusion is engendered by the proba-
bilities rather than the utilities, the perceived incoherence may, in fact, disappear
if one takes into account the possibility that the experimental subjects’ utility may
be a function of more than one attribute. In particular, we may need to consider
the attribute “avoidance of looking foolish”, often as a result of thinking that there
is a “right answer” if the problem seems predominantly to do with sorting out
“experimentally assigned” probabilities, in addition to the monetary consequences
specified in the hypothetical gambles. Even without such refinements, however,
and arguing solely in terms of the gambles themselves, Raiffa (1961) and Roberts
(1963) have provided clear and convincing rejoinders to the Ellsberg criticism. In-
deed, Roberts presents a particularly lucid and powerful defence of the axioms,
also making use of the analogy with “optical” and “magical” illusions. The form
of argument used is similar to that in Savage’s rejoinder to Allais, and we shall
not repeat the details here. For a recent discussion of both the Allais and Ellsberg
phenomena, see Kadane (1992).

Precise, Complete, Quantitative Preferences

In our axiomatic development we have not made the a priori assumption that all
options can be compared directly using the preference relation. We have, how-
ever, assumed, in Axiom 5, that all consequences and certain general forms of
dichotomised options can be compared with dichotomised options involving stan-
dard events. This latter assumption then turns out to imply a quantitative basis for
all preferences, and hence for beliefs and values.

The view has been put forward by some writers (e.g. Keynes, 1921/1929, and
Koopman, 1940) that not all degrees of belief are quantifiable, or even comparable.
However, beginning with Jeffreys’ review of Keynes’ Treatise (see also Jeffreys,
1931/1973) the general response to this view has been that some form of quantifica-
tion is essential if we are to have an operational, scientifically useful theory. Other
references, together with a thorough review of the mathematical consequences of
these kind of assumptions, are given by Fine (1973, Chapter 2).

Nevertheless, there has been a widespread feeling that the demand for precise
quantification, implicit in “standard” axiom systems, is rather severe and certainly
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ought to be questioned. We should consider, therefore, some of the kinds of sug-
gestions that have been put forward from this latter perspective.

Among the attempts to present formal alternatives to the assumption of pre-
cise quantification are those of Good (1950, 1962), Kyburg (1961), Smith (1961),
Dempster (1967, 1985), Walley and Fine (1979), Girón and Ríos (1980), DeRober-
tis and Hartigan (1981), Walley (1987, 1991) and Nakamura (1993). In essence,
the suggestion in relation to probabilities is to replace the usual representation of
a degree of belief in terms of a single number, by an interval defined by two num-
bers, to be interpreted as “upper” and “lower” probabilities. So far as decisions are
concerned, such theories lead to the identification of a class of “would-be” actions,
but provide no operational guidance as to how to choose from among these. Par-
ticular ideas, such as Dempster’s (1968) generalization of the Bayesian inference
mechanism, have been shown to be suspect (see, for example, Aitchison, 1968), but
have led on themselves to further generalizations, such as Shafer’s (1976, 1982a)
theory of “belief functions”. This has attracted some interest (see e.g., Wasserman
(1990a, 1990b), but its operational content has thus far eluded us.

In general, we accept that the assumption of precise quantification, i.e., that
comparisons with standard options can be successively refined without limit, is
clearly absurd if taken literally and interpreted in a descriptive sense. We therefore
echo our earlier detailed commentary on Axiom 5 in Section 2.3, to the effect
that these kinds of proposed extension of the axioms seem to us to be based on
a confusion of the descriptive and the prescriptive and to be largely unnecessary.
It is rather as though physicists and surveyors were to feel the need to rethink
their practices on the basis of a physical theory incorporating explicit concepts of
upper and lower lengths. We would not wish, however, to be dogmatic about this.
Our basic commitment is to quantitative coherence. The question of whether this
should be precise, or allowed to be imprecise, is certainly an open, debatable one,
and it might well be argued that “measurement” of beliefs and values is not totally
analogous to that of physical “length”. An obvious, if often technically involved
solution, is to consider simultaneously all probabilities which are compatible with
elicited comparisons. This and other forms of “robust Bayesian” approaches will
be reviewed in Section 5.6.3. In this work, we shall proceed on the basis of a
prescriptive theory which assumes precise quantification, but then pragmatically
acknowledges that, in practice, all this should be taken with a large pinch of salt and
a great deal of systematic sensitivity analysis. For a related practical discussion,
see Hacking (1965). See, also, Chateaneuf and Jaffray (1984).

