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SUMMARY

Finding the integrated likelihood of a model given the data requires the inte-
gration of a nonnegative function over the parameter space. Classical Monte
Carlo methods for numerical integration require a bound or estimate of the
variance in order to determine the quality of the output. The method called
the product estimator does not require knowledge of the variance in order to
produce a result of guaranteed quality, but requires a cooling schedule that
must have certain strict properties. Finding a cooling schedule can be diffi-
cult, and finding an optimal cooling schedule is usually computationally out
of reach. TPA is a method that solves this difficulty, creating an optimal
cooling schedule automatically as it is run. This method has its own set of
requirements; here it is shown how to meet these requirements for problems
arising in Bayesian inference. This gives guaranteed accuracy for integrated
likelihoods and posterior means of nonnegative parameters.

Keywords and Phrases: ADAPTIVE MONTE CARLO; VARIANCE FREE
APPROXIMATION.

1. INTRODUCTION

Traditional Monte Carlo methods for numerical integration rely on estimates to
determine the variance of the output. There exist methods, however, that pro-
vide guarantees on performance without the need to either calculate or estimate a
variance.

TPA is one such method for approximating the integral of nonnegative functions
over high dimensional spaces. Use of the method requires several precise ingredients,
and the purpose of this work is to show how to obtain those ingredients for Bayesian
applications.

Consider the problem of finding the integrated likelihood (also known as the
evidence, marginal likelihood, or normalizing constant) for a model. For data y
parameterized by the random variable 6 in parameter space {2y with prior measure
tprior and likelihood function L(6 |y), the integrated likelihood is

7 =Ty (L0 )] = / L(b|y) dpsprior.
beQy
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Suppose the posterior measure of 6 given data y is denoted pipost. Since the
Radon-Nikodym derivative [dpipost (b)/dpiprior (b)] = L(b|y)/Z, the integrated likeli-
hood Z is also known as the normalizing constant. Also, Z appears in the Bayes
factor for model selection, so another term for Z is the evidence for a model.

For a d dimensional parameter 8 = (01,...,604), finding the posterior mean 6;
leads to a second integration, namely:

Eppost 05 | Y] = Epiprion [0:L(O | )]/ Bpuprion [L(0 [ 9)]-

In both cases the problem reduces to integrating a density against a prior, although
for the posterior mean case it is necessary to break the integral into two pieces: one
where 0; > 0, and another where 6; < 0 in order to evaluate them using TPA.

The rest of the paper is organized as follows. The next section introduces the
TPA method, and then shows two ways in which it can be applied to finding the
integrated likelihood. This is followed by an artificial multimodal example, and then
by another example, the hierarchical beta-binomial model. The next section then
builds on the basic TPA algorithm to give an omnithermal estimate. This type of
estimate is especially useful in spatial settings, and its application is illustrated here
using the Ising model. The next section discusses the effects of imperfect samples,
followed by a discussion of the use of Rao-Blackwellization with TPA. A comparison
to the nested sampling method follows, and the final section discusses fully Bayesian
approximation algorithms.

2. USING TPA FOR BAYESIAN PROBLEMS
The TPA method has four general ingredients:

(a) A measure space (Q, F, p).

(b) Two finite measurable sets B and B’ satisfying B’ C B. The set B’ is the center
and B is the shell.

(c) A family of nested sets {A(B) : B € R} such that 8 < B’ implies A(8) C A(8'),
1(A(B)) is a continuous function of 3, and limg—, — o u(A(8)) = 0.

(d) Special values Bg and Bp: that satisfy A(Bg) = B and A(Bp/) = B'.

Let p = u(B')/u(B). Our goal is to create an approximation algorithm with
output p such that for inputs € > 0 and 6 € [0, 1]:

Pr((l+e) ' <p/p<l4e)>1-0. (1)

So our goal is to do more than just bound the variance of our estimates, but to also
put bounds on the tails as well.

