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Summary

We consider causal models involving three binary variables: a randomized
assignment Z, an exposure measure X, and a final response Y . We focus
particular attention on the situation in which there may be confounding of
X and Y , while at the same time measures of the effect of X on Y are of
primary interest. In the case where Z has no effect on Y , other than through
Z this is the instrumental variable model. Many causal quantities of interest
are only partially identified. We first show via examples that the resulting
posteriors may be highly sensitive to the specification of the prior distribution
over compliance types. We present a ‘transparent’ re-parametrization of the
likelihood that addresses this problem by separating the identified and non-
identified parts of the parameter.

1. INTRODUCTION

The potential outcomes model for causal inference is a well-established framework
for formalizing causal assumptions and modelling causal effects. However, in many
contexts the causal estimands of interest are not identified by the observed data.
Even in the asymptotic limit, there may be a range of values for the parameter(s)
of interest that are logically possible, such parameters are often referred to as being
partially identified.

It has been proposed by several authors to apply a standard Bayesian prior to
posterior analysis to such models. It is often argued that the issue of identifiability
is of secondary importance in a Bayesian analysis, provided that the posterior is
‘informed’ by the observed data.

Following Leamer (1978), Gustafson (2005) and Greenland (2005) we argue
that partially identified models should be re-parameterized so as to separate the
(wholly) identified and (wholly) non-identified parameters. Such an approach fa-
cilitates ‘transparency’, allowing a reader to see clearly which parts of the analysis
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have been informed by the data. In addition it makes it simpler for someone to
incorporate their own prior beliefs that may differ from those of the analyst.

In this paper we first motivate the approach by considering a simple instrumental
variable model for a randomized trial with non-compliance. We then extend this
approach to the analysis of a randomized encouragement design, though still with
binary treatment and response, under a variety of assumptions. Finally we develop
smooth parametrizations that permit this approach to be applied in the context of
continuous or discrete baseline covariates.

The paper is organized as follows: in Section 2 we introduce the notation and
the basic potential outcomes model that we consider throughout. In Section 3 we
motivate our approach via a simple example, and show how the method applies. In
Section 4 we describe eight causal models and explicitly characterize each of them.
In Section 5 we extend the approach to incorporate baseline covariates.

2. BASIC CONCEPTS

Throughout this paper we consider potential outcomes models involving three binary
variables, X, Y and Z. Where:

Z is a treatment, presumed to be randomized e.g. the assigned treatment;

X is an exposure subsequent to treatment assignment;

Y is the response.

For Z we will use 1 to indicate assignment to drug, and 0 otherwise. For X we
use 1 to indicate that the drug is received and 0 if not. For Y we take 1 to indicate
a desirable outcome, such as survival.

The potential outcome Xz is the treatment a patient would receive if assigned
to Z = z. We follow convention by referring to the four compliance types as shown
in Table 1. We will use tX to denote a generic compliance type, and DX the set of
such types.

Table 1: Compliance types describing the potential outcomes Xz

Xz=0 Xz=1 Compliance Type

0 0 Never Taker NT
0 1 Complier CO
1 0 Defier DE
1 1 Always Taker AT

Similarly we consider the four potential outcomes Yxz with x, z ∈ {0, 1} for Y .
These describe the outcome for a given patient if they were to be assigned to Z = z
and then were exposed to X = x. For a given individual we will refer to the 4-vector
of values taken by the variables (Y00, Y01, Y10, Y11) as their response type, tY . We use
DY to indicate the set of such types, of which there are 24 = 16 in general, though
we will often consider models in which some of these are assumed to be identical.

Since we suppose the potential outcomes are well-defined, if Z = z then X = Xz,
similarly if X = x and Z = z then Y = Yxz. This is referred to as the ‘consistency
assumption’ (or axiom).
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tX , tY

Z X Y

Figure 1: Graphical representation of the model given by assumption (1). The
shaded nodes are observed. In this model tX takes 4 states, while tY takes 16.

Notation

Let πtX
≡ p(tX) denote the marginal probability of a given compliance type tX ∈

DX , and
πX ≡ {πtX

| tX ∈ DX}

denote a distribution on DX . Similarly we use πtY |tX
≡ p(tY | tX) to denote the

probability of a given response type within the sub-population of individuals of
compliance type tX , and πY |X to indicate a specification of all these conditional
probabilities:

πY |X ≡ {πtY |tX
| tX ∈ DX , tY ∈ DY }.

