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Summary

A convenient way of modelling complex interactions is by employing graphs
or networks which correspond to conditional independence structures in an
underlying statistical model. One main class of models in this regard are
Bayesian networks, which have the drawback of making parametric assump-
tions. Bayesian nonparametric mixture models offer a possibility to overcome
this limitation, but have hardly been used in combination with networks. This
manuscript brigdes this gap by introducing nonparametric Bayesian network
models. We review (parametric) Bayesian networks, in particular Gaussian
Bayesian networks, from a Bayesian perspective as well as nonparametric
Bayesian mixture models. Afterwards these two modelling approaches are
combined into nonparametric Bayesian networks. The new models are com-
pared both to Gaussian Bayesian networks and to mixture models in a simula-
tion study, where it turns out that the nonparametric network models perform
favorably in non Gaussian situations. The new models are also applied to an
example from systems biology.

Keywords and Phrases: Gaussian Bayesian networks; Systems Biology;
Nonparametric Mixture Models; Species Sampling Models

1. INTRODUCTION

Complex interactions are of increasing importance in many research areas like in-
formation retrieval, engineering, decision support systems and systems biology. A
convenient way of modelling such complex interactions are graphs, which correspond
to conditional independence structures in the underlying statistical model. In this
context graphs appear in two main flavors: graphs containing only undirected or only
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directed edges. The most prominent Bayesian statistical models based on undirected
graph structures are Gaussian graphical models (see, for example, Giudici (1996)
or more recently Carvalho and Scott (2010)). A limitation of undirected models
is the fact that is not possible to learn the direction of dependencies (i.e. causal
dependencies), which is of major importance, for example, in systems biology.

Prominent statistical models based on directed graphs are Bayesian networks.
The underlying graph is a so-called directed acyclic graph (DAG) with nodes repre-
senting random variables and edges coding the conditional independence structure.
Bayesian network methodology was proposed and developed by Pearl (1985), and
following Pearl’s book (Pearl (1988)) Bayesian networks have been used for mod-
elling complex conditional (in-)dependencies among variables in various fields of
research. Bayesian networks are interpretable and fairly flexible models for repre-
senting probabilistic relationships among interacting variables. In the seminal paper
by Friedman et al. (2000) Bayesian networks were applied to infer gene regulatory
networks from gene expression data in systems biology research. Since then Bayesian
network models have been developed further, and nowadays Bayesian networks can
be seen as one of the most popular tools in systems biology research for reverse
engineering regulatory networks and cellular signalling pathways from a variety of
types of postgenomic data. Fast Markov Chain Monte Carlo (MCMC) algorithms,
like those developed in Friedman and Koller (2003) or Grzegorczyk and Husmeier
(2008), can be applied to systematically search the space of network structures
for those that are most consistent with the data. A closed-form expression of the
marginal likelihood can be obtained for two probabilistic models with their respec-
tive conjugate prior distributions: the multinomial distribution with the Dirichlet
prior (BDe) (Cooper and Herskovits (1992)) and the linear Gaussian distribution
with the normal-Wishart prior (BGe) (Geiger and Heckerman, 1994)). However
these two standard approaches are restricted in that they either require the data to
be discretized (BDe) or can only capture linear regulatory relationships (BGe). The
BGe model makes an implicit assumption of multivariate normality for the data
and in real-world applications this assumption is often violated. On the other hand,
data discretisation always incurs an information loss so that the discrete BDe model
cannot be seen a sufficient remedy. One extension to overcome these limitations
of the BGe model is the mixture model of Grzegorczyk et al. (2008). In this pa-
per we generalize this model and consider it in a broader framework of Bayesian
nonparametric mixture models.

Interest in Bayesian nonparametric mixture models started with the publica-
tion of Ferguson (1973) on the Dirichlet process. While early literature was mainly
confined to relatively simple conjugate models, the advent of MCMC (see, among
others, Escobar and West (1995)) and positive asymptotic properties (Ghosh and
Ramamoorthi, 2003), renewed practical and theoretical interest in the field. Non-
parametric, i.e. infinite, mixture models employ discrete random probability mea-
sures (i.e. stochastic processes) for the mixing distribution, see, for example, Ongaro
and Cattaneo (2004) or James, Lijoi and Prünster (2009). When interest does not
focus on probability measures, random measures, for example Lévy processes, are
often used as a prior for the mixing distribution. These priors are also employed for
nonparametric regression, see among others, Clyde and Wolpert (2007) or Bornkamp
and Ickstadt (2009). However, graphical model structures are hardly used up to now
in the context of nonparametric mixture modelling with the exception of the recent
manuscript by Rodriguez, Lenkoski and Dobra (2010), which focusses on undirected
graph models.
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However, these models could be useful for applications in which graphs or more
generally network inference is of interest, like e.g. systems biology. Since causal
dependencies are of main importance to biologists, Bayesian networks are preferred
over Gaussian graphical models in this field. We suggest to model such systems
using nonparametric Bayesian networks and the main goal of our analysis is to
find modules, i.e. a subset of components strongly connected within itself but only
loosely connected to the rest of a system. Modules might refer to specific functions
of the system, whereas the connectivity between them is important to understand
higher order functions of the system.

Bayesian networks were developed and are applied mainly by researchers in
artificial intelligence and machine learning, while certainly Bayesians should also
be interested in this type of model. On the other hand Bayesian nonparametrics
might have an important contribution to make in the field of network inference. One
goal of this paper is to bring closer together the research communities of Bayesian
networks and nonparametric Bayesian statistics.