Traditional acceptance/rejection draws multiple times from p(B), finds the sam-
ple percentage of times the resulting sample falls in B’, and uses that for p. With
this approach, the expected number of variates generated before a single sample falls
in B’ is 1/p. This method requires ©(p~*e ?1In(6 1)) samples to meet our (e, §) re-
quirement. The ¢ ?1n(1/4) factor comes from standard Monte Carlo analyses, but
improvement can be made in the p~! factor.

TPA operates by moving inward from B to B’ using a sequence of samples.
Begin with 8 = g, so that A(8) = B. The first sample X is a draw from p(A(B)).



Next find the smallest value of 8’ such that X € pu(A(8')) (condition (c) guarantees
the existence of such a 3’.) The set A(3’) becomes our new space, and the next
sample drawn comes from A(S’). This in turn yields a new value of 8 and so on,
repeating until the sample lands in the center, B’ = A(8p/). The number of samples
needed to reach the center will form the basis of our approximation method.

To determine the distribution of the number of samples needed to reach the
center, first note that u(A(B'))/u(A(B)) is a uniform random variable over [0, 1].
To see this, suppose X ~ p(A(B)), B = max{b: X € A(b)}. The essential idea
is that for any a € (0,1), the random variate X has probability a of falling into a
region A(B’) such that u(A(B"))/u(A(B)) = a. This argument is made precise in
the following theorem.

Theorem 1 Given ingredients (a) through (d) above and 3 such that p(A(B)) <
ot X~ WA = i X € A}, and U = w(AGN/W(AE) Then
~ Un(]|0,

Proof. Fix § and let a € [0,1). Then since u(A(b)) is a continuous function in b where
limp_, oo p(A(b)) = 0, there must exist a b € (—oo, 8] such that u(A(b))/u(A(B)) = a.
Call this value Bq.

Let 0 < € < 1—a. Then there is also a value Bq¢ such that p(A(Ba+e))/u(A(B)) = a+e.

Now consider X ~ p(A(B)), set B/ =inf{b: X € A(b)}, and let U = p(A(B"))/u(A(B).
Then X € A(Ba) = U < a,so Pr(U <a) > Pr(X € A(Ba)) = a.

On the other hand,

X ¢ A(ﬁavLe) = 6/ > Bate = #(A(B/))/“(A(B)) >at+e=U2>a+te

The contrapositive of the above statement says U < a + € = X € A(Ba+e). So viewed as a
statement about probabilities (combining with the previous inequality)

a<PrU<a)<PrU<a+c) <ate,

and since € was an arbitrary number in (0,1 — a), Pr(U < a) = a.
Hence Pr(U < a) =a for all a € [0,1), and U ~ Un([0, 1]). 0

If this procedure is repeated k times, a sequence of 3 values are generated, say

B = Bo, b1, B2, .., Bk, where each of the ratios u(A(5:))/u(A(Bi+1)) is uniform over
[0,1]. In other words,

(A(Br)) iid
————= ~ U Uz ---Ug, where U; ~ Un(|[0,1]).
p(AGGe)) (1)
Now if U ~ Un([0,1]), then —InU ~ Ex(1). So consider the points

Pii=—1In (%) ~ Fy + E3 + -+ - B, where E; 5 Ex(1).

Then the points {P;} form a one dimensional Poisson point process with rate 1.
Suppose the process continues until 8’ < Bg/, that is, until the X variate drawn

lands in the center B’. Then the number of samples drawn before the center is

reached will have a Poisson distribution with parameter In(u(B))/ In(u(B")).



Algorithm 2.1  TPA(r, 85, 05")
Input: Number of runs r, initial index g, final index p-
Output: p (estimate of u(B")/u(B))

1: k<0

2: for i from 1 to r do

3: B+ B, k<« k—1

4: while § > B do

5 kk+1, X < p(A(B)), B« nf{B' € [Bp:,Bp] : X € A(B)}
6 end while

Recall that the union of r Poisson point processes of rate 1 is a new Pois-
son point process with rate r. So repeat the procedure r times and let k be the
sum of the number of samples needed to reach the center in each run. Then
k ~ Po(rin(u(B))/In(p(B"))). The approximation to u(B)/u(B’) is exp(k/r). This
is encoded in Algorthm 2.1.