We will use π to indicate a joint distribution p(tX , tY ) on DX × DY .
We use γij

tX

for the probability of recovery for a patient of a given compliance

type tX , under an intervention that sets X = i and Z = j:

γij

tX

≡ p(Yx=i,z=j = 1 | tX), for i, j ∈ {0, 1} and tX ∈ DX .

In places we will make use of the following compact notation for probability distri-
butions:

p(yk|xjzi) ≡ p(Y = k | X = j, Z = i),

p(xj|zi) ≡ p(X = j | Z = i),

p(yk, xj |zi) ≡ p(Y = k, X = j | Z = i).

Finally we use ∆k to indicate the simplex of dimension k.

Randomization assumption

We will make the randomization assumption that the distribution of types 〈tX , tY 〉
is the same in both the Z = 0 and Z = 1 arms:

Z ⊥⊥ {Xz=0, Xz=1, Yx=0,z=0, Yx=1,z=0, Yx=1,z=0, Yx=1,z=1}. (1)

A causal graph corresponding to the model given by (1) is shown in Figure 1.

3. A SIMPLE MOTIVATING EXAMPLE

Pearl (2000) and Chickering and Pearl (1996) use potential outcomes to analyze the
data in Table 3 which arises from a randomized trial of Cholestyramine; see Efron
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tX , tY

Z X Y

Figure 2: Graphical representation of the IV model given by assumptions (2)
and (1). In this model tX takes 4 states, while tY takes 4.

and Feldman (1991). Compliance was originally measured as a percentage of pre-
scribed dosage consumed; this measure was then dichotomized by Pearl. Similarly
the response was also dichotomized to indicate a reduction in cholesterol of at least
28 units.

The potential outcomes analysis here is simplified since subjects in the control
arm had no access to treatment. Hence Z = 0 implies X = 0 so there are only two
compliance types (NT, CO). Since it is a randomized trial Pearl also assumes that
Z has no effect on Y other than through X, or more formally:

Yxz = Yxz′ for all x, z, z′ ∈ {0, 1}. (2)

In this case there are only four response types tY ; see Table 2. Consequently there
are eight combinations for (tX , tY ) ∈ {NT, CO} × {HE, HU,AR,NR}.

When equation (2) holds we will use Yx· to refer to Yx,z=1 = Yx,z=0. Similarly
we let γi·

tX
≡ P (Yx=i · = 1 | tX).

Table 2: Response types under the exclusion restriction (2).

Yx=0· Yx=1· Response Type

0 0 Never Recover NR
0 1 Helped HE
1 0 Hurt HU
1 1 Always Recover AR

Pearl (2000) takes as his primary quantity of interest the (global) average causal
effect of X on Y :

ACE(X → Y ) ≡ E[Yx=1· − Yx=0·] = π(HE) − π(HU ).

Pearl proposes analyzing the model by placing a prior distribution over p(tX , tY )
and then using Gibbs sampling to sample from the resulting posterior distribution
for ACE(X → Y ). He notes that the resulting posterior appears sensitive to the
prior distribution and suggests that a sensitivity analysis be used.

Figure 3 illustrates this sensitivity. The solid green and red lines in the left
plot show, respectively, the prior and posterior for ACE(X → Y ) under a uniform
Dir(1, . . . , 1) on the distribution π(tX , tY ); the dashed green and red lines indicate
the corresponding prior and posterior after increasing the parameter corresponding
to (NT,HE) to 1.2, while reducing that for (NT,NR) to 0.8, but leaving all others
at 1. If the model were identified we would expect such a change in the prior to
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Table 3: Lipid / Cholestyramine Data; originally considered by Efron and
Feldman (1991); dichotomized by Pearl. There are two structural zeros.

z x y count z x y count
0 0 0 158 1 0 0 52
0 0 1 14 1 0 1 12
0 1 0 0 1 1 0 23
0 1 1 0 1 1 1 78

172 165
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Prior and posterior on ACE(X → Y) for Lipid data
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Uniform & perturbed uniform priors on potential outcomes

Posteriors on ACE(X → Y)
Dir(1,...,1)
Dir(1,...,1,1.2,1,0.8)

Priors on ACE(X → Y)
Dir(1,...,1)
Dir(1,...,1,1.2,1,0.8)