We begin our paper in Section 2.1 with a wrap of the Bayesian network literature
both on directed acyclic graphs and the Gaussian Bayesian network. Section 2.2
then discusses Bayesian nonparametric mixture models based on random probability
measures and Section 3 then extends the Gaussian Bayesian network model by using
a nonparametric mixture model. In Section 4 we use data simulated from a small
biochemical system to test our nonparametric Bayesian network methodology. We
further investigate the suitability of our approach for a realistic biological system,
the widely studied MAPK (mitogen-activated protein kinase) cascade in section 5
(Kholodenko (2000)). This consists of eight species suggested to be organized in
three modules, that we want to confirm in our analysis.

2. METHODS

2.1. Bayesian Networks

This section briefly introduces the necessary graph theory and notations; for details
or additional material see Jordan (1999), Koller and Friedmann (2009) and Koski
and Noble (2009). A graph G = (V,E) consists of a finite set of nodes V correspond-
ing to random variables x1, ..., xd, i.e. V = {x1, ..., xd}, and an edge set E ⊂ V ×V .
If α,β ∈ V are two distinct nodes, the ordered pair (α,β) ∈ E denotes a directed
edge from α to β and D the set of all directed edges. 〈α,β〉 ∈ E is an undirected
edge and U the corresponding set of undirected edges with E = D ∪ U . If all edges
of G are directed (undirected) then G is said to be directed (undirected). The undi-
rected version of G is obtained by replacing all directed edges of G by undirected
ones and is called skeleton. Moreover, for any node α ∈ V of a given graph G the
set paG(α) = {β ∈ V |(β,α) ∈ D} defines the set of parents.

Definition 1
A graph G = (V,E) is called a directed acyclic graph (DAG) if each edge is directed
and for any node α ∈ V there are no cycles, i.e. there does not exist any set of
distinct nodes τ1, ..., τm such that α '= τj, j = 1, ..., m and (α, τ1, ..., τm,α) forms a
directed path.

In general, we can represent the joint distribution of the x1, ..., xd by

p(x1, ..., xd) = p(x1) · p(x2|x1) · ... · p(xd|x1, ..., xd−1).
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For any ordering σ of (1, ..., d) we can replace this expression by

p(x1, ..., xd) = p(xσ(1)) · p(xσ(2)|xσ(1)) · ... · p(xσ(d)|xσ(1), ..., xσ(d−1));

this representation is called factorization.
For a DAG the factorization can be simplified in the following way. A probability
distribution p over x1, ..., xd factorizes according to a DAG G if there exists an order-
ing with paG(xσ(1)) = ∅, i.e. xσ(1) has no parents, paG(xσ(j)) ⊆

{

xσ(1), ..., xσ(j−1)

}

and

p(x1, ..., xd) =
d∏

j=1

p(xσ(j)|paG(xσ(j))).

The individual p(xσ(j)|paG(xσ(j))) are called conditional probability distributions
(CPDs).

Definition 2
A Bayesian network (BN) is a pair (G, p) where p factorizes according to G and p
is specified as a set of CPDs associated with the nodes of G. The factorization is
minimal in the sense that for an ordering of x1, ..., xd the parent set paG(xσ(j)) is the
smallest set of variables such that xσ(j) ⊥ pac(xσ(j))|paG(xσ(j)) where ”⊥” denotes
conditional independence.

To simplify notation we assume in the following that the DAGs (and Bayesian
networks) are ordered.

For a given set of variables V = {x1, ..., xd} different DAGs may exist that
represent the same independence structure. Two such DAGs are called Markov
equivalent. Necessary and sufficient features of a DAG that determine its Markov
structure are its skeleton and its immoralities (or v-structures), where an immorality
in a graph G with E = D ∪ U is defined as a triple of nodes (α, β, γ) such that
(α,β) ∈ D and (γ,β) ∈ D, but (α, γ) /∈ D, (γ,α) /∈ D and 〈α, γ〉 /∈ U .

Theorem 1
Two DAGs are Markov equivalent if and only if they have the same skeleton and the
same immoralities. For a proof see Verma and Pearl (1992).

When a Bayesian network is inferred from data, all Markov equivalent DAGs
should fit the data equally well as they imply the same conditional independence
statements. If additional causal (directional) information exists, only those DAGs
from the equivalence class that reflect the causal dependencies should be chosen.

When inferring a Bayesian network from data, it is convenient to assume a para-
metric model for the CPDs. In the Bayesian networks literature there are two dom-
inant approaches: The first, based on the multinomial distribution with Dirichlet
prior, has the advantage that only few assumptions about the form of the depen-
dence structure are made (Koller and Friedmann, 2009), however one disadvantage
is that continuous variables can only be handled by discretization (this model is typ-
ically called BDe in the Bayesian network literature). The second approach, which
we will describe in more detail, is based on the multivariate Gaussian distribution
with a normal Wishart prior (typically abbreviated BGe). This approach is rela-
tively restrictive, as it makes a strong parametric assumption. We will, however,
present a generalization based on nonparametric mixture models later.

We start with a model for the CPDs p(xj |paG(xj)) for a given G and generalize
this to inference about the DAG G itself later.
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Definition 3
A Bayesian network (G, p) is called a Gaussian Bayesian network, when the con-
ditional distributions p(xj|paG(xj)) are given by normal distributions of the form:
xj |paG(xj) ∼ N(µj +

∑

Kj

βj,k(xk−µk),σ
2
j ), where Kj = {k|xk ∈ paG(xj)}, the µj are

the unconditional means of xj and βj,k are real coefficients determining the influence
of xk on xj.

