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PREFACE 

At conferences devoted to the founaat~ons of probability and statlstlcs, it 
1s natural that attentlon should focus on polnts of div~s~on between supporters 
of rlval schools of thought. The resulting confrontation of ideas and 
personalities m such contexts 1s often stlmulatlng and useful In sharpening 

perceptions about one's own and other vlewpolnts. 

But even at statlstsal meetlngs of a more general nature, a presentation 

or contribution from a statlstlclan making positive use of Bayes~an ideas all 
too often preclpltates heated discuss~on about foundatlonal ideas, with little 
or no attentlon directed to the detailed ideas or methods belng put forward. 
This can be frustrating for those lnterested m specific theoretical or applied 
problems. 

As m other areas of statlstlcal discourse, the concentration on cleavage - 
to the exclusion of other features of interest- may be superfic~ally 
entertalnlng, but ~t 1s not ultimately very proauctlve. 

And so part of our orlglnal motlvatlon in organlzlng an Internat~onal 
Meetlng on Bayes~an Stat~stlcs grew from the feeling that, although we are all 
loyal members of the good ship Stat~stlcs, there are ttmes when a mlnonty of 
the crew feel the need to head off lnto waters of thelr own chooslng, 
UnconstraIned by exlst~ng charts and freed from the need to debate 
navlgatlonal philosophy before settlng sail. 

Of course, many voyages of discovery nave already been undertaken. In 
particular, the semiannual NBER-NSF Sem~nar on Bayes~an Inference m 
Econometrlcs and Statlstlcs has become well established in the Unlted States. 
And yet there has been little European partlclpatlon m these meetlngs, a 
factor which led us to the more concrete idea of a conference neld in Europe, 
attempt~ng to draw together, for the first tlme at a truly lnternat~onal level, a 
falrly exhaustlve assembly of statlstlclans concerned -In something other than 
a purely hostile sense! -with Bayes~an statlstlcs. Perhaps we also had in mlnd 
that thls mlgnt accelerate the process of fertilization and growth of Bayes~an 
ideas - a  much needed acceleration if de Finetti's pesslmlstlc prevlslon 1s to be 
confounded: 

MY estlmatlon 1s tnat another fifty years will be needed to overcome the 
present sltuanon. It 1s based on the consideration that about thlrty years were 
reaulred for ideas born m Euroue ..... to oegln to take root in Arnenca ..... 
Supposing that the same amount of tlme mlght be requlred for them to 





Be careful when you offeryouruosterror 
They 'U try ro kick rt rrglrt throughf the door 

But turn theother cheek i f i f  lsnot  too  sore 
Oferror they may  yet tire 

REFRAIN There S n o  theorem like Bayes' theorem 
Likeno theorem we know 

Critics carp at Bayes's hesrfatlon 
Clarmmg that his doubts on what he'd done 

Led to late gosthumous publicatron 
We  will explaln that to everyone 

When Bayesgot up  to Heaven 
He  asked for an rntervrew 

Jehovah aurckly fold h im he  had got r r  rrght 
Bayespopped down earthwards a f  dead ojnlghl 

H i s  snectre ceded Richard Price the copyrrght 
Its very strange bu f  ifs true! 

We would like to use this opportunity to thank the Spanish authorities 
who made possible this Conference: specific mentlon should be made of the 
assstance provided by Prof. Cobo del Rosal and by Prof. Colomer. Finally, 
we are grateful to the staff of the Valencia Universrty Press, and specially to 
Ms. Montse Blay and Ms. Ligia Saiz, who urovided expert assistance in typing 
and proofing the manuscript. 
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Quasi-Bayesian Behaviour: A more reali$c approach 
to decision making? 

F.J. GIRON 
Unrversidad de Malaga 

and 

S. RIOS 
Unrversidad de Madrid 

SUMMARY 
m thls DaDer Ule theoretical and ~ractlcal rmdlcanons of droppmg-from the baslc 

Bayesan coherence pnnclples- the assumot~on of comvarablhty of every pal1 of acrs e 
enarmned. The resulting theory is shown to De stlll perfectly coherent and has Bayes~an 
theory as a Dartrcular case. In partlcluar we questlon the need of WeakenmE or rullng our 
some of tne axloms that consutute the coherence pnnclples; what are tnar practical 

~mplicat~ons: how this drive to the notton of partial informatton or partial uncertainty m a 
certaln sense; how this partial informatkon a combined with sample informallon and how 
this relates to Bayeslan methods. We also polnt out the relation of this approach to 
rational behav~our with the more (and apparently unrelared) general notlon of dom~nat~on 
srrucrures as applied to multicntena decision making. 

Keywords: COHERENCE PRINCIPLES: AXIOMS OF RATIONALITY: PARTIAL UNCERTAINTY; 
BAYESIAN PREORDERS: PARTIALLY ORDERED PROBABILITIES: UPPER AND 
LOWER PROBABILITIES: DOMINATION STRUCTURES 

I. INTRODUCTION 

A s  ~t 1s well k n o w n ,  Bayeslan coherence p r l n c l p l e s  as applied to declslon 
problems i m p 1 y  the existence of a utility function, unlqne up to a linear 
transformation, and what is more important from the l n f e r e n t l a l  polnt of 
v l e w  a unique p r o b a b i l i t y  measure ( k n o w n  as subjectwe or p e r s o n a l  
p r o b a b i l i t y )  such that m o r d e r  to choose among acts that which m a x l m l z e s  
expected utility 1s selected. 
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Thus these prlnciples assume that in any decision problem under 
uncertainty the decision maker 1s able - by instrospectlon or by any other 
means - to asslgn unique probabilities to every possible event and he will 
choose the declslon which maximizes his expected utility. 

On the other hand, if nothing is known about the true state of Niture, 
and one does not want to stick to incoherent prlnciples such as minimax, etc., 
the only solutlon is to turn one's attention to adnussible acts or aecislons by 
application of the dominance principle implied by the natural ordering of 
decislon rules once utilities have been assigned. 

Between these two cases: 1") - prior distribution is completely known; 
and 26) -nothing 1s known about the prior distribut~on (except the trlvial fact 
that it is a probability measure, the ex~stence of which may be even 
questioned), we may place the case of partial ignorance or partial uncertarnty. 

What we call partial ignorance refers to the fact we represent our 
knowledge about states of Nature by means of a set of probability measures to 
which the true distributions belongs. 

In a more general sense "partial ignorance" could represent information 
about the states of Nature not necessarily given in the form of probability 
distributions. However our axloms or rationality prlnciples will rule out this 
second interpretation of partial ignorance. In other words, we shall prove that 
a weakenlng of Bayesian coherence principles characterize part~al ignorance in 
terms of a set of probability measures and that this characterlzatlon embodies 
the two extreme cases (of total ignorance, and perfect knowledge of prior 
distribution) which are but part~cular cases. 

The idea of representing partial ignorance by convex sets of probability 
measures or by means of the related concept of lower and upper probabilities 
is not new and dates back to Smith (1961, 1965), Good (1962) and Dempster 
(1968)', and more recently to Suppes (1974) and Nos (1975a, 1975b, 1976). 
However, none of these authors glve a complete characterization of partlal 
Ignorance. Smith (1961) glves a partlal answer to this question for the finite 
case. More refined results are found in Gir6n (1978). 

Partial ignorance may be looked at lu two different ways. First, suppose 
the decislon maker is uncertain about his prior P so he expresses his beliefs in 
the form of a statement such as P belongs to K* The form and size of K* 
measures his relative uncertanty. It is remarkable (see theorems 3.2, 3.4 and 
3.6) that if a declsion maker reflects his uncertanty about states of Nature in 
such a way that he IS not able to compare every pair of acts (Axiom Al,  sec. 3) 
whilst other axloms hold, then his uncertanty can be measured in terms of a 

' As early as 1940, Kooprnan (1940) pioneered the idea that not every p a r  of events are 
comparable. In our approach this is a result of dropplng the completeness axlom C(see sectlon 3). 

set of probability measures and he compares acts in terms of expected utilities 
against the probability measures of this set. 

Second mnterpretatlon runs as follows: suppose an arbitrary IIUmber of 
decision makers each one being perfectly coherent (that is, their preferences 
satisfy axioms A1 to A5, and C of sectlon 3). Suppose further that the utilities 
they assign to consequences are in agreement but they differ m their 
preferences, that is, tnelr personal or subjective probabilities differ. Then the 
intersection of then preference systems is a new preference relation satisfying 
axioms A1 to A5. In this case, partial lnformat~on or uncertamty is 
represented by the convex set generated by the set of all prlor distribut~ons 
corresponding to the decision makers, which, m this second version, could be 
named the feasible set. 

If we call coherence principles the axloms A1 to A5, and C ,  we shall now 
discuss, onefly, the implications of dropplng any of them. We do not discuss 
the necessity of axloms Al ,  A2, A3 and A4 as it is well known from the 
literature that dispensing with any of them drive to Incoherent decisions. 

As to axlom A5 we could dispense with it. In this case the preference 
relation would be a lexicographic order that would be cnaracterlzed by a 
multidimens~onal (or lexicographic) subjective probabilLty P= (Pi, Pz, ...). 

So the principle under discussion is completeness (axlom C) .  In its favour 
one may say that whichever the declsion or inferential problem one is faced at 
a declsion has to he made, and this Imply that the declslon maker or 
statlsticlan is able to compare every pan of acts. However in case of partial 
Ignorance the declslon maker restricts his attention to non-dominated 
dec~sions. If this set 1s a small one and the corresponding Bayes risks do not 
differ much, this mlght be considered as though one would be perform~ng a 
sensitlvlty analysis m a Bayes~an case (e.g., see Fishburn (1964)). 

From the purely inferential vlew polnt both approaches - partial versus 
Bayes~an knowledge - are even closer. In the Bayesiau case all information is 
in the posterior distribution while in the quasiBayes~an case all relevant 
information is in the posterlor set. But this last situation can be assimilated to 
the first one by taking a greater sample (see, e.g., example a) of sectlon 4). 

Note the difference between dropplng the completeness axiom in utility 
theory (Aumann (1962, 1964), Criado (1978)) and m subjective probability 
theory. In the first case partial knowledge of utility function is not reduced (in 
fact sample information is Independent of utility) by sample information; yet 
m case of partial knowledge of prior distribut~on, sample information reduces 
uncertaintyZ That means that our Initial partlal preorder converges to a 

See Giron (1979) for a discussion on auality between tne concepts of utility and 
subiectlve probability. 



complete preorder when sample slze Increases. 
Thus dropplng completeness axlom 1s not made for sake of rnathematlcal 

generalizat~on but to convey a ratlonal model for the case when it is difficult 
to choose among declslons. The practical conclusion is: "if you feel unsure. 
about your declslons, then take a greater sample than the one you would take 
if you were able to compare every palr of declslons and you will do (nearly) as 
well" 

2. DECISION MODEL WITH PARTIAL INFORMATION 

Let (Q. D,L) be a declslon problem, where Q is a set of states of Nature or 
parameter space that for illustrative purposes we suppose is fiulte and will be 
denoted Q = IO,, ..., 0.1 (later on this sectlon this restriction will be lifted); Dis  
a set of possible decisions, which allowing for randomlzatlon may be 
supposed convex, and L IS a loss functlon (the negatlve of a utility functlon), 
that is: 

In the Bayes~an case we also have mformatlon on Q glven in the form of a 
smgle probability measure, known as "the prtor distribut~on", which we 
denote by P. In our case Pcan be identified with a pomt of the n-slmplex of R" 
that will be denoted 

Q* = l @I ,..., P"); :=,pi = I ;  p; 0; I =  I ,..., n ) ,  

where it 1s understood that p.=P(B,), so that Q* would be the set of all 
uroWab'ility measures. 

If K* Is a nonempty subset of Q*, then partlal informatlon about P (the "true" 
prlor distribut~on) is to state simply that P t K*. If K* in fact represents partial 

Ignorance, it may be taken to be convex, for if the deClSlOn maker 1s uncertaln 
about P, and P, r K*, then he is uncertaln about w P, + (l-a) P, (Osa 5 1). 
So convexity of K* IS not introduced for mathemattcal convenience but as a 
fairly natural c0ndition.j 

' The_lopalog~cal condition of P bang closed is not really essential for as we shall show either 
K' or x* (its closure) generate the same quasi-Bayeaan Dreorder. Note UIat m the Baywan case, 
K' reduces to a ~ o m t  which U closed. Convexdy could also be dispensed with as it can be shown 
that K* and con (K*) (convex hull) generates the same quasidayeslan preorder. 

Def. 2.1. A decision model with partial information is a quadruplet 
(Q, D; L: K*) where K* is a nonempty closed convex set of Q*; which will be 
called the uncertainty set or the prior distribution set. 

As particular cases we have: 1) the case of complete ignorance, when 
P =  Q*; 2) the case of perfect knowledge of the prlor distribution when 
K* = (P], that is, K* reduces to a pomt, or Bayesian case. 

As most of the ideas we are to set forth have simple geometrical 

mterpretat~ons, it will be convenient to transform the declslon problem into 
an equivalent S-game4 as follows: 

Define the risk set S of decision problem (Q, K; L) by 

Let us consider the slmplest case of two states of Nature, that is, Q = [8,, 
B,). Then the partlal lnformat~on about P = @,, p,) 1s glven in its more 
general form, by lnequalit~es 

with a,, aiconstants such that 0 r a, 5 a; 5 I .  

The set K* can be geometrically represented by the angle determned by 
the extreme vectors (a,, 1- a J ,  (a;, l-an. Let X* = (X?, xa he a fixed pomt of 
the rlsk set. Then the Bayes nsk for X* agalnst prlor distribut~on P =  @,,p3 r 
K* is 

If we take as prlors the extreme polnt of K*, say PI = (a,, 1-a,) and P; = 

(a;, 1-a3, the corresponding Bayes rlsks are 

If we now consider the set of (possible) polnts that have smaller Bayes 
rlsk agalnst both P, and P:, we see that these polnts lie m the lntersectlon of 
the closed half-planes glven by the followmg mequalities 

For a definition of S-games see Blackwell and Girshick (1954), that suffices for the finltecase. 
For a more general definition see Giron (1975). 



that define an angle with vertex at X* (see figure). The most 

lmportant point to notice 1s that every pomt belonglng to the angle, that is, 
sat~sfying inequalities (2.1), has smaller Bayes rlsk than X* against any prior 
distribution PEP 

A further point to notice 1s that the angle does not depend on the chosen 
X* that is, if y* # X* then the angle corresponding to y* is slmply a 
translation of the one with vertex at X* We shall denote this angle with vertex 
at orlgln by K. So K depends only on K* 

This ~tself suggests the idea of definlng a partlrtl preorder on S (whlch 1s 
extended to R in an obv~ous way) by means of angle K and then, regard as 
solutions of the declslon problem the m a m a 1  points (dec~sions) m S (in D). 
Thus maxlmal points in this weak order will colncide5 with Bayes solutions 
agamst all probability measures belonglng to K* 

In the above figure this set is represented by the arch MN. 
Note that in the case of total ignorance, that is, a, = 0, el = I ,  the angle 

defined by (2.1) is precisely the set of polnts X =  (x,,xJ such that 

This is not true as stated because tnerelatlon between mammal and Bayes soiutions m this case 
IS analogous to tne cxlst~ng relation in the well-known case of natural oraenng. For details see 
Rios (1976). 

that is, tbe natural ordering of risk polnts in R" 
The last and most lmportant point to notlce is the relatlon exlstlng 

between K and P. In the simple case considered K 1s but the polar cone of set 
P Thus partial knowledge represented by K* induces in the space of possible 
declslon functions a "dominat~on structure" which is cnaracterlzed by the 
polar cone of set K* 

Recall (see definihon of polar cone below) that the polar cone Kls closed 
and that polar cones of K* and F* are the same. Furtner in the example 
cons~dered the polar cone of K* and of the set of its extremal points (P,, P,] is 
the same. 

These mathematsal propertles justify the hypotheses put on the set K* of 
Convexity and closedness. In next sectlon these propertles will he ~ustified, 
through an axiomatic approach, from slmple coherence principles. 

Let us now return to the case of a fin~te number of states of nature 
(B,, ..., 0 , ) .  We are to define what we understand by quasi-Bayeslan preference 
relations associated to a decision problem with partlal ignorance. 

Def. 2.2. Let (Q, S: P )  be a declslon problem with partial uncertainty. 
We shall call K*-Bayesian preference or quasi-Bayesian preference in S to the 
relatlon a,* defined for every X ,  y ES by 

X 2,* y if and only i f x . P r  y.Pfor every PEK* 

where x.P denotes dot-product. 
It can be shown that 5.* is a weak partlal order sat~sfylng a o m s  AI to 

A5 of sectlon 3. Moreover, 2 .* n complete (or linear if and only if K* reduces 
to a point (P): In this last case 2,ls called a Bayesian preference relation. 

Let K* be the uncertainty set; denote by K the polar cone of set K*, that 1s 

KIS a closed convex cone of IR" with vertex at ongin. This defines a preference 
relation m IR" (and consequently in S) as follows 

Def. 2.3. Let X ,  y c S. X K- dammates y and will be aenotea X 2, y if 
and only if X-~EK.  

The relatlon between the two definitions, which 1s but a consequence of 
duality, is the content of next result. 

Theorem 2.1. 
x>.*y if andonlyifx2.y. 



It 1s worth rnentlonlng that if K reduces to a polnt P, then K 1s the closed 
half-space defined by [xtlR" , X-PsO). In case of total Ignorance K 1s the 
negatlveorthantD. = ixr E,x, i 0, r = 1,2 ,,..,, n). 

Def. 2.4. Let > and 2 * be two weak order relations. Then, relatlon 2 

a lncluded in s * if and only if X > * y Implies x s y .  

. Theorem 2.2. Let e, and @be subsets of Q*, then K*, 3 @implies 
>,,* Is lncluded in 2,;. Moreover, if K:, and K; are closed convex sets, the 
conversely statement 1s also true. 

As a consequence of duality and theorem 2.1 .. we have the follow~ng 

Corollary 2.1. s ,, 1s ~ncluded in >,, if and only if K, C K, 

These partlal weak orderlngs glve rlse to definitions of admssibility, 
complete classes and quasidayesian (or K-Bayes~an) declslons. 

Def. 2.5. A rlsk point XES is K*-Bayes (or quasi-Bayeslan) for the 
problem (0, S: P)  if there exlsts at least a P r P such that X 1s Bayes agalnst 
P. Accordingly dr D is K*-Bayes if its corresponding risk point 1s K*- Bayes. 

The set of all K*-Bayes strategles will be denotedB(K*; S) or B(@; D). 
Relations among K-admissibility (defined m an obvious way), K- 

Bayesness and completeness can be found in Rios (1976), m which the name 
"quasi-Bayes" was coined. 

In this paper we do not discuss the computational aspects of quasl- 
Bayes~an strategles. In the finlte case, here considered, methods for finding 
non-dominated strategles are to be found m Le~tmann (1976) and references 
therem. These procedures, devlsed for general convex domination structures, 
can be applied mutatis mutandis to the problem of finding quasi-Bayesian 
strateQes m case K* be a convex polyhedron by means of linear and non-linear 
programming techmcs. The general case of K* belng an arbitrary convex set 
may be treated by approxlmative methods (see reference above). 

By far the most important feature of quasi-Bayeslan methods is that they 
allow incorporation of the information provided by an experlment by use of 
Bayes theorem. 

Let (X, A,, P, (X)) be an experiment, where 0 = ( R  ,,.... R.). Let P(Bilx) 
denote the posterlor probability of 0;  when X has been observed and prlor 1s 
P (6.). We define the posterior uncertainty set (or posterior partlal 
information set) as the set of all posterlor distribut~ons of P when X is 
observed. This set will be represented by K*,. Somet~mes we shall refer to this 
set g a s  the transform of K* througn sampling when X is observed. Properties 

of posterior uncertainty sets are summar~zed in the following. 

Theorem 2.3. If K* 1s a closed convex set of Q*, then K*, 1s also a closed 
convex set for every X EX. Furthermore, extremal prlor distribut~ons of K* are 
transformed through sampling lnto extremal distribut~ons of K*, for any 
X r X. 

The second part of theorem usually s~mplifies the problem of finding the 
posterior uncertanty set if only we know the extremal prlor distribut~ons. 

Finally, we mentlon the fact that the whole set of probability 
distribut~ons Q* 1s lnvarlant through sampling, that 1s O*, = O* for any X r X. 
This 1s but a statement that total lgnorance cannot be changed Into partial 

Ignorance through sampling. 

Def. 2.6. Let (Q, D: L; K*) be a decislon problem with partlal 
~nformat~on, (X, A,; P,(x)) an experlment. We say 6: (X, A,) - (D, A,) is P- 
Bayes (or quasi-Bayes) if for every X r X, 6(x) is K*-Bayes for the problem (0. 
D: ~ 3 .  

Most definitions and results glven m this sectlons are easily generalizable 
to the case of an lnfinlte number of states with slight modificat~ons except m 
one instance. This refers to the duality between K* and its polar cone K that 
poses delicate analytical problems due, m Dart, to the LacK of reflexlvlty (in the 
sense of functional analysis) of some of the spaces of measures under 
consideration, and secondly to the problem that appears in some statlstical 
applications that D and Q* cannot be embeded in topologlcal vector spaces for 
which one 1s the dual of the other one. 

3. AXIOMATIC CHARACTERIZATION OF PARTIAL UNCERTAINTY 

AS we stated in the lntroductlon, partlal uncertainty 1s usually 
represented by a convex set of probability measures and may be considered 
midway between total ignorance (no knowledge of the "true" [if any] prior 
distribut~on) and, on the other hand, whole knowledge of the prior 
distribution (Bayeslan vlew point). 

Most axiomatic characterlzations of subjective probability and, 
consequently, of Bayesian behavlour m the case of declslons under 
nncertalnty are based in the ability of the declslon-maker at orderlng any palr 
of acts or events he is confronted with: which, as it 1s well known, 1s one of the 
baslc principles of the so called "Bayes~an coherence prlnclples" 

Here we present a varlant of the above mentioned prlnclples that still 
preserve the Bayes~an "flavour" hut have ~ n t o  account this possibility and. In 
fact, they fully character~ze "partial ~gnorance" Bassally, we follow the 



axioms given by GirOn (1974, 1977)6 that characterize subjective probability 
and the principle of mm~mizat~on of expected utility. 

The basic idea IS the suppression of the completeness of the preference 
relatlon in the set of all possible declsions, along the lines of Aumann's 
contribut~on to utility theory [see, Aumann (1962, 1964)], which could justify 
the name of "subject~ve probability without the completeness axiom" instead 
of "part~al ignorance" 

One of the maln results of this sectlon 1s the characterization of all partlal 
ignorance relations (this includes the Bayeslan case) ln terms of a class of 
closed convex cones In the space of declsions. This first characterlzatlon 1s 
inspired in the papers of S. Rios (1975a, 1975b, 1976) on quasi-Bayes orders, 
and, on the other hand, in the work of Yu, Zeleny et al.' on domination 
structures. 

The second characterlzatlon 1s tne basic result we are seeking for: stated 
m lmpreclse terms it asserts that partial ignorance 1s cnaracterized in terms of 
Closed convex subsets of a space of probability measures. 

In the following it will be convenient to distinguish two cases: namely: a) 
partial ignorance is represented m terms of #-additive probability measures 
(abbreviated pm.); b) these probabilities are only assumed to be finitely 
additive. 

In case a) (See, e.g. GirOn (1977), p. 33) a restrictlon on the set of states 
of Nature needs be Imposed; namely, it is supposed to be a compact 
Hausdorff topological space; a further restriction 1s that declsions can be 
identified with a subset of contlnuous functions on such a space. However, in 
case b), the parametric space can be quite arbitrary and decisions or acts are 
Only supposed to be bounded. 

Case a), m splte of its apparent restrictiveness, it is not so, for many 
decislon problems are sucn tnat the parameter space may be endowed with a 
metrlc (e.g., the lntrlnsic metrlc) which makes all acts continuous so tnat the 
only restrictlon would now be compactness respect to that topology. 

Let Q denote the space of states of Nature or parameter space, D a set of 
declsions on termmal acts, and U: QxD - IR a utility function. 

Def. 3.1. A declsion problem under uncertamty (which, m the sequel, will be 
abbreviated as d.p.u.u.) 1s a trlplet (Q,D;u). 

In case a) D can be identified with a Subset S of C (Q)- space of all real 
contlnuous functlons defined on Q -namely 

These moms  were out forward in a later oaoei (sec Giron (1978)), m a stronger form tnat the 
oneglven in this article. 
' Most Of their worK appears mLe~tmann. (1976). 

In case b) D 1s identified with a subset S of B (Q) -space of all real 
bounded functions defined on Q -defined by 

S = (f(8)eB (Q); 3 d e n  f ( B )  = u(8.d)). 

Further, if the declslon maker or statistician allows for randomlzatlon in 
D, S may be regarded as a convex subset of the linear spaces, C(Q) and B@), 
respectively. 

This suggests a new definltlon of a d.p.u.u. 

Def. 3.2. A d.p.u.u. 1s a palr (Q,S)vinere S is a nonempty convex subset 
of C (n) (case a) or B (Q) (case b). 

Def. 3.3. If @,S) IS a d.p.u.u. a decls~on crlterlon 1s a binary relation on 
S, which will be denoted by 2, 

Relatlon 5. is read "...at least as preferred as ..." Taking 2. as the 
basic relatlon we may define the followmg. 

f 5 ,g i f f  f >,g andnot g5.f 

f%*giff f > , g  and g> ,  f 

fk.giffn0tfa.g andnot g2.f 

which are read "...(strictly) preferred to...", " ... mdifferent to ..." and "...Is 
not comparable to...", respectively. In the sequel g s .  f will meanf >,g. 

The list of proposed axloms is the followmg, that only differs of Giron's 
(1977) In the first one. 

A1 (Partlal preorder).- For every d.p.u.u. (%S), 5. 1s reflexive and 
transitive. 

A2 (Strong dommance).- If f, geS are such that f (8) > g (8) for every 
8 e Q, then f >,g. 

A3 (Addition of new strategies).- If S C R,  then f 2 .gimplies f 5. g. 

A4 (Linearity).- If Ac (O,l), f,g,h c S, then f 2 , g  if and only if 
Af+(l-A) h z ,  Ag+(l-X)h 

A5 (Contlnu~ty): If f., g, hrSfor n =  1.2 ,.... aresuch that if,] - f ES. 
fn 2, g, hZ, f ,  

forevery n =  1.2 ,...,then f 5 ,  gand h a .  f. 



Convergence in this axlom is understood with respect to the usual 
supremum norm topology glven, for both a) and b) cases, 

Next 1s a completeness axlom that will only be necessary m the 
character~zatlon of Bayesian behaviour. 

C (Completeness). For every f, g€ Seither f > ,g  or g 2, j 

Ax~om 3 allows us to consider the 2 relatlon as belng defined on C (Q) 
IB (Q)]; then relation 2. IS, slmply, the restrlctlon of 2 to S. Further, as C (Q) 
[B (Q)] are complete normed spaces, if if,,] converges to f, then f e C (Q) 
[B (Q)]. 

In case b), as B (Q) contalns the class of indicator funct~ons of subsets of 
62, the relatlon > on B (Q) restricted to this class allows us to define a new 
relatlon, z*, on the class of all subsets of D, which we shall denote by P (Q), 
and will be called events. 

Def. 3.4. Event A 1s at least as probable as event B, and will be denoted 
by A 2 *B if X > p  implies f 2g ,  where f and g are defined by 

It can be easily seen that if 2 satlsfies axloms Al ,  A2, A3, A4, A5. 
definition 3.4. does not depend on A and p. as far as X >p. This is the content 
of the following lemma, which could have been taken as definition. 

Lema 3.1.- A 2 *B if and only if I, 2 I,, where I, and I, denote the 
~ndicator funct~ons of sets A and B, respectively. 

Furthermore, relatlon >*  as defined above satisfies all axioms of 
comparative probability (e.g., see Fine (1973) p. 17) except the comparability 
of every pair of actss. In particular > * sat~sfies 

Recently Fishburn (1975) and Goodman (1977) have also considered a weakening of tne 
com~arability axlom in whlch indifference is not assumed to he transitwe. 

(i) 2 * is reflexlve and transitive. 

(ii) A 2 * @ for every event A EP (Q). 
(iii) Q 2 * @ 

(iv) Let A,B,C heeveuts such that A n C = B n  C= 4 ,  then 

A > *B if and only if A U C 2 *BUC. 

As was ment~oned in sectlon 2, the natural orderlng In C(Q) [B (Q)] is the 
weakest partial preorder every other "reasonable" partlal, or Complete, 
preorder should be consistent with. This consistency 1s taken UD in the 
formulation of axloms A2 and AS. 

Def. 3.5. f domlnates g, and will be.represented by f 2 ,  g if f (0) 2 g (8) 
for every 8tQ. 

Relatlon > , IS  a partlal preorderlng sat~sfy~ng axioms Al ,  A2, A3, A4, 
AS. Morover, relatlon 2 :induced in P (Q) by Z a  a subset mncluslon, e.1.. 

Those decisions dom~nated by the functlon I, -- 0 will be denoted by D., 
that is, 

Some of the results that now follow were advanced in Giron (1978)3. 

Theorem 3.1. If relatlon 2 m C(Q) [B (Q)] satlsfies Al.  AZ, A3, A4, A5 
then there exlsts a unlque closed convex cone K,  not belng the entlre space, 
containlng D. and with vertex at the orlgm. such that 

f 2 gif and o~lly if g - f e~  (3.1) 

Conversely, every non empty closed convex K, containlng D. and with vertex 
at the orlgm, defines a partial preorderlng 2 m C (Q) IB (Q)] by (3.1) 

Furthermore, 2 1s a complete preorderlng if and only if Kis a closed half- 
space contlnlng D, and passlng through the orlgm. 

i n  this palm we give new results and some reflnemenrs and amendmenrs of results tnar 
appeared in Giran (1978). Proofs will appear m asuhseauent Daper. 



This theorem is lnterestlng In order to examlne the structure of partial 
preorderings in relation to complete preorders. 

Let 2 ,  be a collectlon of linear preorders sat~sfying axloms Al. A2, A3, 
A4, AS, and C, where 161, a certain Index set. If we define relatlon 2 by 

f 2 g if and only if f s. g for every 161, 

.then 2 is a partial preorderlng satisfying AI, A2, A3, A4, AS. This relatlon 
could be named the lntersection of the class of preordenngs (2 .lit1 

Now, by theorem 3.1, every partial preorder is characterized by a closed 
convex cone K and every complete preorder by a closed half-space, so that we 
have as a corollary of the theorem the follow~ng. 

Corollary 3.1. Every partial preorder satistying AI, A2, A3, A4, AS is the 
Intersection of an arbitrary collect~on of linear preorderings satisfying AI, 
A2, A3, A4, A5 and C, and conversely. 

It can also be Shown that the lntersectlon of an arbitrary collectlon of 
partlal preorders satisfying AI to A5 is a partial order satlsfy~ng AI to A5. 

If we call "quasi-Bayesian preorder" then corollary 3.1 simuly states that 
every "quasi-Bayesian preorder" is the lntersectlon of Bayesian preorders, 
thus glvlng a preclse meaning to the second interpretation of partlal ignorance 
mentioned in the lntroductlon. 

Next theorem, and its counterpart for case b) (see theorem 3 4 ,  
cnaracterlzes a ~ a r t ~ a l  ignorance in terms of a set of probability measures. 

Theorem 3.2. If relatlon 2 in C (Q) satlsfies AI to A5 then there exists a 
unique non empty closed convex set K* of o-additive probability measures on 
the Bore1 field of the topological space @,B,,) such that 

f ?g if and oNy if J f du 2 jgd$ for every peK* 

If 2 furtner satlsfies axiom C, then K* reduces to a single probability 
measure. 

The second part of this theorem characterizes Bayes behaviour. 

Technical note. In this theorem as well as m theorem 3.4 below, K* is 
closed in the weak * topology. 

Next theorem characterlzes the natural orderlng relatlon 2 in case a), 
the necessary part of the theorem belng as well known result in integration 

theory. In fact, it is a particular case of theorem 3.2 that characterizes total 
Ignorance. 

Theorem 3.3. For every f, g e C (Q) 

f 2 g if and o ~ y  if J fdp 2 J gdp 

for every pen*. where Q* 1s the set of aU probability measures (o-additive) on 
the space (%B.). 

The corresponding theorems for case b) are: 

Theorem 3.4. If relatlon 2 on B (Q) satisfies A1 to AS, then there exists a 
unique nonempty closed convex set .P of finltely additive probability 
measures on P (Q) such that 

f 2 g  if and only if J fdP 2 \ gdP for every Pc K*- 

If ? further sat~sfies axlom C, then K* reduces to a unique probability 
measure. 

Theorem 3.5. For every f, ge B (Q) 

f 2, g if and only if 1 fdP 2 \ gdP 

for every Pen*. where Q* 1s the set of all finitely additive probability measures 
on the space (Q,P (Q)))). 

Next two theorems refer to the comparative probability relatlon 2 * of 
definition 3.4 or lemma 4.1. 

Theorem 3.6. A ? *  B if and only if P (A) 2 P (B) for every P €K*, 
whereK* is the set of theorem 3.4. 

Theorem 3.7. For every palr of events A,B eP (Q) 

A - 3 B if and only if P (A) 2 P (B) 

for every P EK*,  where K* is the set defined in theorem 3.5. 

Theorem 3.6 could be used to define a system of lower and upper 
probabilities associated to the CP partlal relatlon 2, in the followng manner 

P* (A) = Inf P (A), 
P cK*- 

P* (A) = Sup P ( A ) .  
P cK* 



Yet the properties of P*, P* will not be further explored in this paper, as 
our lntentlon was to fully characterize partial ignorance. 

This sectlon ends with a few results referring to conditional preference. 
They essentially show that the Intuitwe ideas set forth in sectlon 2 about the . 
incorporatlon of lnformatlon glven by an experiment to partlal prlor 
Ignorance, glveo m the form of a convex set of probability measures, through 
the use of Bayes theorem are sound and have an axlomatlc foundation. It is 
also proven that the posterlor set of probability measures 1s also a closed 
convex set, which generalizes last theorem of sectlon 2. 

Definition of conditional preference appears in a different form that the 
one glven m Savage (1954) and Giron (1977) for the sake of mathematlcal 
tractability. 

Def. 3.6. Let f  and g  be two glven acts. f is at least as preferred as g  when 
A obtalns, and will denoted f 2 g  glven A,  if and only if I, f 5 I, g. 

Def. 3.7. Event A is null, if and only if f  (B) > g  (8) for every B E 62 does 
not lmply f 5 g  glven A. 

Properties of null events derlved from axloms A1 to A5 are slmilar to the 
ones glven by Savage (1954). In particular we have 

0) C$ 1s a null event. 
(ii) If A is null and B E A, then B is nnll. 
(iii) The unlon of any finlte number of null events is null 
(IV) 62 is not null. 

In terms of the set K* null events are characterlzed by the following: 

Theorem 3.8. A is null if and only if there exlsts at least a P  t K* such that 
P  (A) = 0. 

Next lemma 1s a trlvlal consequence of definition 3.7.. but conveys an 
Important result m conjunction with theorem 3.4. 

Lemma 3.2. If A 1s not null, relatlon s given A, satisfies axlom A1 to 
AS. 

Next theorem characterizes conditional preference. 

Theorem 3.9. If axloms A1 to A5 hold and event A is not nnll, then there 
exlsts a unique closed convex set G C Q* such that 

f  5 g  glvenA, ifandonlyif, j f d P 5  J g d P  

for every P c G. 

The relatlon between Sets K* and G of theorems 3.4 and 3.9 is glven by 
the following theorem that shows that % is precisely the set of all conditional 
probability measures of K* 

Theorem 3.10. If A is not null, then 

K.? = (PA&* : 3 P  eK* ;PA(@ = 
P  (A n B )  

for every BEP (62)) 
P  (A) 

This has a clear behavioural lnterpretatlon in terms of iutersect~on of 
orders: We Know from theorems 3.4, 3.6 and corollary 3.1,  that every quasi- 
Bayeslan preorder 1s the Intersection of quasi-Bayeslan preorders. Now, 
suppose we are glven the plece of information that "event A has obtained" 
and A 1s not null. It can he easily shown that if the partial preorder 2 1s the 
Intersection of 2.. for rtl .  then A is not null for s .  for every cl. If 2 ;  1s 
characterlzed by subjectlve probability P: and event A obtalns, then P. 1s 
changed Into P,  to which corresponds 2, glven A,  so that 5 glven A 1s 
Dreasely the lntersection of the (5, glven A ] i d .  This 1s in the spirit of 
Bayes~an behaviour: ((Change your pnor partlal information through use of 
Bayes theorem lnto the posterlor partial lnformatlon and act accordingly to 
the prlnclple glven in theorems 3.2 and 3.4 which could be named the principle 
of maxlmalization of expected utility>>. 

As was pointed out at the end of sectlon 2 partlal ignorance can be 
characterized by the extreme pan t  of set K*, for as if we denote it by K*., then 
K* = Gii (e), so that any possible distribut~on 1s a general mlxture of 
extreme distribut~ons. It can be easily shown that extremalprior distributions 
change Into extremal posterlor distribut~ons by use of Bayes theorem. 

4 ILLUSTRATIVE EXAMPLES 

In the last sectlon we glve a few slmple examDles m order to illustrate the 
form of quasi-Bayeslan solutions. 

In case quasi-Bayeslan procedures are Intended only for ~nferentlal 
purposes the answer lies on the structure of the posterlor set of probability 
measures, or to reduce it to a mlmmum, all relevant lnformatlon 1s glven by 
the set of extremal distributlon of this set. 

In the case of declslon problems, a loss or utillty structure 1s Imposed 
upon the lnferentlal problem, thus reduclng the declslon problem to the 
calculation of a few parameters of the posterlor extremal distribut~ons, those 
parameters depending on the form of the loss funct~on. 



a) Quasi-Bayes~an confidence intervals m the normal case 
Suppose X,, ..., X. IS a random sample of a normal distribution N (w,r) 

wnere the preclslon r 1s known and the mean W 1s unknown. The partlal 
~nformat~on on W is glven by the subset of normal distributlons N h,?) where 7 . 
1s known and pr[p,, pd. (Observe that thls reduces to the well-known Bayeslan 
case when p, = pz). 

A trlte calculation snows that the extremal posterior set of d~stribut~ons 1s 
the subset of normal distribut~onsN OL'.rl), where 

~ p ,  + n r i  rp2 + nTX 
W'. [ 

r + nr 7 + nr 
l 

and 
- C X;  

T ,  = 7+nr  withx = - 

Then the quasi-Bayesian confidence interval for W for a given confidence 
coeffic~entp is 

7p1 + n r i  rp2 + n r i  

T + nr 7 + nr \7 + nr 

wnere 

.Observe that any of tne distribut~ons of the posterior set (not only the 
extremal ones which are normal) asslgns to this Interval a probability greater 
tnanp. 

Let us now see how this lnterval compares with a Bayesian confidence 
~nterval for any prlor distribution compatible with our part~al information. 

Suppose the prlor distribut~on is N b , ~ )  with pclp,, pz]. For a sample size 
n '  the Bayeslanp-confidence interval is 

E X; 
where? = - 

It 1s evident that for the same sample slze the quasi-Bayes~an Interval is 
wider than the corresponding Bayesian one. If we now equate the width of the 

two intervais for sample sizes nand n ' respectively we obtain 

It IS interesting to note that the above relatlon does not depend on i, i, 
and it obviously lmplies that n 2 n '  The difference n-n' could be interpreted 
as the "add i t~on l  sample slze" for which partlal prior ~nformation could be 
considered as total prior informatlon. 

h) Quasi-Bayesran estrmators for the mean of a normal distribution 
Suppose the same sltuatlon of normal sampling as in example a) with the 

same partlal informatlon. If the loss functlon for this decision problem 1s 

the quasi-Bayeslan estlmator 1s seen to be 

rp, + n r i  rp, + nr? S*(X,, ..., X") = l (4.1) 
r + nr 

which reduces to a single pomt if either &*-p, - 0.7-0, or n- m 

It deserves mentlonlng that the quasi-Bayeslan estlmator in this case is the 
unlon of Bayes estlmators corresponding to the extremal posterior 
distribution. Any Bayesian estlmator corresponding to a non extremal 
postenor distributlon belongs to 6* 

Note that if partial informat~bn reduces to the following: "Prior 
informatlon is n o r m l  N 01, T) with p = &+(l-Alpz, O A I .  1" the quasl- 
Bayes~an estimator 1s the same as the one glven by (4.1) 

c) Quasidayesran testlug of hypotheses 
In this section we consider the slmplest example of testing a slmple null 

hypotheses versus a slmple alternative hypotheses, so that the two states, two 
actions, declslon problem IS, 



where 8, stands for the null hypotheses and 8, for the alternatwe: a, accept 00 
and a ,  reject 0, (and accept O , ,  accordingly) 

Partial ~nformat~on m this example is glven m the form of a closed 
interval that represents the range of possible values of prlor probability on the 
null hypotheses, that 1s 

If we represent the denslty (with respect to some domlnatlng measure) of 
a sample of slze one, when 8, ( i=0.1) 1s true by f,. then Ule quasiBayes 
procedure for this declslon problem when a random sample of slze n 1s taken, 
which we could name "quasi-Bayeslan test", 1s the foll~wlng 

This results needs some explanation: If the sample observed is such that 
6*(x,, ..., X") equals a,  or a,, there 1s no problem, and the null hypotheses 1s 
accepted or rejected, respect~vely. If, however, 6*(x,, ..., X.) = (a,, a,) then no 
slngle course of action 1s possible. 

This means that our partlal (postenor) lnformat~on 1s not enough as to 
discr~rmnate between the two actlons so that new sample lnformatlon 1s 
needed and a computation of the new likelihood rat10 may show that 
6*(x ,,..., X,,, x.,J equals either a,  or a,  or if 6*(x ,,..., x.,x.+J = (a,, a,) a new 
sample 1s requ~red, and so on. This brlngs out the strong analogy between the 
quasi-bayeslan test and Wald's sequential probability rat10 test with barrlers 

~u the case the cost of new observations is not ~ncluded within the structure of 
the declslon problem. 

REFERENCES 

AuMLN. R.J. (1962). Utility theorv without the completeness axlom. Economefnco 30, 445- 
462. 

- (1964). Utilitv theory without the comuleteness anlam: a eorrectlon. Eeonometnco 32, 
210-212. 

BLACKWELL. D. and GIRSHICK. M.A. (1954). Theory of Comes end Sratrsfrcol Decisrons. 
Wlley: New York. 

CRIADO, F. (1978). Algunos carocterrzacrones ae io ulilidoa y exlensrones. Ph.D. Thesis. 
Unlversidad de Malaga. 

DEMPSTER, A.D. (1967). Upper and lower urobabilitites lnduced b~ a multivaluea mappmg. 
Ann. Malh. Storisl. 38,325-339. 

- (1968). A generalizat~on of Baves~an Inference. (with discusnon). J. Roy. Stolrrt. Soc. B 
30, 205-232. 

FINE, T. (1973). Theory of Probobilily: An Exomtnorron of founaotrons. Academ~e Press: 
New YorX. 

FISHBURN, P.C. (1964). Decisionand Value Theory. Wiley: New York. 

(1975). Weak comparatlveurobability oninfimte sers. Ann. Prob. 3,889-893. 

GIRON, F.:. (1975). S-juegos generalirados. Rev. Real Acoa. CiencrosMadrid69.49-97. 

- (1977). Caractenzacibn axlamitica de la regla de Bayes Y la probabilidad subjet~va,  rev^ 
Acoa. Cienc. Modrid. 71, 19-101. 

(1978). Una caractenzacibn de la lncertidumbre parciai. Actos V Jornaaos Luso- 
EsPanholaS UeMaremdtica. Avuro, Portugal. 

- (1979). Probabilidad y utilidad: conceutos duales de la teoria de la decisibn. Rev. Real 
Acaa. Cienc. Modrrd, 73, 225-230. 

GOOD, 1.1. (1962). The measure af  anon-measurable sec. InLogrc, MethoaologyondPhiloso~ny 
of Science. E. Nagel, P. Suppers and A.Tarski eds. 319-329. Standford: Unrverstv Press. 

GOODMAN. T.N.T. (1977). Qualitative urobability and improuer distribut~ons. J. Roy. 
Statrst. Soc. B 39, 387-393. 

KOOPMAN, B.O. (1940). The axloms and algebra of intuirive ilrababilty. Ann. Moth. 41, 
269-292. 

LEITMANN: G. (1976). Multicrirerro Decision Making and Dlffeentral Comes. London: Ple- 
num Press. 

RIOS, S. (1975a). Nuevos cnterios de ordenacibnaereglas de decisibn. TmD. EstadisL 26,5-12. 

- (1975b). Ordre quasi-bayeaen des regles de decision. Proc. 40th Sessron ofI.S.1. Warsow, 
694-698. 

- (1976). Nuevos cnterlos de ordenacibn de reglas de decisibn. Rev. Reol Acoa. Cienc. 
M&id70,235-253. 