To determine the value of r needed to obtain an (€, §) approximation, it is nec-
essary to bound the tails of a Poisson distribution. In Section 7 this is accomplished
using Chernoff bounds, where it is shown that for r = 2(In p)? (3¢~ + ¢ 2) In(46~1),
TPA is an (e, d) approximation algorithm. Since in typical applications, p is expo-
nentially small in the dimension of the problem, having the dependence on p be a
polynomial in Inp~! is necessary to be efficient. Of course, in practice, Inp~?! is not
known ahead of time, so TPA can be run as a two phase procedure. In the first
phase set 7 = In 2671, so that TPA estimates In p~* within a factor of 1+ 3/Inp—1!
with probability at least 1 — /2. In the second phase, this initial estimate is used
to determine the value of r to find the final estimate p that is accurate to a factor
of 1+ e with probability at least 1 — /2. The union bound then states that both
phases were correct with probability at least 1 — 4.

Two methods of setting up (a), (b), (c), and (d) will be considered here: param-
eter truncation and likelihood truncation.

2.1. Parameter truncation

For ingredient (a), the parameter space usually is a subset of R? equipped with the
Borel sets. The measure p will be

j(A) = / L0 1) ditsor = By (L0110 € )

In parameter truncation, the family of nested sets is formed by restricting (trun-
cating) parameter space. A simple example of such a family is

AM) = Qg0 {0:]10 — || < M}, )

where c is a fixed point in parameter space. When M = oo this is just the original
space (so S = 00), and as M decreases the restriction narrows the space down.



The norm should be chosen to make the resulting sets as easy as possible to sample
from. As long as the prior measure is continuous with respect to Lebesgue measure,
the measure p(A(M)) will be continuous in M.

When M is very small, it is usually possible to bound the likelihood above
and below, as it will be very close to L(c|y). Then this A(M) becomes B’, and
w(A(Bpr)) = pprior(A(Bp’))L(c|y). This procedure is illustrated on examples in
Section 3 and in Section 4.

2.2. Likelihood truncation

When a slice sampler Markov chain is being used to generate the samples, a more
natural approach to creating the family of sets is to truncate the likelihood rather
than the parameter.

Begin by noting that

L(bly)
Z= [ Lol = [ [T tdwdnpe
beQy beQy Jo

where dw is just Lebesgue measure. In other words, Z = p({(t1,t2) € Qo x [0, 00) :
0 <ty <L(t1|y)}). Here p = pprior X m and m is Lebesgue measure. This u is the
measure over 2 X [0, 00) required by ingredient (a).

An auxiliary variable M can be introduced to this setup to create a series of
nested sets as follows

A(M) = {(t1,t2) € Qo x [0,00) : 0 <ty < min{L(t1|y), M}. 3)

Then p(A(c0)) = Z, and A(oo) will be the shell B in ingredient (b).

The value of p(A(M)) will vary continuously from 0 up to Z as M runs from 0
to 0o. So this provides our family of nested sets for ingredient (c).

Finding the center B’ to go along with the shell is more tricky. Since the goal is
to estimate p = u(B’)/u(B), setting the center to be A(0) with measure 0 is not an
option. Instead, the center needs to be a value Mcenter that is larger than 0, but for
which p(A(Mcenter)) is easy to approximate (say by ¢.) Then use p to approximate
p, and use (¢/p) as an approximation for pu(A(c0)) = Z.

The solution is to draw a set of samples from the prior distribution, and calculate
the likelihood for each sample. The sample median of these likelihoods becomes the
temperature for the center, Mcenter- For any 6 > 0, draw enough samples so that
the probability that the sample median is actually below the 0.4 quantile is at most
6/2. From Hoeflding’s inequality (Hoeffding, 1963), 501n(2/d) samples suffice.