Subjectivity of Probability

As we stressed in Section 2.2, the notion of preference between options, the primi-
tive operational concept which underlies all our other definitions, is to be understood
as personal, in the sense that it derives from the response of a particular individual
to a decision making situation under uncertainty. A particular consequence of this
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is that the concept which emerges is personal degree of belief, defined in Section 2.4
and subsequently shown to combine for compound events in conformity with the
properties of a finitely additive probability measure.

The “individual” referred to above could, of course, be some kind of group,
such as a committee, provided the latter had agreed to “speak with a single voice”,
in which case, to the extent that we ignore the processes by which the group arrives
at preferences, it can conveniently be regarded as a “person”. Further comments
on the problem of individuals versus groups will be given later under the heading
Communication and Group Decision Making.

This idea that personal (or subjective) probability should be the key to the
“scientific” or “rational” treatment of uncertainty has proved decidedly unpalatable
to many statisticians and philosophers (although in some application areas, such as
actuarial science, it has met with a more favourable reception; see Clarke, 1954). At
the very least, it appears to offend directly against the general notion that the meth-
ods of science should, above all else, have an “objective” character. Nevertheless,
bitter though the subjectivist pill may be, and admittedly difficult to swallow, the
alternatives are either inert, or have unpleasant and unexpected side-effects or, to
the extent that they appear successful, are found to contain subjectivist ingredients.

From the objectivistic standpoint, there have emerged two alternative kinds
of approach to the definition of “probability” both seeking to avoid the subjective
degree of belief interpretation. The first of these retains the idea of probability as
measurement of partial belief, but rejects the subjectivist interpretation of the latter,
regarding it, instead, as a unique degree of partial logical implication between one
statement and another. The second approach, by far the most widely accepted
in some form or another, asserts that the notion of probability should be related
in a fundamental way to certain “objective” aspects of physical reality, such as
symmetries or frequencies.

The logical view was given itsfirst explicit formulation by Keynes (1921/1929)
and was later championed by Carnap (1950/1962) and others; it is interesting to note,
however, that Keynes seems subsequently to have changed his view and acknowl-
edged the primacy of the subjectivist interpretation (see Good, 1965, Chapter 2).
Brown (1993) proposes the related concept of “impersonal” probability.

From an historical point of view, the first systematic foundation of the frequen-
tist approach is usually attributed to Venn (1886), with later influential contributions
from von Mises (1928) and Reichenbach (1935). The case for the subjectivist ap-
proach and against the objectivist alternatives can be summarised as follows.

The logical view is entirely lacking in operational content. Unique probability
values are simply assumed to exist as a measure of the degree of implication between
one statement and another, to be intuited, in some undefined way, from the formal
structure of the language in which these statements are presented.

The symmetry (or classical) view asserts that physical considerations of sym-
metry lead directly to a primitive notion of “equally likely cases”. But any uncertain
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situation typically possesses many plausible “symmetries”: a truly “objective” the-
ory would therefore require a procedure for choosing a particular symmetry and for
justifying that choice. The subjectivist view explicitly recognises that regarding
a specific symmetry as probabilistically significant is itself, inescapably, an act of
personal judgement.

The frequency view can only attempt to assign a measure of uncertainty to
an individual event by embedding it in an infinite class of “similar” events having
certain “randomness” properties, a “collective” in von Mises’ (1928) terminology,
and then identifying “probability” with some notion of limiting relative frequency.
But an individual event can be embedded in many different “collectives” with no
guarantee of the same resulting limiting relative frequencies: a truly “objective”
theory would therefore require a procedure for justifying the choice of a particular
embedding sequence. Moreover, there are obvious difficulties in defining the un-
derlying notions of “similar” and “randomness” without lapsing into some kind of
circularity. The subjectivist view explicitly recognises that any assertion of “simi-
larity” among different, individual events is itself, inescapably, an act of personal
judgement, requiring, in addition, an operational definition of which is meant by
“similar”.