SAVAGE, L.J. (1954). TheFounaatronsof Stafrsrtcs. Wiley: New York 

SMITH, C.A.B. (1961). Conslsrency In statlstlcal inference and dec~sion (with discuss~on). 
J. Roy. Stollst. Soc. B23, 1-25. 



38 

- (1965). persona pronabilitv ana statntlca analvszs (with discussion). J. ROY. Sfafrsf. 
Soc. A 128,469-499. 

SUPPES, p. (1974). The measurement of belief (with discussion). J. RoY. Sf4frst. SOC. B 36, 
160-175. 

On Some Statistical Paradoxes and 
Non-conglomerability 

BRUCE M .  HILL 
tirrrversrfy qfMichigan 

mu 
tinlvers~ty of titan 

SUMMARY 
Some statlstlcal Daraaoxes arising from the use of non-conglomerable fimtely 

additive distribut~ans are discussea. 

Keywords: FINITEAODITIVITY; CONGLOMERABILITY; LlKELlHOOD PRlNClPLB 

l. INTRODUCTION 
In recent years there has been a revlva of interest both m statlstlcal 

paradoxes, and in the finitely additive theory of Bruno de Fjnetti(1972, 1974), 
Dubins (19751, Heath and Sudderth l1976), Hill (1975), Lane and Sudderth 
(1978), Stone (1976). Most such paradoxes are transparent from the finitely 
additive subjective Bayesian polnt of view, and requlre little comment. The 
few that remaln are essentially paradoxes of non-conglomerability, a concept 
due to de Finettl (1972, p. 204), (1974, p. 177). These appear to be real 
paradoxes and stretch the imaglnatlon. At present the finltely additive theory 
of de Finetti 1s the only theory of inference and dec~sion-making without 
gaplng holes, and it therefore 1s Important to clarify such paradoxes so far as 
possible. 

In this article I first discuss Mervyn Stone's example (Stone, 1976) of 
what he calls "strong mnconslstency from uniform pnors", from the finlteiy 
additive subjective Bayes~an point of view. The example 1s both ~nteresting 
and important. Its importance, of course, does not depend upon the extent to 
which it arlses in real life, but rather upon what it tells us about modes of 
inference and decis~on-making. If, for example, the trap tnat Stone has set for 



the unwary Bayes~an had real teeth, then one might be forced to regard both 
imoroper and finltely additive prior distributions as potent~ally dangerous. 
and either to abandon the Bayes~an approach entirely, or at least to restrlct its 
use to very special situations. Even the latter would sacrifice one of the great- 
advantages of the Bayesian approach, namely, its universality, as opposed to 
other theories of inference (fiduc~al, Neyman-Pearson), which break down in 
all but the slmplest problems. Unfortunately both Stone's presentatlon and 
the discuss~on seem to have obscured the real issues. I would like therefore to 
present the example in my own notation, and rase and discuss the issues from 
the fin~tely additive point of view. This will lead us to non-conglomerability, 
and perhaps a real paradox. 

2. LADY AND DRUNKEN SAILOR 

The setting is flatland, laid out IU blocks as m Stone (1976). Starting from 
a known orlgin a lady and a drunken sailor walk about, trailing a string 
behind them. The path traced by their string consists of vertical and 
hor~zontal line segments, and whenever a block 1s retraced the strlng is pulled 
tight, SO that such retraclngs are not visible. Eventually they stop at an 
intersection and bury a treasure. A mechanism is then used to select a 
direction, with each assumed equally likely, and the pair walk one block in the 
chosen direct~on, still trailing the string. The sailor then dies on the spot and is 
buried there by the lady, who disappears into the nlght. No other information 
1s provided as to the manner m which the lady and drunken sailor have 
ambled, and the data of the experlment conslsts of the tight path from the 
origin to the sailor's grave. 

Let P be the point at which the sailor is burled, and let @ be the tight path 
fro'm the origin to P, so that$ is the data, and P is the endpoint of B. Let X be 
the true locatlon of the treasure, and let P be the true path from the orlgln to 
X. Now let P, be the point one block back from P along p, and let $, be the 
observed path from the orlgin to k. 
Let &, i3, P4, be taken counterclockw~se around P, starting from t1, so that 
the 2(, r = 1. 2, 3, 4, are the four points surrounding 2. Finally, let$< be the 
tight path extending& so as to pass through P, and then throughP,, t = 2, 3, 
4. Thus, such@: are exactly two blocks longer than$,, and given the data$, it 
1s known with certainty that the true path to the treasure is one of the$(, r = 
l ,  2,3,4, and that the location of the treasure is one of the%, I = l ,  2, 3.4. 

Let us determine the posterior odds for 2, versus 2<, i = 2, 3, 4 using the 
finltely additive approach. We condit~on upon the data $. Although such a 
conditioning event may have subjectwe probability 0, the conditional 
probabilities are still well defined in the de Finetti theory (de Finett~, 1972, 
~ . 8 2 .  1974 p.173). Since, glvenp, the event X = P; is equivalent to the event P 

= $,, then provided the ratio is not lndeterminate, 

P r fX  = 2, I$) - Pr[P  = flljpl 
PrlX = if l @ )  P r f P  = l$) 

It is essential to note that Pr( P = Pi) 1s simply the uucouditiouzd a prrorr 
subjective probability that the true path to the treasure is the particular path 
B,. Thus the Bayes~an solutlon depends entirely upon the specification of the 
prlor distribution for P, and no solution can be obtained without such a 
specification, whether explicit or lmplictt. Before examining some Interesting 
specifications of the prior distribution for Plet us stop and see how use of the 
parameter X instead of P led Fraser to some amusingly traglc (or trag~cally 
amusmg) conclusions. 

In his discuss~on Fraser felt that Stone had missed the real point of the 
example, namely that it was perhaps devestatlng evidence agalnst the 
likelihood principle itself. Let us try to see how Fraser mlght have been led to 
such a conclusion. Suppose that instead of the data $ the data had consisted 
only of the directed line segment, say from i, to 2. Call this experiment F. 
Then the likelihood function derived from E, with data < would be GP3 = 
g, for r = I ,  2, 3.4, and would be 0 elsewhere. Here,?! = P,, but for I = 2,3, 
4, we have replaced the treasure locatlon 2: by the corresponding last two 
segments of@,, i.e.. the directed segment fromP, toPfollowed by the directed 
segment from P to R. Givenz  specification of the treasure locatlon parameter 
X is equlvdent to specification of the last two line segments of P. Now 
consider still a third experlment k in which things are as before except that 
only the sai1or:s burlal polnt, 2, is available. The likelihood funct~on for X 
derived from E is then i(ij = g, ! = I ,  2, 3, 4. In arguing against the 
likelihood ~rmciple Fraser apparently vlews the likelihood funct~on i ( P 0  
derlved from E a s  identical with i(PJ derived fromk. Strictly speaking this is 
not valid, slnce G.) and L(.) are defined on different spaces. Thus Fraser.s 
argument would apply, at best, only to a generalized verslon of the likelihood 

This evaluatlon is basea upon oe Finetti's &lam 3 11974, Vol. 2, p. 3991, which asserrs that 
candirional  roba abilities satisfy the first two anloms. One can then evaluate ratlos of conditiohal 
urobabilities even wnen the condition~ng event has Drobabilitv zero. Thus (2.1), which is rrlvial 
when B has oositive probability, can still be ootalnea, bv repeared use of Amam 3 ,  even wnen B 
has probabilitv zero. The method is to condition events like P = B ,  u m n d  and v, or B,), so that 
0 /0  cannot occur. 



prlnclple. But this generalized verslon would be unacceptable to Bayes~ans 
also slnce in fact the posterior distribution of Xderived from E i s  in general 
different from that derived from h. Note that when the prlor distribution for 
Xis  uniform then E gives rise to a uniform posterior distribution over the 2!, 
I.e., to what I shall call the Stoned Bayeslan Posterior. There is an additional 
flaw in Fraser's argument agalnst the likelihood principle, namely, that the - 
orlglnal experlment 1s not equivalent to E unless fl, contains no Information 
about X. This, however, need not be the case, and furthermore Prp, 1 X=,%?<] 
Is not even well defined without at least a partlal specification for the prlor 
distribut~on of P. As we shall see later, prior distributlons for which P rp , lX  
= l ; ]  is constant, have some peculiar features. From a more general point of 
vlew note that the likelihood funct~on L@) = Prwl P = p], m the orlglnal 
expenment, is afunction whose doman consists of all possible paths to the 
treasure, while L ( X )  1s a function whose domain conslsts of all possible 
treasure burial points. Although, g~venfl. P = p,  if and only if X = fi, r = 1, 
2, 3,4, the likelihood functions cannot be identified in the two experiments. 

Now let us try to formulate a prior distribution for P The model I find 
most compelling 1s as follows. Suppose that very little can be presumed as to 
the walking rate of the lady and sailor. They may, for example, at times stop 
Somewhere discretely, and at other tlmes may run. By symmetry we might 
vlew all tight paths of a given length (number of tlght strlng segments, or 
blocks walked, exclusive of retracings) as equally likely aprlon. Let N be the 
true length of the tight path to the treasure, and let fi be the observed length of 
the tlght path to 2. Then we need only specify a prlor probability distribution 
q (j) = Pr  [N = j], J = 0, i, 2, ... According to the de Finett~ theory any 
finltely additive distribut~on can be used, including, of course, countably 
additive ones. Supposing it is known that the time durlng which the lady and 
sailor amble 1s not so small as to be very mformative, and that similarly A is 
not too small, we might wish to take Pr(N = A - 1) = Pr[N = A + l]. Who 
would, for example, wish to regard paths of length 1000 blocks as much more 
or less probable than paths of length 1002 blocks, over a not lnsubstantlal 
length of time? Thus we snall assume q (A - 1) = q (A + 1) for the given A. 
But for any specified path of length J - 1, there are exactly 9 tlght paths of 
 length^ + 1, which continue the given path by two blocks. By symmetry this 
means tnat any particular such path of length J + i must nave one nlnth the 
aprlori probability of the specified path of length J - i. From (2.1) lt now 
follows that 

This, of course, yields Pr(X = 2,Ifl) = 3/4; and corresponds more or less to 
the confidence solution proposed by Stone. Apart. from our use of changing 

walking rates, and the time factor, both of which suggest taking q (A - 1) = q 
(A + l), this analysls is slmilar to that proposed by Dickey in his discuss~on of 
the Stone article. 

Although the evaluation q (A - 1) = q (8 + 1) seems compelling, as 
mentioned above the de Finetti theory allows use of any finitely additive 
distribution for N. To obtaln the Stoned Bayes~an Posterior under our 
assumption of symmetry, one would thus need q (A + 1) = 9 q (A - 1). 
Contrary to Stones's analysis, it is not a uniform prlor distribut~on on X, nor 
even a uniform prlor distribut~on on N. tnat 1s relevant to Stone's trap, but 
rather the distribution for which q + I)/q - 1) - 9, J = 2, 3, ... There do 
exlst finltely additive distribut~ons with this property. For example, let J have 
the usual uniform finltely additive distribution over the non-negat~ve integers. 
I.e., an Integer "chosen at random" in the de Finett~ terminology de Finetti, 
(1972, p.86). Let 

C= (01, F= [ 1 , 2 , 3 ] , 2=  (4,5,6,7,8,9, 10, 11,121etc. ~f 

= P ~ [ J E ~ S ,  then uslng de F~netti's Ax~om 3 (1974, Vol. 2, p. 399), or 
results of Dubins (1975), we can define the condit~onal ratlo as 

- 
Thus if there were a serlous argument against the use of Pr(N = j] = q as a 
prlor distribut~on, then this would s.ueak against the finltely addit~ve theory. 
And so we should squarely face up to the question as to whether use of g(.) 
(no matter how unnatural and uncompelling) leads to any unfortunate 
consequences. Clearly use of a-) leads to a coherent procedure in the sense of 
de Finett~, so there 1s no possibility of belng made a sure loser. 

Let us now look at the nature of Stone's argument agalnst the Stoned 
Bayeslan. We consider two mdividuals, S and S.B., each of whom can search 
m exactly three places for the treasure. S always chooses 2,, 2,, 2,, while S.B. 
always chooses 2,, 2,, 2,. In repeated experlments Stone suggests that S can be 
"confident" of obtalnlng the treasure in at Least about 3/4 of the experiments, 
while S.B. can be so "confident" In at most about '/4 of the experlments. 

This agaln folious from Axlorn 3, with 

P?Ij+ll Prv+klj-lorj+ll 
-- definecl as 
Pro-l l Pr~- l / j - loi j+1I  



Apparently none of the discussants questioned this "confidence" I would 
like to do so. The basis of Stone's argument is. of course, the fact that 
conditional upon X = X, there is probability 3/4 that the mechanism for 
choosing a direction will choose one that extends the path. Since this is true. 
for all possible X, Stone apparently draws the conclusion that 314 1s also 
appropriate unconditionally. A serious discuss~on of this questlon necessarily 
leads us to the concept of nonconglomerability. 

Let us begin by considering a different example, also paradoxical. A 
polnt 1s selected uniformly on the surface of a sphere with a designated north 
and south pole. You are given the exact longltude of the point relatlve to some 
specified great clrcle, and can choose to search for the polnt either in the 
equatorial arc between 45' north and south latltude, or aternatively along the 
corresponding polar arcs. Assume that you are certaln to find the point if you 
search along the arc m which it lies, and suppose you always choose the polar 
arcs for your search. There are serlous arguments for regarding the polnt as 
uniform over the possible polnts compatible with the glven longltude: (de 
Finetti. 1974, p. 275) (as de Finetti argues, the Kolmogorov resolution of the 
paradox in terms of limiting surface areas 1s merely an artifice to avoid the 
loglcal issues). In this case, glven the longitude, say X = X ,  the probability 
that you find the point is %, for each possible X. Stone's frequency argument 
would then lead you to antlclpate that in approximately !h of such 
experiments you will find the polnt. On the other hand, in terms of surface 
areas (not conditional on longltude), one mlght argue that your frequency of 
finding the point should be substantially less than !h. namely, I - 1 / 4 .  

' 01course the Kolmogarov axloms rule our such conditional uniformltv on great arcles, so t i  is 
a suestlon of an approDrlare cholce of axioms. Consider, however. the follawlng coordinate free 
formulation. Suppose the suherels not labelled with a orespecified north Dole, and you regard the 
Domr as uniformlv disrribured on the surface of the sohere. If vou are gjven only the rnformatlon 
that the golnt lies on some exact great clrcie, would vou now regard the Dolnr as uniform on that 
great clrcle (since there i s  no nortn Dole, no otner disliihutlon seems natural, so ~resumahly you 

either regard the distributlon as uniform, or else consider it as mdeterminate)? 1s this case 
necessarilv different from that m which there is a pies~ecified north  ale? If your answer is yes, 
trv the fallowlng vanatlon. Before oeservlng the data (i.e., the great clrcleon which theuomt Lies) 
every great clrcle on the suhere is labelled with a north Dale by means of the axlom of eholce. 
When vou are given the data the sunere a rlgidiy rotated in a ~rescribed fashion, so tnat the 
chosen north Dole for this Darncular clrcle rs in some sranaard uosition, i.e.. agrees with a 
sranaard north Dole and is at the longltude of Greenwich. The (thought) exuerlment IS then 
reileated n llmes, mdeDenaentiY, and so one abtalns m this way n Dolnrs an the great circle 

through Greenwich. How do You vlew these ~ o l n t s  as bang disrribured an the great clrcle through 
Greenwich? Does latltude have the conventional cosine denslty, or are the ~ o l n t s  disrribured 
uniformly, or is no outnlon lustified? tn this case necessarilv different from tnar in which there is 
a slngle pres~ecified north pole? 

Which frequency, if either, 1s relevant? Note that we are not here ralsing 
questions as to the subjectwe versus frequency cbncepts of probability, but 
for the present accepting the frequency lnterpretatlon. and argulng that even 
within its own framework it does not yield an unambiguous anticipated 

frequency of success. By the same token neither does Stone's argument glve 
an unambiguous result for the frequency of finding the treasure. (Some may 
try to avoid the dilemma in the case of the sphere vla the Kolmogorov fashion 
(Kolmogorov, 1950, p. 50), or by arguing that "real" problems are discrete or 
even fin~te. Such arguments merely avoid the loglcal content of the problem. 
Furthermore, even if we accept that reaJ problems are finlte, continuous 
idealizat~ons are commonly made m statistics for practical approximations, so 
the questlon would reman as to when such idealizations are dangerous). 

de Finettl long ago described such sltuatlons in terms of non- 
conglomerability and argued that the paradoxes are real rather than apparent. 
In the finltely additive theory it is possible that 

Pr[Find treasure 1X = xJ = C, for all possiblex, but Pr[Find treasure1 + C.  

My polnt 1s that there 1s a very weak link m Stone's argument, which 1s 
equivalent to an assumption of conglomerability for relatlve frequenc~es in 
reDeated experimentation. The sphere example makes it clear that a real 
assumption 1s involved in such reasonmg. Note, ~ncidentally, that if Stone had 
taken a finlte flatland (say walled around), then his argument agalnst Stoned 
Bayeslan would not apply, even apart from non-conglomerability 
considerat~ons, so that the lnfirute idealizat~on 1s essential to the example. 

3. A REAL PARADOX? 

Suppose we are concerned with the value of a physlcal constant M, 
known to be rational and between 0 and 1. Suppose further that two different 
physlcal theorles are under consideration, T, and T,. Given T,, M has some 
specified distributlon Q,, concentrated on the ratlonas in the unit interval, 
and givlng each such ratlonal positive probability. Given T,, Mhas the diffuse 
finltely additive uniform distributlon on the ratlonals between 0 and I ,  and 
thus glves each such ratlonal zero probability. We assume 0 < Pr[T,] < 1, 
PrlT,] = l - Pr(T,). You are now given the exact value of M, say M = m, and 
wish to reassess the probabilities of the two theories on the basis of this data. 
Note that Pr[M=m] = Pr[T,] Pr(M = m IT,] > 0, so the data upon which we 
condition has positive prior probability. The de Finett~ theory then y~elds 

PrlT,jM = m) = I ,  for each possible m. This 1s another example of non- 
conglomerability, since by assumption PrIT, j < I .  However, there 1s a further 
paradoxical aspect. For one knows in advance that no matter what ratlonal 



value m 1s observed, it 1s a foregone concluslon that Tl will have posterlor 
probability i .  This example is slmilar in character to that of Dubins ( 1975), 
discussed by de Finett~ ( 1972. p. 205). (Other examples of de Finett~, for 
instance, the probability that an Integer 1s even, conditional on any element of 
a Dartltlon (de Finetti, 1974, p. 178), are less extreme, slnce although th& 
probability may be i for each such element, there also exlst partitions for 
which it 1s ident~cally 0. Thus the concluslon 1s only foregone with respect to a 

.. specified partition). 
A number of remarks seem pertinent. 

I .  The problem we have posed arlses frequently In statlstlcal practice. 

In the convent~onal Bayes~an formulation it would be a matter of comparmg 
p r~or  distribut~on Q, for a Bernoulli parameter p, as agalnst a uniform prlor 
on P.  Note that if Q, remalns concentrated on the ratlonals, but under T,,p% 
MO, 11, then the UaradOx disappears, slnce if m 1s lrratlonal the posterlor 
probability of T, becomes l .  Imaglne that lnitially the problem was posed with 
M 2r U 10, 11, glven T,, but that before observlng m it was learned that 
lrratronal values of M a r e  ~mpossihle. Our lnitlal descrlptlou of the problem In 
terms of a physlcal constant rather than a Bernoulh p was chosen so as to 
avoid issues regarding the subjective lnterpretatlon of such a parameter asp .  

2. If we take the Bernoulli P verslon of the problem, but replace the 
original form of data by a f in~te number of observatlons on a Bernoulli 
sequence with parameter p ,  then the paradox agalu d~sappears. The posterlor 
distribut~on of future observatlons can be described in the usual way as a 
nondegenerate mlxture under Tl and T,. 

3 .  The prohlem 1s related to that formulated by Harold Jeffreys (1967, 
Ch. V) with regard to testlng u = 0 versus u havlng the Jeffreys uniform 
Imurouer p r~or  density, where u 1s the mean of a normal population. Given 
normally distributed observational data on U, one would ordinarily reject the 
hypothesls that u = 0. This led Jeffreys to regard use of the Improper prior as 
lnapprourlate for "hypothesls testing" purposes, although he retained it for 
estimat~on. Jeffreys's model for hypothesls testlng was developed by L.J. 
Savage In terms of testlng a sharp null hypothesls agalnst a diffuse alternatlve, 
and later Hill (1975) formalized these notlons Into a unified structure 
~nvolving various hypotheses, each glven positive prlor probability, and 
conditional upon each of which, certaln parameters are glven proper prlor 
distrihut~ons. The Jeffreys paradox 1s much the same as that concerning M ,  
and Jeffreys, Savage and Hill avoided the difficulty by taking a proper prlor 
distribution for the parameters Under the alternative hypothesls. From a 
practlcal p o ~ n t  of vlew this may be sat~sfactory, but there remaln loglcal 
questions as to the use of a finltely additive prlor under the alternatlve. 

Now let us return to the problem as lnitially formulated. What are the 
lmplicat~ons of the paradox? A first reactlon mlght be as follows. Since any 
observation m will Lead one to attach posterlor probability i to Tl, lt 1s 
unnecessary to make such an observat~on, and one can slmply alter Pr(TIJ to 
be I even without perform~ng the experlment. (Note that this argument would 
not apply In the other de Finett~ examples alluded to above, slnce the 
conclusion would depend uuon the chosen partition). In effect this line of 
argument repudiates the diffuse fin~tely additive distribut~on on the rationals, 
at least for "testing" purposes, much as Jeffreys repudiated the uniform 
imuroper prlor on U .  The argument agalnst such repudiation 1s as follows. It 1s 
certainly possible that a physlcal theory, such as T,, can lead one to regard M 
as uniform over the rationals, and under the subjective lnterpretatlon the 
p r ~ o r  probability for T, can then be any. value between 0 and I .  Suppose that 
you evaluate Pr(T,J > 0. Is it possible that merely by contemplating the 
experlment which conslsts of observlng M,  that one can conclude that one 
should have evaluated Pr(T,J = O? This would appear disastrous for the 
suhjectiv~st~c theory, slnce it would Imply that the prlor probability of a 
hypothesls could not be assessed unless one knew beforehand what 
experlment would be performed. It would also suggest that if some other 
exueriment was later even contemplated. then the prlor probability of the 
hypothesls mlght have to be revlsed. Surely any subject~v~st~c analysls would 
be ~mpract~cal  in this case. Thus if we wlsh to retaln the subjectlv~st~c theory, 
including fiultely additwe diffuse models, then we must learn to live with non- 
conglomerability. In particular, we must accept that we can have P r ( T , M  = 
ml = 0 for all possible m, while Pr(T,I > 0. This 1s only a stronger form of 
the paradox of the sphere example. In that example, glven any longitude, one 
regards the polar arcs as havlng conditional probability l%. The same 
argument that suggested taking Pr(T,J = 0 because P r ( T , M  = m )  = 0 for 
all m, would suggest In the sphere example that the unlon of the polar arcs, 
I.e., the polar caps, should have prlor probability %, contrary to the lnitial 
assumption that the polnt was chosen uniformly on the surface of the sphere. 
Yet surely no one would use this as an argument to repudiate the uniform 
distribut~on on the sphere. 

4. FINAL COMMENTS 

i .  It 1s des~rahle that the suhject~v~st~c  theory should be cauable of 
dealing with models IU which the parameter can take on infinitely many 
values, with cardinality Irrelevant. This is so in part for purely logical reasons, 
SO that the theory forms a coherent structure that can be relied upon In all 
sltuatlons; and In part for practlcal reasons, since even from the ordinarily 
more realistic finitistlc polnt of view, one will often find it advisable to make 



approx~mat~ons  using lnfinlte models. 

2.  Just as in the finlte case, so too in the lnfinlte case, there are 
sometlmes compelling psychological reasons for chooslng prior distributlons 
that are, in some approprlate sense, "uniform" over the possible parameter 
values. Of course the cholce of parameter for  which uniformlty seems 
approprlate (whether exact or  approxlmate) is often subtle. Thus In Stone's 
example uniformity on the "length" of path seems p ~ y c h o l ~ g l ~ a l l y  natural. 
just as In the context of multivanate inadmlssibility uniformlty on the norm of 
the parameter vector seems natural (Hill. 1975). Within the subjectivistlc 
theory such uniformity is neither mandatory nor excluded. 

3. The conventional use of ~mproper  prlor densities to represent 
uniformity (or so-called "ignorance") can lead to difficulties with regard to 
coherence and admlssibility (Heath & Sudderth, 1976), (Hill, 1975). On the 
other hand, the use of finltely additive prlor distributions, as advocated by de 
Finettl, Is Part of a solid theoretical framework for  Bayestan Inference and 
dec~slon-theory. If one uses posterior distributions for finltely additive pnor 
distributions then one cannot be made a sure loser, nor even to have 
uniformly positive expected loss, in a finite number of bets regarding 
parameters, and the corresponding declsion procedures are extended 
admissible for bounded loss functions (Heath & Sudderth, 1976). The only 
difficulties known to this author with regard to  the use of finltely additive 
prlor distributions are those that arlse from non-conglomerability, as in the 
example o f  Stone, that of Section 3, and that of uniformtty on  the surface of 
the sphere. Our discusslon of these examples has been an attempt to show not 
only that non-conglomerability is unavoidable, but also that even within the 
frequentlst theory, frequency arguments such as that of Stone may be 
unconvlnc~ng precisely because of non-conglomerability. 

For those of us who wish to retaln the subjectlve Bayeslan model for 
learnlng and declsion-making there appear to be three maln paths open. First, 
we can restrict the model to finitistic applications and/or to bounded loss 
functions and proper unor distributlons footnote m the Infinite case: second, 
we can perslst with conventional improper prlor distr ibut~ons '~ '  in the infinlte 

Much af Jeffrevs use of impiouer unor distributmnr can in fact be justified bv the finitely 

additive theory usmg de Finetti's Axlom 3. 1 find the de Finettl approach preferable m that the 
axioms have a very clear intuitive content. Thus Axlorns 1 and 2 merely formalize the alm of not 
bemg a sure loser, while Axlom 3 articulates this am with the evenrs of zero probability. I t  is not 
clear to me what are the corresuonding alms of thecountablv additiveimprouer prior approach of 
Jeffrevs. For example, how should one vlew lnadm!ssibility and the lack of extenaed admlssibility 
~n Jeffre~s approach? The de Fjnettl approach clearly allows madmlssibility, and if one chooses 
non-conglomerable distribut~ons, it even allows the lack of exiended admssibility. 11 thus 
urovides a clear frameworK for discuss>on. 

case. ignoring inadmlssibility (and even extended inadmissibility) problems; 
tblrd, we can develop the finltely additive theory,*learnlng to live with non- 
~on~lomerabil i ty.  The first path is quite restr~ctlve and may be unrealistic even 
as an  approxlmatlon. The second path, at  least in some applications, will lead 
to unnecessary losses. Are there any real objections to the third path? 
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DISCUSSION 

1.J. GOOD (Virgmto Polythecnre ondSfote Unrver$tlyl: 
I shall restrlct my discusslon to Ule historical aspects of the uauer uresented by 

Professors Giron and Rios. 
J.M. Keynes (1921) argued that not all loglcal probabilities could be compared. 

B.O. KooDman (1940a, b), aclnowledged Keynes's influence and laid down fairly 
convincing but complicated axloms for partlally ordered "intuitive" ~robabilities, 
where "intuitive" I think meant either loglcl or subjecttve. I DroDounded the simplest 
possible acceptable tneory of partially ordered subjectlve probabilities in Good (1950, 
D. 119) and Dolnted out that such a theory is identical with the use of upper and lower 
 roba abilities urovided that it is agreed that we can imagine perfectly shuffled Dacks of 
cards. I extended the theory to lncluae utilities in an obvious manner m Good (1952) or 
see Good (1954). At a 1960 conference in Stanford (Good, 1962) I showed that this 
slmplest possible theory of partlally ordered probabilities im~lies formd axioms 
connecting upper and lower urobabilities. Cedric Smith (1961) justified my theory by 
UStng arguments analogous to those used by Savage (1954) for the theory of shaFp 



probabilities. For this justification he made use of convex sets of prlor distri'but~ons. 
Smith said he left some loose ends and presumably these have received tne attention of 
Rios and Giron. Whether this is so I have unfortunately not had tlme to check. 

Most of my historical research was concerned with finding the publicatlons where I 
had mentioned the ~artlally orderea theory of subjectwe probability. I have found fifty 
such publicatlons, or perhaps only 49, ranging from 1949 to 1979. I have Dven the list 
to the authors, to prove to them that I have emuhaslzea the uartlally ordered tneory 
perhaps an  nauseam, but in the references to this discussion I have listed only Good 

. (1950, 1952, 1962, 1976 and 1977). For example, in Good (1976, p. 137) I polnted out 
that my theory 1s a Bayednon Bayes com~romise, as Rios and Giron have now 
recognized. 

It may be helpful to mention that the theory of partially-ordered probabilities (and 
utilities) 1s sometimes called a theory of comparative or qualitative probabilities (and 
utilities). The subjective version could reasonably be called Good's theory or the 
Doogian theory or the comparative or qualitative or partially-ordered Bayesian theory, 
and "quasi-Bayeslan" is yet another name for the same thing. 

klthougn I have always accepted this theory, m practlce I often prefer to use sharp 
urobabilities and utilities for the saae of simplicity, as an approx~mation to the partially 
ordered theory. 

On a polnt of termmology, I think the expression "confidence mterval" should he 
restnctea to the Neyman-Pearson sense. In the Bayes~an tneory one can use the 
expression "Bayeslan estlmatlon mterval" 

Turnlng now to Professor Hills' pauer, the word "~aradox" has at least two 
distinct meamngs which can be distinguished by talking about apparent and true 
paradoxes. If I thought there were any twe paradoxes m tne theory of subjective 
probabilities that 1 support, then I would be forced to abandon rationality. 1 am not yet 
prepared to  d o  that. 

Perhaps the common aenomlnator of all Bayeslan statlstlcs 1s the product law; 
P(A &B) = P(A).P(BIA), meaning that if two of tneprobabilities mean anything then 
so'does the third, and this n so even if tne probabilities are merely constraned by 
inequalities. Have we any reason to doubt this proauct law, m the light of the vanous 
apparent paradoxes mentloned by Dr. Hill? I think these paradoxes u s e ,  at least m 
part, through performmg limiting oueratlons in the wrong order. For example, the 
limit of P.D. (xly, < Y < y, + 6yJ as Sy, tends to zero is not necessarily equal to P.D. 
(XI? = YO) When P CV = yd = 0. (Here P.D. stands for 'Lurobahility denslty"). To 
assume otnerwise is equivaent to assumng that all Jacobians are equal to 1. Also, m 
tne problem of the distributlon on a sphere, there 1s a difference between a random 
great clrcle on a sphere rather than a great circle known to pass through a known fixed 
pomt (the North Pole). These two comments I believe remove the paradox from the 
example of the denslty on a sphere and the denslty on a iongltude. 

We all know that improper pnors can sometimes be used if the limiting operations 

are performed in the right omer. But one lnterestlng example where an Improper pnor 
is definitely ruled out occurs in some work on Bayesran significance testing for 
multinomlals and contingency tables (Good, 1965, 1967, 1976; Good and Crook, 1974; 
Crook and Good, 1979). In this work there 1s a Bayes factor F(k) deuending on a non- 

negatlve hyperparameter K such that the null hypothesis corresponds to K = m and 
such tnat F (k) tends to 1 when K tends to infin~ty. If a hyperprlor *(k) is assumed fork 
such that \Fd*(k) 1s divergent, tuen me resultant Bayes factor F = lim \ t ~ t k )  

K- m 

d ~ ( k ) / j :  d*(k) = 1. In other words the evidence against the null hypothesis 1s 
completely annihilated by a prior that is "improper at infinity". Satisfactory results 
were obtanea In tne applicatrons by nslng a proper pnor that approxrmates the 
Jeffreys-Haldane Improper p1101 of aenslty i/k. The proper prlor cnosen for this 
purpose was a log-Cauchy with appropriate hyperhyperparameters. 

Now consider Lester Dubins' problem (de Finetti. 1972, p. 205). An lnteger n has 
been selected by one of two procedures A or B. In procedure A the probability of a 
specific value of n is 2.- (n = I, 2, ... ), whereas m procedure B the probability a 
uniformly distributed. Thus 

P (n a definable in less than~lO'OOOOOO years / B) = 0 

So if B is true we can never get evidence for it. (The unlverse is only about 10'5 years 
old). But it was assumed that n has been defined. Therefore P(B) = 0. If we had 
originally luaged tnat P(B) = 0.5, then we must change our mlnas in view of th'is 
additiond thinking. I don't regard this as an mconslstency, in fact I have argued the 
value of what I call "dynamic probability". According to this theory we must admlt 
that probabilities can change without new empirical information. See Good (1977). 

Regarding the drunken-sailor uroblem, I don't see the anvantage of explanlng fi 
m two dimensions rather than in one dimens~on. 1 think the problem then reduces to 
one discussed at the Waterloo conference on statlstlcal inference, following a paper by 
Eraser. 

L. PICCINATO (UnrversrryofRome): 
In pnnciule I have some difficulty to ynderstand fully wnat "complete ignorance" 

is, and I would urefer a slightly different approach. The model of professors Giron and 
Rios generalizes the usual model for decision ~rohlems m tnar it considers that we nave 
not just one Drobahility distributlon on the states but tnat sucu Law is known to belong 
to a glven set. This generalization could be seen m a different way: the standard 
bayeslan model is an ideal uaradigm and it 1s surely useful to have some flexibilitywhen 
we turn to practical applications (the case mentloned of several decision makers 1s an 
example). Therefore the pers~ectlve I would like to suggest is that of sensitivity 
analys~s, or robustness, with resuect to the choice of the pnor. 

The paper gves useful indications about how to proceed in this type of analysis. 
Anyway 1 am inclined to think tnat all Bayesians act sometimes as quasi-Bayesians 111 
the sense of this paper: when we use conjugate distributions we are actually dealing 
with a problem which is m an intermediate position between total ignorance and a fully 
Bayeslan approach wnere only one probability distribnt~on on the states is requested. 
But in that case the use of classes of prlors 1s only a matter of formal generality, which 
is attamable without any practical complication. 

I think that these concepts about quasi-Bayes~an procedures and the related 





Using this form of conditioning, the results of Heath and Sudderth can be 
extended to obtaln JUstificatlOns for improper pnors. Thus, m a future paper, 1 will 
prove that, if the gambler 1s allowed to maKe countably many bets, but all bets are off 
when.the observation is outside a compact set (which may be chosen by the gambler), 
then the posted conditional odds are coherent if and only if they are based on a. 
postenor distributlon which corresponds to a possibly improper, countably additive 
DIlOI. 

Objections against the use of improper prlors nave been raised also from the polnt 
of v~ew of aamissibility. Thus, in the estimation of a locatlon parameter, the Bayes 
estimators basea on a uniform prior may be inadmissible (Stem, 1956), However, 
results will in general be different if we condition on the observed value belonging to a 
compact set. Then the risks become conditional risks, and a new concept of conditio~al 
admissibility emerges. In a future paper it will be shown that it is not difficult to modify 
C.R. Blyth's (1951) proof of adm~ssibility of Bayes estimators based on Improper prlors 
are conditionally admissible in the above mentioned sense. And, according to the new 
frequency mterpretat~on of Villegas (1977a), this is all tnat 1s needed m statistical 
inference. 

It should be recogmzea that there are two lines of development for Bayes~an 
statlstss: one is the personalistlc line, based on personal, subjective Dnors, and the 
other is the loglcal probability line, based on logical pnors that represent ignorance. 
The second line 1s not so well developed as the first one, but some progress has already 
been made (Villegas, 1977b). 

Logical prlors are usually invanant under a glven group. Therefore they are not 
only relative to a glven model, but even more, they are relatlve to a group that a glven 
as an integral part of the model. Fraser's structural models are useful from a logical 
probability viewpoint. Stone,s example becomes a structural model if the group with 
two generators 1s considered as an integral part of the model. In that case the logical 
prlor is the uniform pnor. But the story of the lady and the sailor bnngs other 
considerations which favor the selection of the other prior. Since the likelihood 
~rlnclple Ignores the possibility that a group may be glven as an Integral part of a 
model, it a not valid in a log~cal probability approach to statrstlcal inference. 

J.M. DICKEY (Unrversrry Collegeof Wales Aberysiwyfhi: 

1 find the paper by Professors Giron and Rios mtnguing, esDec~ally the idea of 
working with "exrremal" posterior distribut~ons to surround, so to speak, the coherent 
Inferences of persons whose pnor distribut~ons lie within a range of distributions. This 
harmonizes closely with my idea of "scientific reportmg" as a reportlng of the pnor-to- 
oostenor transformation over a class of orior distributlons conceived as contammnp the - 
reasonable uncertainties of a populatron of sclentlsts (DicKey, 1973). Vanous graphical 
methods are available for reportlng such a distribution-valued functional. Bounding 
methods are also proposed in both papers. 

The idea of Giron and Rios seems slmple and straghtforward, and in view of the 
long story of statistical theorists saylng they could not know their ~ r i o r  distributlons, 
one would have ex~ected this idea to nave developed much earlier. The authors have 

done a great service m carefully settlng out the theory. 1 look forward to Seeing more 
applications. 

An obv~ous direction of generalizat~on which may Interest the autnors is to replace 
the set K* of permitted, equally acceptable, prior distributions by a new distribut~on of 
distribut~ons, an express~on of uncertanty concerning uncertainty. This could be used 
to generate sets K*, for example, by setting thresnolds on some denslty for the new 
distributlon in functlon space. My own paper ln this meetlng invesUgates the form such 
a distributlon might take and its use m the problem of asseseng (choosing) a subjective 
probability distribut~on. See also Dickey and Freeman (1975). There are, of course, 
logical difficulties with the meanlng of such a second-order belief distributlon, and in 
both our settings one would need to resist the temutatlon to marmnalize by taking the 
second-order average of firsr-order beliefs. 

Finally, I should like to complaln that the term "agreement set" for XL or its 
convex closure could be misleading. Presumably, tne decision maKers agree m having 
thelr opmlons fall in the set. But then they disagree on which distributlon 1s appropriate 
within fhesei. 

There are many diverse issues ra~sed in Proffesor Hill's paper. The m a n  pornt for 
me is that he argues with DC Finetti m favour of merely finlte additivlty, and 
consequent nonconglomerahility. In the sphere example this would mean tnat all the 
great cucles tnrough the poles could have uniform distributlons within a nrcle, while 
the two-dimensional probability on the sphere could also be uniform. This conflicts 
with the conditional distribution tnat would be obtanea by a limiting argument 
conditioning on an observea small interval of longltudes. 

I am grateful to Professor Hill for personal conversations ln which heinformed me 
that his lssue in the sphere example is not the same lssue as brought forward by 
Kolmogorov (1933, Ch. V, Sec. 2). Kolmogorov cltes Borel for what 1 have called the 
Borel-Kolmogorov nonunlqueness, whereby a conditional distribut~on obtained in the 
usual way from a joint density will depend on the conditioning var~able used to define 
the conditioning event, rather than just on the conditionmg event ltself. In the sphere 
example, a different experiment which slices the earth by parallel planes will produce 
uniform distributlons within the circles produced. 

Apparently, Hill 1s not thinking of any ex~er~meut  at all when he asks for the 
distribut~on within a great circle, but wants to base a conditional distribution on the 
purely logical statement that a particular great circle obtains. He wants finlte additiv~ty 
"in Dart forpurely logical reasons". He also clams to need it for practrcal reasons, 
slnce "one will often find it advlsahle to maKe approxlmatlons uslng lnfinlte models" 

I simply do not understand the practsal need for merely finlte additiv~ty. When 1 
make approximations to finitisnc situations uslng infinlte models 1 shall not restrict 
myself to uslng only a few loglcal statements to obtan a mathematical model. 1 shall 
look at the real-world problem and the real uncertantles mvolved. For example, just 
because some exeruses in textbooks fail to a v e  mformatlon distmguishing between 
equal-length intervals would not be enough to tempt me In a real-world problem to use 
a uniform pseudodenslty over the whole real line. It seems to me that countable 
additivlty, conglomerability, and proper ~ntegrable distribut~ons enable us to treat real 
~roblems realistically, without worrylng that the mathematics itself will deal us an 



unpleasant surDnse. I should like to hear further about the uractsal issues. Mervyn 
Stone's lazy-Bayeslan examples over the years have only served to warn us agalnst 
nonintegrable distributions, which were already ruled out by the axioms of coherent 
behaviour. 

M.H. DEGROOT (Cornegre-Mellon Unrversrfyl; 
In the pauer by Rios and Giron, pdrtial informatlon about a prlor distribuuon is 

represented by slmply dividing all distributions m Q* into a set K* of possible prlor 
distributions and the complementary set of impossible prior distribut~ons. Wouldn't it 
be more reasonable to assign urobabilities to the distributions In Q* ; I.e., to asslgn a 
urobability distribution P* to the set Q* . In turn, one mlght then assign a distribution 
P*** to the set Q** of all distributions P* , etc. In bnef, why not develoD a 
hierarchical model? 

D.A.S. ERASER (Unrvcrsrty ofToronlo): 
I wish to discuss three polnts connected with Professor Hill's pauer: how the Stone 

examule provides a strong counter example to the Strong Likelihood Principle; how the 
modelling of the internal vanable of the Stone example leads to the overriding 
probability statements; and how informatlon concerning a realizauon from such an 
Internal variable must satisfy certaln requirements as to how it was producedin order to 
be acceptable for probability calculations. 

The Stone example A has seemed to me to be a very striking counter example to 
the Strong Likelihood Princlule. Professor Hill has doubts and discusses the 
distinctions between the full parameter and two interesting component parameters. The 
full parameter for the model is 8 = p ,  the path from the Ongln to the treasure: a derlved 
parameter of interest 1s 8, = 8,(8) = the last directed segment ofp;  a further derlved 
parameter of interest is 8, = 8,(8) = X ,  the end uoint of the pathp. These parameters 
are not the same and yet, &wen a data-uolnt f i  (the path to the sailor), the possible 
values for them fall into a one-one eaulvalence. The observed likelihood functlon e a 
functlon of the full uarameter 8; as oresented it is not a likelihood for either component 
uarameter but does of course urovide information concerning each. The full parameter 
space is 0 = (p), the free group on two generators. 

A salient feature of the Stone example is the striking contrast between the 
following two results: the likelihood functlon from data assrgns equal likelihood ( i )  to 
each of four possible paths to the treasure; direct probability arguments based on an 
mternal variable uut an operational 3/4 probabilit~ on a ureferred one of the four 
oossible paths. Thus, likelihood says the four possibilities are on a oar one-with- 
another, whereas an internal varlable nominates one of the four possibilities as a 75% 
favounte. The example seems to make clear that likelihood does not contan all the 
needed informatlon. 

Perhaus some further details can add emphasls to this result. For the Strong 
Likelihood Principle my own preference a a urescnption in the followng form: from a 
statlstlcal investlgatlon use only the observed likelihood function. An alternative form 
closer to that Drouosed by Birnbaum 1s the followng: if the likelihood function from a 

first model + data-point is the same as the likelihood functlon from a second model + 
data-point then the inferences should be the same in the two cases. For this we note that 
the'likelihood function 1s a nonnegatlve function on the Darameter sDace Q left 
~ndeterminate to a positive multiulicative constant; that is, it is a positive ray from the- 
ongm m the vector mace R". The equality, then, of two likelihood functions requlres 
the same uarameter space Q and the same ray in R'. 

Is the probability Imbalance and the constant likelihood on four parameter points, 
a necessary consequence of the unusual parameter space? Or  could we find another 
model + data-~omt that yields an identical likelihood function but with a different 
probability Imbalance or more sunply with say symmetry on the four uossible 
parameter values? We examine this latter possibility. 

For this suppose we start with some particular likelihood function obtaned from 
the Stone example with adata-~omnt; lets, be the datapomt and 8', BZ, 8%. R4 be the four 
uossible Darameter values consistent with P,. For a second model we take the same 
parameter space 0, the same SamDle suacejS = Q, and the following very suecial 
probability structure: 

where e is the identity element. The likelihood functlon from the samule points, is the 
Same as that from the Stone example and yet the model treats the four uarameter values 
symrnetncally. This provides the formal contradictlon to the Strong Likelihood 
Principle. 

Clearly the likelihood functlon alone is not enough. Of course many statistlclans 
do not acce~t  the Strong Likelihood Prinmple, usually on the good grounds that many 
fruitful statattical results are available outside the Principle. The Stone example 
however 1s direct: the likelihood functlon alone ormts an essential probability prouerty. 