Now for a random variable X drawn from the prior distribution,

E[mln{L(X | y), Mcenter}] = mln{L(X | y)7 Mcenter} d/»l/priory
Qg

or just u(A(1)). And since Mcenter was chosen so that Pr(L(X |y) > Mcenter) > -4,
0-4Mccntcr S E[mll’l{L(X | y), Mccntcr}] S Mccntcr-

This means that (by another application of Hoffding’s inequality) it is possible to
estimate Emin{L(X |y), Mcenter }] within a factor of 1 4 ¢ with probability at least



§/2 by taking the sample mean of .3¢~2In(§/2) draws. Hence from the union bound,
the final estimate of p(A(Mecenter)) is an (€, ) approximation.

For actually generating samples from the family of truncated likelihoods, the
slice sampler (see Robert and Casella, 2004, pp. 320-333 for a description) is just
as easy to implement for sampling from min{L(0|y), M} as for L(6|y), and as M
shrinks should actually mix faster as local modes are truncated away.

2.3. The name TPA

This idea of sampling from nested sets appears also in the nested sampling algorithm
of Skilling (Skilling, 2006), so a new name was needed for our method. We choose
the rather whimsical name of Tootsie Pop Algorithm. A Tootsie Pop is a hard
candy shell that encloses a chocolate chewy center. By licking the shell away, the
chewy chocolate center is eventually revealed. In TPA, counting how long it takes
to chip away the shell and reach the center is the essential statistic that allows us
to approximate the ratio of the measure between the shell and center.

3. EXAMPLE: A MULTIMODEL LIKELIHOOD

This section illustrates the general theory with a specific multimodal example that
was examined in on p. 854 of Skilling (2006), where it was acknowledged to be a
difficult case for nested sampling. The prior for the parameter 6 is uniform over
[—1/2,1/2]¢, and the likelihood for 6 is

L) = 1oof[1 \/;m exp (-%) +f[1 \/217% exp (— 295 ) L@

That is, the likelihood consists of a Gaussian spike centered at (0.2,0.2,...,0.2)
mixed with a much smaller spike centered at (0,0,...,0). When v = .01 and
v = .02, the chance of a draw from the d dimensional prior landing anywhere near
one of the two modes is vanishingly small. This is typical in these types of problems:
the likelihood is typically far more concentrated than the prior distribution.

It is important to note that TPA is not a solution to the problem of how to
generate samples from a multimodal likelihood. It does, however, have the positive
property that as the algorithm progresses, the sampling problem does not usually
become any more difficult. In both parameter and likelihood truncation, the multi-
modality disappears as the algorithm progresses.

3.1. Parameter truncation for the multimodal example

To specify the truncation given by (2), it is necessary to specify the norm and the
center point c. A natural choice of ¢ is a mode or the center of parameter space,
although any point in parameter space could be used. In this case the origin is both
a mode and the center of parameter space, and a simple norm is the Lo, norm that
takes the maximum among the components of the parameter.

Set B = .0001, so B’ = {6 ¢ R* : |0;] < .0001 for all i}. For (4), when
0l < .0001 the likelihood lies within .999 and 1.001 of L((0,...,0)), which
equals (27v%) 710 to at least 20 significant digits. Since the prior is uniform over
[~1/2,1/2]*°, the prior measure of B’ is just .00022°.

Hence p(B’) is within 1.001 of .0002%°, and all TPA needs to do is approximate
Z/u(B'). Most things about this example can be calculated exactly. In particular
In(Z/u(B’)) ~ 115.0993.