In a Gaussian Bayesian network, the variable xj is hence modelled as a linear
function of its parents plus normally distributed random noise. Due to the prop-
erties of the normal distribution the joint distribution, specified by the CPDs is
multivariate Gaussian: Shachter and Kenley (1989) describe an algorithm that ex-
tracts the underlying multivariate normal distribution with mean µ = (µ1, . . . , µd)
and precision matrix M from the specification of the CPDs. Hence the parameters
µ, σ = (σ2

1 , . . . ,σ
2
d)

′ and B = (β2, . . . ,βd) with βk = (βj,1, . . . ,βj,k), j < k coding
the conditional independencies, are an alternative parametrization of the multivari-
ate Gaussian distribution.
Of main interest in inferring a Bayesian network from data is the underlying DAG
structure rather than the posterior distributions of µ,σ and B. For computational
reasons it is hence desirable to integrate out these parameters analytically. One
typically chooses the conjugate prior for the multivariate normal distribution, the
normal Wishart distribution given by p(µ|M)p(M), where p(µ|M) is a multivariate
normal distribution and p(M) is the Wishart distribution. The distribution p(M)
can also be transformed to the parametrization in terms of σ and B, p(σ,B). A
convenient feature of the Wishart distribution is that it factorizes in the same way as
the distribution for x1, . . . , xd under a given DAG G, i.e. p(σ,B) =

∏d
j=1 p(σ

2
j ,βj)

(this property is called parameter independence in the Bayesian networks literature,
see Geiger and Heckerman (1994)).

With xi = (xi1, . . . , xid)
′, the likelihood for an iid sample x1, . . . ,xn of a mul-

tivariate Gaussian distribution with underlying DAG G is hence given by

L(µ,MG |x1, . . . ,xn) =
n
∏

i=1

p(xi|µ,MG),

where MG is chosen so that the conditional independence statements under G hold.
The prior distribution is given by p(µ|M)p(M). Now one can first perform the
integration with respect to µ,

∫

L(µ,MG |x1, . . . ,xn)p(µ|MG)p(MG)dµ, resulting
in the integrated likelihood L(MG |x1, . . . ,xn). Now let X be the matrix with rows
x′

1, . . . ,x
′
n, and X(I) denote the columns of X with indices in I.

Geiger and Heckerman (1994) (Theorem 2) show that L(MG |X) factorizes ac-
cording to the DAG G, when switching to the alternative parameterization so that
L(MG |X) = L(σ,B|X) =

∏d
j=1 L(σ

2
j ,βj |X(j∪Kj)). In addition the same factor-

ization holds for the Wishart prior distribution, so that the marginal (or integrated)
likelihood for G can be calculated as

L(G|X) =

∫

L(σ,B|X)p(σ,B)dσdB

=
d∏

j=1

∫

L(σ2
j ,βj |X

(j∪Kj))p(σ2
j ,βj)dσjdβj . (1)



6 Ickstadt et al.

After performing each of the d integrations in (1) each factor is thus the likeli-
hood of the j−th variable given its parents, which we will write as ρ(X(j)|X(Kj))
so that L(G|X) =:

∏d
j=1 ρ(X(j)|X(Kj)). By the product rule this is equal to

∏d
j=1

ρ(X
(j∪Kj )

)

ρ(X(Kj))
and the numerator and denominator of each of these terms can

be calculated explicitly as the involved integrals are over multivariate t distribution
kernels. In addition Geiger and Heckerman (1994) (Theorem 3) show that Markov
equivalent graphs receive the same integrated likelihood L(G|X), so that a major
requirement from graph theory is met.

Combining expression L(G|X) with a prior distribution p(G) on DAG space then
determines the posterior probability p(G|X) for the DAG up to proportionality, i.e.

p(G|X) ∝ L(G|X)p(G). (2)

In the absence of prior information, the prior distribution for the DAG is often cho-
sen as a uniform distribution, although alternative prior distributions are possible.
Friedman and Koller (2003), for example, describe a prior that is uniform over the
cardinalities of parent sets, so that complex DAGs are penalized; Mukherjee and
Speed (2008) describe an approach for informative prior selection. Inference on the
DAG G, that determines the conditional independence statements can in theory be
performed analytically as the normalization constant can be obtained by summing
up L(G|X)p(G) for all possible DAGs. As the space of DAGs increases exponentially
with the number of variables d, analytic inference is, however, practically infeasible.
A way out of this situation is to run a Markov chain Monte Carlo algorithm in DAG
space based on the posterior given above, see e.g. Madigan and York (1995) or
Grzegorczyk and Husmeier (2008) for details.

Gaussian Bayesian networks hence have the advantage of being computationally
tractable as the involved integrations can be performed analytically. However, a
Gaussian Bayesian network also involves two crucial assumptions: (i) the CPDs are
all normal distributions, and (ii) the relationships between the variables are given by
linear functions. In the following section we present nonparametric mixture models
as a generic tool to extend general parametric models to obtain more flexible mod-
els, while still being able to exploit some of the analytic tractability of parametric
models.

2.2. Nonparametric Mixture Models

Suppose the data model is p(x|θ), where p(x|θ) is a probability density, θ ∈ Θ is an
unknown parameter and Θ a general space. In some cases the modelling situation
suggests that there is heterogeneity in the data with respect to θ, so that one value
for θ is not adequate for the full data set, but there are groups in the data for which
different values of θ are adequate.

This leads to the idea of (discrete) mixture models that model the data as
∑

whp(x|θh), (3)

where θh ∈ Θ, wh ≥ 0 and
∑

wh = 1. The probability distributions generated by
(3) allow for multiple θh and are considerably more flexible than just one p(x|θh)
alone.

For what follows, it is useful to note that the parameters wh and θh in (3) de-
scribe a discrete probability distribution P , so that the mixture model can be writ-
ten as

∫

p(x|θ)dP (θ). Statistical inference hence focuses on the discrete probability
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measure P . If the prior for P is chosen with support over an infinite dimensional
space (for example, the space of continuous probability densities on R) the name
nonparametric mixture model is justified. This situation appears when the mixture
model is flexible enough to approximate any probability density on the underlying
space, see Ghosh and Ramamoorthi (2003) or Wu and Ghosal (2008) for details
regarding the support of nonparametric mixture priors.