Bounds on ACE(X → Y)
from empirical distribution
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Prior and posterior on ACE(X → Y) for Lipid data
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Unit & perturbed unit priors on potential outcomes

Posteriors on ACE(X → Y)
Dir(1/8,...,1/8)
Dir(1/8,...,1/8,3/16,1/8,1/16)

Priors on ACE(X → Y)
Dir(1/8,...,1/8)
Dir(1/8,...,1/8,3/16,1/8,1/16)

Bounds on ACE(X → Y)
from empirical distribution

Figure 3: Prior to posterior analysis for ACE(X → Y ) for the Lipid Data;
priors are green; posteriors are red; vertical lines indicate bounds on the ACE
evaluated at the empirical distribution. Tick marks indicate respective medi-
ans. See text for further details.

have little effect (the smallest observed count is 12). However, as the plot shows,
this perturbation makes a considerable difference to the posterior.

Experts whom we consulted, noting the fact that there was relatively little prior
support in the range dominated by the posterior, hypothesized that the sensitivity
might be due to an insufficiently diffuse prior. It was suggested that a ‘unit infor-
mation’ prior should be used instead. The right plot in Figure 3 shows the prior and
posterior for the ACE resulting from a Dir(1/8, . . . , 1/8) and under a prior in which
the parameter for (NT,HE) is increased to 3/16 while that for (NT,NR) is reduced
to 1/16. The plot shows that the more diffuse prior on π(tX , tY ) has succeeded
in increasing the spread of the prior for ACE(X → Y ), but this has come at the
expense of multi-modality in the posterior, and greater prior sensitivity: notice the
difference between the posterior medians (indicated at the base of the plot).

On closer inspection the sensitivity should not be surprising, since the observed
data contain no information allowing us to learn about the ratio of (NT,HE) to
(NT,NR): patients who are of type ‘Helped’ (HE), and ‘Never Recover’ (NR) will
both have Yx=0 = 0; they only differ with respect to their values of Yx=1. However,
patients who are ‘Never Takers’ will never expose themselves to treatment, so these
potential outcomes are never observed (at least not without instituting a new ex-
perimental protocol that eliminates non-compliance). Of course, the proportion of
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γ0·
NT

πX γ1·
NT

p(y|x=0, z=1) p(x|z=1) p(y|x=1, z=1)

p(y|x=0, z=0)

γ0·
CO γ1·

CO

Figure 4: A graph representing the functional dependencies in the analysis of
the simple IV model with no Always Takers or Defiers. Rectangular nodes
are observed; oval nodes are unknown parameters. p(x = 1|z = 0) = 0, so
p(y|x=1, z=0) is undefined, hence these nodes are omitted.

patients who are of type ‘Helped’ (rather than ‘Never Recover’) is directly relevant
to ACE(X → Y ).

Separating the identified from the unidentified

Figure 4 provides a graphical depiction of the functional relations between the pa-
rameters πX , γi·

CO, and γi·
NT, and the observed distribution p(y, x|z). The parameters

πX , and γ1·
CO, γ0·

CO, and γ0·
NT are identified thus:

πCO = px1|z1
, γ1·

CO = py1|x1,z1
, γ0·

CO = (py1,x0|z0
− py1,x0|z1

)/px1|z1
,

πNT = px0|z1
, γ0·

NT = py1|x0,z1
.

The equation for γ0·
CO leads to the following restrictions on the distribution p(y, x|z):

γ0·
CO ≤ 1 ⇒ py0,x0|z1

≤ py0,x0|z0
,

(3)
γ0·
CO ≥ 0 ⇒ py1,x0|z1

≤ py1,x0|z0
.

It is not hard to show that these inequalities define the set of distributions p(y, x|z)
arising from this potential outcome model. Consequently we may parametrize the
identifiable portion of the model directly via the set of distributions p(y, x|z) that
obey the inequalities on the right of (3). Under a Dirichlet prior over the ob-
served distribution p(y, x|z), truncated so as to remove distributions violating (3),
the posterior may easily be sampled from via conjugacy and Monte-Carlo rejection
sampling.