The algorithm for generating samples and running TPA was coded in R. The
code is available on the first author’s website, or by request. After 10° runs of TPA,
the estimate of In(Z/u(B’)) was 115.10321, so the number of samples generated
during the course of the algorithm was 11510321, or about 107. This means the
final approximation was within a factor of (1.004)(1.001) of the true integrated
likelihood of 101. The first factor of 1.004 arises from Monte Carlo error and the
second factor of 1.001 from the approximation to the integral for M = Bz, = .0001.

As expected from the theory of TPA, the number of samples used in each run
followed a Poisson distribution, as can be seen in Figure 1. The bars are the empirical
distribution of the runs, and the line is the density of a Poisson with the analytically
determined mean.
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Figure 1: TPA using parameter truncation for multimodal example with 10° runs.

4. EXAMPLE: THE BETA-BINOMIAL MODEL

Raftery et al. (2006) considered finding the integrated likelihood for a beta-binomial
hierarchical model for free throw data from the NBA. The counts y; are modeled as

binomially distributed with known number of trials n; and unknown p; i Be(a, b),



where a and b are independent hyperparameters with an Ex(1) prior shifted by 1.

The data used here consists of the number of free throws attempted and made
during the 2008-2009 season. In this season, 429 NBA players attempted at least one
free throw. Once the hyperparameters a and b are known the rest of the parameters
can be integrated out, therefore, it is possible to find the exact answer numerically
to test the accuracy of TPA.

As with the previous example, the algorithm was implemented in R. The true
log integrated likelihood (to three decimal places) is -1577.250. After 10° runs of
TPA, the average number of samples per draw was 30.71754, that is, 3071754 total
samples from the posterior truncated at various values were generated. The resulting
estimate of —1577.256 for the loglikelihood is well within the standard deviation of
0.017 predicted by theory.

5. APPROXIMATE SAMPLING

In many situations it is not possible to obtain exactly random samples from u(A(B)).
Instead some approximate method such as Markov chain Monte Carlo will be used.
The effect will be to heterogeneously stretch out or compress the Poisson process
generated by TPA. As long as the same method is used at each step for creating
samples, this will at least be a consistent effect. If more than one method for
generating approximate samples is used, and if one or more of these methods stretch
the state space they are unlikely to do so in the same fashion. Therefore, a simple
diagnostic to test the effect of approximate sampling is to run the procedure with
two unrelated Markov chains, and compare the results. Since the Monte Carlo error
can be bounded precisely when using TPA, any remaining difference in the results
can be correctly attributed to at least one of the Markov chains being used.

As usual, this method can show that the Markov chains are not mixing well, but
in order to guarantee that the quality of the result an exact or perfect simulation
method must be used.

6. POSTERIOR MEANS

The examples considered so far involved finding the integrated likelihood. However,
the same methods can be applied to finding the posterior mean of a distribution. To
find the mean of 6;, instead of integrating against pprior, simply integrate against the
measure with density dptmean = 0idfiprior. This will keep the integrand nonnegative
as long as 6; > 0. In this case, it is possible (as with the integrated likelihood) to
find the posterior mean without any need to consider the posterior variance.

7. OMNITHERMAL APPROXIMATION

We shall call an approximation of p(A(8))/u(A(Br)) that is valid for all g €
[Br’, Be] simultaneously an omnithermal approzimation. The “thermal” portion
of the name comes from the fact that in many models of interest (such as the Ising
model), the parameter 8 is known as the inverse temperature. Therefore, an om-
nithermal approximation is one that is valid for all temperatures simultaneously.
Recall in Section 2 it was shown that the 8 values generated by r runs of TP A
(not including the initial 8 value of each run) formed a one dimensional Poisson
point process with rate r in logspace. Let P denote this set of 8 values. These
points can be used to derive an omnithermal approximation. To go from a Poisson



point process to a Poisson process, set
Np(t) = #{be P:b> B — t}.

Then as ¢ runs from 0 to 8 — B/, Np(t) increases by 1 whenever it hits a 3 value.
By the theory of Poisson point processes, this happens at intervals that will be
independent exponential random variables of rate r.