The Stone example contalns apnmary random system - the suinning of the woman 
at the end of the taut thread. Based on this urocess, there is an overriding 3/4 
Drobability that the path is extended, and corres~ondingly an overriding 3/4 probability 
that the last path segment comes from the treasure. This seems to provide the 
motivation for Stone's "classical statlsticlan" although details are not glven. A formal 
version of the preceding appears in my Comments on the Stone pauer but was 
sidestepped m Stone's eluslve rejomder. The recognition of the fundamental 
lmDortance of unmary or internal random systems seems long overdue in contrast with 
the intensive actlvlty m some areas of contemporary sratlstlcs. 

Prof. Hill also considers the system in which a uomt 1s selected uniformly on the 
surface of a suhere with a deslgnated north and south pole; an investlgaror is glven the 
exact longitude of the uomt. Prof. Hill seems to show ureference for a uniform. 
distribution for the Doint on the given great circle of longitude. This 1s in conflict with a 
basic probability Dosition, both classical and Bayesian, that marginal and conditional 
probabilities go together to give joint Drobabilities. For we note that the standard 



conditional distribution given tnat longitude equals the recorded value has aenslty 
proportional to thecoslne of the latitude. 

What is the key element in the preceding conflict? We have a situation where there 
is information concernmg a realization from a random system, and yet the information 
does not fully identify the realizatlon. Discuss~ons of conditional probability show that 
we need to Know not only the information as to possible values for a realizatlon but 

also how that informatlon was Droducea; see for example Fraser (1976, Ch. 41, Fraser 
and Brenner (1979). 

Most discussions of conditional probability OverlooK the need to Know how the 
information 1s produced concernlng the possible values for the concealed realizatlon. 
Without ~ t ,  contradictions are obtained and vanous "paradoxes" are to be found in the 
literature. Information without knowledge concernlng its production does not support 
probabilities. This is a very fundamental argument agalnst the Bayes~an position. 

S. FRENCH (Unrverszry of Moncnesfer): 
I wish to comment upon Girbn and Rios's paper. First, a few points of a technical 

nature. The authors have to use topolog~cal propert~es of 0 and ideas of continuity m 
case (a) of their theory. 1 wonder if these assumptions can be weatened by using the 
approach of Krantz et al. (1971). These latter authors have avoided. the use of 
topological assumptions in thelr measurement systems Instead relying on weaker 
solvability conditions applied to the underlying qualitahve orders. Perhaps GirOn and 
Rios could generalise their results smilany. 

Early m their Paper, Girbn and Rios discuss partlal orders derived from convex 
cones in IR". I wonder if they have seen the recent work of Hartley (1978). His 
approach seems to give the weaKest set of conditions available for playing with such 
orders. Also for a ~ r a c t e a l  illustrahon of the use of such cone-orders in the sensitiv~ty 
analysis of a decision problem, the authors have referred to Fishburn (1964). His paper 
(1965) in O~eratlons Research is also of relevance and, perhaps, easier to find. 

Turning now to what I believe to be a more important question. The authors 
consider a decision maker who Knows his utility function perfectly and his subjective 
 roba abilities imperfectly. Is this a reasonable model? It says essentially that he can 
locate for each ~ossible consequence an exactly equivalent gamble based upon some 
auxiliary experiment. Is it feasible to suggest that he can do this, yet be unable to locate 
a gamble based on the auxiliary experiment equivalent to a gamble based upon an 
unknown state of nature? The problem of measurlng subjechve probability is lust as 
easy, or difficult, as that of measurlng utility. In terms of a l o m  systems my point 1s 
this. In assumlng the existence of a utility function u (.) the authors are hiding under 
thelr decision space another decision space ln which the oraerlng of decision rules is 
complete. 

Finally, since I see the pnmary use of this theory to be m the area of sensitivity 
analysis, Perhaps the following suggestion is appropriate. I have seen papers in which, 
as here, the utilities are Known and the probabilities only partlally known and also 
papers m which the probabilities are known and the utilities partlally known. I wonder 
ifd~l:tl~rv tncorms ofn~~tncrnat l<a.  prograrnmlng can L!,)? u, 3 means o f a l l o u ~ n ~  barn 
quantiriur 10 bc paru:!ll) Knotrn? Perhaps tncauthor\ &non. of ;I rcfcrencc in tl1t,arc3. 

D.V. LINDLEY (Unrvemfy CollegeLondon): 
I have a brlef comment on the paper by Giron and Rios. How does a partially 

ignorant person act? Bayes~an decision theory is a recipe for the selection of a silfgle 
act: Bayeslan inference provides all the lnformatlon about the unknowns m the 
problem needed to select the act. The authors' tneory ends with a class of acts: if this 
class contalns more than one member, how is a unlque act to be selected in cases where 
no more data is available? A possible application of this theory 1s to multiple decision 
probkms where several oplnions are present, but agan there 1s the difficulty of the 
choice of asingle act. 

Turnlng now to Hill's paper, Kolmogoroff (1933 Ch. 5 ) ,  makes the point that 
conditional  roba ability is either defined with respect to an event of non-zero 
probability, or for a random varlablex ( W )  defined over a space of values of W, and not 
for the slngle event x (w)=x, when this has probability zero. My understanding is tnat 
Kolmogoroff would want to know what random variable gave longtitude 30; was lt 
longtitude, or was it some other vanable? This seems nght to me and I'd wweome 
Hill's comments on this. It constrasts with the likelihood DnnclDle since it requlres 
knowing not just that the longtltude was 30 but what Other values (like 25) one mlght 
have had. What are the "gaping holes" - mentioned in the first paragraph - m a slgma- 
additive tneory uslng proper distribut~ons? 

REPLY TO THE DISCUSSION 

F.J. GlRON (UnrversidaadeMoiago) and S. RIOS (UnrversidaddeModrid): 
We would like to start by para~hrasing DemDster, quoted by Bernardo (1979): "In 

the area of statistical inference, there must be little that any one has thought about that 
Dr. Good has not written about, to the point that a computerized informatlon retrieval 
system would be very helpful to scholars in the area" 

Our paper does not intend to be a historical paper nor a paper on the history of 
vartially ordered ~robabilities, and expliqt reference to previous ideas on the subject 
are mentioned in sectlon I .  

With respect to the pnonty clamed by Professor Good, ~t is worthwhile 
mentioning here that the idea of approximating sharp probabilities by means of an 
lnterval is to be found in an early paper by Frechet. Unfortunately we have not been 
able to trace back the appropriate reference thought lt mlght be found in 
Econometnca. To what extent early ideas Influence a theory is always a controversial 
subject. As an example some french authors and others refer to the Kolmogorov 
axloms as the Frtchet-Kolmogorov axlomatlc set up. 

We agree with Professor Piccinato that the Bayesian approach is the "ideal 
paradigm" Yet to contemvlate the quasi-Bayesian theory merely as a sensitivity 
analysis approach IS, we believe, to focus Just on a Darticular aspect of the model. Its 
lnterest resides in that the hypothesis of the model are more general than that of the 
Bayes~an model; more mathemarlcally tractable than other former approaches (the one 
mentioned by Professor Picclnato of Skibinski and Cote (1963) could be an example); 
and above all in the maln theorem that establishes an equivalence between the ideas of 
partial ordenng of decision rules and partial informatron m terms of probability 



measures. On the other hand, the lntemretation of the theory from the point of vlew of 
sensitivity analysls also stressed by Dr. French m his contributlon to the discuss~on, 
allows for a unified and systematic treatment of the uroblem of sensitivity analysis m 
Bayes~an decision making. 

With respect to the problem of non-admissibility of quasi-bayenan Drocedures 
that Professor Picclnato mentlons nearly at the end of his contributlon, the situation 
here IS exactly the same as m the Bayes~an case. Problems of admissibility in post- 
experimental situations deuend on three facts: l", unor uartlal information may be 
incompatible with some expenmental outcomes; the support of distribut~ons of P 
may be a uroper subset Cl' of n, thus discarding some states of Nature; 3,<; the 
ludic~ous use of Fubini's theorem. 

We are grateful to Professor Dickey for his comments and, like him, we would 
also like to see more applications of the theory. We have taken up his complant and 
have change the term "agreement set" into the more lnnocuous term, and we believe it 
more aut, "feasible  set"^ 

The generalization suggested by Professor Dickey, which is also uolnted out by De 
Groot in his contribunon, of developing a hierarchical model seems interestmg, 
sueclally the idea of setting thresholds on some distributron of distribut~ons (the second 
srage in the hierarchical model) to generate sets X; of first-orders beliefs. This idea 1s 
also closely related to the pauer by De Robertls and Hartigan (submitted for 
uublicat~on to the Annals of Statistrcs) about ranges of measures as an exuresslon of 
uartlal ignorance. 

Professor De Groot's suggestion of developing a hierarchical model is discussed at 
length m the pauer by Good at this conference. However as heuresents the hierarchical 
model we would have in the first stage a complete orderlng given by the probability 
measure P*'. In the second stage, we would now have as new states of Nature the set of 
all probability measures on Cl*, that is Cl**, on which a new distribution P***, could be 
assigned, and so on; so that this would drive to a comulete ordenng of decision rules by 
marg~nalizlng on succesive stages unless in any of the stages tne ~robabilities assigned 
were partially ordered (cf. Good, p. 7. line 12 of his revlsed manuscript) and thus the 
final orderlng of decision rules would only bepartlal. 

Our vauer is an attempt to characterize these uartlal orderlngs which, of course, 
can be embeded in a hierarchical model, one of the srages of which at least corresuonds 
to uartlally ordered ~robabilities. 

Dr. French suggests a generalizatlon of our paper by using the approach of Krantz 
et al. (1971). We believe this program can be carried out along their lines. Another 
uossible generalizatlon of the results of our paper for uartlal comvarative probabilities. 
that also takes Into account the role of exoenmentatlon. could be based on the works of 
Fine (1971, 1973). Yet we want to point out two facts: l", in the Krantz et al. approach 
the subjectwe probability denved is finltely additive as in case (b) of our paper, in 
which the only requirement is the existence of a bounded utility function; 2"'. the 
topological assumutions of case (a) guarantee the c-additivity of probability measures 
of set K* ana neither comuacness of fl nor contlnulty of acts can be dropped if one 1s 
seeking for o-additive subjective urobability measures. Further, this allows for a 
uarallel and systematic treatment of Cases (a) and (b) and renders the proofs of maln 

theorems almost tnviaJ by uslng the touologlcal dual of spaces C(n) and B@), 
respeCtlvelY. 

.Unfortunaltely the uaper by Haruey (1978) French mentlons nas not reached our 
hands at the time of writing the rejoinders. 

We are In agreement with Dr. French when he says that our model is not 
reasonable because it takes for granted that utilities are perfectly Known and, in 
~ractice, both quantities, probabilities and utilities, are only uartlally know. However 
we know of no duality theorem of mathematical Programming that can ammodate  the 
case when both quantities are partially known, although we tbinK this to be a very 
lrnvortant issue in practical decision making. 

The questlon Professor Lindley ralses is a key one; namely, how does a uartwlly 
decision-maker act? The answer is in the premlses of the theory, preasely m the 
formulation of Axiom I .  If a partially ignorant person has only a limlted amount of 
~nformatlon, then he selects a class of non-dominated acts such that it is worth while 
bettmng on these acts against other acts. Usually, this class contans more than one act, 
and then it is not clear how a slngle act 1s to be selected. A uossibility would be to 
randomlze among these acts, but this would be equlvalent t o  consider a hierarchical 
model and this, in turn, 1s equivalent to havlng your decisions linearly ordered. 

On the other hand, Bayesian decision theory may also lead to aclass of acts (when 
several decisions a t t a n  the same Bayes risk) and then it is not also clear how to 
randomlze. 

In Short, if one 1s partially Ignorant one cannot expect to be able to linearly order 
the set of uossible decisions. 

Quasi-Bayeslan tneory takes lnto account the uossibility of uartral-instead of total- 
rnformation thus generalizing Bayes~an theory. Then, it 1s proven that such a 
hypothesks is Intimately related to partial ordenng of decisions as opposed to the 
comDlete ordenng of decisions m Bayesian theory. Which IS more plausible is a 
auestion of applicability and even of taste. 

B.M. HILL (Unrverscly of Uran and Unruersrty of Michigan): 

I would like to thank all of the discussants for their comments. Before responding 
to individual discussants it may be he.luful to maKe some general remarks. The primary 

Durpose of my article was to focus attention on the axloms for Bayesian inference and 
decision theory. The de Finetti axioms are weaker than others m that they allow finltely 
additive distributions and non-conglomerability. It is hard to Imagine satisfactory 
axioms for quantltat~ve urobability that are still weaker than those of de Finetti, and 
failure to abide by axloms I and 2 can subject one to sure loss. Should, however, these 
axloms be strengthened? Should, for examDle, one require that decision Drocedures be 
extended admissible, or.perhaps even admissible. If there are senous arguments so to 
Strengthen the de Finetti axioms, then there should exlst telling examples clearly 
demonstrating the shortcomings of the finitely additive approach. The examules that I 
chose Were those that seemed most clearly to'suggest possible shortcomings , a n d 1  
attempted to determine lust how serious acase could be made tostrengthen tneauoms. 
Thus in Mervyn Stone's example, I think most of us will prefer the Bayes~an solution 
based uuon a uniform prior distribution for N: whether this is taken literally or as an 



approximation using proper unor distributions. The de Finetti axioms, however. do 
not exclude the fimtely additive unor distriburlon z.) that leads to the Stontd 
Bayeslan Postenor. So it seems natural to ask exactly what ill consequences will occur if 
one were to use this prior distribut~on. Stone suggested that over a long sequence of 
repetiiions of the experiment the Stoned Bayeslan would get the treasure less frequently- 
than someone who used the confidence solution. My discusslon of the sphere examule 
was meanr to suggest why his argument is not very convincing even within the 
frequentist theory. For it is circular. Only if you have already rejected finite additiv~ty 
and non-conglomerability does the argument suggesr an unambiguous frequency for 
obtalnlng the treasure. 

Nnw let me turn to the individual discussants. Professor Good suggests that the . . - . . - . . . . . . - 
paradoxes (if sucn they be) arlse from Incorrect limiting arguments. 1 a0 not think so. 
Indeed, there are no limiting arguments in my article, and I tried to avert such a 
misinterpretatlon by conditioning upon an exact great clrcle. Admittedly this is an 
idealization for real world problems. But so conditioned the uroblem is still loglcall~ 
meanmgful, analogous idealizations are commonly made in statistics, and there can 
easily anse situations where the appropriate conditioning event is not specified, 1.e.. we 
are not told whether the measurement urocess restricts us to the region between two 
parallel ulanes, or between intersecting planes through the poles, or still other reglons. 
(Such sensitivity to the llreclse form of the conditioning event is still another reason to 
argue for the freedom of the finitely additive approach). Would Professor Good, along 
with Professor Fraser, slmuly refuse to discuss the questlon m the absence of such 
information? Professor Gooa then refers to the distinction between a random great 
clrcle on a suhere and a great clrcle known to uass through afixed polnt (See also my 
footnore # 3). He should then be able to uomt to the ill consequences from taking the 
polnt as uniform on the great clrcle m the latter case. But I susuect that he will only be 
able to demonstrate such consequences if he has already assumed countable additivlty 
and consequently also conglomerability. With regard to Professor Good's discusslon of 
the, Dubin.s uroblem, I find his argument that P (B) = O  even less convlnclng than my 
own tnat PrlT,)=O in Example 3. First of all the age of the universe 1s not so terribly 
well known as he implies. Would Professor Good be greatly surunsed if by the year 
2,079 some new theory suggested tnat the age should be revlsea upwards to 10Z5 years, 
or whatever? Secondly, I am concerned witb his empnasls on "definability". Suppose 
we are discussing tne number of elementary subatomc particles in the universe, and for 
tne sake of argument assume that there is a well-aefined number. Then although under 
hypothesis B it will urobably take awfully long to "define" this number, the number 
has been assumed to exrst, and the finitely additive uniform distribution (at least in the 
upper tail) may represent ones, opmions much more adequately than any countably 
additive distribunon. What if, for example, one simply cannot name a number such 
that the urobability to tne rlght of that number 1s less than 10-'OO? 

1 find Professor Good's discussion of "dynamic urobability" mtnguing. But I 
doubt tnat it 1s relevant to the Dubin,s problem or Example 3. The reason for my doubt 
is that the alteration m Pr[B] or Pr[T2] that he suggests would be made merely to avoid 
non-conglomerability, without havlng advanced any serious argument as to the need 
for conglomerability. Finally, I was sorry that Professor Gooa did not choose to 

discuss the drunken-sailor problem. Although the one dimensional veraon has much in 
common with it, there are certlnly real differences between the two versions, for 
example, the non-amenable free grouu on two generators, and in uarticular the finitely 
additive analysls of the problem m two dimensions would appear to be new. 

Professor Dickey questions the uractlcal need for merely finltely additive 
distributlons. I think all three of the examples I discussed suggest sucn a neea. In the 
arunken-sailor examule Professor Dickey presumably would object to the uniform 
finitely additive distribution on N. and at best would view 11 only as an approxlmation 
for a uroper countably additive distributlon. Even so, is n not sometimes useful to have 
available such a simple approxlmatlon, rather than to labor over the fine details of ones 
pnor distributions m a situatlon where there e little to be gamed from such labor? 
Similany for the ~rob lem on the sphere. What if Professor Dickey does not have 
available all the real-world informatlon he would like, so that the shape of the region 
delimited by the actual measurement urocess 1s not Known. Keeeng in mlnd the 
uossibility of parallel hyperplanes, would he exclude the uniform distributlon on a 
great clrcle, even as an approxlmatlon? Would he slmuly lgnore the uroblem, as so 
many non-Bayesians do with regard to any oroblem that d0esn.t fit into a neat 
Kolmogorov-frequentlstlc mold? Finally, improper unor distributlons can often De 
given a finitely additive lnteruretatlon, so that they are m fact consistent with the de 
Finettl axloms for coherent behaviour. (See my footnote no 4.) 

Professors Dickey and Lindley both polnt out that in the Kolmogorov approach i r  
is not sufficient to know the conditionlng event, and that one also neeas lnformat~on 
regarding the conditionlng variable used to obtaln that event, at Least when the event 
has probability zero. This is true, and seems to me to cast doubt upon the approach 
~tself. As I argued above, aoes this mean one should say nothing when sucn 
information about the variable is not available? MY notion of uniformity on the 
surface of the sphere incluaes not Only the evaluation of probabilities as prouortlonal 
to surface area for sets that have surface area, but also the notion that conditional upon 
the point being in any specified finlte sets of uomts, all such points are equally likely, 
ana conditional upon a great clrcle, urohability is Drouortional to arc length. This 
strong notion of uniformity is not uossibie in the Kolmogorov approach, but is 
compatible with tne de Finett~ axloms. Why should such an ouinlon be excluded? The 
contrast between the Kolmogorov approach ana the likelihood unnciple 1s lrself one of 
the gaping holes. Conventional statlstlcal models often assume the data to have 
urobability zero, and within the model Bayes~ans are forced to consider their 
probabilities conditional upon an isolated event of zero urobability, although 
Kolmogorov (1933, P. 51) wishes to exclude urecisely this situatlon. Of course onecan 
take refuge in a finitistlc approach, but then we lose the advantages m slmplicltv that 
we obtain witb conventlonal moaels. I think the situation 1s somewhat akin to that with 
regard to stopping rules and the likelihood principle. A conventional non-Bayesian 
analysls is not really uossible without knowleage of the stopping rule, and slnce we 
rarely if ever know the true stopping rule, a conventlonal analysls could at best yield 
only certain inequalities. In the same way, a conventlonal Bayeslan analysls in the 
Kolmogorov system is only possible if one knows the conditionlng variables, and 1 
submit that in most applications they too are unknown. But we will nonetheless draw 



inference and make decisions. I believe that the arguments agalnst such an approach 
are circular. They have force only if one has already accepted countable additivity. 

Professor Villegas has an interesting alternative way to  deal with inadmssihility, 
but it does not seem appropriate to  discuss this here. 

Now let me turn to Professor Fraser's comments. Desolte my very best efforts 
Professor Fraser still regards the Stone examule as convlnclng evidence aganst the 
likelihood onnclole. I cannot agree. First of all, the only kind of likelihood DnnclDle 
that can have any credibility at all is one com~atible with Bayeslan mference. For even 
a non-Bayeslan would have to  reject a versron of the likelihood onnciple that was not 
com~atihle with Bayesian lnference whenever he thought that the prior distribution had 
a frequency lnterpretatlon. This in turn lmdies that a data-deoendent transformation 
of the ongmal parameter must be excluded as evidence agarnst the likelihood onnclolc, 
smce the transformed oarameter would have a different  nor" distrihut~on than the 
orlgknal Parameter, as I hooe my discussion of E a n a  k makes clear. Professor Fraser 
apparently now acceDts this but offers still another expenment to orovide a "formal 
contradict~on to the Strong Likelihood Pnnc~ole" (nearly the same as my likelihood 
onnclole). In order for his new expenment to make sense we must assume that the new 
exoenment consists in first oerformmng the original exoeriment to obtain his d a t a j ,  (my 
B) ,  and then oerforming some additional expenment to  generate his new likelihood 
function. (Note that this must be done for all possible jo, not lust a oarticular 
realizat~on). Even if he is correct that the modified exDerrment yields the same 
likelihood function as the ongin81 exverlment Lhe argument loses its force because 
whatever asymmetry is lnvolved in the original experiment must then be reflected in 
Eraser's modification. But his ouroose was to treat the four parameter values 
symmetrically. 

Professor Fraser also argues aganst the likelihood vrlnclple on the grounds that it 
counters many "frultful statistsal results" It is of course counter to conventlonal 
s~gnificance testing, but Bayesians are hardly alone in regarding such tests with a great 
deal of SkeDtlClsm. 

Finally, Professor Fraser discusses the need to know how information 1s oroduced. 
as was rased by Professor Lindley and discussed above in my reoly. This is uresumahly 
a much more fundamental issue for Professor Fraser than for Professor Lindley, and is 
at the root of much criticlsm of the Bayes~an approach, dating back at least to Venn. 
Thus Professor Maser  res sum ably would have us do nothing without such knowledge, 
and also without Knowledge of stopplng tlmes, etc. This perhaps restricts the 
applications of statlstlcs to  the emoty set. I would also ask Professor Fraser exactly how 
we are to discriminate between the varlous forms of knowledge, I.e., between 
knowledge that can be (in his sense) validly reoresented by a orobabilitv distrihutlon, 
and oomrons that cannot be so represented? 

Professor Picc~sato ralses some mtngmng questions regarding the use of 
conventlonal statistical moaels. As I see it finite additivity and non-conglomerability 
offer us some additional freedom in the ~robabilistic exoression of our knowledge. In - 
some applications it will be imoortant to  take advantage of that freedom, and in some it 
will not. As in my reuly to Professors Dickey and Lindley, I think that m the sphere 
example rt is im~ortant  not to  force oneself into the Kolmogorov mold, at Least not 

without careful considerat~on as to  the knowledge that one wishes to exuress. But 1 do 
not think there is anything incompatible between the careful use of conventlonal 
stat~stlcal models and the de Finetti theory. It is true th@ conventlonal oarameters can 
often be disuensed with, as for examole m an exchangeable sequence of zero-one 
variables, and where this is oossible it seems  referable to  do so rather than to lnvent 
artificia parameters. (In Hill, (1969), n 1s shown how conventlonal linear models can 
also be dealt with In this way). But on the other hand there are many situations which 
cannot as yet be handled satisfactorily In terms of the observable variables, and 
uarametnc models offer a convenient flexible way of dealing with such ntuations. In 
any case it 1s not a questlon of incomoatihility, but merely of seelng things In another 
light. Finally the question as to  the case where the conditional distributions are the 
same, and so as Professor Picclnato suggests, the oarameter mlght seem to be 
~rrelevant. is Indeed a Daradox of non-conglomerability. But desuite the intuitive 
olausibility of merely disoenslng with the oarameter, perhaDs we should recall that we 
must have had some reason to  view the situation as non-conglomerable in the first 
olace, and then to choose as best we can between the conflictlna intuitions. 
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Approximations of unsupervised Bayes learning 
procedures 

U.E. MAKOV 
Chelsea College, London 

SUMMARY 

Cam~utat~onal  constrams often limlt the practical applicability of coherent Bayes 
solutions to UnsuDervrsed sequential learning problems. These ~roblems anse when 
attemDtS are made to learn about Darameters on the baslc of unclassifiea observations. 
each stemming from any one of k classes (k22). 

In this paper, the difficulties of the Baves procedure will be discussed and eustlng 
approxlmate learnlng procedures will be rewewed for broad types of ~roblems involving 
mlntures of b rob ability densities. In particular a quasi-Bayes approxlmate learrung 
proceaure will be motlvatea and defined and its convergence Dropertles will be reDorted 
for several special cases. 

Keywords: SEQUENTIAL: CLASSIFICATION: ESTIMATION: BAYESIAN; QUASI-BAYES; 
STOCHASTIC: APPROXIMATION, IDENTIFIABLE MIXTURES. 

I .  INTRODUCTION 

Problems of unsupervised learning arlse when attempts are made to learn 
about parameters on the basis of sequential unclassifiedobserVati0ns each 
stemmmg from any of k classes ( k 2 2 ) .  General discussions of such problems 
in the contexts of Pattern Recognition and Signal Detection are given in Fu 
(1968), Patrick (1972), Young and Calvert (1974) and references there cited. 

In this paper, we shall consider the following speclal cases. (See a survey 
in Ho and Agrawala (1968), for a discussion of these and other cases). 
Case A. The probabilities, al, .... TI that an observation belongs to class H<, 
1 = 1 ,  ..., k ,  are assumed unknown; the conditions probability densities 
&(xi 0.) = f(x] Oi, H;) of an observation X,  assumlng it to come from class H:, 
are assumed completely known (i.e. both the functional form and the 
parameter vectors 0, are known). These assumptions may be appropriate when 
large trrunmg sets can be made available from each Individual class, but there 



Is little Initial information regarding the "mlx" of observatlons m the context 
under study. 
Case B. The class probabilities, a,, ..., a,, are assumed known; the 
condit~onal f,(xl8,) = f(xl8,, H,) are assumed to have known funct~onal 
forms, depending on parameter vectors B ,  some, or all, of which ire 
unknown. For example, m many contexts it may be appropriate to assume 
that underlying denslties are Gauss~an with unknown means, while the 
varlances and the class probabilities are known. 
Case C. The class probabilities a,, ..., a, are assumed unknown: the condi- 
tlonal densitiesf,(x/8J are assumed to have a known functional form, depen- 
dlng on parameter vectors 8., some, or all, of which are unknown. 

In all the cases, the problem is as follows. A sequence of (possibly vector- 
valued) observatlons, X,, ..., X., ... are recelved, one at a tlme, and each has to 
be classified as comlng from one of a known number k of excluslve classes H,, 
..., HI before the next observation is recelved. Each declslon 1s made on the 
baSls of know~ng all the prevlous observatlons, but without knowlng whetner 
prevlous classificat~ons were correct or not. We assume that the r s  are 
recelved at a high rate and that strict computatlonal constraints are imposed. 
We thus limlt ourselves to learnlng procedures whose demand for 
computatlonal resources is small. 

Definlng * = (a,@), where a = (a,, ..., v,), 0 = (8,, ..., B$, we assume 
that, conditional on $, thex. are Independent with probability denslty 

(we shall assume throughout that the f's are such as to make this mlxture 
identifiable (see Yakowltz, 1970)). For a sequence of observatlons, X,, ..., X., lt 
follows from (l) that 

This 1s a sum of km products of component densities, each term m the 
summation havlng an interpretation as the probability of obtalnlng a certaln 
partition of the observatlons among the classes. 

The Bayesian rtlgorithm for Learning about $ (or the components of 
interest) Involves the specification of an a pnorl denslty for il., and the 
subsequent recursive computatlon of the posterior denslty p($ x i ,  ..., X.) using 

Classificat~on of X. 1s based upon any specified loss structure, and for 

, = l  ,..., k the values of p.(x,~H,lx ,,..., X.) the probability that the n'" 
observation belongs to class H,, glven the observatlons X,, ..., X.. These 
probabilities are computed uslng 

here 

f<(x"lx,, ..., X".,)= 

f,.(x, I O,), in Case A 

jfdx. 1 Bi)p(8t / xi, .. ., x..J dB,, m Case B, 

1 jf~(xm)8J~(8,,a)xi, ..., x..JdadBi, m CaseC, 

and 

P,(x.EH. 1x1, ..., X,.J = 

I a,p(a,lxl, ..., x..Jda,, m case A 

a,, m case B 

j[?rp(?i.,81xl ,..., x~.Jd8d?i.,incaseC 

It 1s O ~ V I O U S  that due to the mlxture form Inherent ~n (1) and (2) there 
exist no reproauctlng (natural conjugate) densities for unsuperv~sed Bayes 
learn~ng. This results m an unavoidable Increase m computer tlme and 
memory requrements, and leads to the solutlon belng impractical in the case 
of signals arrlvmng at a high rate, where speed of computatlon and small 
memory requirements are baslc prerequlsltes for a solutlon. For this reason, 
the formal Bayes learnlng procedure (B) has been regarded as of little practical 
use. Among the ad hoc solutions proposed in its place, we note the Dec~slon 
Directed approach, Recurswe Moment Est~mates and Learn~ng with 
Probabilistic Teacher, all of which are discussed in the references given above. 

As an alternatlve to these, we propose a Quasi-Bayes procedure which 1s 
both highly computatlonally efficient and retalns the flavour of the formal 



Bayes solution. Our discuss~on will be m terms of Cases A, B and C as above. 
but the approach can be extended to more general solutions. The statlstlcal 
literature abounds with papers on the estlmatlon of parameters of mxtnre 
distributions. The proposed methods (max~mum Likelihood estimators, 
moment generating functlon estimator, method of moments) demalid 
considerable computational resources and thus will not be discussed here. 
(For references, see Quandt and Ramsey, (1978) and the ensulng discuss~on). 

2. APPROXIMATE PROCEDURES FOR CASE A 
For convenience of notation, we shall wrlte a = (R,, ..., 93 for the 

unknown class probabilitles, and f.(x,,) for the known densities. Pr~or  
knowledge about a 1s specified in the form of an a p r ~ o r ~  densltyp(?r). 

If we denote by p (alX,,) the posterlor denslty for a glven X. = 
(X,, ..., X"), and by p,(a/X.) .the posterlor density for a if it 1s also Known that 
xnE H., then, by Bayes theorem, 

where 

J.(xJkc(Xm-,) 
wiX.) = P (X. E H. / X.) = 

E!=, fe(xm)%<(xm.J 

and 

We now consider the speclal case wherep (U) has the form of a Dirichlet 
denslty 

which we denote by D (a/a,'Q', ....a,'o'), where F (S) 1s tne standard gamma 
funct~on. Such a form might anse, for example, followrng a multinomlally 
distributed tralnlng sample whose correct classifications were known. 

It follows from (7) and (10) that after observlngx, we obtain 

where 
J (X , )~ , ' ~ '  

wiXJ = 

E f.(xJa 'O' 
.=,  

and 

Many well-known approximate learnlng procedures for this problem can 
be seen as arlslng from approxlmatlons to (1 1) of the form 

where the %,;S take values according to some specified method. Two 
approaches are suggested. 

n 
I. Averagmg. The 6,'s are chosen such that the mean and varlance of the 
approxlmatlug density (13) are identical to those of the mlxture (1 1). A slmilar 
approach (though m a different context) 1s taken In Owen (1975); Athans, 
Whiting and Gruber (1977); Harr~son and Stevens (1976). 

A 

11. Selection. Here one of the 6, takes the value one and the others zero 
according to some decislon rules. This approach 1s akin to the engineering 
concept of 'learning without a teacher'; see Agrawala, i(l973); Spraglns 
(1966); Fralick (1967), where the unknown 'teacher', the 6,. is the missink 
label identify~ng the observation with its class. Particular examples are the 
Dec~slon-Directed learnlng and the Probahilistlc Teacher Scheme. A 
comparative study (in the context of pmps m linear systems) of several 
averaging and selection methods is given in Smith and Makov (1980). 

(i) Decision-Directed Lear~lng (DD) 
According to the DD approach one of the 6 ,  is set equal to one and the 

others zero In such a way that uslng (4) and some specified loss functlon, this 
results m a mmnnum expected posterlor loss. In Other words, by settrng 2, to 
equal zero or one we regard our own (unconfirmed) classificat~on as if it were 
true. For example, m Scudder (1965),* the 8, was set to equal one if W, (X,) . 



was maximized for r = J .  The approach m effect assumed that the most likely 
H,  was, m fact, the true one (and thus zero one loss functlon assumed). 

The DD Scheme was further studied m Davisson and SchwartZ (1970), 
where it was shown that the approach did not guarantee asymptoty 
unbiasedness and could also lead to problems of runaways. Runaway occurs 
when the scheme commlts a sequence of errors resulting m a degradatlon of 
performance and consequent convergence to biased values. In Davlsson and 
Schwartz (1970), Davlsson (1970), the detection of slgnals m Gaussian noise 
was considered and bounds on the probability of runaway were provides uslng 
random walk theory. It was shown that except for very low slgnal to nolse 
ratlo, the probability of runaway of the class probabilities to the extreme 
values 0 and 1 was very small. 

In Katopls and Schwartz (1972), a modified verslon of DD (MDD) was 
proposed in which a bias-removmg transformation of the observation~ was 
Introduced such that the convergence to the true vaue of the class probability 
a was ensured. Another modification was glven in Schwartz and Katopls 
(1977). In Kazakos and Davisson (1979). in adittlon to a bias-removing 
transformat~on, a specific galn functlon (in the DD recurs~on) was suggested 
that guaranteed fastest mean square error convergence of the estunates of the 
a,'% All these modifications were shown to avoid the problems associated 
with the DD scheme, but at the expense of requlrlng numerical lntegratlon 
after each observation. 

(ii) Learnrng with a Prot~abilistrc Teacher (PT) 
According ;o this scheme, proposed m Agrawala (1970), a randomlzed 

cholce is made: S,, nelng set equal to one with probability wj(XJ. In Silverman 
(1979), the theoretical propertles of the PT for Case A were discussed; 
convergence was proved and asymptotic relatlve efficiency propertles were 
examined. 

The scheme which we propose is as follows: 

Quasi-Bayes IRarning (QB), see Makov an2 Smith (1977); Smith and 
Makov (1978); MaKov and Smith (1976), replaces S, by wj(XJ, and so takes 

where 

w . ' ~ ]  = ,.co1 + w.(XJ(i=l, ..., k). (15) 

Subsequent updatlng proceeds m the same way, so that withp (a IX,.,) bavlng 

a Dincblet form with parameters or.'"-", lt follows tnat p (a/X.) will be 
Dirlchlet with parameters 

a,'"' = a;'"-" + wj(X,,) (i= l ,... k), (16) 

where, corresponding to (12), 

In the special case k = 2, the Quasi-Bayes procedure leads to recurslve 
estlmates of %,if the form 

where 
a;' = + orz'O' + n + l) (19) 

and 

(18) 1s a typlcal QB recurslon (for this case and others), which 
corresponds to a Robbins-Monro (Robbins and Monro, 1951) type of 
Stochastlc Approx~mat~on. Uslng existing theorems m this field (e.g. 
Gladyshev, 1965, and many other) we were able to prove that the QB scheme 
converges to the true vane of a m mean square and with probability one. 
Convergence propertles were established for the case k = 2 in Makov and 
Smith (1977), Makov (1980), and for genera k in  Smith and Makov (1978). It 
was also shown in Makov and Smith (1976), that the QB scheme provides a 
better approxlmatlon to the Bayes solutlon than does the MDD. In Silverman 
(1979) the QB was proved to be more efficlent than the PT. 

In Kazakos (1977), a recurslve estlmatlon agorithm was provided which 
was based on the mlnlmlzatlon of the Kullback-Leiber lnformatlon number. 
The algorithm was shown to be consistent (for any k) and efficlent (for k =  2). 
In Makov (1980), it was shown that the QB scheme, (18) - (ZO), is a special case 
of the one of thediscussed in Kazakos (1977). 

In Fig. I ,  we snow the paths of success~ve estlmates of a,, ?r2 for a three- 
class slmulated example (k=3), where flf2f, are clrcular bivar~ate Gausslan 



distributions with all varlances equal to one and means given by (-0.5,0), 
(0.0.5) and (0.5,O) respectively. Comparisons of the QB approach with the B 
solution have been made in Makov and Smith (1977), Smith and Makov 
(1978), and we have omitted calculation of B here. Comparison of QB with 
MDD was made in Makov and Smith (1976), where the latter was shown to be 
definitely inferior. Since the MDD would, m fact, require successive two- 
.dimens~onal numerical integration for this example, it is also omitted. The 
results from the DD, PT and QB schemes are shown for the first 50 simulated 
observations, where a, and m, were both equal to 0.33. The estlmates for QB 
were obtamed uslng (9) and (16), which, from the well-known form of the 
mean of a Dirichlet distribution, Implies that 

The estlmates for PT use successwe randomizatlons as described above, 
or in Agrawala (1970); the estimates for DD follow the procedure as described 
above, or in Davlsson and Schwartz (1970). The prlor parameters used were 
a,'O'= 0.1, a,'o' = 0.15 and a,(o' = 0.1, representing a very weak form of 
prlor knowledge, lmplylng prior means for a,, a,, a, of 0.286, 0.428 and 
0.286. respectively. 

In this and similar examples, where classification is made difficult 
because of the high overlap of the underlylng distributions, the QB method 
shows marked superiority over the P T  method, while the DD method 
performs very badly Indeed. When the underlylng distribut~ons have only 
moderate overlap, there appears little to choose between QB and PT, whereas 
both are markedly superlor to DD. 

3. QUASI-BAYES PROCEDURES FOR CASE B 

In order to illustrate our approach to problems which fall within the 
framework of Case B, we shall consider two special cases, both for the case 
k =2, and both mnvolving known a,, a, (= 1-aJ. The first is that of Bipolar 
signal detectton, where f,(xOJ is a Gausslan density with unknown mean 
8 >0, f2(x1 8 3  1s a Gausslan density with mean -8, and the variances are known 
and equal (to oZ say). The second 1s that of Signal versus Nolse detection, 
where f1(x18,) 1s a Gauss~an density unknown mean 8, f,(x/83 = f,(x) 1s a 
Gausslan denslty with mean zero, and the variances are known and equal (to 
oZ, say). 

From the general results given m the mtroduction, it can be shown that if 
1 we takep"(8) to be normal with mean p and varlance then after observing X, 

we have 

where W:"' = p,(xleH,lxJ is derivable from (4), (5) and (6), N(0; :,@denotes 
that B has Gauss~an distribution with mean c/d, variance d.', and i" = 1 or -I 
according as I = 1 (X, E H,), or not, in the Bipolar slgnal case, 6, = 1 or 0 
according as I = 1 (X, E H,), or not, m the Signal versus Noise case. 

Our proposal is to replace 6,, by E (a,,), which 1s equal to 2wlU'-I m the 
Bipolar case, and equal to W,('' in the Signal versus Nolse case, and to take 
p"' (8) = N (8; T - ~  p + U - ~ E  (6;Jx1, T-, + o-?E (16,, l)). Subsequent updatlng 
now takes piace entirely within the Gausslan family, and we obtaln 



The posterior means glve a sequence of estimates of 0 ,  and the followng 
recursive relations are obtained: 

For the Bipolar case 

For the Signal versus Noise case 

Varlous modificat~ons can also be considered for large n, but these are 
not discussed here. In Smith and Makov (1981), the convergence properties of 
the Signal versus Notse scheme were discussed for the case where the w's are 
replaced by W*'"' = p, (X. E Hi18'"-'l, W ) .  The resulting recursion was shown 
to converge to B with probability one. In Tittenngton, 1976, a technique 
similar to the QB was applied in the context of medical diagnos~s where 
unconfirmed cases (= unsupervised) were ~ncorporated into data banks. The 
'fractional updating' was used to estrmate the means and covanance matrices 
of mult~var~ate normal densities. 

The performance of the DD scheme and its improved version have been 
stpdiea in general in Patrlck, Costello and Monds (1970); Young and Farjo 
(1972). At the present tlme, following the criticism of Agrawala (1970), made 
m Cooper (1975), there would appear to be no satisfactory account of the 
theoretical propertles of the PT scheme for this case. 

In Fig. 2, we snow the paths of successwe estimates for a slmulated 
example of the Signal versus Noise problem. A comparison is glven, for the 
first 50 observations, of the Dec~sion Directed, lmproved Dec~s~on Directed, 
Probahilistic Teacher and Quasi-Bayes methods. The underlying parameters 
were as follows: B = 2.0, oZ = 4.0, a, = 0.5, p = 5.0, T~ = 25.0: the latter 
represent very vague prlor knowledge about 8. Aga~n the pattern shown by 
this example 1s typlcal. Both the Probabilistic Teacher and the Quasi-Bayes 
procedure perform better than the Decis~on Directed schemes. 

FIG. 2 

4 QUASI-BAYES PROCEDURE FOR CASE C 
Few results are available in this rather difficult case. In Young and 

Coralupp~ (1970), stochastlc estlmat~on of a mlxture of normal densltles uslng 
an information cr~terion 1s discussed, In Katopls and Schwartz (1972); 
Schwartz and Katopis (1977), modified DD schemes proved to be consistent m 
a two-class declsion problem where the mlxture consisted of two normal 
densities, the mean of one of which was Unknown (as well as the mlxtng 
parameter). In Makov (1980a), the QB scheme was attempted m a Kalman 
filter context in which an attempt was made to track a process wnen there was 
a non-zero probability that the observation contaned nothing but pure noise. 
Simulat~ons results showed that the QB scheme 1s by far more reliable than the 
PT or DD so long as the process v golng through the contaminated 
envrronment. Work is m progress on the mathematical propertles of the QB In 



Case C. Pre l iminary  results  Indica te  t h a t  convergence may b e  guaranteed if 
certain restr ict ions are lmposed on t h e  parameter space. T h i s  will not be  

discussed here. 
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Change-Point problems: approaches and applications 

A.F.M. SMITH 
Unrverszty of Nottingham 

I SUMMARY 

Problems of making ~nferences aoaut aerupt cnanges m the rnecnalusm underlying a 
sequence of ouservatlons are considered m 00th retrospectwe ana on-line contexts. 
Among the toplcs considerea are tne Lindisfarne scribes problem; sw~tching straight lines; 
manoeuvenng rargets. and shifts of level or slope m linear trme series models. Summary 
analyses of data obtalned in studies of schiropnren~c and kidney transplant Datlents are 
presented. 

I Keywords: CHANGE POINT, SWITCHING STRAIGHT LINES, BAYES FACTOR, KALMAN FIL 
TER 

r INTRODUCTION 

In the slmplest possible case, a sequence of random quantities K,...,E is 
said to nave a change-pomt at r (1 5 r < n) if 5 ,...,E and y,,~ ,..., are 
exchangeable subsequences, but the combined sequence 1s not exchangeable. 
Assunnng the usual mlxture representatlon of exchangeable sequences, the 
most frequently used model of a change-point at r can be wrltten in terms of 
densities as 

I where M, denotes the model which assumes a change-pomt at r ,  and 
~ ~ 6 ' 1 0 , )  # ~~0.103, p (B,,Bz) have obv~ous mterpretatlons. It 1s convenient to 

I denote by MO the model which assumes the entlre sequence exchangeable and 
defines 



- With such a formulation, inference about change-points, given y; = y,, ...,y. 
= y,, reduces to consideration of the set of alternahve models M,, M,, ..., 
M. ,. These may be conveniently compared puwise using Bayes factors - 
ratios of poster~or to prior odds - so that. as is easily seen from Bayes 
theorem, 

B., = 
P Cvl,...,~. IM,) 

PCVI, ..., y.lM,) ' 

the required densities being obtained from (1) and (2). A detailed study of this 
approach for univariate sequences and a variety of standard parametric 
distributions 1s glven in Smith (1975). In Sect~on 2 of this paper, we shall 
outline the extension to more than one possible change-polnt and illustrate the 
approach by applying it to the Lindisfarne Scribes problem (Ross, 1950). 

In the more general setting of changes m structure of a regression or time 
series model, the simple characterization in terms of exchangeable 
subsequences no longer applies, but, provided we specify the model, M,, 
corresponding to a change at r, we can use (3) directly to compare alternative 
models. This approach will be presented for regression models m Section 3 
and a possible extension to linear time series models will be outlined in Section 
4. Also m Sectlon 3, we shall comment briefly on special problems of interest 
that arlse In the case of switching straight lines. 

The analysis in Sections 2-4 concentrates on retrospective analysis. In 
Section 5, we shall consider an alternative linear model formulation, In terms 
of Kalman filters (Harrison and Stevens, 1976), that seems more suited to on- 
line detection of changes. 

2. BINOMIAL DATA: THE LINDISFARNE SCRIBES PROBLEM 

The Lindisfarne Scribes problem (Ross, 1950; Silvey, 1958) is of the type 
described at the beginning of Section I ,  but admitting more than one possible 
change-point. A text divides Into n sections, and it 1s assumed that only one 
scribe was involved in the writing of any one section, and that sections written 
by any one scribe are consecuttve. We wish to infer how often, and where, 
changes of scribe occurred. The analysis is to be based on the frequency of 
occurrence of a certain word which has just two alternative forms. A version 
of some of the data, taken from Ross (1950), is set out in Table I .  