As a by-product we may also examine the posterior probability assigned to the
model defining restrictions (3) being violated under a uniform prior on the saturated
model. For the Lipid data, under this prior, the posterior probability of such a
violation is still 0.38. (The prior probability of violating (3) is 0.5.) This might cast
doubt on the exclusion restrictions, Eq. (2). One possible explanation for a violation
of Eq. (2), even in the context of a double blind study, is the dichotomization of the
compliance measure; see Robins et al. (2009); Balke and Pearl (1997). Note that if
the posterior probability of (3) holding is high this does not imply that the posterior
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Figure 5: The posterior for the ACE(X → Y ) for the Lipid data displayed as
a function of the (completely) unidentified parameter γ1·

NT: (blue) posterior
median; (red) 2.5% and 97.5% quantiles; (green) simultaneous 95% posterior
region obtained from a 95% HPD region for p(y, x|z); horizontal lines are
bounds on the ACE evaluated at the empirical distribution. A uniform prior
was used on distributions p(y, x | z) that satisfy the inequalities (3).

probability of (2) is high, since the model in which (2) is violated is of the same
dimension, and contains that in which it holds.

In this example we could have used (πX , γ1·
CO, γ0·

CO, γ0·
NT) rather than p(y, x|z)

to parametrize the identifiable part of the model. However, this approach does not
generalize to more complex potential outcome models such as those that include
Defiers, or make fewer exclusion restrictions, since both πX and γi·

tX
may themselves

be partially identified; see Richardson and Robins (2010).

Posterior distributions for the ACE

The ACE(X → Y ) depends on the (wholly) unidentified parameter γ1·
NT:

ACE(X → Y ) = πCO(γ1·
CO − γ0·

CO) + πNT(γ1·
NT − γ0·

NT).

We elect to display the posterior for ACE(X → Y ) as a function of γ1·
NT; see Figure

5. This permits readers to see clearly the dependence of the ACE on this parameter,
and to incorporate easily their priors regarding γ1·

NT.

4. THE GENERAL FRAMEWORK

We now consider the general setting in which we do not assume Eq. (2), nor do we
rule out the possibility of Always Takers or Defiers. Thus there are 4 × 16 possible
values for (tX , tY ).

Following Hirano et al. (2000) we consider models under which (1) holds, and
(combinations of) the following three assumptions hold:
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(MonX) Monotonicity of Compliance: X0 ≤ X1, or equivalently, there are no Defiers.

(ExNT) Stochastic Exclusion for NT under non-exposure: γ01

NT = γ00

NT, so among Never
Takers the distributions of Y00 and Y01 are the same.

(ExAT) Stochastic Exclusion for AT under exposure: γ11

AT = γ10

AT, so among Always
Takers the distributions of Y10 and Y11 are the same.

Note that assumption (2) implies stochastic exclusion for all compliance types under

all exposures, i.e. γij

tX

= γij′

tX

for all i, j, j′ ∈ {0, 1} and all tX ∈ DX . Figure 8 and

Table 4 list these eight models. Imposing other exclusion restrictions, besides ExAT
or ExNT, will correspond to merely relabelling a single node γij

tX

in Figure 8 with

γi·
tX

. Thus, although the causal interpretation of estimands may change, the implied

set of compatible distributions p(y, x|z) will not.
The saturated model p(y, x|z) consists of the cartesian product of two three

dimensional simplices: ∆3 × ∆3. The other seven models are all characterized by
simple inequality restrictions on this set.

Inequalities defining models with Defiers

Results of Bonet (2001) imply that the set of distributions arising from a poten-
tial outcomes model satisfying (1), ExAT and ExNT may be characterized via the
following inequalities:

p(y0, x0 | z0) + p(y1, x0 | z1) ≤ 1, p(y1, x0 | z0) + p(y0, x0 | z1) ≤ 1, (4)

p(y0, x1 | z0) + p(y1, x1 | z1) ≤ 1, p(y0, x1 | z1) + p(y1, x1 | z0) ≤ 1. (5)

Note that any distribution p(y, x | z) can violate at most one of these four inequal-
ities. In addition they are invariant under relabelling of any variable. Cai et al.
(2008) give a simple interpretation of the inequalities in terms of bounds on average
controlled direct effects in the potential outcomes model that only assumes (1):

p(y0, xi | z0)+p(y1, xi | z1)−1 ≤ ACDE(xi) ≤ 1 − p(y0, xi | z1) − p(y1, xi | z0) (6)

where ACDE(x) ≡ E[Yx1 − Yx0]. We may also obtain bounds on average controlled
direct effects for AT and NT:

1 −
p(y0, x0|z0) + p(y1, x0|z1)

p(x0|z0) − p(x1|z1)
≤ ACDENT(x0) ≤

p(y0, x0|z1) + p(y1, x0|z0)
p(x0|z0) − p(x1|z1)

− 1,

1 −
p(y0, x1|z1) + p(y1, x1|z0)

p(x1|z1) − p(x0|z0)
≤ ACDEAT(x1) ≤

p(y0, x1|z0) + p(y1, x1|z1)
p(x1|z1) − p(x0|z0)

− 1,

where ACDEtX
(x) ≡ E[Yx1 − Yx0 | tX ]; (ACDENT(x0) and ACDEAT(x1) are also

referred to as ‘principal stratum direct effects’ for X = 0 and X = 1 respectively).
ACDE(x0) may be bounded away from 0 iff ACDENT(x0) may be bounded away
from 0 in the same direction (hence ExNT does not hold). Likewise with ACDE(x1),
ACDEAT(x1) and ExAT. Note that since any distribution p(y, x|z) may violate at
most one of the four inequalities (4) and (5), in the absence of further assumptions
(such as MonX), every distribution is either compatible with ExAT or ExNT (or
both).

It may be shown that the model imposing ExNT alone is characterized by (4),
while the model imposing ExAT is given by (5); see Richardson and Robins (2010).
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Inequalities defining models without Defiers

The assumption MonX , that there are no Defiers, implies:

p(x1 | z1) ≥ p(x1 | z0) (7)

since the left and right sides are the proportions of (AT or CO) and AT respectively.
Thus (7) characterizes the observed distributions resulting from MonX alone.

Results of Balke and Pearl (1997) imply that the model assuming MonX + ExNT

+ ExAT implies the following inequalities:

p(y1, x0 | z1) ≤ p(y1, x0 | z0), p(y0, x0 | z1) ≤ p(y0, x0 | z0), (8)

p(y1, x1 | z1) ≥ p(y1, x1 | z0), p(y0, x1 | z1) ≥ p(y0, x1 | z0). (9)

A distribution p(y, x | z) may violate all of these simultaneously. These inequalities
are invariant to relabelling Y , and to relabelling X and Z simultaneously, but not
individually; this is not surprising since relabelling X or Z alone will turn Defiers
into Compliers and vice-versa. The inequalities (8) and (9) imply (7), (4) and (5).

It may be shown that (8) and (9) characterize the set of distributions p(y, x|z)
arising from the potential outcomes model MonX + ExNT + ExAT. Likewise, the
model imposing MonX + ExNT is characterized by (7) and (8), while MonX + ExAT

is given by (7) and (9).
An interpretation of (8) and (9) is given by the following lower bound on πDE

in the model that imposes ExNT + ExAT (but not MonX ):

πDE ≥ max

8

>

<

>

:

0, p(x1 | z0) − p(x1 | z1),

p(y1, x0|z1) − p(y1, x0|z0), p(y0, x0|z1) − p(y0, x0|z0),

p(y1, x1|z0) − p(y1, x1|z1), p(y0, x1|z0) − p(y0, x1|z1)

9

>

=

>

;

; (10)

see Richardson and Robins (2010). Requiring that the lower bound be zero, as
required by MonX , leads directly to the inequalities (7), (8) and (9).

Another interpretation of (8) and (9) arises in the model MonX that (solely)
assumes that there are no Defiers. Under MonX we may obtain tighter bounds on
the ACDE for AT and NT:

p(y1|x0, z1) − min (p(y1, x0|z0)/p(x0|z1), 1) ≤ ACDENT(x0) ≤ (11)
p(y1|x0, z1) − max (0, 1 − (p(y0, x0|z0)/p(x0|z1))) ,

max (0, 1 − (p(y0, x1|z1)/p(x1|z0))) − p(y1|x1, z0) ≤ ACDEAT(x1) ≤ (12)
min (p(y1, x1|z1)/p(x1|z0), 1) − p(y1|x1, z0).

However, the bounds (6) on the global ACDE(xi) remain sharp, being unchanged
by the assumption of monotonicity.

It is simple to show that ACDENT(x0) is bounded away from 0 by (11) iff one
of the inequalities (8) is violated; likewise for ACDEAT(x1), (12) and (9). Thus if
MonX , and hence (7) holds, then at most one inequality in each of the pairs (8)
and (9) may be violated. However, in contrast to the case without the monotonicity
assumption, since it is possible for a distribution p(y, x|z) to violate one inequality
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in each pair simultaneously, ACDENT and ACDEAT may both be bounded away
from zero. Thus under the assumption of No Defiers both ExNT and ExAT may be
inconsistent with p(y, x|z).