Given Np(t), approximate u(B)/u(A(B)) by exp(Np(Ss — B)/r). When g =
Bp’, this is just our usual approximation, and so this is a generalization of the basic
TPA procedure.

Note E[Np(t)] = rt, and Np(t) —rt is a right continuous martingale. To bound
the error in exp(Np(t)/r), it is necessary to bound the probability that Np(t) — rt
has drifted too far away from 0.

Theorem 2 Let ¢ > 0. Then for Np(-) a rate r Poisson process on [0,T], where
/T < 2.3:

Pr <t€s;%] [(Np(t)/r) —t| > e) < 2exp (—g (1 — %)) .

Proof. The approach will be similar to finding a Chernoff (1952) Bound. Since exp(az) is
convex for any positive constant «, and Np(t) is right continuous, exp(aNp(t)) is a right
continuous submartingale.

Let Ay denote the event that (Np(¢)/r) —t > € for some t € [0,T]. Then for all a > 0:

Pr(Ay) =Pr < sup exp(alNp(t)) > exp(art + are)) .
t€[0,T)

It follows from basic Markov-type inequalities on right continuous submartingales (p.13 of
Karatzas and Shreve, 1991) that this probability can be upper bounded as

Pr(Ay) < E(aexp(Np(T))/ exp(arT + are)).
Using the moment generating function for a Poisson with parameter r7T":
Elexp(aNp(T)) = exp(rT(exp(a) — 1)),

which means
Pr(Ay) <exp(T(e® —1— ) + ae)".

A Taylor series expansion shows that e® —1—a < (a2/2)(1+a) as long as a € [0,2.31858...].
Set a = ¢/T. Simplifying the resulting upper bound yields

Pr(Ay) < exp (—g (1 - %)) .

The other tail can be dealt with in a similar fashion, yielding a bound

2
Pr( sup [Np(a)/r]—t <€) <exp (—TL)
t€[0,T) 2T

The union bound on the two tails then yields the theorem. 0

Since the Poisson process operates in logspace, T = In(u(B)/u(B")).
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Corollary 2.1 Fore € (0,0.3), 6 € (0,1), and In(u(B)/u(B’)) > 1, after
r = 2(0n(u(B)/u(B )3 + ) In(2/5)

runs of TPA, the points obtained can be used to build an (e,0) omnithermal approx-
imation. That is,

Pr((V5 € [Bpr, B5]) (1 + €)™ < exp(Np(B5 — B)/7)/[u(B)/un(A(B)] < 1+¢)) <.

Proof. In order for the final result to be within a multiplicative factor of 1+e¢, in logspace the
approximation must be accurate to an additive term of In(1+¢€). Let T = In(u(B)/u(B’)),
so r = 2T(3¢™! 4+ ¢72)In(2/8). To prove the corollary from the theorem, it suffices to
show that 2exp(—2T (3¢ + ¢~21n(2/8)[In(1 + €)]2(1 — ¢/T)/(2T)) < §. After canceling
the factors of T', and noting that when T > 1, 1 — ¢/T < 1 — ¢, it suffices to show that
(Be™1 4+ €7 2)(1 — ¢)[In(1 + €)]2 > 1. This can be shown for ¢ € (0,.3) by a Taylor series
expansion. 0

8. EXAMPLE: OMNITHERMAL APPROXIMATION FOR THE ISING
MODEL

The Ising model falls into the broad class of automodels, spatial models where the
distribution of a site conditioned on its neighbors comes from the same family (see
Besag, 1974). For Ising, each node of a graph G = (V, E) is assigned either 0 or 1
(hence it is an autobernoulli model.) In the simplest form of the model, the weight

of a configuration = € {0,1}" is

Tising (T) = Zi/g exp(28H (z)), where H(x) = Z 1(z(2) = z(5)).
{ij}eE

With models of this type, the function Zg cannot be explicitly calculated for most
graphs. At first glance, the problem appears simple: with a prior on the one di-
mensional parameter 3, a one dimensional numerical integration should be easy.
However, because the posterior density includes a Zgl factor, in order to find the
posterior, it is necessary to find Zg.