TABLE 1 

Number of occurrences of present indicative 3rd. singular endings s and G for 
different sections of Lindisfarne 

Section 

1 2 3 4 5  6 7 8 9 1 0 1 1 1 2 1 3  
s...12 26 31 24 28 34 39 46 41 19 17 17 16 
G... 9 10 13 6 24 11 9 11 7 3 3 4 4 

Tot al... 21 36 44 30 52 45 48 57 48 22 20 21 20 

The assumption 1s made that a scribe is characterized by the propensity 
with which, when uslng the present indicat~ve third person singular, he adopts 
one or other of the two variants. We thus arrive at an example of a change- 
point problem. with many possible changes, where it m~ght be reasonable to 
assume underlying binomial distributions. 

If M(r,, ..., rx) is the model which assumes K changes of scribe, with 
change-points rl, ..., rx, then if 0,,....0,, denote the propensities of the 
aSSumedK+ I scribes, and m.,y,, I = I,  ..., n, the numbers of word uses and 6- 
varlant uses, respectively, m each of then sections, we have 

where 

There are, of course, no general prescriptions for the cholce of 
P (8,, ..., 8.4. In some change-polnt contexts, for example in reliability 
studies, one might expect monotonic relat~onships to hold (Smith, 1977), but 
for the purpose of this illustration we shall simply consider the (perhaps 
unreasonable) ass~gnment of independent beta prior densities, so that 



where B (.,.) denotes the usual beta function. Suust~tntmg (6) m (4), the 
requ~red integration 1s immediate, and it 1s easily seen, for example, that 

For the particular cholce K = 1, a, = a, = P, = 0, = 1,  and convertlng 
(7) Into posterior probabilities on MO, M1, ..., M13 (taking pr~or  probability M 
onMO, 1/26 on the Others) we obtaln the results shown In Table 2. 

TABLE 2 

Posterior probabilities assumrng at  most one change-point 

I f  we go on  to consider ~ = 2 ,  a = P , = ] ,  ,=1 ,2 ,3 ,  and 
P r  (K = 0) = P r  (K = 1) = Pr (K = 2) = 1/3, with equal prlor probabilities 
on all thirteen models, glven that K = I ,  and on all seventy-elght models, 
given tnat K = 2, we obtaln the results Shown in Tables 3 and 4. 

TABLE 3 

Posterror probabilities of up to two changes 

no change one change two changes 
0.00002 0.06856 0.93142 

TABLE 4 

Posterior probabilities of Selected patrs of change-pomts 

The analysls so far would appear to ~ndicate strongly that there was a 
change of scribe after sectlon 4 and agan after sectlon 5. In fact, further 
analysls suggests that there 1s no strong evidence for further changes. As an 
example, we note that the Bayes factor for M (4,s) aganst M (4,5,6) IS glven, 
from (7), by 

This IS, of course, the spme result as 1s ohtamed by taking sectlons 6-13 and 
testlng for a change after sectlon 6. 

Finally, we note ~n passlng that the caculatlons requlrea m (7) can be 
greatly simplified by applylng Stirling's apprmmatlon. For example, if we 
 have^ = I and definesl,s2, f,, f, by (5), then (7) has the form 

which can be shown to be well approximated by 

where 



the Latter being the usual xz-statistic for testlng the equality of the underlyihg 
propensities of two Independent binomal samples. For (S), the approxlmatlon 
(10) glves 3.37. 

At least in the case of a slngle change-point, the above approach has 
many polnts of contact with the Bayeslan significance testing approaches of 
Jeffreys (1961) and Dickey and Lientz (1970). 

3.  CHANGE IN A REGRESSION RELATIONSHIP 

We shall consider the problem of iuvestlgatlng the stability over time of 
the regression model 

where at time, t ,  is the ObSerVatiOn on the dependent varlable, X. is the 
column vector of observations o n p  regressor variables (including, possibly, a 
constant), 0"' is the column vector of unknown regression coefficients and F; 
1s the error term, assumed normally distributed with mean zero and valance 
o2 

In this sectlon, we shall work with Independent, homoscedastic errors 
and non-stochastic regressor variables. In the next sechon, we shall show how 
to extend the approach to cover more general situations. 

The regression structure defined by (12) will be said to have a change- 
polnt at r (1 5 r < n) if 

with unknown 6 + 0. We shall denote tbis model by M,. The model of no 
change, 6 = 0, will be denoted by M,. 

If we adopt the notation, 

we see that model M, (1 5 r < n) can be written in the form 

where F= 5, I, 1s then X n identlty matrix and 

A,=[xp XC~.~) X!m.,l 0 =l] 
In the case of M,, (13) still holds, but with A, = X., B = P. 

Agan, inference about the change-polnt (is there one? and, if so, where?) 
reduces to consideration of the possible models M,. To calculate (3) in this 
case. we requlre 

and thus need to specify p (0,olA.). This specificat~on, and its relatlon to the 
whole question of significance tests and chotce procedures among alternatlve 
linear models has been discussed at some length m the literature. A recent 
discussion is glven by Smith and Splegelhalter (1980). 

In this paper, we shall examine the consequences 01 the specification. 

where p (a) a U-', and p ( B  IA.,a) cofresponds, for 1 5 r < n, to a norma 
distribution with mean 0, and covarlance matrm oZV,, where 

in the case of M,, we slmply have V, = V,, 0, = 8, 

With tbis prior specification, it 1s easily verified that, performing the 
Integration with respect to 0 in (15),p (y /&',,a) is equal to 

l' 
11 



where Q denotes the usual least-squares eshmate of 8 ,  and R, the 
corresponding residual sum of squares. 

If Vi' may be considered small in relatlon to ATA., (18) may be simplified 
somewhat to g~ve 

and 

p (y )Mo,u) = ( 2 a ~ ~ ) - " ' ~ ) V ~ )  -'lz) -"2 exp (-RQ/202]. (20) 

Noting that IATA,/ = /X%,/ IX:..,,X,..,, 1 ,  the Bayes factor for MQ agalnst 
M,, conditioned on known a, is seen to be, 

Integrating (19) and (20) with respect to the assumed form for p (U), we obtain 
the unconditional Bayes factor 

where F, = [(Ro-R,)/p ]/[R,/(n-2p )l is the usual F-statlstlc for testlng MO 
versus M,. 

In the special case of a un~varlate normal distribution with pnor varlance 
haZ for 6, the Bayes factor (22) reduces to 

where t, 1s the two-sample t-test statistic corresponding to the samples y,, ..., y, 
and y,+,,...,y.. The form (23) 1s slmilar to that derived for the two-sample 
problem by Jeffreys (1961, see comments following (13) of Sectlon 5.41). 

Application of (22) to the case of sw~tching straight-lines has been made 
by Smith and Cook (1980). In this case, if 6,, 6, are the components of 6 

representing possible changzs m Intercept and slope, respectrvely, then the 
parameter of interest 1s often r = -6,/6,, the rntersection point between the 
two straght-lines. Two cases are possible, according as a change at r 
necessarily ~mplies X, r y <X.+,, or not, where X, < x2 <... < X, denote the 
(time) orderedx-values. In the unconstraned case, we need to caculate 

the latter term belng calculated using an appropriate transformat~on. In the 
COnStralned case, denoted by c, say, we require 

where 
1 YE (x,,x,*J 

P(cly,r,y) -( if 
l0 TB: (x,,x.+J 

and 

Similarly, we can obtiun 

These results were applied m Smith and COOK (1980) to data from kidney 
transplant patients, with the object 'of inferring the time of rejection of 
transplanted kidneys. It 1s thought that the COnStralned sw~tching straght-line 
model provides a good model of the behaviour of reciprocal body-welght 
corrected serum-creatmme over the days follow~ng a transplant. Table 5 
summarizes the data from a partlcusar patlent and the result from (25) when 
large prlor variances are attached to the straight-line parameters and all 
change points are equally likely. The posterior denslty for r glven by (24) 1s 
symmetric and sharply peaked, with a mode at 4.15 and an approximate 95% 
credible Interval is given by (3.71,4.59). 



TABLE 5 

Renal transplant data and posterror probabilities for r 

Retrospect~ve studies of this kind are provlng valuable m identifying 
patterns In the tlme to rejection of transplants and seem to have removed a 
great deal of the arbitrarmess arlslng from doctors' attempts to "eyeball" the 
data. On-line analysls of this kind of data will be considered in Sectlon 5. 

Related materlal on switching stralght lines can be found m Ferreira 
(1975). 

4. SHIFT OF LEVEL IN AN ARMA PROCESS 

In order to illustrate a reasonably stralghtforward extension of the 
approach of Sectlon 3 to cover more general linear tlme serles models, we shall 
consider the problem of lnvestigatlng a shift in level of an ARMA (1.1) 
process. The material in this and the prevlous sectlon is a direct development 
of some preliminary ideas glven m Smith (1976). 

We shall consider the following representation of a stationary ARMA 
(1,l) process with unknown mean level X, and a shift m mean level of 
unknown magnitude 6 occurring between the P and (r+ 1)'" observatlons, 
where r is unknown. Let 

with X, 6 ,  e, m and r unknown. I e I < l ,  14 I < I and 6 independently and 
normally distributed with mean 0 and valance oZ, with a2 unknown. 

In order to utilize the development of Section 3, we make. conditional on 
$and e ,  the transformat~ons 

It is then easily seen that the vector yT = bl, ..., y") satisfies (13), where. 
for r t 0, 

with a, = I, a. = 1 - (Q-$) E:1;@-', t = 2 ,..., n. If r = 0, the "no-change" 
model, then 8 = h and A;conslsts of just the first row of the matrut m (28). 

By considenng appropriate limits corresponding to e = I ,  4 = 0 and e 
= 0, respectively, the above framework can be used to study the special cases 
of IMA(1). AR(1) and MA(1) models. Related material can be found in Box 
and Tiao (1965) and Smith (1976). 

Noting that the Jacobian of the transformation from z to y 1s nnlty, and 
denotlng by p (M,,e,+) a prlor specificatlon for M,, Q and m, we see from the 
results of Sectlon 3 thatp (M.,e,$ /z) 1s proportional to 

l where Vha2, V s Z  are the.prior variances (conditional on a) for X and 6, and 
R.(e,$) denotes the residual sum of squares from a least squares fit of M,, 
given Q and m. 

The matrlx whose determlnant 1s to be evaluated m (29) has elements 
a:+ ... +a: and a:+ ... +a?.. on the diagonal, and a,a,+,+ ... +a..,a. as off- I 

l 
diagonal entries. The determlnant and inverse are thus easily calculated. 

Assignment of the prior probabilities for M,,@ and 4 depends, of course, l 
on the situation under study. In any case, it seems that perfectly adequate 
results can be obtalned by the crude form of numerlcd integration resulting l I 
from a suitable discretization of the ranges of e and m, so that calculation of 1 

1; marglnal posterior probabilities are slmply obtalned from (29) by summatlqn ~i 
over the remaining variables. Inferences about X, 6 or oZ; or predictwe 
distributions for future observations, are obtalned by. formlng waghted 1 
averages, withweights given by p (M,lz), of the standard results obtained by 
conditionmg on a particular model M,. 

1 
The procedure outlined above has been applied to a series of daily ~I 

measurements of the time (in seconds) taken by an Individual performing a 
certain psychological test repeated on 33 successlve days. The data are 1 #l 
presented in Table 6. l ' 1 



TABLE 6 

Psychologrcal test data 

The Individual has already passed through a "learning" phase on this test and 
~t IS believed that the Observatlons would follow a stationary process, except 
that dunng this perlod of 33 days there has been a swltcn m Oackground 
treatment reglme. It 1s thought that this could have the effect of causlng a 
sudden shift m performance level. The data were orlglnally glven to us with no 
lnformatlon about where the change in treatment reglme occurred. In fact, the 
change occurred between the 20th and 21st days. 

Prelim~nary exploration of similar, unchanged, sequences of 
observatlons suggested that either an ARMA(1,l) or an AR(1) model mlght be 
su~table, and two corresponding analyses of the data were made. The first 
analysls assumed an ARMA (1,l) model with uniform prlors over the range of 
r, the range of e from -0.95 to 0.95 and m between 0.000 and 0.95, the latter 
two in steps of 0.05. The second analysls considered an AR(1) model with a 
uniform prlor for e over the range -0.95 to 0.95. A summary of the results 
obtalned are Bven in Table 7. No specification for V* 1s required, and V, is 
taken equal to 3. 

TABLE 7 

Summary mnferences from thepsychologrcal test data 

Posterior 
Summary 

mean 
r mode 
median 

e mode 
e lolnt 
m mode 
h mean 
6 mean 

95 

5 ON-LINE DETECTION OF CHANGE 

Detailed descrlptlon of the use of a set of illternatwe Kalman filter 
models has been glven by Hamson and Stevens (1976) In the context of 
adaptlve Bayes~an forecasang procedures, and by Smith and Makov (1980) In 
the context of jump detection and estlmahon in linear systems, as required, 

for example, m the tracking of manoeuverlng targets. 
A general formulation allowlng for sudden perturbatlons m either or 

both of the system and observation equahons 1s glven by representing model 
M,, at tlme t, by 

0. = G..,0.., + B1"(A0), + H.., (M),, (30) 

Y, = F.@. + C(')  (Ay), + (ay),, (31) 

where (A@),, (Ay), represent possible abrupt changes m either the system or 
the measurement at tlme t, B"', C('' define the specific nature of these changes 
according to model M,, and (60),, (ay), are tne usual Gausslan "nolse" inputs 
to Ule system and measurement equatlons. The matrlces F, G, H define the 
general characterlstlcs of the system. 

In the case of manoeuverlng targets, B, represents pos~tion and veloclty 
components m some chosen frame of reference and y, usually consists of 
observed position components. If (AB), conslsts of a finlte set of plausible 
manoeuvres available at time t ,  models corresponding to particular choices of 
manoeuvre are defined by approprlate ChOlCeS of B''' (assummg here that C"' 
= 0). 

In the case of the very useful univanate Linear Growth model (Harr~son 
and Stevens, 1976,3.4), the case of no abrupt change e modelled by 

which can be represented in terms of (30) and (31) by 



with B'" = C'" = 0. If we define this no change model to be M,, and define 
Mz, M,, by 

C"' = 0 , c~2' = 0 .  C01 = 1, 

we can represent "sudden change m level", "sudden change ln slope" and 
"outly~ng observation", respecbvely, as well as "no change" 

The recursive updating of the system, given a choice of M: at tlme f, 
proceeds straghtforwardly using the standard Kalman filter equations. 
Posterior welghts on the Individual models are also easily obtalned uslng the 
approprlate modification of (3). In fact, of course, there is the problem of 
expanding murture forms of posterior distribution, resulting from the 
unsupervised learning context, and practical use of this approach requires 
approxlmatlon of this mlxture, at each stage, by a simple Gausslan 
distribution having the same mean and covariance structure as the mixture: 
see Harrison and Stevens (1976, 5.4) and Smith and Makov (1980) for further 
details. 

This Linear Growth model, with the four model variants outlined above. 
has been used for on-line monitoring of kidney transplant patients, given data 
of the type shown m Table 5. For many patients, the ser~es is considerably 
longer than the one shown, but we shall illustrate our procedure with this 
small data set. Table 8 shows, for each of the first SIX observations, the 
probability that it came from the situation modelled by M,, M,, M, or M,. In 
addition, the table shows the same probabilities one-step back and two-steps 
back: thus, for  example,^ ( ~ e M , y , ,  ..., y,) = 0-68. By studylng the changing 
pattern of these probabilities, the doctor can, hopefully, react to genulne 
changes fairly quickly, whilst avoiding over-hasty reactions to outlylng 
measurements. Of course, the system depends on a number of prlor lnputs 
regarding reasonable variance levels and other features. These are assessed 
from knowledge of serum-creattnine measurement procedures and other 
background physlologlcal mformatlon. Full details of this and other case 
studies will be reported elsewhere. The prior probabilities set on the four 
models for the first observation m this case were: 0.96,0.01,0.01,0.02. 

The results Indicate that at observation 6 we suspect a slope change has 

occurred at observatlon 5. When we reach observatlon 7, we are fairly 
convinced that a slope change has occurred and that the patlent 1s now m a 
new steady state. Posterior means of the slope parameter are positive up to 
and including observatlon 5 and then they suddenly swltch to negatlve values, 
relnforc~ng the message of Table 8. 

TABLE 8 

Observatron 
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Discontinuity, decision and conflict 

P.J. HARRISON a n 0  J.Q. SMITH 
Warwrck University 

SUMMARY 

The moilvarlon for thls paper arises out of me autnors emenences in modell~ng re- 
decl~ron maxers where the aecamns snow not only a cont~nuous response to a 
con t~nuo~s ly  changing environment but also sudden or d~scont~nuous changes. The 
theoretrcd basis involves a parametric enaiacterlsatlon of the envaonment, a aeclnan 
maners Derception of it m terms af  a twice differenuable Disrribution Function and a 
bounded Loss Funet~on. Under a specified mlmmizing aynamle, the resultant Enpecrea 
Loss Funcrlon sahsfies the conditions for a potential functlon and Thoms Catastrophe 
Classificat~on Theorem may be used to assess the slngularlty points and the thresholds at 
which lump decisions are tanen. The naper describes the theory, summarises some results 
on un~modal distribut~ons illustrated by jump decisions and populat~on polansatlon. 
Mixture distributions are then examlnea and the E* models defined. These are then 
bnefly illustrated by reference to  models which have been canstrucred in relation to Prison 
Riots, Agncultura and Econom~c modelling. 

K~jwnM1.s: H\YE\; CI\T,\STROPHr THIGKI: CO\t l lCI \IUUtL\: CO.SIL(i,\Tt 10?\  
~LUCTMJNS. DC('ISIC,S TIiFOKI. I)ISCONIISCIIY: L' \IUI>I LS: tXl ' tCl tU 
]OS>, tCONO>II(: MOOCIS; FORriASTIVG. \IIXLLRFS 01 NtrRLIALS. 
MULTIMODAL DISTRIBUTIONS; PRISON DISTURBANCES: POLARISATION; 
POTENTIAL FUNCTION; SMITH'S THEOREM; STEP LOSS FUNCTIONS; 
SEQUENTIAL INFORMATION. 

1. lNTRODUCTlON 

This paper 1s concerned with one way of v l e w l n g  conflict. The s t l m u l u s  

a r l ses  from practical contexts met m macro modelling i n  the areas o f  

agriculture, company casn flow, human relations, and managerial dec l s lon  

making. Br~efly the approach adopted I n  practlca modelling has b e e n  to 
consider the k e y  d e c l s l o n  m a k e r s  m r e l a t r o o  to t h e l r  environment. The 
emphasis has b e e n  not o n l y  on the env~ronmenta response to d e c l s l o o s  b u t  on 



the declsion makers responses to the environment. Many modellers ignore the 
latter which 1s so often vital in derlvlng forecasts and making the best use of 
them. Furthermore, it is not a thing encouraged by declsion makers who tend 
to over react with statements that people are belng treated as machines an? 
free-will is being challenged. The latter is not so. Rather a decislon maker 1s 
viewed perhaps as a farmer who is limited by his environment, but 
understands these limitat~ons and takes plantlng declsions to act in harmony 
with the seasons. Unfortunately so often in the sphere of expedient socio- 
economic declslon making, lags and feedbacks are ignored. Thus the usual 
decislon process becomes totally out of phase with the requirements of the 
sltuatlon and the pronounced medium term 'expectations' of the declslon 
makers, rather like a farmer planting at the worst possible tlme of year. Hence 
the declslons are eventually contradicted by hard fact glving rise to sudden 
policy reversals and outbreaks of conflict. 

Theoretical models involving both continuous and discontinuous 
resoonses to continuous environmental change formed the basls of a Warwick 
Ph. D. for Jim Q. Smith (1978) and a resultant paper Smith, Harrison and 
Zeeman (1980). The approach Involved a Bayes~an declsion theoretic 
formulation and utilises recent work In Catastrophe Theory (Thom, 1972). 
The multi-orocess models (Harrison and Stevens, 1971 and 1976) naturally 
lead to multimodal beliefs and via sensible utilities to multimodal expected 
loss functions on which Bayesian decislon makers base their declsions. 
Similarly these funct~ons can result from multimodal utilities and it 1s the 
presence of a multimodal expected loss functlon which here slgnals conflict or 
Dotentlal conflict. It is not Dretended that this theoretical approach is the 
definitive way of modelling conflict. Rather it is one way of mewing sltuatlons. 
and as such mlght catalyse and clarify inslghts Into practical problems. This 1s 
particularly true where we consider an expected Loss functlon which is a 
ootentlal functron and can be studied using the geometry of elementary 
catastrophes. Poston and Woodcock (1974), Zeeman (1977) and Poston and 
Stewart (1978). 

This oaper 1s very dependent upon Smith, Harrison and Zeeman (1980) 
and of course Smith (1978) for elaboration of some of the results and for 
background on the relatlon of catastrophes to declslon sets. Section 2 of the 
oaper describes the well known derlvatlon of the Expected Loss Functlon and 
makes a number of definitions. Sectlon 3 revlews some results on unlmodal 
beliefs which, when combined with symmetric loss functlons, give rlse to 
conflict~ng declslons vta multi-modal expected losses. An example InVOlvlng 
log-Normal beliefs and a double step loss funct~on 1s given. A theorem 1s then 
stated which forms the basis for an example in which a Pareto belief 
distribut~on combines with a double step loss functlon to glve a two polnt 

Bayesian declslon set. This mlght be used to model the polar~sation of oplnion 
over a oooulatlon show~ng no such polarlsat~on m beliefs or loss function. 

Sectlon 4 discusses some contexts in which multimodal phenomena can 
arlse and looks at duality. Sectlon 5 is a direct excerpt from Smith, Harrlson 
and Zeeman (1980) statlng Smith's Theorem concerning bi-modality. 

The following sectlons all concentrate on beliefs and loss functlons which 
are mlxtures of Normals and mlxtures of their conjugate loss functlons 
(Lindley, 1976). These are Introduced in sectlon 6 where the E:[61 model 1s 
defined and the particular case of a E: [S] model reviewed. Section 7 then 
looks at the E? [S1 model, gives the preclse declslon sets and an approxlmatlon 
of one of these sets corresponding to the canon~cal cusp catastrophe. Two 
simole models are then developed which help m illuminating the dynamlcs of 
Drlson rlots (Zeeman, Hall, Harnson. Marriage and Shapland, 1976) and, 
uslng the model of aggresslon based On Konrad Lorenz (1963) (Zeeman, 
1977), the cornered rat phenomenon. Section 8 then looks at theE;[6] model 
and. for the set of stationary points on the declslon space, derlves a local 
approximation to the canonical Butterfly catastrophe. Here a declslon maker 
mediates between two opposing partles or alternatively we have the above 
model of aggresslon when escape 1s available. Busmess applications are then 
brrefly discussed with respect to economic modelling and to continuing work 
In agriculture which started in 1969. These concepts are currently blended with 
Structural models, backed by skeleton 'prlme effect' cornouter models, and 
used in declslon making (Harnson and Qu~nn, 1977). 

2. THE EXPECTED LOSS FUNCTION FORMULATION 

2.1. Beliefs 
Consider a declslon maker o~erating with a belief F (* /&U), where * c A 

denotes a future outcome, S e D a decls~on and u E U the environmental 
variables which may change with tlme and location. Throughout this paper, 
unless otherwise specified it will be assumed that the belief distribut~on 
functlon FE F, the class of distribution functions parameter~sed by u e U ,  is 
twice differentiable In * and such that the corresponding density f (a /U)  1s 
positive. 

2.2. uritrlrty 
The declslon maker 1s assumed to have a bounded Utility functlon, 

represented negatively in the way of a Loss functlon, L ( ~ , * , u ) .  That utility 
functlons vary over tlme 1s Derhaps not universally accepted but 1s v~vidly 
illustrated by Hebron Adams in his reference to the way 1x1 which the relatlve 
utility of a Kingdom and a Horse change in Shakespeare's 'Richard 111' 



2.3. The Exoected Loss Funcrron and Actions 

The routlne actlons of a decislon maker are postulated to be determlned 
ay a rule appiied to the Ex~ected Loss E [&,U] where 

2.4.  Definitions 
2.4.1. A Bayes decision 6* is the mfimum of an Expected Loss Function. The 
set B(6) 1s defined as the set of all Bayes declslons relatlng toE[6,u] over DxU . 
2.4.2. The set S(6) 1s the set of all the stationary values of E16,uI and its graph 
over DxU 1s defined as S(6.u). In this paper S(6.u) will often be the 
behavioural manifold of an Elementary Catastrophe. 

2.4.3 The set of polnts C(u) will denote the set of polnts U ,  for which the 
corresponding loss E16,uI has two or more local mmlma. 

2.4.4. The set of points M(u) is the set of critical parameter values u for which 
there are two or more Bayes declslons corresponding to E[6,ul. 

Clearly M(u) E C(u) and B(6) E S(6) 

3. UNIMODAL BELIEFS, SYMMETRIC LOSS FUNCTIONS WITH 

CORRESPONDING MULTI-MODAL EXPECTED LOSS FUNCTIONS 

3. i .  The general slfuairon with an example 
In summarlzlng some of the lnterestlng toplcs appearing in Smith's thesls 

and Smith, Harrlson and Zeeman (1980), consider the 'Pure Forecasting' 
situation in which the actlon of the decision maker does not Influence the 
outcome +, (e.g. weather forecasting, small commodity trader etc.), so that 
F (* 6,u) = F (* l U ) .  Suppose a s o  that the Loss Functlon is bounded and 
simply a monotonlc ~ncreasing functlon of 1 6 4  1 .  If F E F is unlmoaal we can 
ask if the resulting Expected Loss Fnnct~on could he multi-modal. The answer 
is yes, even with familiar standard distributions. 

For example, consider F(*\ U) as a Log Normal over (0,m) with unit 
median but varlable coefficient of varlatlon X, and a simple double step Loss 
function 

Ofor I@-6 <b 

a for b r  @-S1 < c  
1 for c c  /Q-6) 

where b and c are fixed but ol vanes so that 

u = (u,k) and U = (0,l) X R'. 

Then it can be shown that S(6.u) is a cusp catastrophe (Figure 3.1). 

FIGURE 3.1 
LOG NORMAL EXAMPLE 

1 . i  Beirefs Lop Nonnal: Medion = 1 1.2. Lass funetton: Double srep 





A particularly interesting case occurs for the Exponential Distribut~on 
F(+)  = I - exp (-p @) slnce Fischer's Score is constant over (0.m). What this 
means is that definlng a* as in the corollary there 1s lust one Bayes deClSiOn 
for each a # a* but corresponding to a = a* the Bayes declslons comprlse the 
whole Interval [b,c]. Thus the Exponent~al Distribuhon 1s a critical ' 
distributron, with this respect to the Expected Loss funct~on E[6], m the sense 
that it represents a transition m topological types. 

Returning to the Corollary, Figure 3.2 shows how, for the Pareto with 
f (0) = (1 + $)-2 and c = Zb, the value a* varles with b. There are a number 
of interpretations of this theorem, one belng that if a populatlon of declslon 
makers has a distributlon G(u) over u = (a,k) where an Individual has a 
Pareto distribution of beliefs F (+  /I*) = I - h*/(@ + h)i, then even if G E IF and 
is unlmodal, the population splits into two opposing groups of declsion 
makers with one group G, adoptlng the declslon 6* = b and the other 6* =c.  
This sort of behav~our glves stimulus for understanding how, even with an 
apparent grouplng of beliefs and values, a population can split in its actlons. 
(Figure 3.3). 

4 MULTIMODAL FUNCTIONS 

We now turn to look at problems lnvolvlng multimodal information, 
multimodal loss fnnct~ons and multimodal expected loss functtons. 

4. I .  Mufiimoaai Informatron 

(i) The multi-process models of Harrison and Stevens (1971, 1976) 
naturally Involve multimodal distributions which 1n the particular case of 
Dynamlc Linear Normal Models (D.L.N.M.) are mixtures of Normal 
~istributlons. These can arlse because one 1s uncertain about an approurlate 
slngle D.L.N.M. either over all time or for a particular tlme interval. Some 
managers get rather upset over this 'conflictl in ~nformation and ask 'bow 
does one reach a declslon?' Apart from the uncharitable retort that 'that 1s 
what they are paid for7, an answer is to specify the loss functlon and take the 
corresponding Bayes declslon. 

(ii) In general hypothesis testlng or sampling acceptance a buyer may 
recelve a batch of product from a producer accompanied by the Droducer 
'posterlor belief' about product quality. He then carrles out his own analyses 
and perhaps combines or compares the two. It 1s generally a mlstake, and 
perhavs nalve, to adopt the producers posterlor as ones own prlor. For 
examule if the producers posterior 1s Normal and ones own tests grve a 
Normal Distribut~on the result is a single Normal overall posterlor showing no 
conflict. However as a polnt of interest, if the suppliers posterlor is a t- 
distributlon with kernel 

[(n-l/n)~,' + 4Z]-"'z and ones own distributlon 1s also f with kernel 

[ (n-~/n)s ,~ + (4 - ,)2] -"l2 

then with a slmple step loss functlon L@,+) = 0 for 16-61 S A  and nnlty 
elsewhere, the graph of the statlonary set of declslons S(6.u) represents a Cusp 
Catastrovhe which can be put In canonical form as 

Cusp Catastrophe set S(6,u) 

S(6.U) = (6 =*+I*/?.; $Lb+-a=OI 
where u = (a,b) and 
a = (S: - s,~) ,l4 
b = GL/2)2 - (S12 + 9 ) /2  - A2 

Since S, and S, may be interpreted as the standard errors of ~ndividual 
analyses, the resulting conflict set C(u), which for A =O glves the striught 
overall posterior statlonary values, is not at all convincing since it 1s 

Independent of n, the number of ohservations m each samplel It is also 
evident that despite the t-distribution converging to a Normal as n- W ,  this 
way of combining t's does not necessarily converge to the combination of 
their limltlng distributions. 

Hence perhaps a better approach is to give the suppliers posterlor F, a 
weighting equlvalent to n, of ones own observations and combine with ones 
own posterlor F, based on the equivalent of n, observations according to 

F = w,F, + (1-wJF, 
where W, = nl/(n,+nJ 

In this case even if n,=n, = n, Lim C(u) =M (U) which 1s a set with zero 
W -  ,, -- 

measure. An example of this approach in relatlon to hypothesis testlng is 
glven m Example 5.1 of our 1980 paper. 
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4.2. Multi-modal Loss 

(i) A forecaster often meets a multi-modal loss. For example he mlght 
have a unlmodal belief F(* / 6) about a future outcome which m combmat~on 
with his vlew of the loss functlon would lead to a declslon 6,*. However, he 
must report to a Company board who perhaps desire to make a declslon in the ' 
vlclnity of 6 = f i ,  possibly well away from 6,* The pressure that such a conflict 
can exert on the forecaster is not to be underestimated and in reporting his 
work (which is his declsion m his own declsion space) he 1s faced say with a 
loss funct~on L = L, + L,. L, reflects his valuation on accuracy, or bang true 
to himself and his profession and L, reflects the pressure exerted by What 1s 
expected of him in the way of not 'rocking the boat', conforming to 
expediency, or dogma etc. For example, one of us has been :unofficially' told 
~ r i o r  to a study, that he should not reach a conclusion that would show a 
plant should not be built and on other occasions both he and colleagues have 
suffered 'crowding, to the extent that until months or years later when the 
'conflicting' vlew is Droved, there was a major penalty to be paid in terms of 
lsolat~on, abuse and financial loss. 

(ii) The above carrles across Into human affars particularly in 
management and industrial relations. For example there are many situations 
m which a team of people or an Individual may deslre to operate m one way, 
say with associated loss L,, and yet are frustrated by the organisation or a 
particular manager. To express this frustration by action may involve a 
penalty with say an associated loss L, so there is often no mention of the cause. 
Clearly as the frustration mounts and toleration decreases a declslon is 
reached to escape physically or mentally, to withdraw co-operation and 
willingness other than the mlmlmum, or to confront. An extreme case is the 
cornered rat phenomena (see 8.2) where in the absence of escape even the 
weakest will ultimately attack. 

(iii) Multi-modal loss often occurs when plans or policles are changed. 
For example as a short-term forecast for stock control and production 
plannlng changes, so this queshons whether the productlon schedule should 
be altered. 

In many Instances this has been dealt with by Production Smoothing 
factors but this 1s often inappropriate m reflecting the conflict between an 
averslon to changlng the plan reflected by loss component L, describing the 
'cost effects of such changes'. and a deslre to choose that schedule which 
balances stock-out and stock carrylng costs reflected by a component L,. With 
the productlon smoothing approach the response of plan to forecast 1s 
continuous whereas a more appropriate response often Involves an lnertlal 
delay in the change of plan until the change in forecast reaches some threshold 
level. 

4.3. Multi-modal Exoecred Loss 
(i) Clearly conflicting modes m the Beliefs and/or the Loss functlon can 

carry over to the Expected Loss. Furthermore we have shown that even where 
there are not conflicting modes in either, the resulting Expected Loss can be 
multimodal. 

(ii) Interpersonal behaviour involving the formation and interaction of 
groups of individuals may often by modelled by multimodal Expected Losses. 
For example it may happen that a set of individuals each havlng their own 
beliefs and losses merge Into a group. This may be represented as havlng a 
group belief say (* 16) 2. M+,; V1 where 6, represents the 'groups expectation 
under declslon 6 and Vrepresents the varlatlon m beliefs. A small value of V 
may represent high 'internal' group cohesion, certamty, dogmatism. 
confidence, feeling, etc. whereas a large value may reflect the opposlte. 
Similarly a Group loss may be postulated.as 

Here a small k and/or large h may reflect group Intolerance to its deslres, 
strong aversions, selfishness, arrogance etc., whereas large k and/or small h 
may reflect the opposlte qualities. The combination of beliefs and Loss 
functlon leads to a group Expected Loss El[6] with one mmimum. We can 
now consider the Interaction between Interrelated and perhaps opposlng 
groups. For two groups there are varlous approaches. 

Each group may be looked at separately with the interconnections belng 
expressed as an additional loss functlon component. 

A sudden change m actlon on the part of one group seems to change the 
parameter values m the others Expected Loss, thus mlmicking the role of the 
trigger mechanism that makes the heart beat (Zeeman, 1977). Alternatively 
the groups may be combined with the declslon vector being mapped onto IR2 
or the two Expected losses may be merged into a combined expected loss, for 
example, 

E (6) = a1 Elf61 + a,2 Ez[61 

and the two groups considered in a combined fashion. 

4.4. Duality 

The same E161 and hence its stationary polnts and Bayes declslons can 
arlse in many ways. We show two particular cases as duals: 



( i) Take a multimodal belief with p.d.f. 

and a loss functlon ~ ( 6 ;  G) 
SO that 

Suppose that a hiject~ve mapplng T.: *--8, 1 = i...n 
exlsts such thatJ(T;-'0) I dO/d@ ( = f(B) 

thenE[6] = C:., W: \~(6;T:'O)fl8) d0 
which gives the dual problem as 

(ii) An outcome 8 with a u.d.f.fl0) and a multimodal loss function 

E:;, W, L(6: T. '8) 

leading to the same Er61 

5. SMITH'S THEOREM 

Smith (1978) m his thesls, and m his paper on the Mixture of 
Distributions (1979) glves two general theorems relatlng to particular 
potentlals. One of these is also glven in our 1980 paper and the relevant extract 
is reproduced here for convenience. 

5 . i .  A Cusp Catastrophe m Bayesran Decfsron Theory 

A Key use of the geometry of the cusp catastrophe in Bayeslan estimation 
theory is glven in the following theorem. Given a functlon E of S, let E: E': 
E"' denote respectively the first, second and third derlvatlves of E with 
respect to S. We say E(s) 1s of type Tif  it is Cm, symmetric, strlctly Increasing 
m 1s 1 ,  with lim E(s) = I and satisfying the three conditions 

S- m 

i) E" has one zero in (0,m) at  q, say 
ii) E"' has one zero in (0, m) at h,  say 

iii) the images of (O,q), (?,X) under the functlon E"/E' have empty 
intersect~ons. 

For example E(s) = 1 - exp(-%s2) is the type Twith q = 1 and X = 43. 

FIGURE 5.1 
E* EXHIBITS A CUSP CATASTROPHE OVER (o ,~)  



Theorem 5.1 1P 

defined over the two dimens~onal parameter space glven by 0 <a < 1 and p >0. 
Then E*(6) exhibits one unlque cusp catastrophe whose coordinates are glven 
by 

(6.a,p) = (0, %,q) 

with normal factor a and splitting factor p. 
The resulting surface of stationary values of E* is illustrated in Figure 5.1 

6. MIXTURES OF NORMALS AND CONJUOATE NORMAL LOSS FUNCTIONS 

6.1.  Introductron 
6.1.1. Beliefs 

In the remainder of this paper the belief distribut~ons are either Normal 
or mlxtures of Normals so that 

where N, (4, 16.u) represents a Normal Distribution where the mean 8., the 
varlance V,, and the relatlve welght W may all be functlons of u and 6. 
Naturally W 2 0  and C:=, W =l .  For simplicity, we will consider only 
univarlate Normals so that E R. 

6.1.2. Loss FunNlOn 

Following Lindley (1976), for the reason that theoretlcai mslghts lnto 
problems are facilitated by adopting conjugate Loss functlons, the general 
loss funct~on considered is now of the form 

~(+,d,u)  = Ezl L<(@,~,U) 
where 

andO<h:< m,  *, and k,may be functlons of 6 and U. 

6.1.3. The &peered Losr Funcfron 

The resultant Expected Loss functlon is then 

E16,uI = E=, ay E?, [&,U] 
where 

E,, = I-(k,/(kJ + exp (-(8riI.1)2/2(k, + V;)) 

6.2. The n- Conjugate Normal Ex~ected Loss Functron E.*[6] 
Let E,16,u] = 1 - (k./(k. + V,))lT2 exp -((6-pJ2/2(kJ + V,)) 

where (k., V+,) t R+ X R+ X R, 

a; >O. and define 

A E.*[&] model 1s then one which lnvolves the above type of Expected Loss 
Funct~on 

6 .3 .  An E,*[6! Model with Conflictrng Decisrons 
It 1s Interesting to refer first to the case m which n = 1. 

Consider 

(@16, U) %N[c+6;V] 

L (@,6,u) = h[l - exp [-(@-p)2/2k]] 

so that E[6,u] = h [ 1 -(.-$vj'2 exp ( -(S-&-C))~ 
2(k+ V) 

)l 

It is very clear that if h.k, V, and c are all constant then there 1s one and only 
one Bayes declslon at 6* = @-c. However, m practlce deClSlOn makers do not 
generally adopt a declslon which varles continuously with &-C) and d was 
deslred to examlne whether the sudden changes m declslon could be captured 
naturally by making more realistic assumptions. Often V and k are not 



constant, in that the uncertainty assoclated with an outcome Increases as the 
declslon departs from the familiar or status quo. Similarly k, the tolerance to 
errors, often decreases as the declslon Involves lncreaslng costs. Our 1980 
paper shows, uslng an Investment example, that such dependencies of 
and/or k on 6 can lead to conflictlng declslons, to delayed declslons and to 
discont~nuous changes m the Bayes declslon, as b.c) changes contmuously. 
Hence the assumptlon of the constancy of Vand k 1s very unstable m that the 
sligntest perturbatlon m this assumptlon can lead to totally different 
qualitative behavlour on the part of a declslon maker who apart from actlng 
conservatively and contlnuously now also makes discont~nuous and 
qualitatlvely different declslons m response to small continuous changes m the 
envlronmental variables. 

7. THE E,* [6] MODEL 

7.1.  An E, [ S ]  Model with assocznfedDecision Sers 
Us~ng a trlvlal extension of Smith's Theorem statedin Sectlou 5, consider 

the case in which for EZa[6,u] K ; = k  and V;= V(i= 1.2) are constant, without 
LOSS in generality p,= -ps =p, and the envlronmental var~able is U = (r,p) over 
(0,I)x R, where r=u,/(a,+aJ.  Then it is found that E,* [6] exhibits cusps 
only along the co-ordinates 

with, in Catastrophe ternnnology, normal factor r and splittlng factor p. 
There are two cusp polnts over U according to the slgn of (k+ and, 
because of tne symmetry, the graph S (6,u) exhibits what may be regarded as 
two 'back to aack' cusp catastrophes (F~gure 7.1). Writing $(X)  as the 
Standard Normal denslty, S (6) = (6 = ( k+  V)wzd;u,(d-p)~(d-p) + 
az(d+p)$(d+p) = O,u 6 U I 

C(u) = (U =(r,p) 1 i-g srcg, g =  1 + c  exp ((WC-c)/Z),c=p +~Z-1)"21 

M(u)=[u=(%,p) ; pz>k+VJ 

Measur~ng p and 6 in nnlts of (k+ or without loss, lettlng R+ V= I ,  then 
a mapplng T: U - W, which glves qulte a good approxlmatlon to the 1 

Approx~mate Mapp~ng to the Canon~cal Cusp 

b = 3[lrz-l] as splittlng factor, 

a = 2 log (a,/aJ as normal factor 

Thus conflict can only occur if pZ> I ,  and for fixed a, the larger pZ, the greater 
apart are the conflictlng declslons. 

FIGURE 7.1 
S(S,u) FOR THE E? [ S ]  MODEL 

canonical cusp catastrophe 1s as follows: 



?.2. A slmple E,* model for Instrturlonal D~sfurbances 
In our paper on ~nstltutlonal disturbances (Zeeman, Hall, Harrlson, 

Marr~age and Shapland, 1976) we were specifically concerned with ways of 
vlewlng prlson rlots. The resulting model used hypotheses that 

(i) the graph of the 'states' in the prlson could frurtfully be looked 
upon as a Cusp Catastrophe with Tens~on as a Normal factor, 
Alienat~on as a splitt~ng factor and the amount of disturbance 
as the benavloural factor: 

(ii) there was a natural dynamical flow on the cusp manifold 
leading away from qulet states and also from 'abnormal' 
disturbance states; 

(iii) locally a stationary stochastlc process described the departures 
away from the manifold. 

Let us now consider a slmple model based upon the foregolng amlng to 
capture the maln aspects. Being a coerclve envlronment with virtually no 
escape m the short-term we may consider the prlsoners group beliefs about the 
outcome Q of taking actlon as 

Their Loss funct~on a bimodal reflectmng, on the one hand, thelr desire to 
change thelr c~rcnmstances and overtly show thelr discontent and, on the 
other hand, thelr averslon to penalties if thelr behavlour departs from the 
Imposed norm. Take the resulting Expected Loss as 

Now consider the slmple case m which K,= K,, V1= Vz and without further 
loss In generality K,+ Vl= I andpl=-pz=p>O. Clearly the first two equalities 
would not hold generally nor be constant slnce tolerances, grouplng and 
varlatlon m beliefs will change durlng any escalatlon of disorder. However, to 
a first approxlmatlon, and for a slmple qualitative lnslght, this varlabon can 
be tranferred to vanatlon in a,  and a,. Hence a,/a, 1s here lnterpreted as the 
relatlve strengths or tenslon of the conflicting deslre and averslon to Overt 
demonstration and p as the alienatlon representing the compatibility or the 
'emotional distance' between the restricted actlvlty of prlsoners as imposed by 

the authorities and thelr currently desired activities. It then follows from the 
prevlous results on the E,* [6.u] model that S ( 6 4  1s a Cusp Catastrophe 
manifold with Normal Factor proportional to Tenslon and Splitting Factor 
Proportional to Alienation. 

The practical problem of obtaining measurements which manifest tenslon 
and alienatlon 1s discussed in the 1976 paper. The tenslon measure was based 
on such factors as sickness, and as such is a measure of total rather than 
relative tenslon. Hence uslng this measure, after the first group disorder in 
week 13, the accompanylng tightening of authorative conUol with perhaps 
Increased penalties can be lnterpreted to mean that for the relative tension to 
reach the same threshold level preclpltating overt group action the total 
tenslon, as reflected in the measurement, would have to increase. This 1s an 
interpretatton of why on the observed environmental space the scene of the 
actlOn changes markedly after the first group disorder before settling Into the 
expected =g-zag escalatlon of conflict which lead to the destruction of half of 
prlson (Figure 7.2). The E,* model has since lead to an additional way of 
monitorlng the state of the prlson m which al/az represents the relative power 
of prlsoners and it 1s hoped that this can be published later. 

The more general case in which X;  and V: differ and vary has been 
examlned in unpublished work. The effect of a decrease in K, is s~milar to that 
of a decrease in V, and qualitatively the same as an increase in h ,  and hence 
a,, although quantltatlvely different. For example, whereas m our slmple 
model, allowing aI/az to vary whilst keeplng their sum constant results in 
C(u) being symmetric about a fixed ratlo (here g), the varlation in the ratios 
of the k's and Vs  disturbs that symmetry. 

For an approach to the dynamlc modelling of flows on Catastrophe 
manifolds using multi-process models reference may be made to Sawitzki 
(1978). 