In the last decades a variety of distributions, called discrete random probability
measures have been developed, which can be used as nonparametric priors for P . A
unifying class is given by Ongaro and Cattaneo (2004), which we will describe from
two different viewpoints. We will start with a definition.

Definition 4
A random probability measure P belongs to the Ongaro-Cattaneo class when its re-
alizations can be represented as

P (θ) =
N∑

h=1

whδθh
(θ), (4)

where θh, wh and N are random variables specified as follows: The θh are inde-
pendent and identically distributed realizations of a non-atomic distribution P0 on
Θ (i.e. P0({θ}) = 0, ∀θ ∈ Θ) and are independent from wh, h = 1, . . . , N and
N . The weights w1, . . . , wN conditional on N have a distribution QN on the N − 1
dimensional probability simplex {(w1, w2, . . . , wN )′ ∈ R

N
+ :

∑N
h=1 wh = 1} and N

is a random variable with support {N+ ∪ ∞}. When N = ∞ the weights have a
distribution on {(w1, w2, . . .) : wh ∈ R+,

∑
wh = 1}.

Several random probability measures in the literature can be identified as special
cases of this framework. Stick-breaking priors, described in the work by Ishwaran
and James (2001) can be obtained by havingN = ∞ orN = Nmax and weights wh =

vh
∏

l<h(1−vl) with vh
iid
∼ Beta(ah, bh). To ensure

∑

h wh = 1, one imposes vNmax =
1 (when N = Nmax) or

∑∞
h=1 log(1 + ah/bh) = ∞ (when N = ∞) (Ishwaran and

James, 2001). The stick-breaking class covers, for example, the Dirichlet process
(with ah = 1 and bh = M , where M is the mass parameter of the Dirichlet process)
and the Poisson-Dirichlet (or Pitman-Yor) process (with ah = 1−a and bh = b+ha
with a ∈ [0, 1) and b ≥ −a). Another famous subclass of models are finite mixture
models (Frühwirth-Schnatter, 2006). Here one typically fixes N or uses a prior
distribution on N+ for N that has positive support on all integers and the prior
for the weights wh is typically chosen as a symmetric Dirichlet distribution. The
general class of James, Lijoi and Prünster (2009) obtained by normalizing random
measures with independent increments, is a special case of the above class, when
the corresponding intensity of the random measure is homogeneous (i.e. the wh are
independent of the θh).

From a practical viewpoint it is difficult to decide, which of the prior models
in Definition 4 is suitable for the particular modelling situation at hand. A first
step would be to calculate the prior mean of P, and adjust the parameters in the
prior distribution so that a particular prior mean is achieved with a suitable vari-
ability around this mean. The prior mean for the probability of an event A is
E(P (A)) = P0(A) and the covariance of the probability between two events A1

and A2 is given by Cov(P (A1), P (A2)) = k0(P0(A1 ∩ A2) − P0(A1)P0(A2)), where
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k0 = E(
∑

w2
h) is the expected value of the squared weights (Ongaro and Cattaneo,

2004). The distribution P0 hence determines prior mean and prior correlation of the
random probability measure, while the prior distribution for the wh mainly deter-
mines its variability. When focusing only on the first two moments of the random
probability measure, the prior for the weights hence only enters into the calculation
of the covariance (via k0). However, the prior for the weights also contains infor-
mation about how total probability is distributed to the different atoms and thus
makes important assumptions about the clustering structure. The following sec-
ond viewpoint on random probability measures of form (4) makes these clustering
assumptions underlying a random probability measure more apparent.

Suppose you observe an exchangeable sequence θ1,θ2, . . . and this evolves ac-
cording to the rule

θ1 ∼ P0, θn+1|θ1, . . . , θn ∼
k∑

h=1

ph(n)δθ̃h
+ pk+1(n)P0, (5)

where θ̃1, θ̃2, . . . , θ̃k are the k = k(n) unique values in the sequence θ1,θ2, . . . ,θn

and n = (n1, n2, . . . , nk) are the number of allocations to the unique values in the
sequence. The ph(n) are the probabilities (conditional on n) of allocating θn+1 to
θ̃h, h = 1, . . . , k, or to a new value simulated from P0 (for h = k + 1).

The conditional probabilities ph(.) are called predictive probability function
(PPF). The probability distribution p(.) of n, from which the PPF can be cal-
culated, is called the exchangeable probability function (EPPF), and is defined on
N

∗ =
⋃∞

k=1 N
k, where N

k is the k-fold Cartesian product of N. Due to exchange-
ability p(.) needs to be symmetric in its arguments and additionally needs to fulfill
p(1) = 1 and p(n) =

∑k+1
h=1 p(n

(h+)), where n(h+) = (n1, . . . , nh + 1, . . . , nk) and

n((k+1)+) = (n1, . . . , nk, 1). This ensures a sum of 1 for a given total sample size
∑k

h=1 nh. The PPF can be recovered from the EPPF via ph(n) = p(n(h+))/p(n).
(Pitman, 1996, Section 3) called exchangeable sequences generated according

to (5) a species sampling sequence (due to the analogy of collecting species, for
example, in ecology or population genetics). He showed that a sequence is a species
sampling sequence if and only if it is a sample from a random distribution of form

∑

h

whδθh
(θ) + (1−

∑

h

wh)dP0(θ),

where
∑

h wh ≤ 1, wh ≥ 0, the θh are iid from a non-atomic P0 and the wh are
distributed independently of the θh. When

∑

h wh = 1, which is the case we are
interested in, Pitman (1996) called the sequence proper species sampling sequence,
which thus coincides with the Ongaro-Cattaneo class from Definition 4. In fact (5)
can be seen as a generalization of the Polya urn (or Blackwell-MacQueen) scheme,
underlying the Dirichlet process. Species sampling models hence provide an equiv-
alent but very different viewpoint on discrete random probability measures (see
Ishwaran and James (2003) for more on the species sampling viewpoint on nonpara-
metric mixture models).