Table 4 summarizes the constraints for the eight models we consider. For fre-
quentist approaches to testing these constraints see Ramsahai (2008).

Table 4: Models and implied sets of distributions for p(y, x|z); (8) and (9) imply (7).

Model Assumptions Constraints on p(y, x|z)

Saturated Randomization (1) None
ExNT (1), Exclusion for NT (4)
ExAT (1), Exclusion for AT (5)
ExAT + ExNT (1), Exclusion for AT and NT (4), (5)

MonX (1), No Defiers (7)
MonX + ExNT (1), No Defiers, Exclusion for NT (7), (8)
MonX + ExAT (1), No Defiers, Exclusion for AT (7), (9)
MonX (1), No Defiers, [(7)], (8), (9),+ ExNT + ExAT Exclusion for NT and AT

Table 5: Summary of Flu Vaccine Data; originally from McDonald et al. (1992);
analyzed by Hirano et al. (2000).

z x y count p(y, x|z0) z x y count p(y, x|z1)
0 0 0 99 0.071 1 0 0 84 0.057
0 0 1 1027 0.739 1 0 1 935 0.635
0 1 0 30 0.022 1 1 0 31 0.021
0 1 1 233 0.168 1 1 1 422 0.287

1389 1472

ANALYSIS OF FLU VACCINE DATA

We consider the influenza vaccine data from McDonald et al. (1992) which was
previously analyzed by Hirano et al. (2000); see Table 5. Here the instrument Z
was whether a patient’s physician was sent a card asking them to remind patients
to obtain flu shots, or not; X is whether or not the patient did in fact get a flu shot.
Finally Y = 1 indicates that a patient was not hospitalized.

To examine the support for the restrictions on p(y, x|z) we fitted a saturated
model with uniform priors and then evaluated the posterior probability that the
inequalities (4), (5), (7), (8) and (9) are violated. For a model without covariates
these probabilities are shown in the first line of Table 6. The posterior probability
that at least one of the inequalities (9) fails to hold has probability greater than
0.5; a similar conclusion may be arrived at by inspection of the row of Table 5 for
(y = 0, x = 1). If (9) is violated then, under the assumptions of no Defiers (which
seems plausible) and randomization, there is a direct effect for Always Takers.

Hirano et al. (2000) place priors over the (partially) identified parameters of the
potential outcome model and compute posteriors for the Intent-To-Treat effect:

ITTtX
≡ E[YXz1

1 − YXz0
0 | tX ]



Transparent parametrizations of models for potential outcomes 11

for NT, AT and CO under the models MonX , MonX+ExAT, MonX+ExNT and
MonX+ExAT+ExNT. Under an additional extra exclusion assumption for compli-
ers, γ00

CO = γ01

CO, ITTCO is equal to the Complier Average Causal Effect of X on Y ,
CACECO ≡ E[YX1

− YX0
| tX ] = γ1·

CO − γ0·
CO.

In Figure 6 we display the joint posterior distributions over upper and lower
bounds on ITTCO under each of the eight models we consider. (Each scatterplot is
based on 2000 simulations.) The bounds were computed by applying the methods
described in §§2–3 of Richardson and Robins (2010).

Table 6: Posterior probabilities that inequalities are violated under models that
do not impose constraints. The two models without Age used a uniform prior on
∆3 × ∆3; that with Age used logistic regressions with Normal priors. Columns
(4), (5), (8) and (9) give the probability that at least one inequality is violated;
(8)+(9) is the probability of at least one violation in each pair.

age copd (4) (5) (7) (8) (9) (8)+(9) (8) both (9) both
- - 0 0 0 0.0603 0.5411 0.0343 0 0
- N 0 0 0 0.0704 0.4635 0.0347 0 0
- Y 0 0 0.0014 0.2969 0.5865 0.1829 0.0003 0.0003

60 N 0 0 0 0.0768 0.2600 0.0306 0 0
60 Y 0 0 0.0064 0.3016 0.6222 0.2074 0.0014 0.0016
70 N 0 0 0 0.0422 0.5958 0.0288 0 0
70 Y 0 0 0.0080 0.4154 0.5580 0.2626 0.0026 0.0030
80 N 0 0 0.0002 0.0900 0.8064 0.0764 0 0
80 Y 0 0 0.0608 0.5338 0.5320 0.3214 0.0116 0.0128