FIGURE 7.2 
A MODEL FOR PRISON DISTURBANCES 

l Irn.,"" ,rn,.l."rCd l," r i c b n r ,  governor I applicrllons and nr,lrrc ririui 

Analysis pi Garrree data jor 1972. Time uofh of fenr&on and alienlar~on rs utoffea weekly 
rhroughoul the year (numDers tndicate weem). The serrous'rncidenrs ore rndieoted by crrcles. The 
solid crrcles rndieote those incidents tnvolvrng neorly all the lnmoles in a new form of mass Pro- 
rest; the numDers m DrocXelS zndicnre an assessment of seriousness (out of 10). A possible rnitiol 
uoslrion of the eusu rsshown dotted on o uossiblesumequentposition nshown dashed; the move- 
menr of the cusp mqv represenr o higher ioleronce level of fensron m the rnslltufron afler the first 
m m  u~oiest. 

7.3. Aggressron and the Cornered Ror 

The forego~ng mstitutional disorder example may be likened to Zeemans 
(1977) well known catastrophe model of Konrad Lorenz's (1963) statement 
that rage and fear are conflictmg factors. 

The prlsoner may he compared to a dog or a rat which 1s cornered, 
tormented and has no chance of escape. The conflict may agaln be modelled 
through the Loss function m which there is the deslre to retaliate to the 
torment by attacking and yet an averslon to the consequences to attack. This 
results in an E,* [6,ul model and taking u = (a,im,,p) as for the prisoner we 
have S ( 6 , ~ )  as the Cusp Catastrophe. 

In this 'cornered verslon' of Zeemans example a,/a2 may be taken to 
measure the rat10 of rage to fear, m the sense of the deslre to relieve the 
torment compared to the averslon to the consequences of attack, and p as 
measuring the amount of emotlonal disturbance generated by the 
incompatibility of deslre and averslon. The decislon 6 refers to the behavlour 
of the dog and generally falls Into one of the two qualitatively different states 
;attack' or 'do nothing'. Within these states 6 vanes according to the way in 
which the dog accepts its torment or according to the lntenslty of its attack. If 
the dog 1s a Bayes~an Bloodhound and the tormenting gradually increases then 
~t switches to the attack when a,=cr,, (i.e. M(u)  = [u;m,=a,).) no matter 
how badly it 1s matched with its opponent. The example 1s perhaps not 
Irrelevant to lndustrlal relations, m those situations in which a work force 
experlences, a recession with greatly reduced orders, a long servlng work 
force, no alternative employment opportunities, insuffic~ent compensation, 

mounting rationalisation and meaningless tasks. Here the response may at 
first he calculative in terms of some acceptance of redundancy terms, then 
resistance to management change with non-cooperation leading perhaps 
finally to a s~t-in. This powerless response 1s very different to that of a 
powerful aggressive confident work force who themselves force the changes. 
Both aspects can be captured together by the hack to back cusps with 
appropriate translations of the resultant 6* actions dependent upon the 
environment U. 

8. THE E,' MODE1 

8.1 Approxrmafrons t o  the Decrsron Sets of an E,* Model 
Smith (1978), (1979) developed a further theorem, which lncludes the E,* 

Model as one case. Within the E,* class a particular model is selected which, 
for those people used to catastrophe modelling lnvolvlng the Butterfly 
Catastrophe, can glve lnslght into the behavlour of declslon makers. 

Aga~n we will take k. = k  and k  + V = constant, in this case for scaling 
convenience k +  V = 1/3, ( l =  1,2.3), and we appeal that varlatlon In these 



quantities IS, to the first order, captured by varlatlon m the a.. Thus 

E,* [6,uJ = C%aiEi  161 

where 

E. 16.~1 = 1-(3k)"~ exp(-3(6-~~~)~/2) 

Consider the case m which pl>pz=O >p3. Defme u>O by pi-p3=2p and the 
relative welghts r. by 

n = a;/ C;=, aj so that Erj = 1 

Then the applicat~on of Smith's Theorem shows that there 1s a unlque 
Butterfly pornt at the co-ordinate 

(6,r1,r3,pl,p3) = (O,r,r.l.-l) 

where r = [2(1+ 2 exp(-3/2)] = 0.346. 

The graph of S(6,u) may be obtaned readily by computer calculahon. 
Here 1s grven a local approxlmatlon to it by expanding as a Taylor Serles 
around the Butterfly polnt and expressing the result as the canonlcal Butterfly 
catastrophe so that the nature of the Normal, a, Splittmng, b. compromise, c, 
and Butterfly, d, factors may be seen. The geometry of the canonlcal butterfly 
n described m Poston and Woodcook (1974) although the reader should 
notlce the slgn reversal of the four factors. 

Local approxrmatlon to S(6,u) around Butterfly P o ~ n t  (O,r,r.-1,l) 

S (6,(a,b,c,d)) = ((&,a, 6,c.d); $5-d$3-nl.2-b$-a = 0) 

where 

As mlght be expected the bias factor, c, depends only on the Imbalance m 
the relatlve distances p, and Ip,I. whereas the normal factor, a, also lncludes 
the imbalance m the relatlve welghtlngs r3 and r,. The splitting factor depends 
only upon the middle' relahve welghtlng r, whereas the Butterfly factor 
addihonally, depends upon the distance @,-p,). 

8.2.  Simple Models Relafrng fo Decision making m the face of conflicfing mferesis. 

8.2.1. Hierarchies ond Arbirers 
Most hierarchicill Command chains can glverlse to conflicts which mlght 

be viewed m the light of an E3*[6] model. For example consider the case in 
which a manager 1s pressurised from above to take declslons according to one 
criterlon or viewpoint, from below according to another and yet he has his 
own criterlon and beliefs which fall somewhere In the middle. Such sltuatlons 
may be charged as the economlc environment worsens and the conflictlng 
demands become strongly opposed. An arbiter is often faced with a similar 
type of problem. Taking the above model in the vlcin~ty of the Butterfly point 
with say p3 + p, =O. first look at the evenly balanced case m which r3 =r,, so 
that the manager 1s faced with a symmetrlcE3*[6] and so that a=c=O, brx(r2- 
0.31) and drx(r2-0.31) + 2(P-1)/3. Then the Bayes declslons 6* are 

(0 6*=0 if(d<O,b<O) 

or if (d>O, 16b+3@sO) 

which 1s the 'middle course, declsion 

where there are two conflictlng extreme Bayeslan declslons 

Holding b constant and slightly negatlve, d constant and positive, but 1 
allow~ng r3-r1 to vary around zero, three examples of the stationary and 
Bayes~an deClSlOns are shown m Figure 8.2. 

8.2.2. Aggresston 
Consider~ng the example of the dog (7.3), but this tlme with a possible 

escape, we mlght map the behaviour lnto the declslon space 1R so that m the 
vlclnlty of 6=0, acceptance of the torment 1s mdicated, 6 distmctly negatxve 
Indicates escape with perhaps varying degrees of rapidity and 6 dist~nctly 
positive n lndicat~ve of attack with varylng degrees of tntenslty. If this 1s 



modelled in an E,* fashion with the third component reflectlng the utility of 
escape then the m a n  features of the dogs behaviour are captured, possibly 
more effectively than in Zeemans (1977) original cusp model. 

FIGURE 8.2 
BUTTERFLY CROSS SECTIONS FOR THE Ef I81 MODEL 

Key: S@) - 
B@) ---- 

8.3 Sysfenzs Applicafrons ofE,* models 
In macro modelling unwise expedient control action which purports to 

stabilize conditions often does just the reverse. This is rather like trylng to 
control a swingmg pendulum by delayed responses whicn push the pendulum 
in the direction m which it 1s naturally travelling. Such actlon often destroys 
rather than maintains Equilibrium. 

In two of the main macro-modelling situat~ons with which one of us 1s 
involved catastrophe cross sectlons are very useful in providing mslgnt, maps 
and monitoring devices. As a flavour of the way m whicn these are used in 
conjunction with systems models figures 8.3 and 8.4 are shown. The two 
applications shown here which were first phrased as threshold models ln the 
early 70's provided the main motivation for the study of catastrophe theory 
and to the development of the declsion theoretic formulatlon described earlier 
m the paper. 

The first figure 8.3 considers a measure of a farmers perceptlon or 
'expectation' relating to the decision on what prlce to pay for a heifer. For 
simplicity, here the decislon is judged on tne basis of his realisation one year 
later taking into account the deflated value of the fat cow and the calf output 
price. Consequently we have a Butterfly type of cross section with delayed 
declslons which illustrates perceptlon or expectation agamst actuality. The 
contradictions arlse from the unanticipated feedback and delayed dynamical 
responses to central action and farmer actlon and are sustalned by desire, 
aversion and political propoganda. The breaking of the central equilibrium 
level is predictable and tne almost unstoppable dynamical response magnified 
by out of Phase 'control action' ensures the catastrophic rlse in returns 
followed by the disastrous collapse and consequent rum of many beef 
Droducers (Harnson and Qumn, 1977). This is particularly relevant as we 
approach the critical 1979 agricultural decisions m the E.E.C. whicn, in the 
face of the world agricultural situation, the pressures arising from other 
agricultural sectors and political lobbies, debt, and the remote reductionlst 
way of dealing with the 'control' of strongly Interrelated systems, is very likely 
to lead to actions which will helgnten the consequences and have similar 
disastrous effects on beef in 1982/3, earlier on some other sectors and later on 
still others. After all as one official said 'You can never be sure of the future 
and we will have to see Whether it nappens again'. Currently this sort of 
diagram is used as an invaluable monitor and means of communication 
relating to a systems model of agriculture which covers numerous sectors and 
associated inaustnes. As a means of communication, it helps to capture some 
of the m a n  phenomena arislng out of the interrelationships. As a monitor, it 
1s taken as a source of confirmation or disagreement with a stated view of the 
future. 



Figure 8.4 shows one phase plane diagram constructed in 1971 relating to 
work on Cash Flow and Economlc modelling. This 1s just one Important 
extract from the overall systems view which lead to a forecast Issued in 1971 

m that In 1974/5 the U.K. would experience the worst depression since the 
. :: 

m 
1930's. The approach relatlng to this particular figure concerned the 

m  
m 2 government as a decislon centre receiving delayed and screened information, 

W * a 
0 3 X with a major utility component relating to retention of power. Two of the 

. m  m .. $ m a n  environmental 'conflicting' variables on this centre are illustrated in fig. 
Q: 8.4 as Unemployment and Debt in the form of Balance of Payments. (This 
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other are clearly seen. Phase I is defined as the period 'U.K. Internal conflict' .. 
7 0 5  ;g which in 1967 transformed into Phase I1 'conflict between developed nations' 
.- 0 A m -  and then in 1975 to 'General economic conflict'. In Phase I the three main 
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0 - 2 a = =  types of decision were reflate, relative inaction and deflate (Fig. 8.5). As 
m ... unemployment Increased with positive balance of payments the expedient 
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0. 2 m 2 2  decision Involved reflation. Since, among other things, reflatlonary action 
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0. . O 
was taken when Industry was geared for the existing deflationary period and - 

m 0 3 o - g : $  
EL - l f :ku.  since there is significant delay 1x1 responding with more finished goods needing 
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a Z ,.C ' 0  + more Imported raw materials, it was hardly surpnsing to find that natural 
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$2 dynamrcal responses turned the problem Into one of debt leading to expedient 
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. "  E deflation. This m turn hit rndustry when it was geared for a reflationary 
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ni a 4  perlod so that supply exceeded home demand. Thus product dumping abroad 
*. * % ;4 S O  3 2  together with the reduction of imported raw materials and finished product, 

* 
m ii resulted in a healthy trade balance but,a delayed major rise in unemployment. /li.; * 9 a The fact that this cosy internal U.K. drift to ever worsening conditions was 

m7 m 2 L 
Yk rudely affected by external situations in 1967 is very clearly Indicated on this 
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a + m phase diagram. The simultaneous pressure from the two sources signalled a ..* 
$ 2  qualitative change in environment labelled as Phase I1 which ln encouraging 

S '2% the 'sure-thing losing gamble', the mad dash for growth m 1972, ensured the :! 
m U 

E economic Imbalance resulting m Phase 111. It 1s interesting to hear the I1 i 
m " o comfortable explanations of many people that Phase 111 occured because of 

m 
l !  

the oil situation and that the agrtcultural crlsls arose because of Russian gram 
buying. They seem to completely miss the point that both these occurrences 

< l! 
0 0 

might have been just slngle Important manifestations of deeper phenomena. 
o o m 
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FIGURE 8.5 
CROSS SECTION: DECISION S .  AND NORMAL FACTOR 
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DISCUSSION 

S.E. FlENBERG (UniversriyofMinnesoia): 
The three papers presented at this Sess~on have been linked together under a 

common title. In fact they are only loosely related to one another. The key links would 
appear to be (1) between the Makov paper on sequential learning, and Sechon 6 of 
Smith's paper on change-point problems, (2) the use m all three papers of the idea of 
recurslve npdahng (this appears explicitly m the Makov and Smith papers, and only 
implicitly in the Harrison and Smith paper via the use of smoothed data for the tension 
and alienation variables in then orison rlot example of Section 7). Having noted these 
linXs between the three papers, I now turn to a separate discuss~on of each. 

1 found Makov's review of Bayesian-like approaches to unsupervlsed sequential 

learmng problems most mterestmg. This review is especially welcome since most of the 
work on this topic has appeared outside the mamstream statistical journals. Clearly the 
problem is a difficult one, and Makov and the others who have worked,on various 
aspects of it are to be congratulated for the urogress they have made. 

All three cases considered by Makov assume that the p.d.f.'s for an observatlonx. 
given that it comes from classH., are of the functional form: 

I.e., there is a common function form for the p.d.f.'s. Moreover, the number of 
classes, k, is given. The more general problem of mixture WhJ?s of possibly different 
form, and unknown k,  has been discussed quite recently by Good and Gaskins (1980 
and the ensulng discussion). The computational complexities of the various approaches 
to more general "bump-hunting" problems make Makov's restrlctlons quite 
reasonable for statistlcal purposes. I should also mentlon the graphical methods of 
Fowlkes (1979) for studying mlxtures of normals where kis unkown. 

I have three questions related to the procedures for Case A discussed in this paper, 
which may have relatively bnef answers: 

(1) Has there been any lnvestlgatlon of the adequacy of approximating a mlxture of 
Dirichlets by a single Dirichlet? Good (1967) has noted an example of the 
inadequacy of a single Dirichlet when the true pnor is a mlxture. 

(2) Isn't part of the problem with the DD, (MDD,) and PTmethods in your Figure l 
and in other studies due to choice of a "weak" prior? 

(3) It would appear that the QB computations at step n are not Invariant with 
respect to the ordering of X,, .... X. ... Is this the case, and if so is it something 
that a good Bayes~an strlvlng for coherence should worry about? 

Finally, 1 note that all of the methods in this paper assumne that observations 
arrive seqnentially, one at a tlme. Has there been work on related problems when 
observations arnve in batches? 

Smith's paper provides us with a quick, guided tour of the Bayesian approach to 
change-pomt problems. It begins in the land of exchangeable subsequences and a 
consideration of problems representable in such form, and then proceeds with a series 
of brief stops to exolore the more general problems of changes in regression-like 

structures where the exchangeable subsequences approach is not directly applicable. 
While the tour has been quick, offering little opportunity for dalliance with any one 
problem, it has covered much territory m a soirited fashion, and may well whet our 
appet~te for return visits to selected locations. 

My comments and queries focus Drlmarily on the slmolest of the problems Smith 
describes m connection with binomla! data in Section 2, but I susuect related questions 
can be raised about the other problems discussed in the later sections. Although the 
method of analysls described in Sectlon 2 for the Lindisfarne Scribes problem seems 
quite general, I believe further attention needs to De given to vanous consistency 
questions such as the following: (1) If a change-pomt at r ,  = 5 has high postenor 
probability when K = I is assumed, does it necessarily follow that r: = 5 will be 
included in the Dau. of change-pomts with the highest posterior probability when K = 

2? (2) Is it possible that when we place positive Dnor probabilities on K = 0,1,2.3 we 
can get Bayes factors favonng K = 2 at say (r,, 7,) = (43). but when we place positive 
prior probabilities on K = 0.1.2.3.4. we get Bayes factors favonng K = 4 at (r,,  r,, r,, 
rJ = (4,5,6,7)? Such connstency properhes would seem highly desirable, but would 
seem to depend on the specification of the priors, p(O,,0,, ..., R,,). PernaDs Professor 
Smith has already explored some of these matters in detail. 

I also have some concerns regarding the beta structure used for the Lindisfarne 
Scribes uroblem.Smith notes that the assignment of independent beta priors may well 
be unreasonable. but then he goes on to use them nonetheless due to the computational 
slm~licity they orovide. Although I have no compelling reasons to suggest in their 
Support, two alternatives that may bear further examlnatlon are: (a) a Dirichlet for the 
Joint density of SdEf., B*, 3 = 1.2. .... K; or (b) varlants of generalized Dirichlets. The 
major advantage to these densities (aside from the deoendencles they mtroduce) is that 
It can be reoresented as a product of independent betas for the random variables 
, 0 .  This property may be heloful m acbievlng the consistency Drollertles 
I re6rred to above. 

Hav~ng revisited the land of exchwgeable subsequences with you, I would 
encourage you to take Smith's complete guided tour for yourselves and choose your 
own location for an extended visit and Drolonged statistlcal investigation. 

While Professor Harr~son's oral presentatron of this paper can be vlewed as 
nothing short of a tour de force, after severa! readings of the written version of the 
PaDer I am at a loss In my assessment of its contributions to Bayesian decision making. 
Some of the mathematical aspects of the paper are very interesting, and the discussion 
of expected loss functlons with multiplemnlma seems qulte novel. But there appears to 
be a fundamental discontinu~ty in my appreciation and Understanding of the paper, as I 
go from the mathematical formulations to thelr application. Let me elaborate. 

In the initial results Uley describe, Harr~son and Smith investigate decision 
~roblems involving bounded utility functions. and they are Interested in the behavlor of 
the expected loss, E16,uI, with respect to the belief distribution of future outcomes, @, 

and where 6 1s the decision, and u represents environmental variables expressible in 
terms of the parameters of the distribution of $ and the loss functlon, L(G,+,u). In 
Section 3. they illustrate that, if the bounded loss function is a monotonidly 
increasing functlon of 6-@ and the distribution of future outcomes is nnlmodal, then 
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E16,ul may have two minlma. The Keys to this result are two: (1) a parameter, a, that 
appears only in L, (2) monotonlc behavlor of the scores fnncaon over an interval linked 
to kinks m L. When a takes on one set of values we get the first Bayes decision, and 
when it taKes a different set of values we get a different optimal decision. Despite the. 
fact that slight variations in u may lead to different decision, we must recognize that 
different values of rr do correspond to dfleereenf loss functions, even though they have 
the same general shape. If one-of the two Bayes decisions has smaller expected loss, the 
decision mater, who after all determines his own loss funct~on, mght do well to alter 
his value of a to achieve the mimmum. If, as in the case of the exponential distributlon 
there is a value of a leading to an interval of Bayes decisions with the same expected 
loss, a does not matter which 6 the decision maker chooses slnce the expected loss does 
not change. Still, this basic result of Harrlson and Smith IS somewhat disqu~etmg and 
bears further exmnatlon. 

Once we move to multimodal densities for beliefs and for multimodal loss 
functions, it is not qulte so surprising that the ~ossibility of multiple Bayes decisions 
exists. The mam examples Harrison and Smith use to illustrate such situations involve 
belief distribut~ons which are mixtures of normals and loss functions which are 
mixtures of Lindley's conjugate normal loss functions. The simplest example here 1s 
what the authors refer to as the ~ : [ 6 1  model, and involves lust the normal distributlon 
with its conjugate loss function, wnere one of the parameters of the loss function, K ,  
Increases with 6. That this situation leads to bifurcating Bayes behavlor simply 
heightens the latent susplclon I have long harboured regarding the approDnateness of 
Lindley's conjugate loss functions. Yet this result, like tne earlier one, IS somewhat 
disqmetmg. 

Up to this Domt my comments nave Deen technical ones, and have focussed on the 
mathematical developments described in the paper. The catastrophic discontinn~ty 
comes when we turn to the "applications" of this theory; 

The first major applicatlon of the theory 1s via anE, model for prlson nots. I have 
Deen involved in a study of prison-related renabilitatlon activities m the Unjted States, 
have visited with vanous correctlons officials, and actually nave spent a little tlme in a 
major correctlons facility. Thus, I was especially keen to see how a catastrophy-theory 
like Bayes decision model could be usein "illnmnating the dynamlcs of Dnson riots" 

Now prisons are complex mstltntlons, and to think tnat an accurate portrayal of 
behavlor .m prisons can be made by looking at three crudely defined and artificially 
interpreted vanables seems naive at best. The model assumed by Harnson and Smith 
Involves a single normal belief distributlon and a bimodal nuxtnre of two conjugate loss 
funct~ons. Why did tney PICK such a model? We are told in such loose, heurisac, and 
ambiguous terms that even the statlstlcally uneducated reader mrght scream: Stop! 
What I find even more distressing m the matenal presented is that we are shown no 
attempts at model criticism or parameter estimation, the key features of statistical 
Inference when models are used as part of the scientific method (see the related 
discuss~on of the role of models in the paper by George Box, glven at this conference). 
You may think from a reading of Section 7.2 that aspects of the requisite data analysis 
(Bayeslan or otherwise) are contained m the referenced papers of Zeeman, HaU, 
Harrison, Marriage, and Shapland (1976, 1977) but this simply is not so. Although 

these papers do contain a more detailed descrlptlon of the data plotted in Figure 7.2, 
the motlvatlon and justification for the model and the assessment of the adequacy of 
the model's fit to the data are attended to in a manner just as facile as in the present 
paper. Even with such a loose approach as the authors choose to present, the model 
shifts m midstream as a result of "a higher tolerance of tension in the lnstltntlon after 
the first mass protest2'l 

Next we come to the interpretation of  the^: model in prison disturbance context. I 
would Clam that all anyone can get out of the model "applied to the data" is what the 
anthors nave put into it to begln with. The catastrophes in the prlson behanor tney 
"account for" are really Only a restatement of the fact that the model contains 
discont~nuities (see the related critique of applied catastrophe theory in the behavioral 
sciences by Sussman and Zahler, 1978a, 1978b). The Bayesian Bloodhound referred to 
in Sectlon 7.3, after reading such a descrlptlon of statistical modelling, would cleany 
accept this torment no longer, and would -nsclously attack the authors until they 
completed: more satisfactory job of analysls and modelling. All of this is not to say % 

that the E, model is inappropriate for the prison not example (althougn I have my 
suspicions). Rather I believe that the authors have not presented very effective evidence 
In support of their claims. 

Finally, to illustrate my concerns with the other major application described in 
Section 8, I will give my own ''applicatlon", nenceforth to be known as: "Bayeslans, 
Luggage, and the Butterfly Catastropne" The decision maker involved is a recently- 
marr~ed Bayesian statistlclan who u p o ~  arnval at the Valencia Airport with his wife en 
route to this Meeting discovers tnat theihuggage has not arrived with them. The loss 
function involved is much like the one m Secrron 8.2. There is (1) "pressure from 
above" by his wife to stay at the arport until the luggage arrives, (2) "pressure from 
below" by all the other participants who are waiting for the statistlclan and his wife 
aboard the bus that is to take them to the Meeting, (3) the statlstlclan's own criterion 
and beliefs which fall somewhere m the middle. Since this structure is essentially the 
same as in Sectlon 8.2.1 it should be clear to all readers tnat we are faced with an 
example of a butterfly catastrophe. The two conflicting extreme Bayeslan decisions can 
be translated Into (1) staylng overnight at a hotel near tne arport waiting for the 
luggage to arnve, and (2) Immediate departure on the bus. The "middle course" 
decision 1s a little too complex to describe here (it involves a non-exponential waiting 
rime distributlon with a heavy tail), but we hope to publish a detailed descrlptlon at a 
later ame. Needless to say, the butterfly cross-section was very hel~ful in resolvrng the 
conflict in this particular problem, as I will indicate qnlte shortly. 

Does the mathematical Dhenomenon of a butterfly catastrophe follow from my 
assumptions in a nontrpal way? Indeed, does it really follow at all? Or is this 
implementation of the E, model simply the consequence of a vague specification, and 
some hand-wanng (perhaps I should say "wing-flappmg")? For this example, I readily 
admt to a contrived L'applicatlon" of the models and aescnptlons in the Harrison and 
Smith paper. I don't believe the resulting butterfly catastrophe tells us anything of 
Practlal value at all. Yet I find my own descrlptlon not all that much different from that 
of Section 8 of the Harrlsonand Smith paper. I believe Ule value of the11 models in real 



applications can only be judged by a more careful statistical treatment than the one we 
are offered in this paper. 

AU in all, 1 found the Harrlson and Smith Daper both stmulatlng and highly 
provocative. I look forward to seeing elaborations of then ideas in the future. Lest i t  
appear that I am finishing my comments on a note of dis~alr, let me note the "luggage 
example" described above was factual, and that my use of it m this discussion did have 
one practical consequence. The beleaguered statistician m question (who will remain 
anonymous) did in fact decide to board the waiting bus and travel without his luggage 
to the site of the Meetlng in Las Fuentes. My descriDtion of his plight m the oral 
presentation of this discussion inspired me to loan him, along with other apparel, my f- 

shirt with the brilliantly-colored image of the famous Dunk Island (Australia) blue 
butterfly on its chest. Never let it be said that Bayeslan decision theon does not haveits 
useful applications! 

J.M. BERNARDO (Unrverstdadde Valencia): 
The need for approxlmat~ons m the problem discussed by Mr. MaKov 1s fairly clear 

to me. However, I would like to know more about the quality of the approxlmatlon he 
Droposes. For Instance, one could try to estmate the ex~ected distance, in some well 
suecified sense, between the exact Bayes posterior predictive distribution 

and its quasi-Bayes approxluatlon. Moreover, since the true source of the x:s 1s never 
known it mlght happen that wrong dlocatlons are piled nu thus making convergence to 
the correct allocation as new observations occur difficult, or perhaps lm~ossihle. 

P.J. BROWN (1m1)ertol College, London): 
. I  should like to amplify a point ralsed by Professor Fienberg concerning the 

adequacy of the Dirichlet distribution. The ~rohlem with the Dirichlet 1s that it has a 
very StraIghtjacketed variance-covanance structure. Indeed it mvolves vlrtual 
independence apart from correlatlons resulting from normalisation to unity. Elsewhere 
Brown (1976). I have documented some unfortunate features of the Dirichlet nnor. To . .. 
see that an uusuDetvised Learung situation may have a rather different varlance 
covariance structure consider the followmg example. There are K=3 Dopulatlons 
which are N(8,,1), L =  1,2,3. Imagine the case where 8, and 8, are close together and 
qulte distant from 8,. Then unsupervised learning will quickly and accurately determine 
n, and a, + a, but a, and a, will be highly correlated together and will have a low 
correlation with a,. In this sltuaoon the Dirichlet representation will not be able to 
reflect these second Order properhes. Thus although Professor Makovis scheme will 
result m eventual convergence to a,, a, and c, it may be difficult to discern the 
reliability of one's estlmates at any stage. Use of an approxlmatlng mnltivar~ate normal 
distribution would get around this problem but would of course involve heavier 
computat~on. 

A.P. DAWID (The City Unrversrty, London): 
I want to stress the need for care m setting UD models of the kind that Makov has 

been working with. I am sure these are appropnate for the ewneermg applications 
with which he 1s concerned, but I am none too happy when I see them used in other 
fields. In particular, I am epemely doubtful about their general surtability in the 
setting of medical diagnosrs, as in the work of Titterington and others. 

In this context, the Classes {H,] represent diseases, and the observation X 

corresponds to medical symptoms: thus n may be thought of as describing the 
Drevalence of disease, and 8 the "clinical ~ictures" of the diseases. My unease stems 
from the seeming possibility, when using a uwture model as described, of obtming 
consrstent estimates of the parameters. This mean that, if we collect a large enough 
data-base of Patients and record only their symptoms (never discovering what diseases 
they are suffering from), we can nevertheless gain accurate howledge of both disease 
prevalences and clinlcal pstures. My possibly nmve reaction to this remarkable state of 
affairs e one of distrust: how can one learn about anything other than the marginal 
distribution Of SymDtoms from data such as these? If our model says that we can, it 
may be a signal that we should discard the model. 

It is easy to set up alternative models which behave more reasonably. Instead of 
splitting up the joint distribut~on of disease D and symptoms S as f(d,s)+) = 

AdJnMsla,  8), as is normally done, decompose it mstead asf(d,sl$) = f(sIa)f(dls,p). 
(There are good practical reasons for regarding this as more meaningful in a diagnostic 
context: see Dawid, 1976). We are just as much at liberty to make assumptions about 
the new Darameters (a,@) as about (a,@). In parhcular, it does not seem unreasonable to 
me to assume that a and B are, oprlorr, mdependent. If so, it is easy to show that 
observation of patients' symptoms alone will modify the distribution of a ,  but leave 
that of P unchanged. Now for Durposes of diagnosis (prediction of D from S) only 8 is 
relevant: consequently (and, I consider, quite reasonably) such a data-bank is entlrely 
valneless. 

A simDle example may make my pomt. Suppose D takes only two values, d ,  and 
U,, and likewise S takes values S, or S,. Lef a ,  = P(D = dJ), 08, = P(S=sjID=dj)), and 
suppose tha1 a and B are aprrori independent, with n, %P(a,.,a2.), 8,, % @(a,,,a,J, 8,, % 

P(a,,a,J all Independently (where a,. =o,,+a,J. This 1s an example of Case C of 
Makov's classification, although it does not satisfy the condition that m~xtures should 
be identifiable. In fact. for this model, a data-bank of unconfirmed cases is quite 
useless for diagnosis. For, letting ru,=P(S=s,)(= r,8,+ ad,), 8, = P(D=d(lS=sj) 
(=8,a,/aj), we have P(d,s)+) = P(s(s/w) P(dls,P), where it is easily found that a and p 
are aprrori independent, with, in fact, u,%p(a.,,a.J, P,,%p(a,,,a23 p1Z%8(albaZJ. a11 
independently. So the considerations of the last Daragraph apply. 

The moral of all this is that, when we choose a particular mathematical model to 
represent a real-world process, and make seenungly harmless assumptions (such as 
"identifiability of mixtures"), we must be careful that any deductlons we make are 
"qualitafrvely stable" in the sense that s~milar conclusions would be denved from other 
reasonable ways of modelling the process. (The term 'reasonable" here devends, of 
course, on the  articular application). 

Much as I appreciate Makov's contributions to slgual detection, I fear that his 



models may come to be used all too uncritically in other applications, for which tney 
fail to be qualitatively stable. 

J.M. DICKEY (Unrversriy College of Wules): 
A comment may be of some Interest nere relative to Professor Smith's paper andm 

other papers in this conference in which an mference is made between nested sam~ling 
models. The Bayes factor, or ratio of postenor odds to pnor odds m favour of one 
sampling moael versus another, depends on each prior distribution conditional on a 
model. But wnat pnor distributlons snould one use and how should they be related? 
The obvious answer a, of course, tnat pa r  of tractable distributions which most closely 
models actual pnor uncertalnty conditional on each of tne models. Savage's condition 
contrnurty offers a reasonable guide to sucn a choice (Dickey and Lientz 1970, Gunel 
and Dickey 1974). This requires that the prior distribution within the smaller nestea 
moael be identical to the conditional distribution Induced in the usual way from the 
lomt  nor distributlon in the larger model. (In this case, the Bayes factor will equal 
Savage's density ratro, the ratlo of postenor to prior densities of the conditionlng 
constrant parameter at tne null value). 

To see that Professor Smith's choices do not satisfy condition contmu~ty, consider 
the loint density of the regression coeffic~ent 8 and the vanance $. The pair (0,02) are 
dependent under the larger model; tne smaller model is ohtamed by a constrmt on 6 
hence one will not satisfy condition continuity by naving the prior distributions of c2 

identical under the two models. Professor Smith takes tnem identical. On the other 
hand, my own papers on Bayes factors for the normal linear model use condition 
contlnulty (DieKey 1971, eq. (5.40), 1974Prop. 4.2). 

Note that by tne Borel-Kolmogorov nonunlqueness mentioned in my discuss~on to 
Professor Hill's paper in tnese Proceedings, the answer in each case to tne questlon of 
wnetner condition continuity is satisfied will depend on tne choice of conditionlng 
constra~nt variable in terms of which the questron is framed. If it is not satisfied for a 
given pa r  of distribut~ons for one cnolce of conditioning vanable, pernaps it will be for 
another cholce of conditionlngvariable. CThe same smaller model can often be defined 
by varlous essentially different constrants in the larger model). In fact, we shall see this 
happen for the generalizations of Jeffreys' Bayes factors to be presented later In tnese 
Proceedings by Professor Zellner. If the new parameter is used, 7 = o10, and if v a 
inde~endent of o, tne condition on 1, will not have an effect on the distribuuon of a. 

A tneorem can even be stated showing that an arbitrary glven distribution in Ule 
smaller model can be obtained by condition conhnnity from the larger model by 
su~table cnolce of condition~ng var~able. This then would seem to maKe condition 
continuity a mathematically vacuous requirement. However, I snould like to point out 
that in practice there are often natural conditionmg-variables 7, tnat is, variables for 
which one would like to define tne smaller model as tne consequence of additional 
informat~on of the form, "7 lies m some small hyperintemal centred at tne point q."~ 
This e often the case when the overall mixed type distribution, having positive pnor 
probability attached to the smaller moael, 1s intended as an approximation to a 
continuous aenslty on the full parameter space with a high mound or ridge over a 
ne~ghborhood surrounding the constraint set. 

In pracuce, one must be careful to model real uncertainty, and not let the 
maulematlcs do one's thinking for one. Professor Smith very wisely took his prlor 
parameters in the hinonua Lindisfarne scribe problem so that tne uncertanty 
concermn8 a single scribe alone was tne same as the uncertalnty concernlng the first 
scribe among many scribes, instead of the same as if he had been told me many were 
one. If he has used condition contmnulty based on any linear conditionlng vanable, 
such as = (0, - 8,, ..., O,, - 03, then the conditional distribution of 8 ,  given 1, = 0 
would have been beta withparametersa, + .... + a,,-KandP, + ... + P,,-K. For 
a: < 1 and P ,  < l ,  L = 1, ..., K+ I, andKlarge, this distributlon of @,would have had 
a small vanance, Instead of the same variance as 8, under the larger moael. That is, if 
one were told that only one scribe was involved, one's oplnlon would have been less 
vague tnan one's oDinion concerning the first scribe of many. Of course. if a j < l  and 
P i < l  for all &, then the conditional opmmn would have been more, rather than less 
vague than the unconditional oplnion. In fact, for small enough (positive) a; ando,, the 
conditional distribution would have been degenerate, even though the~olnt distribution 
was Droper. (I am greteful to Professor P.R. Freeman and Professor A.P. Dawid for 
personal discuss~ons on this example). 

J.B. KADANE (Carnegre-Mellan Unlvers~fy): 

The assignment of prior distributlons under the different models is a very sensitive 
matter for model selection. There is no particular justification for the independent beta 
prior of equation (6), for example. Allowrng dependent Driors can change the answers 
in the direct~on of more scribes, and in fact, can m pnneipie suggest up to 13 scribes. 
Thus Smith's conclusion that there were probably 3 scribes is heavily dependent on the 
< g  oerhaps unsatisfactory" assumption (6). The same type of comment applies to the 

ARMA regression and exammes. I welcome, however, the interesting applied ~roblems 
in this paper, espec~ally the Kidney transplant data. 

A more decision-theoretv, and I believe more satisfying approach is developed by 
Lindley (1968) and continued by Kadane arid Dickey (1980). 

T. LEONARD (Unrverstiy of Wmwick): 
I think that Professor Smith's approach to change-point Inference is very useful 

and interesting, but I wonder whether he might be over specialising his model simply to 
facilitate apartlcular type of conclusion? It would seem to be more natural to assume a 
Kaiman-type moael pemtttlng different Drocess levels at each tlme-stage (e.g. the 
Harrlson-Stevens steady model). A whole range of posterlor conclusions could tnen be 
reached to sult the practical sltuation at hand. In Particular, we could find the restricted 
Bayes estimates, for the process levels, amongst a suitable class of step funct~ons, thus 
providing a very slmple way of aetectlng ebangepoints. Further Iestrlctea Bayes 
~rocedures would cope with the more complicated sltuatlons discussed by Professor 
Smith. This seems to me to provide a conce~tually and technically simple way of coplng 
with change-points, and avoids cnoosing an unduly complex model slmpiy to cope 
with a single very special type of posterlor cOnclus10n. These aspects have been 
discussed by Leonard (1978). 



REPLY TO THE DISCUSSION 

U.E. MAKOV (Chelsea College, London): 
I wish to thank our discussants for thelr lnterestrng questions and comments and 

make the followmg points: 
1.- The choice of a Dirichlet prior in case A was made simply to explolt the ' 

conlugacy DroDerty. As described in the paper, neither the 'unfortunate properties of 
the Dirichlet prlori nor the Dossible inadequacy of approxlmatlng a mlxture of 
Dirichlets by a single Dirichlet affect the desirable assymptotic properties of the QB 
procedure. However, these lnadequacles are bound to affect the small samDIe 
~rooertles of the procedure and I suspect that m acute sltuatlons, like the one suggested 
by Dr. Brown, the QB mlght be nainfully slow. 

One possible remedy, which was tried numencaUy,. 1s to approxlmate a mvtture of 
s~ze  n by a mutture of size K. K < n. In Makov (1978) the mlxture of Dirichlets 1s 
allowed to grow so long as is computationally possible (rather than collapsing the 
mrxture after each observatlon). Thereafter, the mvrture build-up can De restarted. In 
Makov (1978), the mlxture, once collapsed, was replaced by a slngle Dirichlet and no 
further growth was allowed. In Smith and Makov (1980), in the context of case B, the 
approximatmg mixture conslsts of Gausslan p.d.f's. Here, m the case of detection and 
estimation of jumps in linear systems, thecombined quality of the detector/estmator 1s 
considerably improved when the number of terms In the approxlmatlng denslty Is 
mcreased. 

2.- The QB procedure is not lnvanant to the order of the observanons, an 
undesirable Droperty in small samples. One ~ossible solutron is to take the observatlons 
in batches, where each batch is processed coherently (Bayes) and then approximated by 
a QB procedure. (In Smith and Makov (1980) batches of 2 and 4 observations were 
used). Another possibility is to choose two (or more) possible sequences (the most likely 
m some sense) and then to average the QB est~mators for these sequences. 

3.- The consistency of the QB recurslon (when so proved), as opposed to the 
possible asymptotrc bias of the DD and PT, a luhented in the mathematical structure 
of the recurslon and is invariant to the cholce of pnor. According to Stochastlc- 
Approximation theory, certa~n ~ ro~e r t i e s  of the regresslon Ela-W,) (see (18) above) are 
required for consistency. The analysysls of such regressions shows that conslstency 1s not 
affected by the cholce of prlors but by the degree of overlau between the densities of the 
corresponding classes. While the QB remarns conslstent for any degree of Overlap 
(though its rate of convergence is affected), the other methods are consistent only for 
overlaps below a certarn thresbhold (or signa-to-nolse ratio larger than some value). 
This also explalns why the QB is asymptot~cally ~mmune to lnitial errors (or wrong 
allocatjons). 

4.- The only QB qualities lnvestigatea were asymptotic unbiasness and relative 
efficiency. We have no 'distance measure' to compare the QB with the coherent Bayes 
procedure. 

5.- Prof. Dawid exoresses doubts about the of obtaimng conslstent 

estimator for both the 'clinical picture' and 'prevalences of disease'. His reaction 
cannot be contradicted as no proof of such conslstency exists for case C,  to which he 
refers. As for case A,  and several models m case B, such conslstency 1s proved on the 

basis of identifiability. When this assumption cannot be made, the QB should not be 
aaoDted, nor should any other Drocedure which 1s Dased on an lnappropr~ate model! 

There are, however, cases m the medical context where the assumptlon of 
identifiability is acceptable. For instance (see Hermans and Hahbema (1975)), in the 
diagnos~s of Haemophilia carnership the identifiable m u r e  conslsts of two bivanate 
normal densities whose means and covanances are estimated from the data, while the 
nuxlng parameters are established through genetical considerations. Though the QB 
may Drove to be consistent for this problem. I have my own reservations about the 
adequacy of its use (and indeed of the exploltatlon of uncorfirmed cases as a whole) in 
the case of small samples. (See Makov (1980) for further details). 

I am not at all sure how aualitahvely stable 1s the cholce of linear discr~minant 
functlon in medical diagnosis. However, in recent Ravers*, (O'Neill, 1978; 
Ganesalingam and McLachlan. 1978). it is shown that the ratio of the relevant 
(asymptotic) information contamed in unclassified observation to that of classified 
observation 1s qulte considerable for a statistically interesting range of separation of the 
DoDulaDons. In Ganesalingam and Mclachlan (19791, s~mulat~on studies of small 
mlsclassified samples Droduced satisfactory results. 

A.F.M. SMITH (Unrversz@gfNotf;nghom): 
The points which have concerned the discussants of my ~ m e r  also concern me. 
(i) I agree with Professor Kadane that model selectron critena should really be 

derlved using an aPProDrlate loss or utility framework. My current work on these 
problems is now Droceeding along decision-theoretic lines. 

(ii) While the consistency proDertles mentioned by Professor Feinbergmlght seem 
appealing at first sight, it 1s not clear to me that they would be implied by all 
s~ecificatlons of Pnors: I have not succeeded (yet) m sorting out Drecisely when they 
would hold. 

(iii) The general ' points rased by Professor Dickey concerning "condition 
contmuit~" are very lnterestlng and have been well-ared at this conference. As he 
himself admits, however, there is often considerable arbitrariness m the way in which a 
smaller model is denved from a larger by conditioning and this leaves us with the 
~roblem of providing a rationale for any particular cholce. Dickey IS. of course, correct 
in notlng that my regression s~ecificatlon vlolates condition contmmty, but I am also 
urlll: t t~e lmDrUDcr forin D( .>) -  u .  ;!nu ruspc:t 1tlJl uncn III(F pr.tgtnaric approhlinattoll 
udesil'r made inc iesl loo uncorniorrahle ncilhcr will I fee. tuo bad anout  co coin cr. 

(iv) Dr. Leonard may well be correct m suggestmg that other formulatlons of the 
change-pomt problem could lead to slmpler ways of detecting change; I look forward 
to seung further details. 

*I  am ~ndebted to Dr. D.M. Tittenngfon for lnesereferences. 



P.J. HARRISON (worwzck (iniversrty): geometrically "simfiar" to  the normal and doubleconjugate 
Any we wish to thank professor Fienberg for his amusing comments and hope to  parametrised model in this class will s v e  tne same kind of geometry to the 

W, clarify some of the which seem to have been misunderstood. We shall begin by with the normal and its conjugate solely for computational ease. professox 
dealing with the theoretical Points. Fienuerg's that the reader can get nothing out of the model than the 

(i) lt the kinks our IOSS function L whicn generate the ~ert1ner.t Oats ls quite since the model IS now in a statistical form and ulerefore the 
discontlnuities. smooth loss functions with no jumws can exhibit the same kind of parameters can be estimated. These estimates together with other information Can be 
discontinuous trajectory of the corresponding Bayes decision. It 1s SImPl? emesf to combined by any self-respecting Bayes~an to give predicuve distributions for the 
illustrate this behaviour by using a double step loss function which just happens to  be outbreaks of violence as functions of 'Alienation" and L'~ens,on,, These are facl 
discontmuous. m some British institutions. However this long 

(ii) ~ l t h ~ ~ ~ h  different values of give different loss functions lt snould be noted technically dull, would have been out of place amomst the cont,.ibuuons at 
that any loss function combines a utility with a function representing quantifiable loss Valencia. 