Of particular use is the PPF, as it intuitively describes how the random prob-
ability measure allocates its probability mass. For example the Dirichlet process
with mass parameter M has the PPF ph(n) = nh∑k

h=1 nh+M
for h = 1, . . . , k and
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pk+1(n) =
M∑

k
h=1 nh+M

leading to the Polya urn scheme. This shows that the prob-

ability of attaching θn+1 to a particular value θ̃h grows linearly with nh, and thus
often results in a relatively small number of large clusters and a large number of small
clusters. This is undesirable in some situations, see Lee et al. (2008) for a detailed
discussion of this topic. Lee et al. (2008) also propose a Monte Carlo technique to
derive the PPF from the information given in Definition 4, which potentially result
in PPFs, where the increase is slower than linear. An alternative way of calculating
the PPF from a random probability measure is via the EPPF. (Pitman, 2002, p.
44) derives the EPPF for a proper species sampling sequence

p(n) =
∑

(j1,...,jk)

E

(
k
∏

h=1

wnh
jh

)

, (6)

where (j1, . . . , jk) ranges over all ordered k-tuples of distinct positive integers, and
the expectation is with respect to the distribution of the weights. An alternative
representation, from which one can also obtain the PPF and which is better suited
for Monte Carlo computation is given by

p(n) = E

[
k∏

h=1

wnh−1
h

k−1
∏

h=1

(

1−
h∑

j=1

wj

)]

,

see (Pitman, 2002, Theorem 3.1).
PPF and EPPF hence more clearly display the assumptions about the clustering

behaviour imposed by the random probability measure. This can be used for setting
up the prior distribution for the weights. When one focus of the analysis is to
infer a complex clustering structure from the data, as in graph-based problems, one
would typically use a model with a flexible EPPF, in which more parameters can be
adjusted to the data, while simpler structures (such as the Dirichlet process, where
only one parameter determines the clustering structure) may be adequate in other
situations.

3. NONPARAMETRIC BAYESIAN NETWORK MODELS

In this section we will combine ideas from graphical and general nonparametric
mixture modelling to extend the Gaussian Bayesian network model described in
2.1. For undirected graph modelling a similar approach has been taken recently in
the preprint Rodriguez, Lenkoski and Dobra (2010).

From the mixture modelling perspective it is important to decide for which as-
pects of the graphical model we would like to allow for heterogeneity modelled
through a nonparametric mixture model. The Gaussian Bayesian network de-
scribed in Section 2.1 depends on the unknown parameters µ, σ and B of the
multivariate normal distribution as well as on the DAG G, so that the parameter
θ = (µ,σ,B,G) in the notation of the last section. When taking the mixture with
respect to all components of θ, the base measure P0 described in the last section
is built on the product space for (µ,σ,B,G), and the model for the data is hence
p(x) =

∫

p(x|µ,σ,B,G)dP (µ,σ,B,G) with P ∼ P, where P is a discrete mix-
ing measure, P a random probability measure and p(x|µ,σ,B,G) a multivariate
normal distribution that fulfills the conditional independence statements made by
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G. As P is a discrete probability measure with support points µh,σh,Bh,Gh and
probabilities wh, this can be rewritten as

p(x) =
∑

whp(x|µh,σh,Bh,Gh), (7)

where the prior distribution for the mixing weights wh is determined by P and
the prior for µh,σh,Bh,Gh is, given by the base measure P0 of P, for all h. The
data are hence modelled to come from a number of different Gaussian Bayesian
networks, rather than just one. This overcomes two of the limitations of Gaussian
Bayesian network models: (i) We no longer make a normality assumption for the
underlying data, but assume a mixture of multivariate normal distributions for the
density. It is well known that mixtures of multivariate Gaussians can approximate
any density on R

d, provided the number of components can get arbitrarily large (see
e.g. Wu and Ghosal (2008)). (ii) We no longer assume that the variables xj are in
linear relationships, which is the assumption underlying multivariate normality (see
Definition 3). Instead a mixture of multivariate normals leads to a mixture of linear
relationships, which is considerably more general.

By assuming a mixture model we split the population into a number of clus-
ters, where each cluster has a weight wh and a DAG Gh with network parameters
µh,σh,Bh. All clusters share the same prior distribution P0 for these parameters.
When the clusters are assumed to be similar in some aspects, one can also assume
hyperprior distributions for hyper-parameters in P0, so that a shrinkage between
clusters can be exploited. An even stronger restriction would be to exclude part of
the parameters from the mixture, when the population is not heterogeneous with
respect to these parameters. In what follows we will constrain our focus on mixture
modelling with respect to µ,σ,B, while one DAG G will be assumed for the whole
population, so that we model

p(x|G) =
∫

p(x|µ,σ,B,G)dP (µ,σ,B) with P ∼ P. (8)

It would not pose a serious problem to also include the graph into the mixture:
Computations would get slightly more involved, and the implementation would be
different from the one described below. However, in the application we consider in
this paper it is of interest to learn one DAG with different network parameters in dif-
ferent components for the whole population of observations, rather than completely
different DAGs in the subgroups.