Note that any (e,d) omnithermal approximation of Zg will yield an (e,d) ap-
proximation for the integrated likelihood. Finding the posterior mean requires two
integrals involving Zg, and so the approximation for the posterior mean will be
accurate to within a factor of (1 + €)? with probability at least 1 — 6.

To obtain such an approximation, it is necessary to put the Ising model within
the context of TPA. This is accomplished by introducing an auxiliary random vari-
able Y, such that for X ~ mising, [Y|X] ~ Un([0, exp(26H (X))]). This makes

Zs = p(A(B)), where A(8) = {(z,y) : @ € {0,1}",y € [0, exp(28H (x))]},

where (4 is the direct product of counting measure on {0, l}v and Lebesgue measure
on [0, 00).

TPA operates as follows: Start with 8 < 8p. Draw X < 7w and then Y <«
Un([0, exp(26H(X))]). [Then the next value of 3 will be the value of 3’ such that
Y = exp(2B8H (X)), so that (X,Y) € A(8') but not in any smaller set.] If H(X) > 0
set § « [InY]/[2H(X)], else set B < 0. Repeat until 8 < 0.
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In(Z3) — One run of TPA

In(Z3s) /// Sixteen runs of TPA

Figure 2:  Omnithermal approzimations for the Ising model on a 4 X 4 lattice

Figure 2 presents two omnithermal approximations for log Zg generated using
this method on a small 4 x 4 square lattice. The top graph is the result of a single
run of TPA from 8 = 2 down to 8 = 0. At each B value returned by TPA, the
approximation drops by 1. The bottom graph is the result of [In(4-10°)] = 16 runs
of TPA. This run told us that Zo < 217 with confidence 1 — 107%/2. Therefore,
using € = .1, and § = 10%/2 in Theorem 2 shows that = = 330000 samples suffice for
a (0.1,107%) omnithermal approximation.

9. DETERMINATION OF A COOLING SCHEDULE

The omnithermal approximation can then be used to build a nicely balanced de-
terministic cooling schedule. Consider the approximation of In(Zg) of the previous
section, and let M denote the maximum value of In(Zg) over the region of interest.
Then for ¢ from 1 to d, let

Ba :=sup{b: Np(Bs —b) > M(i/d)}.

This is illustrated in Figure 3, where logspace for the Ising model on a 4 x 4 lattice
is partitioned into three equal parts, leading to a cooling schedule of length 4.

In general, partitioning logspace into d pieces yields a deterministic cooling
schedule of length d 4+ 1: Bpr = Bqg < fa—1 < -+ < Bo = Pp. It is nicely bal-
anced in the sense that for all 4, In(u(A(5:))/pu(A(Bi+1))) = In(u(B))/d. In other
words, the ratios p(A(8:))/u(A(Bi+1)) are all roughly equal.
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-

In(Zp)

B3 =0 Bo B1 Po=2

Figure 3: Finding a cooling schedule from an omnithermal approzimation

Having such a schedule is important for many reasons, here we discuss two.
First, this can be used to construct a new Markov chain, perhaps faster than the
original that created the samples, using parallel tempering or some other technique
based on a cooling schedule. If d is chosen to be near In(u(B)), then the schedule
will be very well balanced in the sense that ratio of the measure of successive levels
will be close to e~ for all levels.

If the Markov chain is then modified by a multiplicative factor of e raised to the
level, then the measure of successive levels will be roughly the same. Such chains
with levels weighted towards equality have been shown to be fast in practice (see,
for instance, Wang and Landau, 2001).

The second reason is that this allows for a product estimator approximate to be
built. The product estimator goes back at least to self-reducibility algorithms of Jer-
rum et al. (1986), and operates by estimating p(A(Bi+1)/u(A(B:)) and then forming
the estimator for u(A(B8s))/u(A(Bpr)) by taking the product of the estimates for
the individual levels.