(see ~ ~ c ~ ~ ~ t ,  1970). ~t would be a brave man who would suggest that he mew this It Seems common, m forecast~ng ana other fields, for a statlstlc,an to 
utility function preclsety or, indeed, that it did not cnange with the decision-makers a model with no regard to  the aynamics of the unaerlylng process and just 

" 
H ~ ~ ~ ~ ~ ~ ,  we nave shown that slightly different utilities can give rise to it. the practitioner nas little information communlcatea to him 

extremely different Bayes decisions even when the Dostenor density is from a Otne1 thanasho=tterm forecast which he probably could have achieved by eye 
and well-known family. We smcerel? that Professor Fienberg 1s not proposing this as ideal only) 

(iii) we hold that bounded loss funct~ons should always be used in a Bayeslan Of a statlstlclan. Although we enjoyed the paper presented by professor 
analysls. i-he discontinuities we discuss here cannot be considere afoulf  of using the at this conference, we felt that he mlgnt have emphas~zea the imDortance Of Dicking a 
normal loss function. Indeed, if we use quadratic Loss, for examDle, then the sensible models to  Oegm with. Unfortunately it. seems likely that his paper may 
corresponding expected loss function does not represent the decision-ma~er's dilemma be used by some *atlsticians as an excuse to avoid essential 

he faced with a very bimodd posterior denslty. This mdicates to  us that this 
form of analysls must be lacking m some fundamental way. Under pract'cal 
considerations oounoed loss is a necessity due to  the boundedness of the resources of 
the decision-ma~er. Theoret~cally the use of unbounded loss L(6-8) can give rise to 

Some very FOI example if L(6-0) w convex then It is easily shown 
that the corresponding Bayes decisions always depend solely On the comDarabve REFERENCES IN THE DISCUSSION 
steepness at + m of the two tails of a postenor density on the real line (see Kaoane and (1976). Remarks on some statzstlcai metnoas for diagnosLa, J ,  Ray, 
ehuang, 19781. we must therefore reconcile ourselves to  the fact that under any Soc. A 139,104-107, 
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Likelihood and the Bayes procedure 
HIROTUGU AKAIKE 

The lnstcture ofSLatrstaca1 Matemotrcs, Tokyo 

SUMMARY 

m this uailer tnc likelihaodfunet~on s considerea to be the vnmaiy source of the object,- 
VLIV of a Baveslan method. The oecesatv of umg the expected benavlor of the likelihooo 
function for the cholce of the pnor distributlon is emvhaarea. Numer~cal examules, mcm- 
ding seasona adjustment of tune senes, are gwen to illustrate tne Dractlcal utility of tne 
cammon-sense approach to Bayeslan statlstlci vrovosed in this vaver. 

Keywords: LIKELIHOOD; BAYES PROCEDURE; AIC; SEASONAL ADJUSTMENT. 

I. INTRODUCTION 
The view that the Bayesian approach to statistical inference 1s useful, 

practically as well as conceptually, 1s now widely accepted. Nevertheless we 
must also accept the fact that there still remlun some conceptual confustons 
about the Bayes procedure. Although mdny strong impetuses for the use of 
the procedure came from the subjective theory of probability, it seems that the 
confuslons are also caused by the subjective interpretation of the procedure. 

By looking through the works on tne Bayes procedure by subjectivists, it 
qu~ckly becomes clear that there 1s not much discuss~on of the concept of like- 
lihood. The subjective theory of probability is used only to justify the use of 
the prior distribution of the parameters of a data distribution. It is almost trl- 
vlal to see that no prachcally useful Bayes procedure is defined without the use 
of the likelihood function, while the likelihood function can be defined 
without the prior distribution. Thus the data distribution represents the basic 
part of our prior information and the Bayes procedure gives only one specific 
way of utilizing the information supplied by data through the likelihood func- 
tion. 

From this polnt of view there 1s nothing special about the cholce of prior 
distributions to differentlate it from the design of ordinary statistical procedu- 



res such as the choice of the sampling procedure In a sample survey and the 
choice of the spectrum window ~n the spectrum analysls of a time serles. 

In this paper we first discuss some conceptual confus~ons with the Bayes 
procedure which we believe to be due to the subjectlve Interpretation of the 
procedure. We argue that it 1s necessary to recognlze the limitation of the SUB- 
jective theory and put more emphasis onthe concept of likelihood. We take 
the position of regarding the Bayes procedure as one possible way of utilizing 
the information provided by the likelihood function. Once such an attitude to- 
wards the Bayes procedure is accepted we can freely develop Bayeslan models 
slmply by representing a particular preference of the parameters by a prlor 
distribution. The goodness of the prior distribution can then be checked by 
evaluat~ng expected performances of the corresponding Bayes procedure m 
varlous conceivable situations. 

We demonstrate the use of this type of approach by developing a general 
Bayeslan model for the analysis of linear relations between variables. The mo- 
del contains as special cases the basic wodels of those estimatlon procedures 
such as the Stem estimator, ridge regression, Shiller's distributes lag estimator 
and O'Haganzs localized regression. Numer~cal examples are glven to illustra- 
te the practical utility of some quasi-Bayeslan procedures developed for these 
models and for a more conventional model of polynomial regression. The re- 
sult of application to the seasonal adjustment of time sertes seems particularly 
mteresting as the model contains twice as many parameters as the number of 
the observations. 

2. CONCEPTUAL DIFFICULTIES OF THE SUBJECTIVE APPROACH 

Significant Impetus for the advancement of Bayes~an statlshcs has come 
from the side of the subjectlve theory of prohability. This is natural as every 
statlstlcal procedure may be mewed as a formulation of the psych0lOglCal pro- 
cess of informatton processing and evaluation by a skilful researcher. In splte 
of the slgnificant contribut~on of the subjectlve theory of probability to clarif- 
ylng the nature of the psychological aspect of this process, several conceptual 
difficulties remaln with the theory. Here we discuss some difficulties, which 
we believe to be mlsconceptlons, related to the Bayes procedure and clear the 
way for the development of practically useful Bayes~an methods. 

2.1. Rofronulr@ and Savages urom 

It is somet~mes said that a ratlonal person must behave as if he has a Cle- 
arly defined system of subjectlve probabilities of uncertaln events. This 1s of- 
ten ascribed to Savage (1954) who developed a theory of personal probability 
by axlomatlzlng the preference behavlor of a person under uncertalnty. Un- 

fortunately the very first postulate P1 of Savage, which assumes the linear or- 
dering of the preference, excludes the reaI difficulty of preference. This can be 
explained by the following simple example. 

Consider a young boy who wants to choose a girl as his wife. His prefe- 
rence 1s based on the three charactenstics, H, I and L. Here H stands for he- 
alth, I for intelligence and L for looks. Each charactenstic is ranked by the 
numbers 1.2, and 3, with higher number denoting higher rank. The difference 
of ranks by i is marginal and the difference by 2 means a significant differen- 
ce. Denote by R; = (H, I?, L3 the vector of the ranks of the characterlstics of 
the ith girl. Belng uncertaln about the relative importance of these characteris- 
tics in his future life, he ignores the marglnal differences and pays attention 
only to the slgnificant differences. Thus his preference 1s defined by the follo- 
wing scheme: 

R, S R,, i.e., the jtQirl is preferred to the ith girl. 

iff C. 5 C, for the characteristic C 

for which /C, - C. I 1s maxlmum. 
Now he has three glrl friends (i = 1,  2, 3) whose R,'s are defined by R, = (1, 
2, 31, R2 = (3, 1 ,2)  and R3 = (2,3, l), respectively. Obviously it holds that 

RI  5 R,, R, S R, and R, S R,, 

which shows that his natural preference scheme does not satlsfy the postulate 
P1 of Savage. 

It 1s the difficulty of this type of preference that make us feel the need of 
a horoscope or some other help m making the declslon In a real life sltuatlon. 
Since Savage's system excludes the possibility of this type of difficulty, the 
corresponding theory of personal probability cannot tell how we should treat 
the difficulty. The exact charactenzatlon of Savage s theory 1s then a theory 
of one particular aspect of preference and there 1s no compelling reason to de- 
mand that a ratlonal person's preference should be represented by a slngle sys- 
tem of subject~ve probability. Wolfow~tz (1962) presents a pertinent discus- 
slon of this pomt. Thus to justify the use of a system of personal probability 
one must prove its adequacy by some means. Certainly the proof cannot he 
found within the partlcnlar system of personal probability itself. 

2.2. The role of parameters m a Bayesran modeling 
The subjectlve theory of urohability of De Finett~ demands that the pro- 

bability distribution or the expectatlons of the uncertrun events of interest 
10 



should completely be specified (de Fmetti, 1974b, p. 87). If we accept tbis de- 
mand and decide to use the Bayes procedure, all we have to do is to Compute 
p(y lx), the probability of an event y conditional on a given set of datax. The 
theory only asserts that the necessary probability distribution should be tnere. 
and does not consider the special role played by the parameters In constructing 
a statistical model or the probability distribution. De Finett~ (1974% p. 125) 
even rejects the concept of a parameter as metaphysical, unless it is a deC1- 
aable event. 

That the concept of parameter cannot be eliminated is Shown by the 
simple example of tne binomial experiment where the probability of occurence 
of a head in a coin tossing is considered. The concept of independent trials 
with a fixed probability of head is unacceptable by the subjective theory of 
probability of de Finetti and the solution is sought in the concept of exchange- 
ability (de Finetti, 1975, pp. 211-218). The difficulty is caused by the fact that 
the probability of a head, which must be decided, plays the role of a parame- 
ter that is not actually decidable (Akaike, 1979b). 

We may use the theory of probability to develop some understanding of 
what we psychologically expect of the parameters of a statlstlcal model. Con- 
sider a random variable X and the observations X, X,, ... of some related 
events. We expect that a parameter 0 exhausts the ~nformation about X to be 
gained through the observations X,, X,... The probabilistic expression of tbis 
expectation is glven by 

wlierep(x(z,, zz, ...) denotes the distribution of X conditional on z,, z2, ... . TO 
allow this type of discussion we must consider 0 as a random variable as is ad- 
vocated by Kudo (1973). The formula (2.1) then gives a very natural characte- 
rization of the parameters as a condensed representation of the lnformat~on 
contained m the observations, i.e., once 0 1s known no further observations 
can improve our predictions on X. Thus we want to know the value Of 0. Ac- 
tually de Finetti's discussion of the exchangeable distribution of the binomial 
experiment has given a proof of the existence of such a vanable. 

Although the above characterization of a parameter is interesting, in the 
statlstlcal model building for inference the order of reasoning is reserved. The 
prior information first suggests what type of parameterization of the data 
distribution p(x(0) should be used. The prior distribution a (  B ), if at all specl- 
fied, represents only a part of the prior information. To take the parameters 
as something prespecified and assume that the prior distribution can or should 
be determ~ned independently of the data distribution constitutes a serlous mls- 
conception about the lnferenclal use of the Bayes procedure. 

2.3. Llkelihoouprrncrple and the Bayesproceuure 
I t  has often been claimed that the likelihood pnnclple, which demands 

that the statlstlcal inference should be identical if the likelihood funct~on IS 

identical, 1s a direct consequence of the Bayesian approach; see, for example, 
Savage (1962, p. 17). In the example of coin tossing, if we denote the probabi- 
lity of head by 0 and assume the Independence and homogeneity of the tos- 
sings, we have 

as the likelihood of 0 when X heads appeared in n tosslngs. It is argued that 
there is no difference m the inference through the Bayes procedure if the 
above likelihood is obtained as the result of n tosses, with n predetermined, or 
as the result of tossing continued until X heads appeared, with X 

predetermined. 
This seemingly innocuous argument is aganst the principle of rationality 

of the subjective theory of prohability which suggests that the choice of a 
statistical declslon be based on its expected utility. The expected behavior of 
thelikelihood functionp(x10) is certainly different for the two schemes of the 
coin tossing and it is irrational to adopt one and the same prior distribut~on 
a(B), irrespectively of the expected difference of the statistical behavior of the 
likelihood functions. 

To clarify the nature of the confusion by a concrete example, consider 
the use of the posterior distribution 

as an estlmate of the probability distribut~on of the result y of the next toss, 
where Y = 1 for bead and 0 otherwise. The predict~ve distribut~ons are defined 
as the averages of the data distribut~onpb/O) with respect to the posterior 
distribut~ons of 0. These will be denoted bypblx)  andpbln)  to Indicate that 
X and n are the realizations of the random variables, respectively. They are 
defined by 

where * stands for either X or n. When the "true" value of 0 is 0. the goodness 
of pb l*)  as an estimate of the true distribution pO, 10.) = 0; (1 - 0.)'-Y can be 
measured by the entropy of p @ /  0,) with respect to p b / x )  or pb 1 n) which IS 

defined by 



The larger the entropy the better 1s the approxlmatlon of p(-I*) to p(./0.). 
Before we observe X or n we evaluate E, B@(. I B,), p(. 1 *)l for some possible 
vaues of O., where E* denotes the expectatlon with respect to the distribut~on 
of * defined with B = 8,. We nave 

(poilx) 
= C:=opO. 1 B.) C:, logl--I.C=*: (1-W-' 

~ o i  l&) 

and 

g;;~..,c..,B: (,-BOY-= = C:;, PO. 18,) c,, log --- 

Obviously we have no reason to expect that these two quanatles will take one 
and the same value and, at least for that matter, there 1s no reason for us to 
assume one and the same prlor distribut~on a(0) for both cases. 

2 LIKELIHOOD AS THE SOURCE OF OBJECTIVITY 

The discuss~on m the preceding sectlon illustrates both the subjectlve and 
objectlve elements in the Bayes~an approach to statlstlcal Inference. It 1s 
subjective because a statlstlcal Inference procedure 1s deslgned to satlsfy a 
subjectively chosen objectlve. The cholce of the data distributlon 1s 
particularly subjectlve and the pnor distribut~on reflects the object of the 
Inference which is often expressed in the form of a psychological expectatlon. 

What 1s then objectlve with the procedure 7 The object~vlty stems from 
the dependence on the data which is a production of the outside world. This 
objectlv~ty 1s fed Into the Bayes procedure through the likelihood functlon. 
Since B@,(.), p(.l8)] = E, logp(x8) - E, logp.(x), we can see that, lgnorlng 
the additive constant E, log p, (X), the Log likelihood log p(x8)  1s a natural 
estlmate of the entropy of p,(.) with respect to p(.lO). Here E, denotes the 
expectatlon with respect to the distributlon pd.j of X .  Thus the likelihood 
p(xj0) represents an object~ve measure of the goodness, as measured by X, of 

1 .  . : :  ... ".:i,:,.i..i . :;,, p(-18) as an approximation top.(.). This fact forms.'Y@'bas~s oi'the pract~cal 
utility of the Bayes procedure even for the family @ ( ? 8 ) j i ~ h ? ~ $ ~ " ~ ~  
subjectively and does not contain the true distribution of X. -' 

The likelihood functlon p(xl8) 1s the baslc devlce for the ext 
condensatlon of the information supplied by the datax. The role of the prior 
distribution 748) is to aid further condensatlon of the information supplied by 
the likelihood function p(xl8) through the lntroductlon of some partlcular 
preference of the parameters. By evaluatlng the expected entropy of the true 
distribution with respect to the predictwe distribution specified by a posterlor 
distribut~on we can extend the concepts of bias and varlance to the posterlor 
distribut~on (Akaike, 1978a). If we try to keep a balance between the bias and 
vmance, we cannot ignore the Influence of the statisfical behavior of the 
likelihood functlon on the cholce of our prlor distributlon. Some of the 
conflicts between the conventlona and Bayeslan statistics are caused by 
lgnorlng the possible dependence of the choice of the prlor distribution, or 
even the cholce of the basic data distribution, on the number of available 
observations which lnfluences the behaviour of the likelihood functlon: see, 
for example, Lindley (1957), Schwarz (1978) audAkaike(1978b). 

4. A GENJ3RAL BAYESlAN MODELING FOR LINEAR PROBLEMS 

In this section we demonstrate the practical utility of the point of vlew 
discussed in the preceding section through the discuss~on of a general Bayes~an 
model for the anillysls of linear problems. The baslc idea here may be 
characterized as the common-sense approach to Bayes~an statistics. 

Consider the analysls of the linear relatlon between the vector of 
observations y = I y(l), ..., y (NI]' and the vectors of the Independent var~ables 
X: = [X. (l), X, (21, ... X? (N)]' (i = 1,2,..,K), where ' denotes transposition. The 
method of least squares leads to the minimization of 

We know, when K 1s large compared with N or when the matrlx X = 
[X,, X,, .... X,] 1s ill-conditioned the least squares estlmates behave badly. To 
control this we Introduce some preference on the values of the parameters and 
try to mlnlmlze 

where a, denotes a partlcular vector of parameters [a,,, aoz, ..., a,,]', 
I 12, the norm defined by a positive defimte matrlx R, and f i  a positive 
constant. The use of this type of constraned least squares for the solutlon of 



an ill-posed problem 1s wellknown: see, for example, Tihonov (1965). 
The difficulty with the applicat~on of this metnod of constrained least 

squares is m the choice of the value of p. To solve this we transform the 
problem into the rnax~mlzat~on of 

where temporarily o2 is assumed to be known. Since we have 

2 
P (a) = exp [ - (l/20Z) ~ ( a ) ]  exp [ - b/202) / /  a-a0 11 E 1, 

we can see that the solutlon of the constraned least squares problem a now 
glven as the mean of the posterlor distribut~on defined by the data distribution 

f (v]02,a) = (~ / z l r )~ '~ ( l / o )~  exp [ -  (1/202)L(a)l, (4.3) 

and the prlor distribution 

s (a 1 d ) = (1127)~'~ (l/o). exp I - (dZ/20Z) I a-a,/ltl, (4.4) 

where ff = p. By properly chooslng X, a, and R ,  we can get many pract~cally 
useful models. Part~cularly, we will restrict'our attentlon to the case where 
I a- a0(bls defined by 

where D 1s a properly chosen matrix, c, = Duo and i v lZ  denotes the sum of 
squares of the components of v. In this case tne posterior mean of the Vector 
parameter a 1s oatalned by m~nlmlzlng Uz (ald)UZ of the vector Z (aid) 
defined by 

Examples. 
a. Sfern type shrunken estrmator 

This 1s defined by puttlng L = N. D = Xand c. = 0, the zero vector. The 
case with K = Nand X = IN~corresponds to the orlglnl problem of esttmat~on 
of the mean vector of a multivartate Gauss~an distributron treated by Stem. By 
puttlng c. equal to the vector of the parameters obtalned from some stmilar 
former ObSerVatiOnS, we can realize a reasonable use of the pnor information. 
b. Ridge regresston 

This 1s defined by puttlng L = K, D = ,,,and c. = 0. 
c. ShrNer-S distrtbuted lug esttmator 

Shiller (1973) developed a procedure for the estlmatlon of a smoothly 
changing Impulse response sequence. In this case Lv(l), y(2), . y ( ~ ) ]  is- obtained as the tlme serles of the output of a constant linear system under the 
Input uw.  X is defined by X,@ = u(i-1 i 1) and c, = 0. 
D 1s put equal to 



where a and P are properly chosen constants. D,  controls the first order diffe 
rences of a 0  and D, the second order differences. 
d. Localized regresston of O'Hagan. 

O'Hagan (1978) introduced an lnterestlng Bayes~an model for the 
estlmatlon of the locally gradually changng regression of a tlme serles y(r) On- 
x(r). Our model corresponding to O'Hagan's 1s glven by puttlng K = N, c, = 0 
and 

D is put equal to D1 or D, of the above example or 

7 

3 - 3  1 

- 1 3 - 3  1 

One particularly lnterestlng model is obtaned by puttmng x(r) = 1 (i = 1.2, . . 
. N). The number of parameters m this model 1s equal to the number of 

observatlons y(i). 
e. Locally smooth trend fittrng 

For a tlme serles ylr), by Putting c. = 0 and D = D 3  where D, 1s as 
glven m the preceding examples, we get a model for the fitt~ng of a smooth 
trend curve. One SPeClal cholce of X is glven by X = I,,. We will call the 
model defined with X = I-and D = D, the model of locally smooth trend 
of eh order. 
f.  Bayesran seasonal adjustment 

We consider the decomposltlon of the monthly observatlons y(r) for M 
years, where r = 12 m + J 0' = 1.2, ..., 12, m = 0.1, ..., M-l), Into the form 

y(1) = r. + S, + I., 

where T. denotes the trend, S. the seasonal and I, the irregular component. 
For this problem we put K = 2N (N  = 1 2 ~ )  and define a = (Tl,T,, 
Tx,Sl,S,, . . . , S,,) and put c. = 0. 

The matrix Xis  defined by 



where D, is one of those defined in the preceding examples, I = IlaIz, 1 ' = 

(1, I ,  .... l), and e, f, g are properly chosen constants. 
A notable characterlstlc of this model is that it has twlce as many parame- 

ters as the number of observations. This constitutes a typical many parameters 
problem which cannot be handled by the ordinary unconstrained least squares 
or the method of maxlmum likelihood. 

The fundamental problem In applylng these models to real data is the 
choice of the constant d. Assum~ng that otner constants are specified, the 
declslon on d is equivalent to the declslon on the prior distribution of a. From 
(4.2) the choice of d. or p ,  deternunes the relatlve weight of the additional 
term /  a - a, l / $  against L(a), the sum of squares of the residuals. When a. 1s 
not exactly equal to the true value of a ,  we expect that the bias of the estlmate 
Increases as d is Increased but the variance decreases. It IS natural to try to 
keep a balance between these two factors. To realize this lt 1s necessary not to 
specify d nnlquely hut use the informat~on supplied by the likelihood function 
or L(a). 

In the Bayesian terminology this 1s to consider d as a hyperparameter 
which has its own prior distributlon. Now it n oavlous that by considering d 

as a hyperparameter we are trylug to use the lnformatlon supplied by the 
likelihood function for the determlnatlon of d. This oaservatlon suggests that 

a proper CholCe of the prior distribution to be used in an ~nferenual sltuatlon 
can only be realized througn the ana~ysis of the stat~stlcill characterlstlcs of the 
related likelihood function. The infimte digression of considering the prlors of 
pnors can only be stopped by the analysls of the expected output at each 
stage, which 1s determmed by the behavlor of the likelihood funct~on. 

Incidentally, the present observation shows why the conventional subjec- 
tivist doctrlne of assumlng the determlnatlon of the prlor distribut~on of the 
parameters Independently of the related likelihood functlon was not strlctly 
followed by the research workers dealing with real inference problems. This 
point is discussed as the Bayes / Non-Bayes compromise by Good (1965). We 
take here the very flexible attitude towards the Bayes procedure to consider it 
only as one possibility of utilizmg tne lnformatlon supplied by the likelihood 
functlon. Thus we consider that any pract~cally useful statist~cal procedure 
which utillzes the lnformatlon supplied by the likelihood funct~on should not 
be rejected only because it 1s non-Bayeslan. It is not the dogmatlc exclusion of 
other pIOCedUIeS hut the explicit proposal of useful models that proves the ad- 
vantage of the Bayes~an approach over the conventional statlstlcs. 

5 .  NUMERICAL EXAMPLES 
To show that our discuss~on in the preceding sections is not vacuous, here 

we show some numerlcal examples. These were obtalned by Bayeslan mode- 
lings but with the nelp of some procedures which are not strlctly Bayesian. 
The first three examples are concerned with the models discussed in the prece- 
ding section. The last one 1s an example of polynomlal fittmg and is Included 
to show the feasibility of a Bayes~an modeling with the aid of an informat~on 
crlterlon (AIC) to deal with the difficulty of chooslng a prior distributlon for a 
multimodel situation where the models are with different number of parame- 
ters. 

For the first three examples the essential statistic used for the deternuna- 
tion of the parameter d i n  (4.4) 1s the likelihood of the model specified by the 
prlor distribution. We consider the marginal likelihood of (d,a2) defined by 

r(d,a2) = 1 AY l a2,a) ?r (a Id) da, 

where f@I+,a) and a(ald) are glven by (4.3) and (4.4), respectively. If we as- 
sume (4.5) and put c. = 0 we get 

~ ( d . 0 ~ )  = (11/2a)N'Z(1/a)N exp [ -( 1/2a2)I z(a, 1 d) 11 2] 

11 CPD'D 0 8 D ' D  + X ' X  11-'12; 



where 1 z(a, Id) denotes the minlmun of 11 z(a 1 d) I with z(a / d) defined by 
(4.6). Instead of developing a pr~or  distribution of (d,a2) we consider the use 
of the procedure which chooses a model with the maximum marglnal likeliho- 
od. Thls 1s called the method of type I1 maxlmum likelihood by Good (1965). 
For a glven d. the maxlmum with respect to aZis attamed at 

02 = (1/N) / I  z(a. / d) 1 
For the case of practlcal applicat~ons, we consider a finlte set of possible va- 
lues (d,, d,, . . . . d,) of d and choose the one that maxlmlzes ~(d,a,$). Since we 
are famil~ar with the use of minus twlce the log likelihood, we propose to ml- 
n~mlze 

ABIC = (-2) log L(d, a$) 

- log 1 &DtD 11 + const, 

where ABIC stands for "a Bayes~an information cntenon" When different 
D's are not considered, the term log K @D'D may be replaced by 2Klog d.  

where Kls the dimens~on of the vector a. 
In the last example we demonstrate the practlcal utility of exp(- & AIC) as 

the definition of the likelihood of a model specified by the maxlmum 
likelihood estlmates of the parameters. Here AIC 1s by definition (Akaike, 
1974) 

AIC = (-2) log (maxlmum likelihood) + 2 (number of free parameters). 

This definition allows a very practical procedure of developing a Bayesian 
type approach to the situation where several models with different numbers of 
parameters are considered. 

The general definition of ABIC of a model with hyperparameters 
determined by the method of type I1 mmmum likelihood would have been 
ABIC = (-2) log (max~mum marginal likelihood) + 2 (number of adjusted 
hyperparameters). In the examples treated in this paper the numbers of the 
adjusted hyperparameters are identical within the models being compared and 
the11 Influence on the maximum marglnal likelihoods 1s Ignored. 

Examples 
a. Distributed log estrmatlon 

We did a s~rnulatlon with the second example of Shiller (1973, p. 783). 
The result IS illustrated in Table I. This result was obtaned by uslng the model 

c of the precedin sectlon with N = 40, K = 20 and D = D with a = P = 0. 
I 2 

l 
Considermg that this is a limiting sltuat~on with non-zero a and p. ABIC was 

I defined by 

ABIC =  log 1 (UN) 1/ z(a, ld)(j2] 

+ log 11 @D'D + X'X 11 - 2   log d, 

and the ABIC was mmnlmlzed over d  = 5.0, 2.5, 1.25, 0.625, 0.3125. the 
values of the ABIC at these d's were -43.4, -51.5, -52.7, -45.0, -30.9, 
respectively. The mlnnnum, -52.7, was attalned at d =  1.25 and corresponding 
estlmates of the parameters are g~ven in Table 1 along with the theorehcal 
values and the Least squares estlmates. By taking a properly welghted average 
of the results with different d's we may get a procedure which has smaller 
sampling variability, but lt seems that the present slmple procedure IS almost 
sufficient for many practlcal applicat~ons. 

TABLA 1 

Examvle of d~str~buted lag estimation 

Bayes 
Least Squares 

I 6 I 8 9 10 

Theorer~cai ,054 .l30 242 ,352 ,399 
Bayes - 051 134 242 ,345 .395 
Least squares - 074 2 5 5  113 462 ,334 

I I I 12 13 14 15 

1 Theoreocal ,352 ,242 ,130 ,054 ,018 
Bayes .362 257  ,134 ,052 ,012 

i Least squares ,359 ,329 ,046 ,072 .Q42 

16 17 18 19 20 

Theoretlca .W4 .W1 .WO .WO .WO 
Bayes -.W1 -.!l15 ,006 ,035 - 018 
Least squares - 018 - 050 ,065 - 008 - 008 

b. Locally smooth trend f~ttmng 
In this example the origlnal datay(i) (i = 1,2, ... ,30) were generated by 



the relatlon 

y(i) = 4 exp I - (112) ( (i-5)/4)=1 +z(r), 

where z(i)'s are Independently and identically distributed as N(0,l). Twelve 
models of locally smooth trend of eh order defined by the model e of the 
preceding sectlon with d = 2*:' ( J  = 1, 2, ... , 12) were trled with k = 1, 2, 3. 

" The constants a, P ,  and y of the D,'s were all put equal to 0.001. The ABIC 
was defined by 

ABIC = Nlog [ (1/iVl1 z(a,ld) 112] + log I ~'D'D + X'X 11 

The m~nimum of ABIC was attalned at k = I and d = 2.0. The onglnal data, 
the theoretlcal trend and some of the estimated trends are illustrated in Fig. 1.  

In this figure SSDEV stands for the sum of squares of devlatl0nS of the 
estimates from the theoretlcal. It can be seen that the present procedure can 
produce meaningful results even with these rather nolsy observatlons. In the 
figures ID Stands fork. 

c. Seasonal adjustment 
In this case the model f was applied to varlous artific~al and real time 

serles of length SIX years, i.e., N = 72. The constants of D, In DkDwere the 
same as In the preceding example and other constants were e = 0.001, f = 1.0 
and g = 10.0. The set of twelve values of d used in the preceding example was 
also used here and k = 1.2, 3 were trled. Results corresponding to the mlnlma 
of the ABIC's are illustrated in Fig. s 2-4. 

Fig. 2 shows the result of applicat~on of the present procedure to an 
artificial serles given m Abe, Ito, Maruyama et al (1971, pp. 250-251). The 
result shows a very good reproduction of the true trend curve which was 
disturbed by a fixed multiplicative seasonality and the addit~on of the 
Irregular components to produce the observatlons denoted by or~gmal. 

It 1s remarkable that by this procedure no speclal treatment 1s necessary at 
the end of the serles. This polnt 1s a significant advantage over the 
conventional procedures which requtre varlous ad hoc adjustments at the 
beglnnlng and end of the serles (Shiskin and Eisenpress, 1957). Fig. 3 shows 
the result of applicat~on to the last SIX years of the serles of the logarithms of 
the number of airline passengers, glven as Senes G in Box and Jenkins (1970). 
The result reveals a very reasonable gradual change of the seasonality. The 
procedure has also been applied to the tlme serles of labor force glven in Table 

1 of Shiskin and Eisenpress (1957, p.442) and the result 1s given m Fig. 4. The 
adjusted series is simply defined by y(i) - S: and is Compared with the series 
adjusted by the Metnod I1 by Shiskin and Eisenpress. 
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FIGURE 4 

d. Polynomial fitting 
By this example we wish to demonstrate that a reasonable definition of 

the likelihood of a model defined by the maxlmum likelihood estimates of the 
parameters can be given by exp (-(1/2) AIC) (Akaike, 1979a, c). The 
observations y(r) are ident~cal to those of the example b of this sectlon and the 
polynomms of successively mcreas~ng order were fitted up to the 10th order 
by the method of maxlmum likelihood. Under the assumption of the Gausslan 
distribut~on, the AIC of the iM'" order model is defined by 

AIC (M) = Nlog [ (UN) S(M) 1 + 2M. 

where S(M) denotes the sum of squares of the residuais. Some of the estimated 
regression curves ana the values of the AIC are illustrated in Rg. 5. 

We smoothed these regresslon curves with the welght proportlonai to exp 
[ - (1/2) AIC (M) ] a(M) with T(M)  a (M + I).' The result 1s denoted by 
"Bayes" m the figure. The same type of procedure has been applied to the 
fitting of autoregresslve models by Akaike (1979a) where the cholce of a(M) 1s 
discussed. 

The present result shows tnat the procedure 1s pract~cally useful, although 
its performance depends on the cholce of the system of the uaslc funct~ons or 
the polynomials. Usually this ChOlCe produces significant effects at the 
beQnnmg and end of the regresslon curve. This shows the advantage of the 
models used In the preceding examples b and c over the present model. 
Nevertheless the present result demonstrates the feasibility of a Bayesian 
modeling of a multi-model problem with models defined with different 
number of parameters. 
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6.  DISCUSSION 

The numencal results presented in the preceding section suggest the 
possibility of developing further applications of the general linear model to 
problems such as the gradually changlng autoregression and the general trend 
analysis of time series. This possibility is pursued in Akaike (1979d). By 
choosing the set of d's properly the type I1 maximum likelihood method may 
be replaced by a procedure which takes an average of the models with respect 
to the weight proportional to the likelihood of each model. The performance 
of these procedures are controlled by the statistical charactenstics of the 
related likelihood functions. One particular possibility 1s the extension of the 
concept of ignorance prior distribution to the prlor distribution of a 
hyperparameter. This is discussed in Akaike (1980). 

The application to seasonal adjustement 1s particularly interesting as ~t 
provides an example of the model which cannot be treated by the ordinary 
method of maximum likelihood. This example clearly demonstrates the 
practlcal utility of the Bayesian approach. It also shows that our present 
procedure may be characterized as a tempered method of maximum 
likelihood. The practical utility of the general linear model stems from the 
understandability and mampulahility of the related prior distributions. This 
allows us to make proper judgement on how to temper the likelihood function 
through the choice of the values of the constants within the priors. 

The subjective theory of probability is developed on the basis of our 
psycholog~cal reactlon to uncertainty. Acordingly the find justification of the 
theory must be sought m the psychological satisfaction it can produce 
throught its application to real problems. It is only the accumulation of 
successful results of application that can really make the Bayesiau statistics 
attractive. 

The Bayes procedure provides a natural and systematic way of utilizing 
theinformation supplied by a likelihood function. The likelihood has a clearly 
definedobjective meaning as the measure of the goodness of a model. It is this 
objectivity that provides the basis for the use of the subjective theory of 
probability as a guide in developing statistical procedures. Only this 
objectivity allows us to develop our confidence on the practical utility of the 
Bayes procedure, even when we Know that the related model is our subjective 
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A Bayesian Look at Nuisance parameters 
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SUMMARY 

The ellmlnatlon of nursance paramerera nas classcally been tackled by various ad hoc 

m order to see when they can be gwen a Bayes~an justificat~on 

Keywords ANCILLARY: BAYBSIAN INFERENCE: D-ANCILLARY: D-SUFFICIEN~ G- 
SUFFlCIENT; NUISANCE PARAMETER; S-ANCILLARY; S-SUFFICIENT; 
SUFFICIENT. 

1. INTRODUCTION 
Problems with nuisance parameters, w h e r e  we are Interested in on ly  a 

part of t h e  parameter t h a t  governs the distributlon of our da t a ,  are of prlme 
practical importance, yet our theoretical understanding remans limltea and 
confused. One attractwe a p p r o a c h  i s  to slmplify t h e  model ,  by  reduclng  t h e  

data or by conditiomng on some statlstlc. Attempts to just ify sucn 
slmplificatlon may b e  based  on generalization of t h e  concepts of sufficlency 
and ancil lari ty,  b u t  this generalization may b e  made m m a n y  ways.  Anotner 
approach 1s to De, or to act like, a Bayes~an, and integrate out any unwanted 
parameters. T h i s  m Itself leads to a p a r t ~ c u l a r  form of generalized suffic~ency 
and ancillarity which ,  while o f  little direct Interest  to the Bayesian, 1s usefu l  as 
a standard for judging other definitions. 

In this paper we use examples and theo ry  to Indicate b o t h  t h e  s~milarities 
and the differences between t h e  Bayesian and classical approaches .  Sec t lon  2 
In t roduces  nnlsance parameters. Sectlon 3 and 4 describe t h e  Bayes lan  

a p p r o a c h  to generalized suffic~ency, and Section 5 some classlcal defini t ions.  

In Sectlon 6 we illustrate various possible ways I n  which  these properties can 
ho ld ,  aone or together .  Section 7 introduces spec~alized Bayeslan versions of 
generalized sufficiency a n d  ancillar~ty which are of partlcuiar relevance for 
companson with t h e  classlcal  approach, and Sectlon 8 t a k e s  up this 
cornpanson. In particular, it is Shown  mat, under certam conditions, the 
c l a s s ~ c a l  a p p r o a c h  can be  glven a Bayes~an lus t i f ica t lon  only for very  s p e c i a  

prlor distributions. 



Notation, 

A capital letter will normally be used to denote an uncertain quantlty 
(random var~able or parameter), and the corresponding small Letter for a 
realized or hypothetical value. However, this convention 1s not ngid. We use 
the symbols f, f and a to denote probability densities, leavlug the relevant 
var~ables to be understood from the context: thus f(tls,8) denotes the denslty 
at f for the distribut~on of T, conditional on S = S, when 0 = 0. Our 
manlpulatlons with such densities will be lnformal and far from rigorous, 

though all can be made preclse. Thus f(x/A) = fltIO)f(xI t,+) means that the 
parameter A 1s equivalent to the palr (g,+); that the marglnal distribut~ons of 
Tdepend on A through 0 alone; and that the conditional distributlons of X 
glven Tdepend on alone. Such concepts can be convemently and aCCUratelY 
expressed uslng the notatlon of conditronal independence (Dawid, 1979a): the 
above properties would read: TI A 18, XlA I (T,+). However, as this 
notatlon 1s still relatively unfamiliar, it has been avoided in this paper. 

2. NUISANCE PARAMETERS 

Suppose we are Interested in the value of some unknown quantlty 8. 
(which, like all other abstract quantities we shall consider, may have several 
components) and can conduct a statistical investigation to learn about 0. The 
outcome of this ~nvestlgatlon will be our datax, the realised value of a random 
var~able X. 

If we are fortunate, the distribut~on of X will be completely determined 
by the value of 8 ;  this 1s the state of affalrs treated in greatest depth in the 
Inference text-books. However, m most real problems such simplicity is an 
unatta~nable ideal, even after we have made slmplifylng assumptions, such as 
normality, In settlng up the model. Instead, the distributlons of X might be 
governed by a parameter A, which is m some way connected with 9. The most 
common case, to which we shall restrlct our attention m this paper, 1s that 0 
glves only a partlal description of the distributlons of X, so that 0 is a 
function of A. 

The usual approach to such a problem is to Introduce a further parameter 
a which, combined with 8 ,  completes the specification of the distribution of 
X. Then the palr (8 ,  @)may be taken to be A.  For example, if our experiment 

consists of an unbiased measurement of 0, where the measuring Instrument Is 
subject to a normally distributed error of unknown vanance. ~t would be usual 
to take a to be this variance. In such a case, @ would be designated as "the 
nulsance parameter", and Inference about 8 becomes "eliminatlon of C"' 
This seems a natural and obv~ous stance, but it should be polnted out that 
there 1s an arbitrariness Involved m the ChOlce of nulsance parameter. For 
mstance, in the above case, why not take, for +, the coefficient of varratron of 

the distribution? There IS, lndeed. a whole host of possible cholces of the 
nulsance parameter. For some purposes (in uarticular, Bayeslan ~nference) 
this will make no difference to our Inference about 0 but, as we shall see, it 
may frequently be important to recognise the arbitrary nature of the nuisance 
parameter. 

3. THE BAYESIAN APPROACH 
A coherent Bayes~an B has no conceptual difficulty m making Inference 

about 0 In the presence of nuisance parameters. The distributions of X 
depend only on A, so that the observatlon X = X provides a likelihood 
functlon,f(xIA) say, for A. To use this coherently requlres aprlor distribution 
for A, which B can specify. He now derives, in the usual way, his posterlor 
distribution for A and, belng 1nterested.in 0 alone, simply summarises his 
posterior opinlons about 8 by means of the lmplied marglnal posterlor 
distribut~on for 0. 

No specification of a nu~sance parameter 1s neccesary for this calculation, 
and if such a choice 1s made -as it normally will be- it 1s for convenience 
alone. For example. knowledge of the real world problem at hand may often 
make it possible to choose a for which it would be reasonable to take 0 and 
+ as a prior1 independent. In the measurement problem of the prevlous 
sectlon, this mlght plck out the vanance, rather than the coeffic~ent of 
variation; but 1s easy to think of slmilar problems, with the same normal 
family of distributlons, where this preference mlght be reversed. In any event, 
such a cholce of nuisance parameter serves merely to simplify the 
psychological problem of specifying one's pnor distribut~on, and is III no way 
essential to the statistical analysis. 

In general, for any choice of +. B's distribution of A can be re-expressed 
as a joint distribution for (@,G), which can then be decomposed into the 
marglnal distribut~on for 0 (which may be easy to specify, and will not 
depend on which + 1s used) and a conditional distribution for a glven 0 
(which may not, and of course will). Represent~ng parameter-densities by the 
symbol a ,  Bayes'theorem glves 

where f(xf(xl8) = Jf(xl8,+) a(+j8)d+ glves the denslty of B's coherent 
d~stribut~ons for X glven only that 0 = 0, which we shall call the marginal 
model (for B). The marglnal model does not depend on the cholce of nulsance 



parameter e.  As a function of fI,xx(x 8) is Known as the margmal likelihood of 
0, based on d a t a x  = X. 

From the potnt of view of the single Bayesian B, the marg~nal likelihood 
1s as good as any ordinary likelihood, hut there are differences so far as the . 
whole scientific community is concerned. There will normally be a good 
measure of agreement about the full moaelf(x/ B,$) (is not this what we really 
mean by a model?); but the marglnal model xxf(xl8) is constructed by an 
operation involving B's subjective opinions, through ?I($ 18). and so does not 
appear to share the objectivity of f(x/8,$). 

Armed with the marginal model, we can consider such Concepts as 
suffic~ency and ancillarity m it. We shall call Tmarginally sufficient for 0(for 
B), if a is suffic~ent m the margum1 model, and similarly for margml 
ancillarity. Note tnat these concepts depend on the prlor distribut~on, but only 
through the conditional distributions for A given 8 ,  the marginal prlor 
distribution for 0 belng arbitrary. Thus a collection B of Bayesians, with 
various prior distributions (n, ; B E B) for A, will all agree on the marginal 
model, and so agree whether or not a statlstic T is marglndy sufficient Or 
ancillary, as long as they agree on the model and on the distributions of A 
glven 8 (in which case we shall call B a bevy of Bayesians). An alternatlve 
statement of this last condition 1s that, for the family of distributions, 
regarded as a model with "data" A and "parameter" B, 8 1s a sufficient 
"statistic" 

4 MARGINAL SUFFICIENCY 

Suppose Tis marglnally suffic~ent for 0 (for B). ~henf(x18) has the form 
a(x)f(t18] wheref(tl8) v the margmal denslty of Tgiven 0 = 8. Thus a(0 X )  
a ~ ( e )  f(xl.8) a ~ ( 8 )  f(t Io), whence a(O lx) = n(8 l t), and B's posterlor 
marginal distrihutlon for 9 depends on Talone, just as In the case of ordinary 
snffic~ency with no nulsance parameters. Under some regularity conditions, 
the converse will hold. Our definltlon a therefore In accord with those of 
Raiffa and Schlaifer (1961) and Lindley (1965). 

In a sense, marginal sufficlency is unimportant: B will get the same 
posterior distribut~on for 0 whether he bases rt on the complete da taXor  on 
Talone, and for this very reason there is little polnt m his reducing his data to 
Tbefore processmg. However, lt 1s often necessary to discard some data m the 
Interests of manageability, and if B knows that he can do this In such a way 
that he loses no information about 0 ,  so much the better. 

This ralses the question: How can B know tnat Tis marglnally suffic~ent? 
It seems that he must first either evaluate his posterlor for 0 ,  and discover its 
dependence on T alone, in which case it 1s too late to use the Knowledge, or 
else calculate the marglnal model, which seems to be as laborious as a full 

analysis. However, as we shall see, B may he able to profit from certaln 
speclal structure In his model and prlor to deduce that a statlst~c 1s marglnally 
suffic~eut. 

5 .  GENERALIZED SUFFICIENCY 
It 1s not only, nor Indeed primarily, the Bayes~an who 1s motlvated to 

slmplify his problem of inference about 8 by discarding data. One obv~ous 
mOtlVatlOn for reduclng the data to some statistlc T is the possibility of 
elimlnatlng nuisance parameters by satisfy~ng the follolvlng definition: 

Definrtzon 5.1 (Basu, 1977). A statlstlc T is 0-orrented if its sampling 
distribution 1s entirely determined by the value of 8. 

However, this property does not in ~tself justify one in discarding all the 
data but T, slnce one might be tiuowlng away information relevant to 
inference about 0. The Bayesian has, in margmal suffic~ency, a coherent 
theory to tell him when he can reduce his data without esseutlal loss. From the 
classical point of view, a variety of ad hoc, more or less intuitively reasonable 
ideas has been put forward, intended to identify properties of sampling 
distributlons which serve to ~ustify such reduction of the data. 

A good account of these ideas is given by Barndorff-Nielsen (1978, 
Chapter 4). (See also Basu, 1977, 1978; Dawid, 1975) We shall concentrate on 
just two approaches, specializing Barndorff-Nielsen's definitions slightly. 

5.1 G-sufficrency 
This concept was introduced by Barnard (1963). The essence 1s as 

follows. Let the model be glven by the family P = [Ph) of distributions for da- 
ta X, and suppose these distributions are equlvarlant unaer the action of exact 
homomorphic transformation groups G, acting on X ,  and G actlng on A. 
That 1s to say, if X 2. P,, and g 6 G, then goX% Pioh (for further background 
see, for example, Dawid, Stone and Zidek, 1973). 

Suppose the parameter of interest 9 1s Invariant unaer G, so that 8 0  E 

B@A), and let T be the maximal invaiant function of X unaer G. Then Bar- 
nard proposed that, in the absence of prior information, Tshould be regarded 
as contaming all the available lnformat~on about 8. Such a statistlc T is ter- 
med G-sufficient for 0. It can be shown (see e.g. Lehmann, 1959, p.220) tnat. 
if 8 is a maximal Invariant function of A under G, then a G-sufficent statistlc 
Twill be @-oriented. 