In addition, main interest is in the DAG structure and the clustering structure of
the population rather than the network parameters µ,σ and B. Hence as suggested
in Section 2.1, we integrate out these parameters from the likelihood. A way of writ-
ing the integrated likelihood for a mixture model is by introducing latent indicator
variables l = (l1, . . . , ln)

′ for each observation xi, with values li ∈ {1, 2, 3, . . . , k}
corresponding to the k mixture components and probabilities w1, w2, w3, . . . , wk.
So that for a data set X we obtain the integrated likelihood

L(w, l, G|X) =
∏

h

L(G|X(Ih))
∏

h

wnh
h , (9)

where L(G|X) is as defined in (1), Ih = {i ∈ {1, . . . , n}|li = h} and X(Ih) is
the matrix consisting of the subset of rows of X corresponding to Ih. Here nh
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denotes the cardinality of Ih. Now integrating
∏

h wnh
h with respect to the prior

distribution for w implicit in P one obtains a function depending only on the prior
distribution and n = (n1, . . . , nk). From the discussion in Section 2.2 it follows
that this is proportional to the EPPF associated with the random measure P. A
table of EPPFs for different choices of the random probability measure P is given for
example in Lau and Green (2007). Hence we obtain a once more integrated likeli-
hood

∏

h L(G|X(Ih))p(n), where p(n) is the EPPF corresponding to the underlying
random measure P.

The computational implementation of the proposed model hence needs to be
run only on the space of DAGs G and the latent allocation vector l. The marginal
posterior distribution for these quantities is given by

p(l,G|X) =
∏

h

L(G|X(Ih))p(n)p(G). (10)

The MCMC scheme can thus alter between updating the DAG given the allocation
and updating the allocation given the DAG. Well developed algorithms exist for up-
dating the DAG, where for the allocation vector one can use algorithms in which the
random probability measure is marginalized out. One example of such an algorithm
is described by Nobile and Fearnside (2007) (see also Grzegorczyk et al. (2008)),
who describe different Gibbs or Metropolis Hastings moves for the allocations. A
variety of other samplers primarily run on the space of allocations, see for example
Neal (2000) for an earlier reference with focus on the Dirichlet process. When the
EPPF contains unknown parameters so that p(n) = pξ(n) one can use an additional
prior p(ξ) and introduce additional MCMC moves to update ξ.

A recent alternative MCMC approach for (rather general) random probability
measures is described by Kalli, Griffin and Walker (2010), based on earlier work
on the blocked Gibbs sampler by Ishwaran and James (2001). This type of algo-
rithm has become quite popular recently and does not marginalize out parameters
but simulates from the corresponding conditionals and is therefore more closely
related to the traditional data augmentation algorithm for finite mixture models
(Frühwirth-Schnatter, 2006), with an adaption to deal with potentially infinitely
many components. In our situation, there is no need to use these algorithms, since
component specific parameters are not of main interest. Determining, whether con-
ditional algorithms improve upon marginal algorithms for network models in terms
of computational efficiency for general models is a question of future research.

4. SIMULATIONS

In order to evaluate the performance of the nonparametric Bayesian network model
(NPBN) from Section 3 we compared it in a simulation study with two alternative
models. For this purpose we used the Gaussian Bayesian network (BGe), which
does not include a mixture component and a nonparametric mixture model (NPM)
without a network structure. Specifically we compare the posterior predictive prob-
ability for all models on the test data set and the quality of the estimated graph
for the network based BGe and NPBN. We will consider an example from systems
biology.

For generating a controllable reference data set corresponding to a realistic bio-
chemical system, we simulated a mixture of four proteins A, B, C and D. In this
system, proteins A and B can bind each other, forming the complex AB, and C and
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D can bind forming the complex CD

A+B
kon
AB

!

k
off
AB

AB and C +D
kon
CD

!

k
off
CD

CD.

These reversible processes can be described by mass-action kinetics with correspond-
ing association and dissociation rate constants kon and koff . The resulting system
of differential equations describing the rate of change in the concentration ([.]) of
each component is:

d[A]
dt

=
d[B]
dt

= −kon
AB[A][B] + koff

AB [AB]

d[AB]
dt

= kon
AB [AB]− koff

AB [A][B]

d[C]
dt

=
d[D]
dt

= −kon
CD[C][D] + koff

CD [CD]

d[CD]
dt

= kon
CD[CD]− koff

CD [CD]

from which it can be also observed that the total concentration of each protein (e.g.
[A] + [AB] for protein A) is a conserved quantity.

In steady state, the concentrations of all species are constant, implying that the
binding and dissociation rates of each interaction are equal:

kon
AB [A][B] = koff

AB [AB] (11a)

kon
CD[C][D] = koff

CD [CD]. (11b)

In order to reveal the correlations between all species, we independently sampled
their total concentrations and calculated the steady state using Equation (11). In
our simulation, all quantities are considered dimensionless as only their relation and
not their absolute value is revealed. The values for the initial total concentrations
were drawn from a normal N(3.5, 1) distribution. Such variability in total protein
concentration simulates, for example, the typically observed stochastic cell-to-cell
variations in the expression levels of proteins. The values for the rate constants were
chosen to be kon

AB = 10, koff
AB = 1, kon

CD = 1, koff
CD = 1 to simulate binding reactions

with different bias towards the bound state. Our final data set consisted of 1000
concentrations of the six species. In systems biology such simulated data generation
processes are commonly used, see for example, Kholodenko (2000).

Since sample sizes in experimental data are often limited we consider only sam-
ples of 50 and 100 observations. The rest is used for test/validation. Figure 1
shows a representative subsample of the data; the nonlinear, hyperbolic pattern of
the relationships is clearly visible, for example, the relationship of A and B. Data
simulation was done with Mathematica 7.0 (Research, 2008).

For specifying the NPBN model, we applied the general methodology described
in Section 3, by using a random probability measure specified as follows. We used
a Poisson distribution with parameter λ = 1 for the number of components N ; con-
ditional on N , a symmetric Dirichlet distribution was used for the weights wh with
an N dimensional parameter vector (δ, . . . , δ), where we chose δ = 1. The EPPF of
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Figure 1: Scatterplots of the generated data, representative subsample of size
100.
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such a random probability measure is proportional to N!
(N−k(n))!