In fact, this latter requirement finds natural expression in the concept of an
exchangeable sequence of events, which we shall discuss at length in Chapter 4.
This concept, via the celebrated de Finetti representation theorem, provides an
elegant and illuminating explanation, from an entirely subjectivistic perspective, of
the fundamental role of symmetries and frequencies in the structuring and evaluation
of personal beliefs. It also provides a meaningful operational interpretation of the
word “objective” in terms of “intersubjective consensus”.

The identification of probability with frequency or symmetry seems to us to
be profoundly misguided. It is of paramount importance to maintain the distinction
between the definition of a general concept and the evaluation of a particular
case. In the subjectivist approach, the definition derives from logical notions of
quantitative coherent preferences: practical evaluations in particular instances often
derive from perceived symmetries and observed frequencies, and it is only in this
evaluatory process that the latter have a role to play.

The subjectivist point of view outlined above is, course, not new and has been
expounded at considerable length and over many years by a number of authors. The
idea of probability as individual “degree of confidence” in an event whose outcome
is uncertain seems to have been first put forward by James Bernoulli (1713/1899).
However, it was not until Thomas Bayes’ (1763) famous essay that it was explicitly
used as a definition:

The probability of any event is the ratio between the value at which an expectation
depending on the happening of the event ought to be computed, and the value of
the thing expected upon its happening.
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Not only is this directly expressed in terms of operational comparisons of
certain kinds of simple options on the basis of expected values, but the style of
Bayes’ presentation strongly suggests that these expectations were to be interpreted
as personal evaluations.

A number of later contributions to the field of subjective probability are
collected together and discussed in the volume edited by Kyburg and Smokler
(1964/1980), which includes important seminal papers by Ramsey (1926) and
de Finetti (1937/1964). An exhaustive and profound discussion of all aspects
of subjective probability is given in de Finetti’s magisterial Theory of Probabil-
ity (1970/1974, 1970/1975). Other interpretations of probability are discussed in
Renyi (1955), Good (1959), Kyburg (1961, 1974), Fishburn (1964), Fine (1973),
Hacking (1975), de Finetti (1978), Walley and Fine (1979) and Shafer (1990).

Statistical Inference as a Decision Problem

Stylised statistical problems have often been approached from a decision-theoretical
viewpoint; see, for instance, the books by Ferguson (1967), DeGroot (1970), Bar-
nett (1973/1982), Berger (1985a) and references therein. However, we have already
made clear that, in our view, the supposed dichotomy between inference and deci-
sion is illusory, since any report or communication of beliefs following the receipt
of information inevitably itself constitutes a form of action. In Section 2.7, we
formalised this argument and characterised the utility structure that is typically ap-
propriate for consequences in the special case of a “pure inference” problem. The
expected utility of an “experiment” in this context was then seen to be identified
with expected information (in the Shannon sense), and a number of information-
theoretic ideas and their applications were given a unified interpretation within a
purely subjectivist Bayesian framework.

Many approaches to statistical inference do not, of course, assign a primary role
to reporting probability distributions, and concentrate instead on stylised estimation
and hypothesis testing formulations of the problem (see Appendix B, Section 3).
We shall deal with these topics in more detail in Chapters 5 and 6.

Communication and Group Decision Making

The Bayesian approach which has been presented in this chapter is predicated on the
primitive notion of individual preference. A seemingly powerful argument against
the use of the Bayesian paradigm is therefore that it provides an inappropriate
basis for the kinds of interpersonal communication and reporting processes which
characterise both public debate about beliefs regarding scientific and social issues,
and also “cohesive-small-group” decision making processes. We believe that the
two contexts, “public” and “cohesive-small-group”, pose rather different problems,
requiring separate discussion.
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In the case of the revision and communication of beliefs in the context of
general scientific and social debate, we feel that criticism of the Bayesian paradigm
is largely based on a misunderstanding of the issues involved, and on an over-
simplified view of the paradigm itself, and the uses to which it can be put. So far as
the issues are concerned, we need to distinguish two rather different activities: on
the one hand, the prescriptive processes by which we ought individually to revise
our beliefs in the light of new information if we aspire to coherence; on the other
hand, the pragmatic processes by which we seek to report to and share perceptions
with others. The first of these processes leads us inescapably to the conclusion that
beliefs should be handled using the Bayesian paradigm; the second reminds us that
a “one-off” application of the paradigm to summarise a single individual’s revision
of beliefs is inappropriate in this context.