Example 5.1. Let X = (2:r = I ,  . . . , n) be a random sample from N&,a2). Ta- 
ke G ar, the additive grouu of real numbers, a typical element a taking X into 
X + al; then we way may take 6 = G, with a. h, w2) = & + a, a2). A maximal 
lnvarlant statistlc n X -% = (X-X: r = l ,  ... ,n) ( w h e r e a  = E:=,X), which 





where the Y's and Z's are Independent standard normal vanables, and 
b. 72 a2) the value of the parameter. A mlnlmal sufficlent statlstlc 1s 
(Sl,S2,SJ, where 

S, = X.., S2 = JC:;, (X..-X..)Z, S, = C:=, (xu-x~.)2z 

and where the dot operator averages over the replaced suffix. 
. In the sampling distributlon, S,, Sz and S, are mutually lndependent, with 
S, - N&, UH/IJ), s2 2. a; ,yf.,., and S, 5 9 x~,,,.,,, where og = 9 + Jr2 ~ h u s  
taking 8 = a2 Q = h, a:), T = S ,  S = (S,, SJ, we have tne factor~zatlon 
(5.2). However, 8 and % will not normally be vanatlon-mdependent , slnce 
(with r2 2 0) we must have 02, 2 a2, and it therefore seems that lnformatlon In 
S may be relevant to a2 There are two ways m which we can get varlatlon- 
Independence: (1) restrlct the parameter-space, for example requlrmg u2 5 a 
and 06 2 b ( 2  a), p belng unrestncted: or (2) extend the parameter space to 
allow r2 < 0. (This condition makes sense if interpreted in terms of the cova- 
rlance structure of the (X,), rather than the synthetic representatlon (5.3): 
Dawid, 1977; we can then allow any combinat~on of I*, 8 > 0, U: > 0). 

The former approach appears to distort the real problem to fit the 
Procrustean bed of theory, and in any case the approprlate Implied 
parameter-space for h,?, a2) will depend on the value of J. The latter appro- 
ach may or may not be regarded as approprlate, leading as it does to the possl- 
b~lity of negatlve correlatlons between the (X..), and agan lnvolvlng the value 
of J. 

The above problem 1s the subject of Stone and Sprlnger (1965). 

6 .  EXAMPLES OF MARGINAL SUFFICIENCY 

Marglnal sufficlency may or may not go hand m hand with its vanons 
classical counterparts, as the following examples illustrate. 

Example 6.1. Full sufficlency. If Tis suffickent for the full parameter A, thenT 
1s marg~nally sufficlent for 8 for any prlor distributlon on A. Moreover, 
usually the converse will hold (HAjeK, 1965; Mart~n, Petlt et Littaye, 1973). 

Example 6.2. G-sufficrency. In the model of 5.1, consider the family F of 
prlor distributlons for A which are mvarlant underc; thus if n E F, g c a, then 
A 2. II - g 0 A .\. n. By general results on lnvarlance (see e.g. Dawid, 1979a, 
Sectlon 8), @ 1s a "suffic~ent statlstlc" in F, so that Fcorresponds to a bevy of 
Bayes~ans, and thus leads to an agreed marglna model for Xglven 8. It may 
now be seen that any of these distributlons for Xglven 8 1s lnvarlant under 
the actlon of G on X, whence Tis sufficlent for this marglnal model, and hen- 

ce marginally suffic~ent. Thus all Bayesians in the bevy would agree to work 
with the marginaI model for the reduced data T, and slnce Tis, m any case, 8- 
OIIented, this Is equivalent to using the sampling distributlons of the G- 
sufficlent statistic T. 

in the context of Example 5.4, suppose that the prior distrihntlon for A is 
rotationally symmetric about 0 (as a particular case, A, and A2, might have in- 
dependent standard normal distributions); then the postenor distribution of 8 
= llA(I will be a function of T = //S.IJ aIone, and could be derived by combi- 
nlng the marginal prlor of 8 with the (B-oriented) reduced experiment for T. 

Likewise, In Example 5.3 with slmple random sampling, if in the prlor 
distribution the vanables (Y,, ..., Y,) are exchangeable (which means, simply, 
~nvarlance under the group G o f  permutations), then the order statlst~c T of 
the data will be marginally sufficient for the order statistic 8 of the parame- 
ter, and coherent inference could be based on a s  mnltivariate hypergeometrlc 
sampling distribution (for glven sample slze). 

The general theory developed above 1s of somewhat limited applicability. 
A proper G-invariant distrihnt~on exists only when 5 is compact as a topo~og~. 
cal group. Usually this condition does not hold; it fails, for Instance, m 
Examples 5.i and 5.2. Then Finvanant measures exist, but are Improper 
distributions. Difficulties can now arise. For example, it n possible for the 
posterior distribut~on of 8 to depend on the data through Talone, but not to 
be derivable from the reduced experlment based on T. This 1s the marglnaliza- 
tlonparadox of Dawid, Stone and Zidek (1973). Such problems do not arlse 
for proper prlors. 

A difficult technical problem 1s to discover whether a Gsufficient statls- 
tic can be marglndly sufficient for a non-invanant prlor distribution, and, m 
partlcular, for a proper prlor In the case of a non-compact group. Case studies 
suggest that this will not normally bepossible (Jaynes, 1980). If so, then re- 
duction to a G-suffic~ent statistic, when the group is not compact, will be 
lntnnslcally incoherent, ln the sense that the only prlor distributlons which 
allow such reduction are Improper, and possibly paradoxical. 

Example 6.3. S-sufficrency. Suppose (5.1) holds, and the prior distribution for 
A is such that 8 and % are independent. (Thus, so long as the parameter-space 
1s redefined, if necessary, as the support of the prlor distribution, e and Q 
must be variatlon-lndepeudent). Then ~ ( 0 ~ 4 )  = ~ ( 0 )  T($), whence 

It follows that Tis marginally sufficlent for 8,  and the reduced experlment g]- 
yes the marglnal model. 



In Example 5.5, suppose that we take a conjugate prlor distribut~on: 
A, S T(ai, b) independently. As is well known, this implies that % = 
A1/(A1 + A3 5 P (a,, ad ,  rndependently of 8 = A, + A, 5 I'(a,+a,,b). It 
follows that T = X, + X, 1s margmally sufficient, so that Inference for 9 
follows on combinmg the reduced data T, havingdistribut~on P(0), with the 
marglnal pnor: 8 S r (a ,  + a,, b). 

The above simplification 1s an Important (but little-known) general pro- 
perty of conjugate Inference for exponential families (Barndorff-Nielsen. 
1978: Corollary 9.3). Under weak conditions, whenever a S-sufficient statistic 
Texlsts, ylelding a factorization (5.1), then 8 and the nulsance parameter @ 
will turn out to be mdependent, for any conjugate prior (where the term "con- 
jugate"is sultably defined). Thus conjugate Bayes Inference about such a pa- 
rameter 8 can always proceed in the reduced experiment. 

For Example 5.6, S, will be marglnally sufficient for aZ (and (S,, S3 for 
b. U?,)) if (IZ and b,c$) are aprzori independent. Agam, ~nterpreted in terms of 
G, 7'. a'), this requlrement cannot hold for more than one value of L a n d  so 
appears qulte artificial. 

Example 6.4. Complex sampling (Sugden, 1978). Suppose a sample survey 1s 
conducted as in Example 5.3, but with a complex sampling scheme which is 
not equivalent to simple random sampling. Consider agaln the family of 
exchangeable prlor distribut~ons, which constitute a bevy for inference about 
the order-statistm 8 of A. and hence yield an agreed marglnal model for Xgi- 
ven 8. Once again, the order-statistic T of X i s  marginally sufficient for 8 ;  
this follows because the posterlor distribution does not depend on the 
sampling scheme, and smce, for the particular case of slmple random 
sampling, the posterlor for 8 with an exchangeable prlor depends on Talone, 
this'must hold for any sampling scheme. Consequently, the bevy can confine 
itself to the reduced experiment for T. 

Now m general Twill not he B-oriented, and it would therefore seem that 
reduction of the data to T does not afford much simplification. However, it 
may be seen that simplicity returns if we work with the marginal model for T 
glven 8, as follows. Firstly, slnce sample-size N ( a  function of T )  is ancillary 
m the full model, it 1s ancillary in the marginal model; and now a symmetry 
argument shows that, conditional on N, the marglnal model for Twill be mul- 
tivarlate hypergeometric, exactly as for slmple random sampling. 

Example 6.5. L-mdependence. (Barndorff-Nielsen. 1978. Example 3.8). Con- 
sider a birth and death process, with birth and death lntensities A and M, ob- 
served continuously from tlme 0 to tlme T, m which there are Initially i'indivl- 
duals. Let B, D and Z denote respectively the number of births, the number of 
deaths, and the total tlme lived by a!! individuals. Then (B, D, Z) 1s sufficlent 

for (A, M), and the likelihood based on data (b, d. Z) is proportional to 

Since this factorlzes as a function of X and p, we call A and M L-independent, 
although (6.1) can not be produced by S-suffic~ency, and is not of the form 
(5.1). 

Suppose that A and M are aprrori independent. Then T(A (data) D T(A). 
X b  a very straightforward calculation. For mference about A, all the Ba- 
yeslan has to do is to store the relevant factor of his likelihood and combine it 
with his pnor. 

Here T = (B, Z)  1s marglnally sufficlent for A, Dut it would not be qulte 
SO straightforward to maKe Inference about A from the reduced experiment, 
slnce (B, Z) 1s not A-onented and has a complicated distribut~on. In this case, 
lt does not help to derlve the marglnal model for (B. Z) glven A, which 1s also 
complicated and depends on the distribut~on asslgned to M. 

The lesson here 1s that, even when a marginally sufficlent statlstlc exlsts, 
lt may not he most profitable to the Bayeslan to work with its sampling distn- 
butlons (in either the full or the marglnal model); other uses may be more 
appropriate. The same moral is polnted by the next example. 

Example 6.6. Optlonal stopping. Consider again the Fisher-von Mises distn- 
hutlon of Example 5.4, but with sequential observation of X', XZ, ..., stop- 
ping according to the following rule: if XLI XZ, ... s X' have been observed 
with values X', ..., X' ,  then observations termmates if the first component x, of 
X'IS negatlve: otherwise  is observed. This rule leads. with probability one 
for all A, to termination of observation at some random finite stageN. 

The data may be expressed as (n;x', ..., X"), the observed values of (N, 
X', .... XN). BY a Standard result on optional stopping, the posterior distribu- 
tlon for A will be identical with that based on observing values (xi, ..., X") for 
(X', ... :X") m the non-sequential set-up of Example 5.4, for the appropriate 
value of n. 

In particular, consider the bevy of prior distributions for A which are ro- 
tationally symmetric about 0.  Then, by the results of Example 6.2, the poste- 
rlor distribution of €J = 11 A // will depend only in the value of (N, 11 S,II) (the 
value of N. taken for granted as known earlier, must now be specified). As m 
the last two examples: the marg~nally sufficient statistic (N, ((SN() will not in 
general b e  @oriented (the non-mvanant stopplng rule destroys that 
property), and so the bevy mlght wish to focus attention on the marginal mo- 
del for (N, IISxll). It might be conjectured, in analogy with Examwle 6.4, that 
Nis ancillary in this marginal model, and that conditioning on it produces the 
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same distrihut~on for lSNl as in Example 5.4. However, N i s  not ancillary. 
For example, it may easily be seen that, for 8 = 0 (which gives an uniform 

I 
distributlon on the circle), the distribution for N glven 8 1s geometric with l 

i 
probability parameter 1/2; while for 0 very large, corresponding to the (X'l 1 
belng tlghtly concentrated about the same random unlt vector e = A/8,N will 

1, 

tend to be either 1 (if e, < 0) or otherwise very large (if el > 0); each extreme 
holding with probability about 1/2. 

Consequently, conditioning the marginal model on N is mappropriate, 
and we do not recover the same reduced marglnal model as for Example 5.4. 
It seems that our bevy cannot shortcut the complicated task of calculating the 
reduced marginal model. 

However, this IS, in reality, qulte unnecessary. We know that posterlor 
distribut~ons will be identical with those for Example 5.4, which are easily 
found, so that use of the marglnal model may be completely by-passed. Alter- 
natively, we might say that it is m order to use an entlrely fictitious model, In 
which N = n 1s regarded as fixed and (X', ..., X") drawn as a random sample 
of eze n: Once again, we have a slmple marginally sufficlent statlstlc leading 
to a slmple Bayeslan ~nference, but it is not all helpful to work with sampling 
distributions. 

l 
7. D-SUFFICIENCY AND D-ANCILLARITY 

The examples of Sectlon 6 demonstrate that, even when a slmple margl- 
nally sufficlent statlstlc Texlsts, leading to a slmple marglnal posterlor distn- 
butlon for 0, rt may well not be fruitful for tne Bayeslan to concern himself 
with the sampling distributlon of T. In partlcular, whether or not T is 8- 
orlented will depend on Irrelevant properties of the sample-space (compare 
Examples 6.4 and 6.6 with Example 6.2). Consequently, our next definition 
may be of little Interest to the whole-heated Bayeslan. 

Consider a model for data X, with parameter A, and a Bayeslan B with 
prlor distrihut~on Ti for A 

Definrtion 7.1. A statlstlc Tis D-suffrcrent for 8 (for B, or R) if Tis (i) marw 
nally suffic~ent for 8 ,  for B, and (ii) 8-oriented. 

l 
i 

This definition 1s important for purposes of comparing Bayes~an and 
classical concepts. In partlcular, we shall be examlnmg tne classical prescrlp- 
tlons for reduction to T, which do depend on the sample space and do, 
usually, have T 8-oriented, to discover when they can be glven a Bayeslan 

I 
~ust~ficat~on. 

From the classical vlewpo~nt, there 1s another common way of elimma- 
tlng nulsance parameters, namely by conditionmg. This ~nvolves replaclng the 

origlnal experlment for X b y  the conditional experlment for X, glven a statls- 
tlc T. In parallel with reduCtlOn, this is motivated by the possibility of 
achievmg the followmg slmplificatlon. 

Definrtcon 7.2. A statlstlc Tis 8-mducrng if, for any 1,  the conditional expen- 
ment for Xgiven T = t 1s determined entlrely by the vaue of 0. 

Uslng only the condit~onal experlment lnvolves discarding the reduced ex- 
periment for T, and we therefore requlre crltena which allow us to do so 
without loslng "useful informat~on" These are entlrely analogous to the cn- 
terla lnvolved in discarding a conditions experiment, as already considered, 
and the two problems are m effect two faces of the same cam, labelled "non- 
formatlon" by Barndorff-Nielsen (1976, 1978). 

We shall specifically consider the followng cntenon. 

Definition 7.3. A (8-mduclng) statlstlc Tis S-ancillary for 8 if there exlsts a 
nulsance parameter a, vanatlon-mdependent of 8, which determines the re- 
duced experlment for T(which n to say that Tis +-oriented). 

A S-ancillary statlstlc Tglves rlse to the factonzatlon 

Comparing this aith (5.1), we see that Tis S-ancillary for 8 if and only if Tis 
S-suffic~ent for %. Thus, m Example 5.5, T = X, + X,IS S-ancillary for % = 
il,/(A, + 83, and this might justify baslng Inference about % on the condi- 
tlonal (binom~al) model for Xg~ven T. 

For the Bayes~an, a generalized ancillarity cntenon, whicn would allow 
him to work with a conditional mode1,rather than the full moael , seems even 
Less worthy of attention than generalized sufficiency, smce he is not normally 
concerned with sampling models anyway, and in this case aoes not even galn, 
m general, by belng able to discard data. One agatn, the follow~ng definition 1s 
of most Importance for purposes of comparison between Bayes~an and classl- 
cal ideas. 

Definition 7.4. A statlstlc Tis D-ancillary for 8 (for B, or Ti) if it a (i) margl- 
nally ancillary for 0, for B, and (ii) 0-mduc~ng. 

(Recall that "Tis marg~nally ancillary for 8" means that Tis an ancillary 
statrstlc m the margmaI model, so that& / 0) aoes not depend on B). 

If Tis D-ancillary for 8, then f(x/X) = f(xI t,  0) f(f /X), whencej;(xlO) = 

Jf(x%r/X) n@/0)dh = Xxj t,0) J X t  /X) n@IO)dh = Xxl t,B)At 10) fOrl t,B). It 
follows that the posterlor distribut~on for 8 satisfies a(0)x) oc f(x) t,0) a@), 



and so can be found by combining the prlor marglnal distribnt~on for 8 with 
the conditional model given T. Conversely, when T is 8-inducing, marglnal 
ancillarity of Tis  necessary for this property to hold. Thus D-ancillarity may 
be regarded as a Bayes~an justification for working with the conditional mo- 
del. Note once again that the definition involves only the conditional prior - 
distribut~on for A given 8, and so 1s relevant for the whole bevy of Bayeslans 
sharlng this conditional distribut~on, the marginal prior distribution for 8 

i 
. being arbitrary. I 

Suppose Tis  S-ancillary for 8, so that (7.1) holds. Trivially, if 8 and * 
are aprrori independent, then a(+ /X) m ?r(+)f(xI i d ) ,  so that Tis marginally 
ancillary. The use of the conditional model is thereby justified if the prior ln- 
dewendence holds. Agan, it will normally hold for conjugate Inference ln ex- 
ponential families. 

The following example (from Dawid and Dickey, 1977) shows that prior 
lndependence is not necessary for a S-ancillary statists to be D-ancillary. 

l 
! 

Example 7.1. Supposef(x/X) = f(x/ t,O)f(t l+), where (B,*) takes values 1n l 
[-1,1] X [-l,$]. We need not specify f(xlt,O), but suppose f(tl+) = 
2t-I (1 ++ t) /g(+) for t 2 I ,  -I 5 +t 5 !h; 0 otherwne. The normalizing 
constant 1s 

l 

In the prlor, 8 and Q are not lndependent, and in fact l 
(This does define a density, for any O r L-1.11.) 
wefindJ'(tI8) = j f(t/+) ?r (+ /8)d+ = 3r4(t 2 1) 

0 (otherwise) 

so that Tis both S- andD-ancillary for 8. 
(A s~milar example may be constructed to show that staastlc Tmay be 

both S- and D-sufficient for 8 ,  although 8 and are not a priori indepen- 
dent). 

In the next Sectlon we examlne in more detail the connexions between S- 
and D-suffic~ency and ancillanty. 

8. S- AND D-NONFORMATION 

The materlal of this Section draws heavily on Dawid and Dickey (1977). 

l 
! 

The concepts of sufficiency and ancillanty belng considered may usefully be 
expressed In the general framework of conditional Independence (Dawid, 
1979a), and our theorems below are applications of general properties of con- 
ditioniil lndependence to our specific problems. For further technical back- 
ground and rigorous proofs, see Dawid (1980). 

8.1. Ancillarrty 
Suppose we have S-ancillar~ty: flxlh) = f(x/ t,O)f(tI+). Suppose further 

that Tstrongly identifies *, as defined in Dawid (1980): that is to say, if we 
consider the marginal distributlon of Tinduced by asslgnlng a prlor distribu- 
tlon to Q, two different prlors will induce distlnct marglnal distributlons. This 
property is commonly known as "identification of mvrtures" (Te~cher, 1960, 
1961. 1967: Barndorff-Nielsen, 1965: Chandra 1977). Clearly, strong identifi- 
cation Implies ordinary identificat~on. 

Theorem 8.1. Under the above condit~ons, Tis D-ancillary for 8 o 9 and (P 

are aprroriindependent. 

Proof. We have already shown "F" For " *", we note that f (t/O) = 

\ At]+)  a(4 /%Id+, and marglnal ancillar~ty glves that J'(t10,) = 8 t / O ~  
for any O,, 0,. Since fltl6') 1s a mlxture of A t /+ )  with mlxlng measure 
a(+ IO), Strong identificat~on implies that a(+10,) = a(+ / 03, so that we have 
Independence. 

We can summarize this result as saylng that, with the strong identifica- 
tlon property, use of S-ancillarlty to allow Inference from the conditional mo- 
del is coherent (i.e. has a Bayeslan justification) if and only if 8 and * are a 
prrori independent: more informally, it 1s necessary and sufficient that 8 and * each carry no Information about the other. 

The next result gwes conditions on the prlor distributlon, not lnvolvlng 
the model, under which S- and Dancillanty can never CO-exlst. 

Theorem 8.2. Suppose that the prlor conditional distribut~ons of S glven 8, 
considered as a parametric family, are boundedly complete: that IS, if h(+) 1s 
bounded with E[h(*) 81 = 0 a.%, then h(%) = 0 a.s. If (7.1) holds, then Tis 
not D-ancillary for 8. 

Proof. Suppose the contrary, and let k(Q be a bounded function. Since Tis 
G'-oriented, E[k(Ql B,*] = E[k(QlS] = h(*) say. Then Elh(Q) 181 = 

=E[k(Q 181 = E[k(QI a.s. since T 1s marginally ancillary. So by bounded 
completeness h(*) = E[k(7)l as. ,  i.e. E[k(Q/B,*] = constant a.s. As this 
holds for any k, Tmust be Independent of @,Q), so that Tis In fact ancillary, 
and so cannot be 8-lnduclng (barnng the trlvlat case that X is 8-or~ented). 



8.2. Sufficrency 
Suppose we have S-suffic~ency:f(xIX) = f(tlB)f(x/ t,4). We look for are- 

sult analogous to Theorem 8.1. 

Theorem 8.3. If, for each value of t, the distributlons of X glven T = t 
strongly identify thelr parameter Q, then Tmarglnally sufficlent for 8 -, 8 
and are lndependent In thelr distributlon posterlor to observing T. 

The proof parallels that of Theorem 8.1. 
Under the strong identificatlon condition of Theorem 8.3, the distribu- 

tlon of @ aven (T,8) does not depend on 8. Also, smce Tis 8-oriented, Tis 
lndependent of Q given 8, so that Ule distributlon of Q glven (T,e) does not 
depend on T. We appear to have shown that Q 1s lndependent of (T,8), and 
thus that 8 and Q must be lndependent aprrorr. However, this reasoning 1s 
fallac~ous without further conditions (Dawid, 1979b). 

Example 8.1. The parameter 1s (8,Q) with Q > 0, 0 + 0. The data are (S ,n  
=(Y/@,Z/e), where Y and Z have lndependent standard exponentlal d'lstn- 
butlons, with denslty fCv) = e-y@>O). We thus have "unrelated problems" 
Glven T, the dataX reduce to S, with distributlon unchanged, and S Strongly 
identifies m, by the uniqueness property of the Laplace transform. 

Suppose the prlor distributlon has 

a(4 10) = e-m (4 >0) when B > 0 
2e'"($ > 0) when 0 < 0. 

Then Tis D-suffic~ent for 8 ;  lndeed, we may take 

f(sl t,a) = (I +s)-~ (s>O) when t > 0 
2(2 +s)-2 (S >O) when t < 0 

Independently of B. However, 8 and @ are not Independent In the prlor distrl- 
butlon. 

The further condition needed to ensure the validity of our Informal argu- 
ment above 1s the non-existence of a set A for which P(Te A 10) 1s always 0 or 
I ,  both values being taken as 8 vanes. Such a set a called a splittrng set for T 
glven e (Koehn and Thomas, 1975). In Example 8.1, the positive half-line 1s 
such a splittlng set. 

We thus have the following result. 

Theorem 8.4. Suppose Tis  S-suffic~ent for 8 and that there does not eXlSt a 
splittlng set for Tglven 0. Suppose further that, for each value of t ,  the distrr- 

butlons of Xglven T = t strongly identify the nulsance parameter Q. Then T 
IS D-suffic~ent for 8 if and only if 9 and Q are aprroriindependent. 

Thus, under appropriate conditions on the model, reductlon by S- 
suffic~ency 1s "coherent" if and only if 0 and Q are aprroriindependent. (No- 
te that this result, In common with Theorem 8.1, does not use the property 
that 9 and @ be vanat~on-independent). 

Example 8.2. In the components of variance problem of Example 5.6, take 
8 = @,u3, Q = u2, T = (S,, SJ, S = S,. Then the conditions of Theorem 8.4 
hold, so that Inference for &,a3 based on (S1,S2) alone IS coherent if and only 
if @,a.?) IS aprrori independent of $: a condition which, as indicated earlier, 1s 
unrealistic. The same condition 1s necessary and sufficlent for coherent mfe- 
rence about u2 based on S, alone. 

In this example, luterest may well centre on p alone, so that reductlon to 
(S,,SJ would not eliminate all nulsance parameters. It seems likely that (S,,S2) 
will be marginally sufficlent for p (although not, of course, p-oriented) only 
under the above prlor Independence: however, I do not have aproof of this. 

Stone and Sprlnger (1965, Rider) prove a theorem very slmilar to The- 
orem 8.4 and apply It to the varlance-components model. However, they omtt 
the splittmg-set condition. 

Example 8.3. We show that the strong identificatlon condition of Theorem 
8.4 may not always be requlred for the result to hold. Consider agan Example 
5.5, and suppose Tis D-suffic~ent for 8. We have 

? ( x ~ l t , ~ )  = (L,) V1 (1-6)' a(4 1 t,B)d4 
and n(d 1 t,8) may be replaced by a(+ jB), slnce Tis 8-oriented, so that Tand Q 
are lndependent glven 8. Thusf(x,) t,%) will be determined by the first t mo- 

ments of X($ Is), and, so long as these are the same for every value of a, 
xxll t,0) will not mvolve 8. Here the distributlons of Xglven T = t do not 
strongly identify Q, for any t. However, the marglnal suffic~ency requirement 

that&,/ t,B) should not Involve B for UN t ensures that all moments of a(+ 1.9) 
are constant, whence a(+/@) IS Itself constant, so that we must have 8 and Q 

lndependent. 
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DISCUSSION 

G.A. BARNARD (Unlve~sify of Wolerloo, Conodo): 
I welcome very much Professor Akaike's presence a t  this conference; not only be- 

cause I have not before had the opportumty to  discuss Issues with one whose contribu- 
tlons to Statistics have been so constructlve and important, and I welcome this now; but 
most of all because I have been comng t o  think that the apparent division of statlstl- 
clans into doctrinally oppostng 'scho01s' of Bayeslan and anti-Bayeslans was dolng gre- 
at harm to our subject, and would do  more if it was allowed t o  continue. The punty of 
doctnne Of the organising Commttee of this Conference is beyond question; also be- 
yond question 1s the fact that Professor Akaike 1s not a subscriber to the puredoctnne. 
The fact that he was invlted, and acceDted. to speak here 1s therefore specially welcome. 

To deal first with a m n o r  ~ o m t .  I cannot go along with Professor Akaikcs criti- 
clsm of Savage's axioms, any more that I think Wolfowtz.~ criticlsms were justified. 
Surely the Young boy's difficulty arises from his regarding the difference of ranks by 1 
as marginal. Unless he moves himself and his friends. to a Muslim country he will have 
to decide eventually; and his eventual cholce may always be supposed to  arlse from a 
Derception that one, at least, of the 'margmal' differences is, m fact, more ~mportant 
than the others. 

Wolfomtz's criticlsms seemed to me m~sdirected, because if we have a general rule 
for choosing one from among any set of decision rules, we must be able to rank theset. 

However, I would go along with a slight re-formation af Professor Akaike's argu- 
ment. For the 'inconslstent tnad' t o  which his argument leads anses also m the Arrow- 
Condorcet Theorem concerning the lmuossibility of collechve 'democrattc' cholce. 
And 1 agree that statistics 1s nothing if it 1s not concerned with objecfive analyses of da- 
ta, m some sense -- whatever we may care to  say about the 'nature' of the urobabilities 
with which we deal these probabilities must be agreed between several people. And it 
follows that Savage's argument does not serve to  demonstrate the necessary existence 
of such agreed propabilities for any pro~osi t ion we care to  think of. We cannot there- 
fore take for granted the existence of agreed Dnor probabilities for all the parameters 
mvolved in a model of an  expenment. Butsuch agreed pnors are necessary for the unr- 
versa applicability of Bayes'Theorem. 

Prolcscor Akaike appears l0 s2ccpl sh31 I call lhc itkclihood hludrl(l.\l) as t)pl- 
(a1 o i  ttle log~cal slructurc of ari cnocrlmcnl. 'This ~pcciiics the 9amD.c ma;c S = 1x1 o i  

. - - . . - a - -  

possible results, the parameter space fl = [B1 of possible parameter values, ana the pro- 
bability functionf(x,B) glvlng the probability of x when the Darameter value is B. Given 
lllc lnrcc e.cnlenrs IS.RJ1 \re can ucduCC Lhc disrribullon of lhclikelil~rrod funcl~on and 
from n UCtllc, at leas1 in cotnc case,, a p n o r  disrribuuon for B in a;corUance with Pm- 

~ ~- - .. 
fessor Akaike's pnnclples. If we then represent the Inference by the postenor distribu- 
tion of B reiahve to  this p r ~ o r  and Ule observed likelihood function we shall ob tan  an 
mference which has a clear frequency interpretation. I assume that Professor Akaike 
would accept that such an  inference 1s appropriate only when we really have no obser- 
vatlonal basis for any statement about the parameter values other than that which ts 
lmpliclt In the design of the expenment. 

We should not, I think, be over-ready to assume we are m this state of ignorance. 
For example, as Akaike shows, his rule can be made to yield the rules of ridge regres- 



non. But this, in splte of its recent vogue, by no means always glves an Improvement on 
standard least squares. A group of statisticians m a large chemcal company were per- 
suaded to revlew a sample of experiments they had analysed in the past, m cases where 
the true values of the parameters had become essentrally Known. It turned out that rid- 
ge regression was, on the whole, worse than ordinaryleast squares for these cases. Are- . 
ason for this could he found in the fact that ridge regression can be seen to be equiva- 
lent to an assumption tnat the parameters bang estimated themselves follow a spherical 

norma distribution centred on the origin. Thus if all parameters in an experiment are 
roughly of the same order of magnitude, and therr slgns are randomly distributed, we 
can expect ridge regression to improve over ordinary least squares. But if, as with the 
experiments reviewed, one or two of the parameters were very large, while the remam- 
aer were quite small, ridge regression would not do so well. Thus bac~ground knowled- 
ge of the kinds of parameter value likely to be met with should he used in addition to 
such lnformat~on about the prlor as may be deduced from the expenmental deslgn. 
This last, in fact, can only be supposed to convey information about the pnor inso far 
as it reflects the Knowledge of theexpenmenter. 

Thus I believe that when we use a Bayesian model for the analys~s of an experiment 
we should regard the prior distribnhon in much the same way as we regard the form as- 
sumed for the probability function as something which may perhaps be Important to 
our inference, so that we should be careful to check how far this is so; and as something 
which is capable of objective verification, at least in a long run and which, of course, 
we should so verify. This long run verifiability is, I think, the source of the ohjectlv~ty, 
such as ~t is, whichmay be clamed for aBayesian analysis. 

In appealing to long run verifiability, of course, we need to specify the long run we 
consider relevant, the class of experiments to which we judge the current one belongs. 
A chemlcal engineer will find little difficulty in viewing the current chemical reaction 
rate constant which he is measnrlng as one of a set of such rates; ana for the w e n  
equipment which he has available he will have had to set his temperature and other fe- 
atures of his deslgn so that the reaction rate is neither too fast nor too slow to be measn- 
r a h d  He will then not go far wrong m uslng a unor distribution which is reasonably 
uniform over the range of measurable values. Similar considerations apply to an econo- 
metncian measunng elasticities, etc. But a physicist who 1s measuring the velocity of 
light, or some fnnaamental natural constant, would find it hard to regard his parameter 
as just one of a class of such, following a distributlon concernlng which he has any 
Knowledge at all. This 1s why, t seems to me, Bayesian models are appropnate for ex- 
periments m chemical engineering, or ln econometrlcs -provided, of course, the 
conclusions are understood as being subject to the correctness, to sufficient approxlma- 
tlon, of the pnor assumptions- but they are less appropnate for fundamental worK m 
phYS1CS. 

Professor Dawid has, as usual, presented us with a uaper which sumulates Us to 
further examination of fonnaatlons. But he onuts, 1 think, to qnestlon a presnpposl- 
tion which ought to be questioned: Do nulsance parameters, as now commonlyunders- 
tood, emst? How often can we, or should we, 'ignore parameter that enters into the 
specification of our experimental model? 

When Hotelling first introduced the term, 'nulsance parameter' meant lust what It 

said: a parameter that one would have preferred to omt  from one s model. But now 
the term has come to have an unfortunate use among the adherents of what (at 
Barndorff-Nielsen's suggesuon) may be called the 'prespeciflcatlon school' of mathe- 
matical statlstlcians. BY this is meant the school which, glven a model for an expenmen- 
tal sltuatlon, lays down m advance of the data the kind of conclusion that is to be re- 
ached. In relahon to nulsance parameters, a typlcal requirement a that a 'test' of pres- 
pecifiea sue should be provided that 1s unhlased'or 'similar.. Such prespecifiea re- 
quirements can easily lead to absurdity. The 2x2 table: 

A not-A Total 
Populatlon I a 0 m 
Population I1 C d n 
Total r S N 
provides a simple example. If p,g, are the probabilities of A in populations I and I1 
respectively, we often are Interested in the crossratio parameter 0 = p,q,/pg,, 
where qj = I-p,, 6 = 1,2, and less interested in the 'nulsanceparameter' @,+pJ/2 
which we may denoted m. If we now prespecify (as 1s done, for example, in Lehmann's 
book) a test of 0 = 1 Of size (say) 0.05, which is to be slmilar, or unbiased, aganst alter- 
nahves O f  l ,  we must reject the hyp0theSls tested with probability not less that 0.05 
whenP,= 2 X  10-l0 anap, = 10-'O. But when this 1s the case we will, with practical cer- 
tamty, get the result a=O, o=m, c=O, d = n ,  and so we must reject, glven this result, 
with probability 0.05. But to reject at all with such aresult is clearly absura. 

One of the biggest advantages of tne Bayeslan approach over that of the prespeci- 
ficatlon school is that the Bayesian model glves a pnmary Inference m the form of a 
postenor distributlon for all the parameters involved in the expenmental model. If, for 
example, the ~osterior distribution is very nearly normal, then it may be judged reaso- 
nable to express the conclusion m terms of an 'estimate; with a standard error; but 
whether this will be so, or not, may well depend on the data as well as on the model and 
the pnor. And it may turn out that we can express the postenor in terms of two para- 
meters 0 and 4 such that, a Dostenon, these two var~ables are, to a sufficient approxi- 
matlon, inae~endent. In such a case we can treat +as a 'nulsance parameter' in relation 

to 8; but to do this m other cases can be dangerous. Certainly the mere fact that we 
would like to make an inference about 0 without refemng to 4 by no means Implies that 
we can. If we Insist on doing so we are guilty of adopting the 'prespecificat~on~ 
approach. 

Thus Dawid's statement (p.5) that 'From the pomt of view of Ule smgle Bayeslan 
B, the marginal likelihood is as good as any ordinary likelihood. . .' needs qualifica- 
tion. If 8 and 4, glvenx, are far from independent, then further information which may 
well come to hand concernlng 4 will affect the conclusions we draw concerning 8; and 
the mere statement Of the marginal distribution of 0 will gve no expresston to this fact. 
BY contrast, if we have an 'ordinary' likelihood for 8 - that 1s. one from an experiment 

m which B alone is Involved - then no further mformation about another parameter 
alone will affect our conclusion, provided 0 and m are independent a pnon. I am, of 
course, assuming here something which I regard as fundamental to natural sclence - 
the ~ossihility of knowing that two distinct expenments are Independent of each other. 



I am led to wonder whether the term 'nuisance parameter' should not be left to the 
exclusive use of the prespecificatlon school. I have long thought it unfortunate that 
Student's t statistic should have such beautiful properties that we are too often tempted 
to make Inferences (poster~ors or confidence distributions) which relate to location p 

only, when m fact we almost always ought to make simultaneous Inferences about lo- 
cation p and scale o together. Terms like 'pnmary' and 'secondary', to Indicate a ran- 
king of our interest, rather than a total lack of interest, would usually be more 
appropnate. George Box has introduced the term 'discre~ancy parameter' to describe 
the kind of parameter m which our Interest n rmnrmal. The concept which I would like 
now to discuss 1s a little different, I think, and I shall use the term 'model adjustment 
parameter'. I hope I will not be drummed out of the Conference if I describe the idea in 
connection with a 'class~cal', not-necessarily-Bayesian problem: 

We are giventwo samples, of s~ze m, n respectively, from normal Dopulatlons with 
means p,, p*, and standard devlatlons o,, oz, all unknown. We want to test whether 
p,=+? or not. In the text books we are told that if lt is known that 
o, = o,, then we can reduce the problem to a t-test: but if it 1s now known that o, # o, 

then, typsally, we are told the problem is 'difficult'. We may, or may not, De referred 
to Fishers tables, or to Welch or to Gurland. What never occurs, sa far as I can tell, 1s 
an rnvltation to set h = o,/o, and then put 

f@) = @-X) / J[((l/m) + b2/n)) ((m-l)* + (n-l)s:/h2)/(m+n-Z)] 

In many cases, if we plot f@) over the plausible range of X we shall find that lt va- 
rles only trivially. In this case, we can make our Inference about the difference between 
p, and p, knowmg that it will he unaffected by the possible difference in the vanances. 
If things turn out otherwise, then, but only then, we must either ohtam more informa- 
hon about X, or we must resort to Behrens-Fisher. or some such type of argument. I 
myself cannot recall a DraCtlCal case where the Inference was seriously affected by h. 

' 

The Darameter h here plays the role of what I propose to call a 'model adjuste- 
ment' (MA) parameter. This is a parameter which needs to be specified in order to defi- 
ne the distributions luvolved in our experiment, but which varies over a relatively 

narrow range. We have reason to suppose that our lnference will, with high ~robability, 
turn out not to depend on that value of the MA parameter. Should we be disappolnted 
In this hope, then we must either record the fact that our lnference depends on the value 
taken for this parameter, or we must find out more precisely what value this ~arameter 
really takes. Finally we may use some speclal form of argument to derlve an Inference 
which explicitly depends on ignorance of the MA parameter value. 

Typical of the arguments 'from ignorance' here referred to is that mvolved in the den- 
vatlon of the Behrens-Fisher test, where we have a plvotal quantity s%'/~: for the para- 
meter concernlng which we wish to express our ignorance. We condition on the obser- 
ved ratio sys: and conventronrrlly retam the distribution of the plvotal by a conceptual 
distribution of the parameter X. Statements we then make concernmg the other parame- 
ters must be interpreted as referring to the reference set thus conceptually generated. 
Whether or not such modes of reasomng come to be generally understood and accepted 

will largely depend on whether the results they give appear 'reasonable' to the scientific 
community at large: In this respect the conventions as to the mterpretation of 'ignoran- 
ce' thus introduced may be compared with such conventlons as the interpretation of the 
terms 'set', 'class', etc., in the foundations of mathematlcs. Most mathematic~ans seem 
to agree that the results derivable uslng the 'axlom of choice' correspond to thelr 'in- 
tuition' of the sort of structure that mathematlcs ought to be. It 1s known that the 
m o m  of cholce can be negated without thereby introducing a contradiction into set 
theorY;but systems built on such negatlon seem In some sense 'pathological' to most 
mathematiaans. To put the matter loosely, when we ask about the difference of means 
when both location parameters are unknown, we are asking a slightly silly question: 
and we must be content with a slightly silly answer. CertaiNy the answers thus arnved 
at, subject to marglnalization paradoxes thoughthey be, seem to me to have as much 
Bayes~an lustificatlon as the answers obta~ned by simple margmalizat~onfrom a poste- 
nor lnvolvlng the secondary, MA, or nuisance parameter if we then forget that our 
conclus~ons conccrnmg the Darameter of pnmary Interest are subject to modificahon 
should further data become available concerning the parameter we have integrated out. 

Thus I agree with Zellner's comment concermng 'margmalizat~on paradoxes'. We must 
remember that statlstlcs 1s Intended for application to the advancement of sclence. Fa- 
natical insistence On freedom from 'incoherence' can lead to such com~licatcdly in- 
terrelated analyses of data as to go well beyond the capacity of our understanding. Ju- 
dicious slm~lificatlons are an essential component of scientific advance. 

P.R. FREEMAN (Leicester Untverszty): 
When I first read Professor Akaike's paper I thought "If he goes to S p m  and 

reads that, he'll be a brave man mdeed" Well, he has - and he is. How can I react? I 
could fill all the discussion time with an uptlght, stnct Bayes~an reply but this would be 
too negative. I must first, though, say that I can see no force IU the counterexample to 
Savage's axlom of choice and that oNy vew rarely (as In weather forcasting) am I at all 
interested in the expected performance of a Bayes~an procedure. I can't therefore see 
any sense In the argument of section 2.3 and would happily condemn to the statist~cal 
mental asylum anyone who needed to know whether sampling was golng to be direct or 
inverse before stating his pnor for 8.  Similarly, after many close readings of sechon 3 I 
am still not clear exactly what "ohjectiv~ty" is cla~med for the likelihood function and 
prefer to stick to the newpolnt of that great statwtician Shakespeare (1598) who said 

But (by your leave) it never yet did hurt, 
TO lay down likelihoods and forms of hope. 

Likelihoods are, to me, lust as much "forms of hope" as any other ingredients in the 
Inference mutture. 

To be more positive, let me turn to matters on which we can agree whole- 
heartedly. i take Professor Akaike's point to be that there are more things m real 
analysis than are dreamed of in any of our statishcal philoso~hies. There must always 



be a rather messy interplay between the data and the choice of model, of parameters 
and of prlors on those parameters if our analyses are to be of any vaIue at all. This 
paper presents some very igemous ways m which this can happen and they all show 
great pronnse in the apphcatlons we see. But we can all do qude well (well, nearly all, 
my own paper belng one excevt~on) when we generate an artificial set of data with 
known pammeter values, know we are usmg the correct model and furthermore reuse 
the data to choose the best prlor for us. Figs. 3 and 4 are the only ones relatlng to real 
data, so I should bke to see several more real examples Defore judging the results. 

To me, the two fundamental questions rased by this paDer are: 

i) Do these ideas give us any more insight or flexibility than could be obtaned by 
Keeping to Bayesian orthodoxy? Is there any reason to suppose, for example, tbat 
chooslng d to maxlmse L(d,d) is any better than letting it be a hyperparameter of the 
prlor dlstributlon for a, itself having a su~tably woolly distrihutton? The latter glves 
you all the advantaaes of coherence and dlows the data to dictate automatlcdly what - 
are the likely values of d and to glve a sultably weighted posterior distribution for a. 

ii) Does the galn in common sense outweigh the ad-hockery that is immediately 
needed as soon as coherence IS abandoned7 Why, for example, do wwetake c, = 0 m 
example (a), why the particular cholce of D m examples (b) and (c), and so on? If we 
are not very careful we shall find ourselves in just as muddled a state as the Door 
frequentlsts. 

Finally, I am puzzled by the last example on polynomial fitting where no mention 
is made of the purpose. Do we just want a good fit or agood ~redict~on,  or do we redly 
want to know the "true" order of the polynonual and to estlmate its coefficients? 
Without any context 1 can't judge the meanlng of the results presented. 

Professor Dawid disarms criticism of his paper by openly admitting that much of it 
1s not of direct Interest to Bayeslans. Here at least 1s one statement I can broadly agree 
with. The paper does glve me one way of telling when a frequentist is belng inconerent, 
but frequentlsts are so seldom coherent that this IS somewhat superfluous. Those of us 
who enjoy ex~licitly exposing the incoherence of frequentlst methods might find some 
of the results here useful, however. 

In the components of varlance example (5.6), it seems essential to allow ?< Oin 
order to get all information about $ concentrated in S,. This is not as crazy as it seems 
and has Indeed already been advocated by Nelder (1977). Since T~ is the excm of 
vanance between rows over varlance within rows, a negative value is possible but has 
strange implications. The correlation between a pau of observations in different rows 
(value of l) nas to be g ~ a t e r  than that between a pair In the same row. It 1s hard to 
lmaglne real datasets wnere this would happen. 

I should like to ask if any of tne results in this paper throw any more l i h t  on that 
undefined concevt of "no available information about 9 in the aDsence of knowledge 
of a'' introduced by Kalbflelscn and Sprott (1970). I remember the concept coming un- 
der heavy attact at that time, and the authors trylng hard to maKe it ngorons, but 1 
cannot recall seeing any further published work. 

Finally, the distlnct~on between parameters of interest and nulsance parameters 1s 
not always at all clear. In model discnminatlon problems, for example, we do not know 

which parameters will be of interest until we Mve decided which model is most likely to 
be true. Perhaps we heed to introduce the idea of nulsance models here. 

D. PERA (Bcueia ae Organrroci6n Inaustriol. Madrid): 

MY comments on the Dapers for this sesslon will be linnted to the Daper by 
Professor Akaike, because ~t appears to me to be the most ambitious and most 
polemcal Of Ule two papers, at least within the context of this conference, and because 
it touches areas that are more related to my particular Interests and competence. 

Briefly, the Daper by Professor Dawid appears to me to confirm what Bayes~an 
Statisticians already Know: namely, that the treatment of nuisance parameters within 
the Bayesian framework 1s genera and coherent, m contrast with tne many partia 
solutions adopted by classlcai statlstic~ans. 