∏k(n)
h=1

Γ(δ+nh)
Γ(δ) (Lau

and Green, 2007). Note that the EPPF depends on both the unknown parameter
N and δ, so that essentially two parameters control the flexibility of the clustering
behavior. While we fixed δ in the simulations, we used a prior distribution for N .
For the normal Wishart prior distribution we used the identity matrix for the prior
precision matrix and chose the degrees of freedom parameter equal to d + 2 to en-
sure propriety of the prior distribution. The mean vector of the multivariate normal
distribution was chosen as a vector of zeros. The prior distribution on the space of
DAGs was chosen as the prior by Friedman and Koller (2003), which is uniform over
the cardinalities of parent sets. The overall posterior distribution for the allocation
vector and the target for MCMC simulations is hence given by

p(l,G, N |X) =
∏

h

L(G|X(Ih))pN(n)p(N)p(G), (12)

where p(N) is a Poisson distribution with parameter 1.
The BGe algorithm was applied using the same normal Wishart prior distri-

bution, while the NPM algorithm was applied using the same specification for the
random probability measure, with the DAG assumed to be fixed and completely
connected.

To analyze the data we used the MCMC algorithm outlined in Section 3 and
described in more detail in the Appendix. We conducted several runs for the NPBN
model and the reference models BGe and NPM, for both sample sizes 50 and 100.
We present in detail a run with 4 · 106 iterations with thinning of 2000 and a burn
in of 1 ·106 iterations. We initialized the allocation vector with allocations obtained
from the k-means algorithm with 10 components. This has two advantages: (i)
The algorithm starts in a region of the posterior distribution with potentially large
posterior mass and (ii) using a larger number of components as initialization is
beneficial as the merge step of the algorithm is more effective (see Appendix). For
both NPBN and NPM the same clusterings were used.

In order to compare the performance of the three different approaches we com-
puted the posterior predictive probability (ppp) for the simulated data which has
not been used to train the system. For one data point xtest the ppp is calculated
by

p(xtest) =

∫

p(xtest|θm)
︸ ︷︷ ︸

likelihood

p(θm|xtrain
1 , . . . ,xtrain

n )dθm

with m ∈ {BGe, NPM, NPBN}. The overall ppp on log scale for all test data equals

log





ntest
∏

i=1

p(xtest
i )



 =
ntest
∑

i=1

log p(xtest
i )

with higher values corresponding to a better model.
Figure 2 shows the results of the log ppp for the test data. The training data

consisted of 100 observations. It can be seen that the NPM and NPBN perform
better than the BGe model. This is possibly due to the non-linearity in the rela-
tionship between the variables (see also Figure 1). Both the mean of the log ppp in
Table 1 and the quantiles visible in Figure 2 are larger for NPBN and NPM. This
is also indicated by the probabilities in Table 1, which can be interpreted as the
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Figure 2: Boxplot of log posterior predictive probabilities for the 900 test data
points, based on a training set of size 100.

probability that the test data stem from the corresponding model. The comparison
between NPM and NPBN is less clear: There are less surprising observations in the
test data set for the NPBN, however the interquartile range for the log ppps is a bit
smaller for the NPM. Note however, that the NPBN which infers a sparse network
compared to the fully connected one underlying the NPM model, is performing sim-
ilarly. Moreover the inferred network structure of the NPBN model reflects the true
interactions.

Another possibility to compare the two models that infer a network (BGe and
NPBN) is to consider the marginal posterior probabilities of the network edges.
Figures 3 (i) and 3 (ii) show the resulting posterior probabilities for the network
nodes A, B, AB, C, D, CD (see also Equation (11)). The probabilities for a
connection are coded in a grey scale, white corresponds to zero and black corresponds
to one. In our simulated data example the true underlying graph topology consists of
two blocks of fully connected nodes, namely, {A,B,AB} and {C,D,CD} while there
are no edge connections between the two blocks. Note that the interactions of the
nodes within each block are implemented according to Equation (11). Since we do
not know the true edge directions, we assess the network reconstruction accuracy
in terms of undirected edges. The (marginal) edge posterior probabilities of an
(undirected) edge connection between two nodes can be estimated by the fraction
of graphs in the sample that contain an edge between the two nodes pointing in
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Sample Size BGe NPM NPBN

50 mean -5.5943 -5.0128 -5.0245
model probability 0.22 0.39 0.39

100 mean -5.5512 -4.4677 -4.3971
model probability 0.13 0.41 0.46

Table 1: Predictive probabilities for both samples (50 and 100 observations).

either direction. For our 6-node network example the posterior probabilities of all
possible undirected edge connections leads to a symmetric 6 × 6 matrix. Figure 3
shows heatmaps for this matrix for BGe (panel (i)) and NPBN (panel (ii)). It
can be seen that the NPBN model, overall, assigns higher posterior probabilities
to the edges within the two blocks than the BGe model. For the standard BGe
model the node AB is neither connected with node A nor with node B. Moreover,
the posterior probability of the edge connection D − CD is only of moderate size
(medium grey).The more sophisticated NPBN model assigns the highest posterior
probability to four of the six true gold standard edge connections (black elements
in Figure 3). Furthermore, the true edge A− AB at least appears in medium grey.
Its posterior probabiliy is comparable to the posterior probability of two falses edge
connections: C−AB and D−AB. Overall, the heatmaps indicate that NPBN gives
a better network reconstruction accuracy than the standard BGe model.