But, so far as we are aware, no Bayesian statistician has ever argued that the
latter would be appropriate. Indeed, the whole basis of the subjectivist philosophy
predisposes Bayesians to seek to report a rich range of the possible belief mappings
induced by a data set, the range being chosen both to reflect (and even to challenge)
the initial beliefs of a range of interested parties. Some discussion of the Bayesian
reporting process may be found in Dickey (1973), Dickey and Freeman (1975)
and Smith (1978). Further discussion is given in Smith (1984), together with a
review of the connections between this issue and the role of models in facilitating
communication and consensus. This latter topic will be further considered in
Chapter 4.

We concede that much remains to be done in developing Bayesian reporting
technology, and we conjecture that modern interactive computing and graphics
will have a major role to play. Some of the literature on expert systems is relevant
here; see, for instance, Lindley (1987), Spiegelhalter (1987) and Gaul and Schader
(1988). On the broader issue, however, one of the most attractive features of the
Bayesian approach is its recognition of the legitimacy of the plurality of (coherently
constrained) responses to data. Any approach to scientific inference which seeks to
legitimise an answer in response to complex uncertainty seems to us a totalitarian
parody of a would-be rational human learning process.

On the other hand, in the “cohesive-small-group” context there may be an
imposed need for group belief and decision. A variety of problems can be isolated
within this framework, depending on whether the emphasis is on combining prob-
abilities, or utilities, or both; and on how the group is structured in relation to such
issues as “democracy”, “information-sharing”, “negotiation” or “competition”. It
is not yet clear to us whether the analyses of these issues will impinge directly on
the broader controversies regarding scientific inference methodology, and so we
shall not attempt a detailed review of the considerable literature that is emerging.

Useful introductions to the extensive literature on amalgamation of beliefs or
utilities, together with most of the key references, are provided by Arrow (1951b),
Edwards (1954), Luce and Raiffa (1957), Luce (1959), Stone (1961), Blackwell
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and Dubins (1962), Fishburn (1964, 1968, 1970, 1987), Kogan and Wallace (1964),
Wilson (1968), Winkler (1968, 1981), Sen (1970), Kranz et al. (1971), Marschak
and Radner (1972), Cochrane and Zeleny (1973), DeGroot (1974, 1980), Mor-
ris (1974), White and Bowen (1975), White (1976a, 1976b), Press (1978, 1980b,
1985b), Lindley et al. (1979), Roberts (1979), Hogarth (1980), Saaty (1980), Berger
(1981), French (1981, 1985, 1986, 1989), Hylland and Zeckhauser (1981), Weer-
ahandi and Zidek (1981, 1983), Brown and Lindley (1982, 1986), Chankong and
Haimes (1982), Edwards and Newman (1982), DeGroot and Feinberg (1982, 1983,
1986), Raiffa (1982), French et al. (1983), Lindley (1983, 1985, 1986), Bunn
(1984), Caro et al. (1984), Genest (1984a, 1984b), Yu (1985), De Waal et al. (1986),
Genest and Zidek (1986), Arrow and Raynaud (1987), Clemen and Winkler (1987,
1993), Kim and Roush (1987), Barlow et al. (1988), Bayarri and DeGroot (1988,
1989, 1991), Huseby (1988), West (1988, 1992a), Clemen (1989, 1990), Ríos et al.
(1989), Seidenfeld et al. (1989), Ríos (1990), DeGroot and Mortera (1991), Kelly
(1991), Lindley and Singpurwalla (1991, 1993), Goel et al. (1992), Goicoechea
et al. (1992), Normand and Tritchler (1992) and Gilardoni and Clayton (1993).
Important, seminal papers are reproduced in Gärdenfors and Sahlin (1968). For
related discussion in the context of policy analysis, see Hodges (1987).

References relating to the Bayesian approach to game theory include Harsany
(1967), DeGroot and Kadane (1980), Eliashberg and Winkler (1981), Kadane
and Larkey (1982, 1983), Raiffa (1982), Wilson (1986), Aumann (1987), Smith
(1988b), Nau and McCardle (1990), Young and Smith (1991), Kadane and Seiden-
feld (1992) and Keeney (1992).

A recent review of related topics, followed by an informative discussion, is
provided by Kadane (1993).