5. INCORPORATING COVARIATES

In many situations we wish to examine causal effects in sub-populations defined by
baseline covariates V . In this situation we assume that the randomization assump-
tion (1), and (when we impose them) MonX , ExAT, and ExNT hold within levels of
V . With discrete covariates taking a small number of levels we may simply repeat
our analysis within each level of V . However in order to incorporate continuous
baseline covariates we require a parametrization of each of the sets of distributions
appearing in Table 4. For each model we provide a smooth variation independent
parametrization of the relevant subset of ∆3 × ∆3. This allows us to construct
(multivariate) generalized linear models for p(y, x|z) as a function of V .

Parametrization of Models with Defiers

Consider first the set of distributions p(y, x|z) that result from models assuming
both ExAT and ExNT, and hence satisfy the inequalities (4) and (5). It is clear that
for any distribution p(y, x|z0) there exists a distribution p(y, x|z1) such that the pair
satisfy (4) and (5). Thus the set of distributions obeying (4) and (5) is:
8

<

:

p(y, x|z)

˛

˛

˛

˛

˛

˛

p(y, x|z0) ∈ ∆3, p(y, x|z1) ∈ ∆3 ∩
\

i,j∈{0,1}

Hij(p(y1−i, xj |z0))

9

=

;

(13)

where Hij(p(y1−i, xj |z0)) ≡ {p(y, x|z1) | p(yi, xj |z1) ≤ 1 − p(y1−i, xj |z0)}, i.e. a
half-space. We parametrize the set (13) via the unrestricted distributions p(y, x|z0),
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Figure 6: Posterior distributions for upper and lower bounds on ITTCO; under
MonX+ExAT+ExNT the parameter is identified.

p(x|z1) and two further parameters, ψ0, ψ1 where

ψi ≡ log

„

p(y0, xi|z1)(1 − p(y1, xi|z1) − {p(y0, xi|z0)})
p(y1, xi|z1)(1 − p(y0, xi|z1) − {p(y1, xi|z0)})

«

. (14)

The inverse map from (p(y, x|z0), p(x|z1), ψ0, ψ1) to p(y, x|z1) is given by:

p(y1, xi|z1) =

„

−bi +
q

b2
i + 4(eψi − 1)p(xi|z1)(1 − p(y0, xi|z0))

«ffi

“

2(eψi − 1)
”

,

p(y0, xi|z1) = p(xi|z1) − p(y1, xi|z1),

for i = 0, 1, where bi = eψi(p(x1−i|z1) − p(y1, xi|z0)) + p(xi|z1) + 1− p(y0, xi|z0).

If we let

ψ̃i ≡ log

„

p(y0, xi|z1)(1 − p(y1, xi|z1))
p(y1, xi|z1)(1 − p(y0, xi|z1))

«

, (15)

the parameter defined by removing the terms in braces from (14), then the model
imposing ExAT alone may be parametrized via (p(y, x|z0), p(x|z1), ψ̃0, ψ1). Similarly
(p(y, x|z0), p(x|z1), ψ0, ψ̃1) parametrizes the model imposing ExNT alone.

Inverse maps for these models are similar to that for ExAT + ExNT.

Parameterization of Models without Defiers

The model with MonX alone may be parametrized via p(y, x|z0), νx|z1
and p(y|x1, z0),

where
νx|z1

≡ logit(p(x0|z1)/p(x0|z0)).
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Figure 7: Posteriors for ITTCO under the MonX model which precludes
Defiers, as a function of Age; (left) without COPD; (right) with COPD.
Dashed lines indicate 2.5 and 97.5 percentiles for the upper and lower bounds.
p(y, x|z0, v) was parametrized via logits θy|x0,z0

, θy|x1,z0
and θx|z0

. These log-
its and νx|z1

, φ0 and ϕ1 are modelled as linear functions of Age and COPD.