(i)

A B AB C D CD

A

B

AB

C

D

CD

(ii)

A B AB C D CD

A

B

AB

C

D

CD

Figure 3: Heatmap inferred from the data set with 50 observations; represen-
tations of the (marginal) posterior probabilities of undirected edges, panel (i)
BGe and panel (ii) NPBN. In both panels columns and rows represent the
nodes A, B, AB, C, D, and CD, and a grey shading is used to indicate the
posterior probabilities (black corresponds to 1, and white corresponds to 0).
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APPENDIX

Appendix: MCMC-Sampler

Here we describe the MCMC sampler used for analysing the NPBN model pro-
posed in this paper. The BGe and the NPM model are analysed with the same
algorithm, by only updating the graph (with all observations allocated to one com-
ponent) or only updating the allocations (with a completely connected DAG). The
Appendix is based on Grzegorczyk et al. (2008) and Nobile and Fearnside (2007),
where a more detailed description can be found.

The MCMC sampler generates a sample from the joint posterior distribution
of l,G, N given in Equation (12) and comprises six different types of moves in
the state-space [l,G, N ]. Before the MCMC simulation is started, probabilities
pi (i = 1, . . . , 6) with p1 + · · · + p6 = 1 must be predefined with which one of
these move types is selected. The moves consist of a structure move, that proposes
a change in the graph (abbreviated by DAG move) and five moves that change the
allocations (abbreviated by Gibbs, M1, M2 , split and merge). Below we will de-
scribe these different move types in some detail.

DAG move
The first move type is a classical structure MCMC single edge operation on the graph
G while the number of components N and the allocation vector l are left unchanged
(Madigan and York, 1995). According to the transition probability distribution

q(G̃|G) =

{
1

|N (G)| , G̃ ∈ N (G)

0 , G̃ /∈ N (G)
(13)

a new graph G̃ is proposed, and the new state [G̃, N, l] is accepted according to

A(G̃|G) =
p(G̃|X)
p(G|X)

·
q(G|G̃)

q(G̃|G)
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where |N (G)| is the number of neighbors of the DAG G, that can be reached from
the current graph by one single edge operation and p(G|X) is defined in (2) for the
BGe model and by (12) for the NPBN model.

Allocation moves
The five other move types are adapted from Nobile and Fearnside (2007) and oper-
ate on l or on N and l. If there are N > 2 mixture components, then moves of the
type M1 and M2 can be used to re-allocate some observations from one component
h to another one h̃. That is, a new allocation vector l̃ is proposed while G and
N are left unchanged. The split and merge moves change N and l. A split move
proposes to increase the number of mixture components by 1 and simultaneously
tries to re-allocate some observations to fill the new component. The merge move is
complementary to the split move and decreases the number of mixture components
by 1. The acceptance probabilities for M1, M2, split and merge are of the same
functional form

A(l̃|l) =

{

1,
p(l̃,G, N |X)
p(l,G, N |X)

q(l̃|l)

q(l|l̃)
,

}

, (14)

where the proposal probabilities q(.|.) depend on the move type (M1, M2, split,
merge). Finally, the Gibbs move re-allocates only one single observation by sam-
pling its new allocation from the corresponding full conditional distribution (see
Nobile and Fearnside (2007)) while leaving N and l unchanged. In the following we
give an idea how the allocation moves work, for a detailed description including the
corresponding Metropolis-Hastings acceptance probabilities, see Nobile and Fearn-
side (2007).

Gibbs move on the allocation vector l
If there is one component only, symbolically N = 1, select another move type.
Otherwise randomly select an observation i among the n available and determine
to which component h (1 ≤ h ≤ N) this observation currently belongs. For each
mixture component h̃ = 1, . . . , N replace the i-th entry of the allocation vector l by
component h̃ to obtain l(i ←− h̃). We note that l(i ←− h) is equal to the current
allocation vector l. Subsequently, sample the i−th entry of the new allocation vector
l̃ from the corresponding multinomial full conditional distribution.

The M1 move on the allocation vector l
If there is one component only, symbolically N = 1, select a different type of move.
Otherwise randomly select two mixture components h and h̃ among the N avail-
able. Draw a random number p from a Beta distribution with parameters equal to
the corresponding hyperparameters of the Dirichlet prior on the mixture weights.
Re-allocating each observation currently belonging to the h-th or h̃-th component
to component h with probability p or to component h̃ with probability 1− p gives
the proposed allocation vector l̃.

The M2 move on the allocation vector l
If there is one component only, symbolically N = 1, select a different move type.
Otherwise randomly select two mixture components h and h̃ among the N available
and then randomly select a group of observations allocated to component h and at-
tempt to re-allocate them to component h̃. If the h-th component is empty the move
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fails outright. Otherwise draw a random number u from a uniform distribution on
1, . . . , nh where nh is the number of observations allocated to the h-th component.
Subsequently, randomly select u observations from the nh in component h and al-
locate the selected observations to component h̃ to obtain the proposed allocation
vector l̃.

The split move
Randomly select a mixture component h (1 ≤ h < N) as the ejecting component.
Draw pE from a Beta(a, a) distribution with a > 0 and re-allocate each observation
currently allocated to component h in the vector l with probability pE to a new
component with label N + 1. Subsequently swap the labels of the new mixture
component N +1 with a randomly chosen mixture component label h̃ including the
label N +1 of the ejected component itself (1 ≤ h̃ ≤ N +1) to obtain the proposed
allocation vector l̃.

The merge move
Randomly select a mixture component h (1 ≤ h ≤ N) as the absorbing component
and another component h̃ (1 ≤ h̃ ≤ N) with h̃ '= h as the disappearing component.
Re-allocate all observations currently allocated to the disappearing component h̃ by
l to component h to obtain the new allocation vector l̃. Then delete the (empty)
component h̃ to obtain the new number of components N = N − 1.

A disadvantage of the split move is the fact that allocations are chosen randomly
to form the new mixture component. A way to partially overcome this problem is
to use informative starting values of the algorithm. One approach with which we
have made good experience is to start the sampler based on the result of a k-means
clustering with a large number of components. The merge move then rather quickly
finds a good allocation of the mixture components.