The advantage of TPA over the product estimator was the ability to analyze the
tails of the distribution of the output without the need to have a balanced cooling
schedule. However, once TPA creates such a cooling schedule, the product estimator
can be used.

If bounding the probability mass in the tails is less important than restricting the
standard deviation of the estimate, the product estimator can be preferable in some
situations. This is because the product estimator can be partially derandomized,
what is often referred to as Rao-Blackwellization of the procedure.

Consider the truncated likelihood approach of Section 2. Before derandom-
ization, to estimate p(A(T3))/u(A(Ti+1)), several samples would be drawn from
w(A(T;)) as a two stage process. In the first stage, draw 6, which has density pro-
portional to min{L(0|y),T;} with respect to the prior. In the second stage, draw
auxiliary variable W that is uniform on [0, min{L(0|y),T;}]. Then count the per-
centage of the time the auxillary variable falls below min{L(0|y), Ti+1}.

To Rao-Blackwellize this procedure, do not draw the final auxiliary variable. In-
stead record the probability the final auxiliary variable falls below min{L(0 | y), Ti+1}.
That is, begin as before by drawing 6 from min{L(-|y),T;} dpiprior(-). Then let
f(0) = min{L(0|y),T:}/ min{L(0 |y, Ti+1}. Then f(#) is an unbiased estimate of
the ratio of the measures of the two levels. That is, E[f(0)] = u(A(T3))/n(A(Ti+1)),
and so using the sample mean of f(6) over several draws gives an estimate for
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w(A(Ty))/(A(Ti41)) that has lower variance than the original method.
The final estimate is then the product of the estimates for the ratios of each
level, hence the name of the method: the product estimator.

10. COMPARISON TO NESTED SAMPLING

Since TPA involves the creation of a nested family of subsets to sample from, it
naturally brings to mind the idea of Skilling (2006) known as nested sampling.
There are some key differences, however.

e The nested sets in nested sampling are formed by considering the sets {w :
L(w|y) > k} for increasing values of k. As seen in Subsection 2.2, the nested
sets used for TPA can be formed by considering {w : L(w|y) < T} for some
constant T'. So if the likelihood is multimodel, by moving downward the extra
modes are removed, making the problem easier as TPA progresses.

e In nested sampling, the accuracy of the final result depends on being able to
sample near the maximum of the likelihood, hence the problem is typically as
difficult as finding the posterior mode.

e However, it should be noted that the same method used in 2.2 to find the
center for TPA with truncated likelihoods can also be used to find a suit-
able truncation value for the likelihood. By definition, the maximum of the
truncated likelihood is known, so the error term arising from the unknown
maximum can be eliminated in nested sampling.

e Nested sampling is a hybrid of a Monte Carlo and classical one dimensional
numerical integration. This often reduces the error in practice, but theoreti-
cally introduces terms into the error bound that are usually unknown (related
to the derivatives of unknown functions.) This means that the output can only
be analyzed asymptotically. For TPA, it is possible to completely determine
the distribution of the output, even for small problems.

11. FULLY BAYESIAN APPROXIMATION

The standard theoretical computer science definition of an (e, §) approximation al-
gorithm is that the output must be within a factor of 1 + € of the true answer
with probability at least 1 — §. This is equivalent to saying that for output p,
[(1 4+ )7, (1 + €)p] forms a 1 — & confidence interval for p. For TPA, p is the
exponentiated maximum likelihood estimator for In p.

However, extra knowledge of the normalizing constant Z (and hence p) could
come from something as simple as known bounds on Z in terms of dimension.
Because the output distribution of TPA (and hence the likelihood) given In Z can
be written down explicitly, it is possible to conduct a fully Bayesian analysis of In Z
given the data generated by TPA. If extra information about In Z is available, this
can then be utilized to improve the estimate.
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