The model MonX + ExNT + ExAT, may be parametrized via p(y, x|z0), νx|z1
, φ0

and ϕ1 where the latter are defined via:

φ0 ≡ log

„

p(y0, x0|z1)(1 − p(y1, x0|z1) − {1 − p(y1, x0|z0)})
p(y1, x0|z1)(1 − p(y0, x0|z1) − {1 − p(y0, x0|z0)})

«

,

ϕ1 ≡ log

„

(1 − p(y1, x1|z1))(p(y0, x1|z1) − {p(y0, x1|z0)})
(1 − p(y0, x1|z1))(p(y1, x1|z1) − {p(y1, x1|z0)})

«

.

The inverse map from (p(y, x|z0), νx|z1
, φ0, ϕ1) to p(y, x|z) is given by:

p(x0|z1) = p(x0|z0) expit νx|z1
,

p(y1, x0|z1) =

„

−c0 +
q

c2
0 + 4(eφ0 − 1)p(x0|z1)p(y1, x0|z0)

«ffi

“

2(eφ0 − 1)
”

,

p(y0, x0|z1) = p(x0|z1) − p(y1, x0|z1),

p(y0, x1|z1) = 1 −

 

−c1 +
p

c2
1 + 4(eϕ1 − 1)(1 + p(x0|z1))(1 − p(y0, x1|z0))

2(eϕ1 − 1)

!

,

p(y1, x1|z1) = 1 − p(x0|z1) − p(y0, x1|z1),

where

c0 = eφ0(p(y0, x0|z0) − p(x0|z1)) + p(y1, x0|z0) + p(x0|z1),

c1 = 1 − eϕ1(p(y1, x1|z0) + p(x0|z1)) + 1 − p(y0, x1|z0) + p(x0|z1).
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MonX + ExAT may be parametrized via p(y, x|z0), νx|z1
, φ̃0 and ϕ1 where

φ̃0 ≡ log

„

p(y0, x0|z1)(1 − p(y1, x0|z1))
p(y1, x0|z1)(1 − p(y0, x0|z1))

«

simply omits the terms in braces in φ0.
MonX + ExNT may be parametrized via p(y, x|z0), νx|z1

, φ0 and ϕ̃1 where

ϕ̃1 ≡ log

„

(1 − p(y1, x1|z1))p(y0, x1|z1)
(1 − p(y0, x1|z1))p(y1, x1|z1)

«

again simply omits the terms in braces in ϕ1.
Inverse maps for these models are similar to that for MonX + ExNT + ExAT.

Table 7: Parameterization of Models. Distributions appearing in the parameter
list are unrestricted.

Model Parameters

Saturated p(x, y|z)
ExNT p(x, y|z0), p(x|z1), ψ0, ψ̃1

ExAT p(x, y|z0), p(x|z1), ψ̃0, ψ1

ExAT + ExNT p(x, y|z0), p(x|z1), ψ0, ψ1

MonX p(x, y|z0), νx|z1
, p(y|x, z1)

MonX + ExNT p(x, y|z0), νx|z1
, φ0, ϕ̃1

MonX + ExAT p(x, y|z0), νx|z1
, φ̃0, ϕ1

MonX p(x, y|z0), νx|z1
, φ0, ϕ1+ ExNT + ExAT

Flu Vaccine Data Revisited

Following the analysis of Hirano et al. (2000) we consider the baseline covariates Age,
and COPD (chronic obstructive pulmonary disease). Table 6 shows the posterior
probability of violations of constraints under saturated models stratifying on COPD,
and under a model specified via 6 logistic regressions (for p(x|z) and p(y|x, z)) each
with intercept, Age, COPD and COPD×Age.

Finally, to illustrate our parametrization we fitted the model MonX . Figure 7
shows posterior distributions on bounds for ITTCO under MonX . The model was
specified via logistic regressions for p(y|x0, z), p(x|z0) and generalized linear models
for νx|z1

, φ0 and ϕ1, again each with intercept, Age, COPD and COPD×Age. Dif-
fuse independent Normal priors were used. Sampling was performed via a Metropolis
algorithm. The proposal for each of the six GLMs was multivariate normal, mean 0,
covariance matrix σ̂2

kV
T
V where V is the n×4 model matrix, and σ̂2

k (k = 1, . . . , 6)
is an estimate of the variance of the specific parameter, obtained via the delta
method at the empirical MLE for p(y, x|z). There were 2000 burn-in iterations fol-
lowed by 5000 main iterations. The Markov chain was initialized by setting all of
the generalized linear model parameters to 0.
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Figure 8: Functional dependencies in the eight models. Terms γij

tX

that do

not appear in the likelihood are not shown. See also Table 4.