My criticisms of the paper by Akaike fall-into three categories: (1) I do not agree 
with a number of the general methodological comments made m the paper; (2) I am 
not connnced that the goobness-Of-fit ctitetia, based on the Kullback-Leibler measure 
of mformatloh, suggested by Akaike, provide a s~gnificant unprovement over 
Prenously exlsting criteria; (3) 1t appears to me that tne general linear model, 
developed by Akaike m this paper, is mauuy aeslgnea to solve the problem of fitt~ng 
many Darameters to few observations, and therefore focuses on the solutlon of 
Droblems in practical statistical analysis that are, initially, so ill-defined that the 
Investigator, no matter what methodology he uses, can Learn little from the data. 

Beg~nning with the first point, generai methodologica questions, I do not share 
the opinion, expressed by Akaike (Section l), that Bayes procedures represent only 
"one possible way of utilizing the information provided by the likelihood function". I 
would agree, with Jeffreys and others, that Bayes methodology embodies the scientific 
pnnclvle of "learning from expenence" m an essenc~ally nondetemis t ic  world. The 
justification of Bayesian methodology is, in my view, that it provides a unified and 
internally consistent approach to dealingwith uncertanty, both m the context of 
stat~stlcal inference and decision. 

Professor Akaike presents two object~ons to the subjectwe interpretat~ou of 
Bayeslan procedures. First, he objects to the Dostulate of linear ordemg of preferences 
in Savage's axiom system, and offers an example of a preference structure that appears, 
at first slght, to be sensible, but in fact is hot transitive. It seems clear to me that the 
transitivity axlom is needed in any coherent theory of decision that is to be applied to 
real life vroblems with any degree of success. Raiffa (1968, pp. 75-86) has shown, m a 
very convlnang way as far as I can see, how it is always possible to build a "money- 
pump" aganst the intransitive subject. 

The second objection, in Akaike's woms (Section 2.2) is: 

"To take the Parameters (as) smnething pres~ecified and 
assume that the Dnor distribution can or should be 
determined Independently of the data distribution 
constitutes a senous misconception about the mferentlal use 
of the Bayes procedure" 



I certainly agree that, m principle, the data distribution should be taken into 
account in specifying the prior distribution in the non-informative situations typlcal of 
much of statistsal inference. However, this is not a new point and. m the concrete 
example offered by Akaike (Bemoulli versus Pascal sampling), it is not of much 
~ractical importance; see Box and Tiao (1973, pp. 45-46). The dependence of the pnor 
distribut~on on the data distribution is also present m the maxmal-data-information 
prlor distributions suggested by Zellner (1977). 

In summary, with respect to general methodological questions,, the "Conceptual 
difficulties of the subjective approach" suggested by Akaike do not seem convlncmg 
to me, and therefore, it does not seem to me to be necessary to look for new 
foundations for Bayesly Inference. 

1 now move on to a second class of comments, those related to the new goodness- 
of-fit crltena developed by Professor Akaike. This paper mtroduces a new rnformation 
critenon, the ABIC, to select the o p t m  value of the constant din his mathemaucdly 
elegant, general linear model. In essence, this hew critenon, the ABIC, a smply the 
older criterion, the AIC, also developed by Akaike, applied to the general linear model 
of this paper. These statistical criteria are based primarily on the Kullback-Leibler 
measure of information, but the11 justification, as far as statisbcal optimality is 
concerned, has remarned heunstlc. I am sure that a strengthemng of the tie between 
information theory and statistics is a useful research objective, but I susvect that the 
particular critena presented in this paper are equlvalent, m most cases, to classical 
statisacal test cntena. To support this view, let us consider a problem frequently 
treated by Professor Akaike (1974, 1976, 1978) in which the Immmum AIC is applied: 
The selection of the order of a stationary normal autorregressive stochastlc process. In 
this case a model withp + k parameters is chosen over a model with onlyp if: 

The above mequality 1s equvalent to: 

where t" + k) and 3 @) are the estunated residual varlances Of the two models, and 
Nis the number of observatlons. This Implies: 

and, using the fact that Ln (1 + X) - X whenxis small, this reduces to: 

N (3 @) - 3 @ + k)) 
> 2k 

3 @ + k) 

which 1s equlvalent to: 

NI$Z (p) - i2 @ + k)] 
F,," = > 2 

~ % ( p + k )  

where F*,,, IS the statistic F with Kand Ndegrees of freedom. In this calculation I have 
used the assumption that N is large enough so that N - p = N. Asymntotically, we 
obtaln the classlcai likelihood rat10 test based on the xZ with k degrees of freedom 
(Bartlett (1978), PP. 306-307): 

To summarize, if Nis large, the AICis equlvalent to a likelihood ratio test based in 
the XZ with kdegrees of freedom and critical value of 2k. The fact that this critical value 
remans equal to 2k explains the observed behaviour of the AIC and, m ~articular, its 
bias toward overparametrizatlon ~omted out by Shibata (1976). 

My third category of comments referrs to the importance of chooslng a 
parametflzatlon that facilitates the nrocess of learnrug from the data. To illustrate the 
usefulness of his general linear model, Professor Akaike considers the decomposition 
of a tlme serles Into trend, seasonal and irregular ComDonents, a problem that I find 
particularly Important for those of us who are working in uractral time senes analysis. 

In this applicatlon the formulation by Akaike Involves Z N  parameters for the 
decomposition of N tlme serles observatlons. The determination of this very large 
number of parameters 1s based malnly on a unon restrictions. This procedure can be 
regarded, m Bayeslan terms, as equivalent to the applicatlon of a highly lnformatlve 
nnor disfributlon about the structure of the decomposition. 

We would expect this procedure to yield reasonable results m those cases m which 
seasonal structure 1s very clear at the outset, as it 1s in the cases presented in the uaper. 
However, in cases ln which the seasonal structure 1s not at all clear from the outset, we 
will face one of the followlug two unuromising cholces: (1) to apply the same kind of 
restnctlon used by Akaike in the cases of the parrer, which may well u e m t  us to learn 
little from the data; or (2) to formulate a new set of restrictions with no guidelines for 
this selechon. 

For these reasons, 1 feel uncomfortable with this solutlon to the decomnosition 
problem. I believe that learnlng from expenence means, among other things, to allow 
the data to correct our a prlori beliefs. To achieve this end, I would vrefer procedures 
more m the sdrit of Box-Jenkins (1970), that is, the use of a well-deslgned system of 
diagnost~c checks, together with an iterative Drocess of model-building which, of 
course, must place major emphasls on parslmonlous parametnzations. In this sense, it 
seems to me that work along the lines of Box, Hillmer and Tiao (1976) 1s more 
promising than that presented in this Daper for the time series decomposition problem. 

In closmg, I would like to thank both authors for thelr contribut~ons to this 
session. To Professor Dawid I would like to express my regrets that my fields of interest 
and comoetence have not Dermited me to Day more attention to his pauer, and I would 
like to thank Professor Akaike for the very stlmulaung and uolemlcal paper that he has 
offered us on this occasion. 



J.M. DICKEY (Unrversrty College Wales): 
The emuhasls in the paper by Professor Akaike seems wrong to me. He writes, "It 

is almost trlvial to see that no ~ractically useful Bayes procedure is defined without the 
use of the likelihood functlon" This may be true m the narrow technical sense of the 
word "procedure", namely for an act-valued functlon defined on a sample suace. 
However, such Bayesian metnoas can also be viewed as formlng a Inere subarea of 
subjectlve probability modeling m which expert oplnion 1s quantified in its various 
complexities, joint dependencies, and conditioning on concomitant variables and~on 
.exuerimental data. It is then a rather speaal case to nave statistical data on which Jo 
condition, and an imoedded statlstsa model, ay which Bayes' Uleorem would b.e the 
form taken for tne probability conditioning. This seems to be the vlew taken by De 
Finetti in his work, and it also describes the stanapolnt of my own paper in these 
Proceedings. 

Think of the ~roblem of probabili~tlcall~ quantifying a uhysiclan's oplnlon of a 
cancer patlent3s surv~va under treatment with a combination of radiotnerapy and a 
particular new drug. Suppose no proper statistlca data is yet available. Probabilistlc 
uredictlons (previsions) are needed for var~ons types of patlents and various treatment 
schedules. Perhaps, an expenment needs planning. How shall the expert's oplnlon be 
used now in planning the expe~iment and treating those patlents who cannot walt for 
tne definitive data? 

Should it be used in the form of a subjechve probability model fitted to elicited 
asaects of his onmnlon? Or should cnaos reisn m the deliberate rejectlon of any theory? . ~ ~ - -  ~- . 
Does no data mean nothing can yet be done? Perhaps one prefers to use subjecuve 
probability rather tnan nave chaos. It is easy to say "yes" here to subjective   rob ability 
monelingin an absence of statistical data, because tnere are no competlngmethods. 

But now, if one says, "Yes, I shall quantify oumnlon ~robabilistlcallv", what I say 
IS, "Suppose one has a little bit of statlstica data; does one now use some entlrely 
different approach not based on subjectlve probability?" Suppose there is not enougn 
data for maximum likelihood or for the use of an ignorance prior to yield sensible 
urobabilist~c previsions. And now I ask "What if one has a little larger amount of 
statistlcal data?" 

You see what I am driving at. At what uoint does one throw away the notlon of 
quantifying o!3mion by probability? At wnat uoint does one say, "I am no longer 
willing to specify a D1101 distribution as an expression of opinlon"?. 

S. GEISSER [Unrversrty qfMinnesotql: 
I am highly sympathetlc to tne new advocated by Professor Akaike and otners 

tnat in certan contexts the pnor distributlon of a parameter need not be determined 
mdeuendently of tne data distributlon (likelihood). Whenever (as often 1s the case) the 
parameter is a nypothetical construct, unobservable, and artificially oevlsed to promote 
a convenient model and useful only inasmuch as predictme distributions can be 
calculated, tnere seems to me no grave difficulty in taking this view. Professor Akaike, 
however, has really taken the bull by the horns when he chooses a coln tossing 

exoerlment to illustrate his view that it is ~rratlonal to adopt one and the same pnor for 
the two sam~lingplans that led to the same likelihood for theparameter 8. In my vlew it 
is very difficult, if not impossible, to argue that it is raUonaJ not to adopt the same prior 
in this particular sltuatlon. 

In this situauon, if anywnere, B comes closer to being a m y s w  uroperty of the 
coin than m most otner exueriments statlsuclans deal with. The sampling plan can in no 
way affect this property. Hence one can rlghtly argue that the two different sampling 
rules invoked are irrelevant towards inferring about this "unyslcaentlty". If one takes 
the new, as I do. tnat even m this case the ~redictlve distribution of a future 
ObSerYatlOn is paramount rather tnan tne postenor distribution of B - neither should be 
affected by the sampling rule once the sample is m ham. If one takes this from the 
ususal uarametnc frameworK (for a predict~nst it 1s aways more confortable to be able 
to frame the ~roblem in terms of observables) and one can do so to a demee in thic 
case. we can sharpen the divergence of opinion on what 1s rational. To my mind, mere 
Is always fuzvness in frameworks lnvolvlng nypothetlcal unobservables. Jeffreys (1939) 
discusses the case where there are N binary trlals with an unknown number R of one 
type and N-R Of the other. A sample of n 1s Orawn and T of one type observed and the 
predictive distribution of R obtaned,assuming all uossibilities are, a prion, equally 
likely for R. Here the sampling n hypergeometric. One could have aso  sampled until T 
was observed and hence obtained a negatlve hypergeometnc sampling distributlon for 
the totaJ samuled. The "likelihood" (actually m either case !t is a urobability 
conditional on the potential observable, R) of R is unaltered as m the varametnzed 
negauve binom~al - binormal situation. 

It appears that here in the completely observable situation, Professor Akaike 
would be on very urecauous ground in sustanmg his vlew tnat it n ~rrational for the 
same statlstlcian to nave a slngle pnor for R glven only that the sampling plan was at 
issue. 

With resuect to Professor Dawid's paper, if one restricts one's attention to the 
predicuon of observables or uotentla observables, then the problem of nulsance 
Darameters. with ds imuosing glossary of tenns, comuletely vanishes. Althougn this is 
my philosophical stance, I admit to harbnnng somegenulne regret as to havlng my view 
universally adopted since it would preclude the appearance of much elegant researcn 
such as Professor Dawid's andmany of those listed in his references. 

D.V. LlNDLEY (Unrversrty CollegeLonaon): 
The criticism of the axloms offered by Professor Akaike fails to distinguish uetwe- 

en the descnutlve and the prescnutlve vlews. A person who has preferences like tne 
young boy would lose money for sure and, althougn it may be an accurate descrmtion, 
it is hardly a~rescrlption for sensible behaviour. MY descnuhon of Akaike is closelyre- 
lated to that of a prescriptive Person: heobtans sound answers for wrong reasons. 

An alternative approach to polynomial fittmg B available oy Young (1917). He fits 
~olrnomals of very high degrees using a prior that reflects scientific oDmlon that IOW- 



degree polynomals are more reasonable than those of high degree. This approach fi- , 

nishes up with a Iow-degree polynomial and avoids the difficulties of choice between 
models. Generally, it often seems sensible for a Bayesian to fit the largest model he can. 
Model choice is really a decision problem of what variables to observe in a future expe- 
nment. 

*A, O'HAGAN (Unrversrty qf Worwiek): 
I find myself in disagreement with some of the things Professor Akaike has to say, 

for instance the whole of sectlons 2 and 3. But Professor Akaike has too much expe- 
rience with data to produce silly analysis however misguided his philosophy might be. 
SO I was not surprised that the technique he advocates m section 5 for estimating the va- 
rlmce parameters oZ and d is ~erfectly sensible. In fact, in O'Hagan (1976) I reached a 
similar conclusion, that one should (a) estlmate varlance parameters by the mode of 
their marglnal distribution (after integratlng out the other parameters), then (b) estima- 
te the other parameters by the mode of their conditional distribution given that the va- 
riance parameters have the values obtamed in (a). Professor Akaike does not put Vrlors 
on o2 and d .  so his steD (0) is amax~rmzatlon of "marginal IikMihood" 

A.F.M. SMITH (UnrversrtyoJNoitmgnam). 1 
The examples  resented in Section 4 of Professor Akaike s paper are interesting I 

examples of what I would call, m constrast to the openlng paragraph of that sectlon, 
"the common-sense approach to constraned least squares". If the author 1s Interested 
m "the common-sense approach to Bayeslan Statlsacs" he mlght try L~ndley and l 
Smith (1972). 1 

l 

REPLY TO THE DISCUSSION 

AKAIKE, H. (TheInstrture pfStatrsircalMothemotrcs, Tokyo): 
Just before the presentation of my vaner I felt that I was rather out of place. After 

recelvlng the comments I recognized that my partmDatlon m the meeting was extremely 
rewarding. I must express my sincere thanks to the organlzlng cornnuttee and those 
who contributed to the discussion for providing me such an enjoyable mtellectual expe- 
rience. i 

Professor Barnard disagrees with my critical vlew of Savage's vostulate on linear 
orderlng of preference. Nevertheless, by the recent revlew article of Professor Good 

1 
i 

(1979), it seems that Savage himself considered his system of suhjechve probability in- / 
complete, as it rejects the conce~t of randomization. To accept the concept of rando- i 

mlzaaon is eqmvalent to accevtlng the nnpossibility of umquely s~ecifying a DIlOr 
I 
! 
! 

distribution. i 

i 

Professor Barnard's warning aganst assunung Ignorance without sufficient anay- 
s ~ s  of a particular sltuatlon is extremely valuable. My recent expenence on aevelopmg a 
smoothness prior for the distributed lag model treated by Shiller shows that a Bayeslan 
model can Droduce a significantly distorted image of the reality (Akaike, 1979). It se- 
ems that the oNy sensible way out of this difficulty is to develop several alternative Ba- 
yesian models and evaluate ther likelihoods with respect to the available data. 

Professor Barnard's general ooimon on the use of Bayesian models is so close to 
mne that it 1s almost unpossible for me to point out any significant differences. The ba- 
SIC idea here is to base the jnstificatlon of the use of a Bayesian model on the fo l lowg 
identlty 

objective = social = long run. 

We consider that the Information expressed in terms of a Onor distribution must at le- 
ast be communicable. This communicability can only be ganed by placing the prlor 
distribution within the context of its particular application. This observation, I think, is 
the gist of Professor Barnard's comments. 

Finally, I wholeheartedly support Professor Barnard's vlew on the danger of the 
excessive separation of doctrines of statistics. Each doctrine tends to suppress activities 
outside of it. At one point this tendency beglns to act agalnst the progress of human 
knowledge. A real innovatlon can never be placed properly within an existing doctnne 
and there should be no end of the progress of human knowledge. 

Professor Freeman surprises me by rejecting the basic Bayesian principle of ra- 
tlonality, the maumization of expected utility. He then violates the teaching of snhjec- 
tlve probability by ignonng, without reason, the information of whether the sampling 
1s direct or Inverse m the case of a binonual experrment. 

Professor Freeman is particularly sensitive to "objectivity", as a sensible statlsti- 
clan should always be. Statistics always deals with data which represent the outside 
wodd. Even if the choice of a data distributlon is subjective, the likelihood deternuned 
by data is an objective evaluation of the assumed data distributlon. Even Shakespeare 
cannot fight aganst the ohjectiv~ty of data. 

The Drudence shown by Professor Freeman against the numerical results reported 
in my paper is impressive. Part~cularly his preference of real examples to artificial ones 
reveals his position to consider statistics as something related with the outside world. 

T o  the two questions raised by Professor Freeman I answer as follows: (i) The 
idea stressed by the examples discussed in the paper is the importance of the technical 
understandability of prlor distributions. The examples also suggest the utility of defi- 
nmg an objective procedure of the choice of a prior distribuhon. Any subjectively cho- 
sen provet P1101 distribution, however wooly lit may be, cannot be free from a possible 
gross misspecification. (ii) There should be no problem m choosmg c. and D, if their 
technical meamngs are clearly understood. 

AS to the medicament of Professor Freeman about thelast &ample on DOlynonual 
fitting my explanation is that I am only interested in getting a good predictive disiribu- 
hon. Thereis no meanlng in talking about the "true" order, as this is infinite. 

Dr. Peiia considers that the conceptual difficulties of the snhjectlve approach is 



not substantlal. His concluslon 1s based on two observatlons. The first is that there are 
Bayesians, like Jeffreys, Box, Tiao and Zellner, who treat the problem of inference to 
Dr. Peiia's satisfachon. But these people are not subjective Bayeslans. They all accept 
the use of improper prlor distributions, which is unacceptable to str~ctly subjective Ba- 
yeslans. Dr. Peila's second observation 1s that my criticlsm of Savage's postulate of li- rn 

near oraerlng of preference is already sufficienty disproved by Raiffa's 
"money-pump" argument. Raiffa's explanailon starts by assumlng that a person with 
!ncoherent preference has made a decision. What I am insisting with the example of the 
boy with the ureference described in the text of my paper 1s that he is trapped in a state l 

of indecision. Thus Raiffa's "money-pump" argument does not constitute any dis- 
proof of my criticlsm of the difficulty of Savage's auom. 

As to the criticlsm of Dr. PeAa of the information criterion I must say that the 
classical tests are often disguised realizations of estimations when there are several pos- 
sible models. The optlmality of the mlnimum AZC proceaure is discussed by Akaike 
(1978b) and Shibata (l980), but what I am interested in here is the use of the concept of 
likelihood or entropy in Bayeslan modeling rather than the use of mimmum AIC type 
proceaure. I 

l 
Dr. Peila's critic~sm of the use of the general linear model for seasonal adjustment 

suprises me. The whole proceaure is objectively defined. It is simple and can be tested 
by anyone who 1s interested in it. The proceaure 1s completely free from the ad hoc ma- 
nlpulat~ons of data, at the beginning and end of the tlme senes, by Census Methods of 
seasonal adjustment. 100 not aeny the pbssibility of other proceaures, but I must men- 
tion that there 1s nothing like a canonical form for a system varying with tlme and that 
this makes the ordinary parametric approacn to the seasonal adjustment problem very 
difficult. The man polnt of the introduction of the present general linear model is the 
clarificat~on of the importance of technical understanaability of a prior distribut~on. I 
hope that Dr. PeAa would agree with me to consider the fact that a computer urogram 
1s areaay m existence and is uroaucing useful outputs without much human mterven- 
tion as aclear demonstration of the power of this approach. 

Professor Lindley considers my criticism of Savage's axlom to be aue to the confu- 
sion of descnutive and prescriutlve vlews. My criticism of subjective Bayeslans 1s that 
their prescnptive attituae IooKs very much like the attituae of a physlclan who gives a 
huge collection of precrlptions of drugs to a patlent and leaves the burden of identif- 
mug the proper cholce to the patlent. The "money-pump" argument tells the Pahent 
that he must take a drug described by the physlclan but does not help him m making his 
cholce. 

Y0ung.s (1977) paper on polynonnal fitung is not free from the basrc difficulty. 
The prior distribut~on contans two nyperparameters. Apparently Young did not PIO- 1 
pose any systematic approach to the choice of the hyperparameters. 

Dr. O'Hagan tells me that I am uroduclng sensible result with the help of a mis- 
guided philosouhy. In his 1976 paper, Dr. O'Hagan makes use of an improper prlor 
distribut~on. The result ment~oned in his comment 1s then obtained by adjushng the Ba- 
yesian model so as to produce a result consistent with the result obtalned by conven- 
tional statlstlcs. These observations show that he himself is subscribing to the "mls- 
guided" philosophy, the common-sense approach to statlstlcs. 

Professor Smith reminds me that the paper byLindley and Smith (1972) is a plone- 
erlng work on the common-sense approach to Bayeslan statlstrs. Actually Lindley and 
Smith accept the use of an nnproper prior distribut~on, which 1s not acceptable to stnct 
Bayes~ans. The paper demonstrates the polnt that the technical understandability of the 
pnor distribution is the key to the successful application of a Bayes~an model. Cer- 
talNy, this is one of the themes of my present paper, but my m m  emphasls is on the 
use of likelihooa as an objective measure of the goodness of a model. Even the good- 
ness of a Bayes~an model can be checked by comparing the likelihooas of competing 

models. 
Professor Geisser is sympathehc to my common-sense approach but he fears, with 

Professor Hill at the time of the meeting, that I am touching on a too delicate subject 
when I referred to the direct and inverse binomial experiments. It looks to me that he is 
too much influenced by the so-calledobjechve theory of probability. Withinthe statisti- 
cal context, it must be acceuted, every probability is conditional on available mforma- 
tion. If we knew whether the experiment was direct or inverse, this constitutes a part of 
our prlor informat~oh. Thus the assumptlon of pnor Independence of the probability 
of head in a coln tossing with the information of the type of exper~ment 1s acceptable 
only unaer certan specific circumstances. 

Consider the sltuatlon where you are served a piece of uie. When you know that 
the ple was prepared by a cook who 1s notonous for polsomng your attituae towards 
the ple will be different from that when you Know that the cook had a perfect record. 
Dr. Peila drew my attentlon to Box and Tiao (1973, pp. 45-46) who accepted the diffe- 
rence of thelgnoranceprlors for the two sampling schemes. Thus I am not alone here. 

Professor Dickey vomts out that my emphasis on likelihood is wrong and reminds 
me of the importance of interpreting a unor distribution as an expression of a personal 
o p i ~ o n .  In Professor Dickey's argument I sense, as in almost every argument by sub- 
lectimst Bayeslans, a rash lnclinatlon towaras the assumptlon of the state of ignorance, 
or of no mformation. I consider this a aangerous ngn. Particularly, when Professor 
Dickey forcefully puts forward the dichotomy between subjective probability and cha- 
os, I see a cnrlous analogy between his position and that of epistemolog~c~ traditiona- 
lism observed by Popper (1965, p.6) who states 'we can Interpret tradic~onalism as the 
belief that, m the absence of an objectlve and discernible truth, we are faced with the 
choice between acceptlng the anthonty of tradition, and chaos. 

We notlce that Professor Dickey's argument gans weight only when he uses the 
word "expert opllllon" instead of an arbitrary ''ouin~on" What discnmlnates an ex- 
pert's oplnion from a layman's is that the former is backed by experiences, either of the 
expert's own or someone else's. The experience are appreciated only when they constl- 
tute objective information. In construcung his prior distribution, the expert will eva- 
luate, at least informally, the likelihooas of various conditions statements with respect 
to this informatlon. It is the objectivity thus obtaned that makes an expert's pnor 
distribution respectable. 

Now we come to the discuss~on of the state of ignorance. For aperson who trles to 
collect informatlon to establish a hard prior opinion, 11 is a rule rather than exception 

that he faces the lack of information which prevents him from determlning a unlque 
Dnor distribution. The im~ossibility of unlquely determlnlng his prror distribution, typ- 



ycally represented by the lntroductlon of hyperparameters, is the representation of the 
lack of informatlon and however hard he may try to elicit the details of his oplnion he 
cannot produce information out of nothing. Nevertheless, due to the limtation of ti- 
-me, he has to make a decision, and this requires aunique choice of aprior distribuhon. 
How should he act in such a situat~on? The answer seems clear. The effort in definlng a m 

onor distrihut~on 1s manly directed towards delineating relatively unportant possibili- 
ties. When the effort comes to a halt due to the lack of information, we come to the 
Dhase of making a decision. The situation e typically revresented by that of planmng 
'the experlment m Professor Dickey's comment. Here the emphasls a on Daylng atten- 
tion to every possibility. Who will favor a physician's whim to a carefully deslgned ex- 
penmeut which takes into account every possible course of patient's condition? Thus, 
at the point where the collection of further relevant lnfomatlon becomes impossible. 
the emphasls is switched from restraining to disuersmg the distributlon of the pnor Dro- 
bability. This may sometimes lead to the use of improperpnor distributions. The effect 
of this dispersing is evaluated by its effect on the resulting predictwe distribution. Here 
the recognition of the necessity of switching thepomt of vlew, durlng the process of de- 
veloplng a prior distribution, seems crucial. 

The above is an amplified version of the procedure for the construction of a Dnor 
distrihutlon discussed in my paper. A sunple but concrete example of application of 
this procedure 1s discussed in Akaike (1980). 

Thus in our approach the suhjectlve elements are always exposed to some objective 
tests through the use of prior experiences or data, and the somewhat obscure concept 
"op~mon", required to comvlete a prior distribution, is replaced by a description of a 
strategy for making a decision. This strategy and its design pnnciple are described ob- 
lectlvely and can be tested in the long run through the accumulation of exDenences of 
~ t s  use by a sc~entific community. Thus, contrary to the suggestion of Professor Dickey, 
we do not ~ u t  much em~hasis on the Interpretation of a Drior distribution as an expres- 
sion of "o~inion" 

DAWID, A.P. (The City Unnectity, London): 
Should the Bayesian be interested in concepts sDnngmg from a freauentlst or 

"~resuecification" approach to Inference, or can he afford to dismiss them cursorily as 
"incoherent"? Although I am fully committed to the Bayesian position, I can't accept 
tnat the only good ideas are those had by Bayesians. Consequently I regard it as Dracti- 
cally important, as well as theoretically amusing, to inveshgate non-Bayesian ideas, and 
find out how they relate to Bayesian ones. So perhaps I should revoke my suggestion 
tnat some of the definitions of my paper are of no interest to Bayesians, for if we are to 
be good statisDclans (which is surely more important than belng coherent) we must not 
disnuss such concepts out of hand - at any rate, not before a thorough investigation of 
the type1 have atlempted. 

While agreelng with Professor Barnard that we could well drop the term "nulsance 
parameter", I am puzzled by his suggestion that we are guilty of some sort of sin if we 
lay down, before getting data, that we are only Interested in what we can learn about 

the parameter 8. If this is an example of "prespecification", I can only conclude that 
there must be a large overlap Uetween that approach and Bayeslan ideas. If we are faced 
with a decision problem in which the parameter enters theloss funchon only through 
e, why should we not make an Inference about 9 alone, whatever the data may turn 
Outto be, and whatever the dependence between 9 and some nusance parameter m? 

I do, however, accept Professor Geisser's point that the formulation of the 
Droblem m terms of Parameters at all may be mlstaken. A reformulation involwng the 
unkuowu values of future observations would involve quite different theory, at least 
for the frequentist. Such an approach might perhaps be used in the model discnmina- 
tlon context meuhoned by Professor Freeman, since, while we may not know what pa- 
rameters are of interest, we will surely be able to pinpoint what it is that we should like 
to be able to vredict. Nevertheless, for the Bayes~an, an emphasis on prediction 1s not a 
Dre-requisite for the urohlem of nulsance parameters to disappear - he never had a 
oroblem in the first place. It is classical ideas which Dresent problems. If we take a pre- 
dickve standpoint. then it becomes approuriate to compare the straightforward Baye- 
Sian approach to prediction with classical counteroarts (see, for example, Section 6 of 
Dawid, 1979a). But that is another story. 

Barnard's discussion of a "model-adjustment" parameter is important. It attacks 
the vroblem of the robustness Of an inference about the Darameter of interest. His as- 
sumptlon a that the likelihood, while not bung a function of B only, 1s nevertheless 
approximately so, for most data. If the data suggests that this approxlmatlon is good. 
then we can Pretty well ignore the fact that there are really some nulsance parameters 
around. If, however, we have exceptional data, we may have to be more careful. This 
suggests an lnterestlng line of research; m particular, how would the Bayesian formalize 
the property that, to a good apprommation, his model involves o a y  the parameter of 
interest? This kind of problem, in which approximations may be valid for some data 
values, but not for others, is of great general imvortance to a sensible Bayeslan appro- 
ach. In Dartlcular, the marglnalizatlon paradox does not rule against using the Darado- 
mcal oostenor distribution for the data at'hand, but warns that it cannot be a good 
approxlmatlon to a coherent posterior for all possible data values. In concerning our- 
selves with these things, we are, of course, leavlng the pre-specification approach 
squarely behind, and rightly so. 

The incoherence in Example (5.6) is not really concerned with the question 
whether or not we can nave 9 C 0, as suggested by Professor Freeman. As I pomt out, 
we could, for exmule, get vanation-mdependence between 9 and 01, $9 if oZ and r2 are 
subject too' S 1, t (l-o?/J. The real difficulty is the deuendence on J.  Thus, while 
one might argue that It is coherent to use oniy S for Inference about o2 for the exueri- 
ment performed. one could not allow this same argument simultaneously for another 
such experiment, with different J. This is analogous to the discussion at the end of the 
prewous paragraph, with the difference that, there, we had to worry about Inferences 
from different data in one experiment, while here we must worry about different expe- 
riments. But the comparison of different experiments 1s a valid and important concern 
of the theory of coherence. 

As for the concepts of "no available information about 9 in the absence of 



knowleage of m", the various ideas of S, G, M-ancillanty etc., all express clasncal at- 
temots t o  caoture this notlon: I refer Professor Freeman to Barnaorff-Nieisen's DooK. I 
uon't think there is a full-blooded Bayeslan mterpretatlon, Decause of the difficulty of 
aefimng "absence of knowleage". Margtnal anciilarlty 1s not really appropriate, de- 

pending as it does very much on the form of pnor knowleage about  GP.. But if we once , 

again d rop  a pre-specificatron approacn, i t  may be that  the concept can be glven some 
meaning m terms of  robustness o r  approxlmatlon, relevant only for cer tan  aa ta  and 
classes of pno r  distribut~ons. 
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Least squares approximation in Bayesian analysis 
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SUMMARY 

The "ape1 "resents m a simple ana unified frameworn the  east-Squares appronlrnatlon 
of Dostenor erpectatlons. Particular srruelures of the sampling process ana of the "nor 
disrribut~on are "sea to orgamze ana to generalize oiev~ous results. The two oasx sirumu- 
res are obtamed bv considenn~ unbiasea esrlmators ana exchangeable oracesses. These 
ideas are appliea to the estlmatlan of the mean. Sufficient reauctlon of tne aata 1s analv- 
sea when only the 'east-Squares appronlmatlon is mvolved. 

Keywords: LINEAR BAYES, LEAST SQUARES, CREDIBILITY THEORY 

I. INTRODUCTION 

I .  I .  General Formuratron 
Considera random vector (@',X') with B c RV and xe Re. In what follows, x 

will typ~cally represent (functlons of) Observatlons and B will represent either 
(functlons of) parameters or future observatlons. In all of this Daper, (O',x') is 
assumed to be square-integrable. 

In Bayeslan analysis, attention 1s often directed toward computing the 
posterior expectation E(B Jx). This IS, e.g., the Bayes~an aecls~on rule under 
qnadratlc loss. In this paper we consider simple (i.e. linear) approxnnatlons of 
E(8lx); they will be denoted E(0lx). Under the Least-Squares (L.S.) crlterlon, 
the best linear approxlmatlon of E(B Ix) is also the best linear approxlmatlon 
of B. In this second interwetat~on, B(B (X) may be mewed as a "best linear estl- 
mator of 8". Doob (1953) suggests that E(B X )  he called the best L.S. approxi- 
matlon of B and E(0 lx) the wide-sense version of E(0 Ix). 

In order to write explicitly 8(0ix), we partltlon the vector of the expecta- 
tions and the variance-covanance matrut m the follow~ng way: 
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V,, V,, 

V (3 = (v.. Vxx) 

Under the Least-Squares criterion, the best linear approxlmation of 
E(8 lx) 1s known to be: 

E(O 1 X) = m + V,, V,: (X-E(x)). (1.3) 

It is important to polnt out that formula (1.3) is valid irrespective of the 
form of the distribution of (0.x); the only restriction aelng the exlstence of 
second-order moments. Reading (1.3) component-wlse, we conclude that 
each component of B(81x) 1s also the L.S. approxlmatlon of the corresuon- 
ding component of 8 (or of E(O Ix)); more formally: 

Formula (1.3) 1s computatlonally slmple and needs only the specificatlon 
of the first two moments; this gives it some properties of robustness. 

When 8 represents parameters of the sampling distrihut~on, this specifica- 
tlon will often rely on the following decomposition, based on averaging over 
sampling moments: 

E(x) = ES(x  l 0) (1.5) 

V,=E,V(xlO)+ K E(xl0) = V, + V, 
def 

(1.6) 

V,, = E,[#E(x1 /0)] - E(0)E(x8) = COV(O,E(X' / 8)) (1.7) 

Apart from the ease of comuutatlon and the aspect of robustness, the ac- 
curacy of the L.S. approxlmation is often crucial. Let us Introduce 

Clearly, ri has zero mean and is uncorrelated with X. Often, one would like to 
analyse the accuracy of the approximation for U given X. We have the follo- 
wing posterlor moments: 

Unfortunately, these quantities are generally at least as difficult to com- 
Dute as E(0 \X) itself. However, V(q) is easily computed from (1.8) 

This formula agam depends only on second moments of (0.x) (directly compu- 
table from prlor and samuling moments when 8 represents a parameter). We 
now decompose V(?) as follows: 

The dispers~on of .o has therefore two components: by (1.10) the first one 1s 
due ro the average uostenor variance of 0 and the second one comes, ay (1.9), 
from tne ~0ssible non-linearity of E(O lx). Therefore V(?) glves an upper 
bound for the average posterlor varlance of 0: 

where r is wrltten m the sense of positive-definite, symmetric (P.D.S) matrl- 
ces, and with equality if and only if the true regression is linear (i.e. E(O X )  = 

B(0 lx)). 

In particular, 

V(v) = V(t 1 X) for any X 

if and only if the true regression of 8 on X is 

(i) linear ( ~ ( 8  lx) = &(B X )  0.8.) 

(ii) homoscedastic (V(0 X )  constant as.) .  

14 



As this 1s the case for the normal distribution, one may Interpret the L.S. 
approximatlon as adjusting an overall normal distribution on (0,x) with iden- 
tical first two moments. In other words, the formula used to compute 1x) 
(i.e. (1.3)) and V(7) (i.e. (1.11)) may be vlewed as the conditional mean and 
varlance of that normal approxlmation. This feature has been demonstrated 
by Doob (1953 - Chap. 1) and Hartigan (1969); both suggested the termino- 
logy of "linear expectation" for E(0 X); Hartigan also suggested "linear va- 

,, rlance" for V(il), and even used the notatlon "V(0 X)". but this appears to be 
ambiguous and will not be used here. 

From a declslon point of vlew, let us consider g(0 X )  as a decislon rule. 
From (].S), V(7) appears as the Bayes~an mean-squared error matrix of 
E(8 ]X): 

Under a quadratic loss assoclated with a declslon rule t = t(x) : 

P(t,O) = ( t  - 8) ' A(t-0) A : SPDS (1.15) 

tne Bayeslan risk assoclated with E(0 lx) is: 

In any case, V(?) will determine the declslonal accuracy of P,(@ \X). 

1.2. General Comments and Objecfives of the Paner 

We developed an Interest in L.S. approxlmations when supervising a 
student's them on credibility theory (Bouchat (1977)). We then became aware 
that the idea of L.S. approxirnatlon to Bayesian solutions had been widely 
used in varlous fields of applications with different terminologles and striking 
duvlicatlon of results. It has been used since 1920 in actuarial sciences under 
the heading of credibility theory. An overvlew may be found in Biihlman 
(19701, de Vijlder (1975) or Kahn (1975). Recent developments are also due to 
Biilhman (1971) and Jewel (1974 a, b. c). Hartigan (1969) and Goldstein (1975 
a,  b. 19761, under the heading of linear Bayes methods, analyse the L.S. 
approximations in various particular statistical problems. Stone (1963) and 
Dickey (1969) arrlve at slmilar methods when looking for robust Bayeslan 
procedures. 

A recurrent theme m the above literature considers whether the L.S. 
approximations 1s exact or not, i.e. whether or not  OX) = E(0lx). Bailey 
(1950) and Mayerson (1964) have shown that uartlcular combinations of prlor 
probability and likelihood yield exact credibility for the mean of a process. 
Jewel (1974 b. c) extended these results for the exponential family under 
natural-conjugate nrior. Kagan, Linnik and Rao (1973, addendum B) glve 
conditions for the linearity of Bayes estimators. Recently, Diacon~s and 
Ylv~saker (1979) have characterized conjugate vrlor measures through the 
uroperty of linear posterior expectation of the mean of the vrocess. By so 
dolng they not only extend prevlons results on exact L.S. approxlmatlons, but 
they also linked this problem to the admissibility of linear estlmator under 
quadratic loss. (See also Kagan et a1 (1973, Chav.7).) A somewhat different 
approach is to characterlze joint distribut~ons (on (0.x)) having linear 
exuectatlon E(O X). Thus, Lukacs and Laha (1964, Chap. 6 )  glve a necessary 
and sufficient condition m terms of characterlstlc functions. 

Durlng the revlslon of this paper we also became aware of recent results 
by Goel and DeGroot (1979) and by Goel (1979) characterlring linearity of 
uostenor expectations m linear regression and in a scale parameter family. 

This vroblem of exact approxlmation will not be pursued further in this 
paDer. Instead our maln objective 1s to present m a slmple and unified 
framework prevlous results otherwlse stated in particular contexts. By so 
domg, we slmplify unnecessarily complicated results and remove ambiguities 
(which possibly Induced errors). 

The unifylng argument is glven m the general formulation of the previous 
section and is essentially summar~zed in the formulae glvlng E(@ lx) and V(7) 
(i.e. (1.3) and (1.11)). In this very slmple framework, the presentation is 
organized according to partlcular structures of the first two moments (1.1) 
and (1.2): focusing attention on these uarticular structures Induces natural 
generalizations of prevlous results and clarifies the role of the given 
assumutions. In partlcular, it may suggest sultable transformations (of the 
observations or of the parameters) m order to take advantage of suecific 
structures (both in the prlor lnformat~on and in the sampling process). 

Finally we systemat~cally analyse the case of several uarameters. It 
appears that treatlng each parameter individually or treating all parameters 
together does not affect the computation of E(@ X )  or of the diagonal elements 
of V(q). However, the role of the simultaneity in the Inference shows up In the 
off-diagonal elements of V(q) and so affects its inverse, assoclated with the 
concept of precision. 

In Sect~on 2, we consider two partlcular structures induced by the use of 
unbiased estimators and by some properties of exchangeability in the 
sampling process. It is shown that those cases provide peculiar forms of the 



L.S. approximation under more general conditions than previously presented. 
The last sectlon addresses itself to the question of sufficient reduction of the 
data when only the L.S. approximation 1s involved. 

2. PARTlCULAR STRUCTURES 

Formula (1.3) gives a rather general framework to treat L.S. 
approximation in Bayesian analysis. For instance, in non-~arametric 
situations B may be a finite-dimensional characteristic of an  infinite 
dimensional parameter (vrz. the distribution function of the observation). 

Similarly, X may be either a full sample result or a statistic defined on a more 
Complete samDle result. Note however that the specification of V,. and V, is 
not always easy. It is then important to choose a sultable statistic X carefully 
and to take advantage of the particular structure of both the DIlOr 
information and the sampling process. The object of this section is to analyse 
iw0 Uartlcul%r structures which prove to he basic for the L.S. approximations. 

2.1. Use of Unbiased Esfrmafor 
Suppose that we first reduce the sample to an unbiased estimator of B: 

Clearley, m this particular case,p = g. This structure ~mplies that: 

V,, = Voo = VE(x1R) = V,. (2.3) 

Then E(B X )  may be written as 

If V. and V, are both regular, this s~mplifies to 

E(0lx) appears as a weighted matrlx average between E(B) and X; I.e. E(01x) 
has the form: 

Note that this derivation is very easy and 1s implied only by the property of  
unbiasedness. It has appeared frequently in the literature, in particular for the 
casep = q = I with B be~ng the population mean and X the sample mean. This 
formula is familiar for the Bayesian inference on the mean of a normal 
urocess where, m this case, !2(8Jx) = E(BJx) (see e.g. Raiffa and Schlaifer 
(1961)) or m credibility theory (seee.g. Buhlmann (1970)). 

The average measure of accuracy V(v), given in (1 . l  1) becomes 

It 1s illuminating to write down the upper bound for the average posterior 
variance, in (1.13), in terms of "mean" precisions (where "mean" stands in 
the sense of harmonic mean, i.e. the inverse of the exuectatlon of the Inverse) 

Thus the "mean" Dosterlor precision is a t  least equal to the prior precision 
plus the "mean" sampling precislon, with equality if and only if E(Blx) 1s 
linear in X. This addition of precislon 1s familiar (with equality) for the 
Bayesian ~nference on the mean of a normal urocess. In the scalar case, (2.8) 
has also been derlved by Finucan (1971). Note however that this rule of  
additwe precision should not be used componentwise unless V (B) and V(xl0) 
are both diagonal, which is falrly unusual. 

In the light of formula (2.6) ~t may be illuminating to rewrite (2.7) as 
follows: 

This fact has been noticed by Stone (1963) for the estimation of a mean in the 
one-dimensional case (with X being the sample mean). 

Suppose one is ready to specify the functional form of the sampling 
distribution but that the comDutatlou of E (0 X )  is difficult or that robustness 
w.r.t. the ~ r i o r  specification 1s desired. In  such a case, Rao-Blackwellization 
may be useful. L e t s  be a sufficient statistic and X* = E (xls.8) = E (XIS). 
Then @B X*)  will imwove fi (B 1x1 m the followiug sense. Let starred symbols 
be associated with X* instead of X. Clearly V; = V,; furthermore 5 V, by 
Rao-Blackwell's theorem. Therefore, from (2.7), V(q*) 5 V(?). 



2.2. Excl~nngenbility 
2.2.l.lnrroducfion 

We now consider exchangeable processes, i.e. processes where the finite 
dimens~onal distribut~ons are lnvarlant under permutation of indices (see e.g. 
Hewitt and Savage (1955)). This class of Drocesses generalizes the class of 
I.I.D. processes and also includes the mlxtures of I.I.D. processes. Thus these 
Drocesses arlse naturally when nuisance parameters are Integrated out so as to 
get marglnalized likelihood (and prlor distribution) on the parameters of 
Interest alone. Integration of part of the Darameters may also be mot~vated by 
paylng attention to robustness: In a two parameter problem, for instance, the 
prlor distribut~on D (8,/03 may be rather easily asslgned while on 8, a more 
robust Drocedure may be preferred, e.g. by assigning only the first moment of 
01. 

Here we concentrate attention on the first two moments of a finlte 
sequence X = (X,, .... X.) generated by such a process. In this case, p = n, the 
sample slze. and q 1s arbitrary. We first analyse the ~molicat~ons of 
exchangeability only on the first moment, then on the first two moments: we 
shall call these Drocesses first-order and second-order exchangeable. 

These processes will give charactenzatlon of L.S. approxlmatlons slmilar 
to (2.4) and (2.5). 

2.2.2. First-oraer exchongeabrirfy 
For expository purposes. ~t is convenient, and not restrlctlve, to specify 

the first component of 8 as the sampling expectation of the process. First- 
order exchangeability is then characterized by 

Let us decompose E(0) and V(8) as follows: 

v, = l V u l  = [V, ... V,] tJ = 1 ,  ...,q (2.12) 

where v. 1s the I-th column of V,,. First order exchangeability lmplies 

The L.S. approxlmatlon now becomes 

and the average measure of preclslon (1 . l  1) becomes 

V(?) = V@# -[l + v,,l' V;' 11.' 1 'Vill vlvi (2.17) 

= Vaa - LVll + (l'vi'l)-'l-'vlv; 

This involves a rather peculiar rule of additive preclslon analogue to (2.8) (for 
details, see appendix): 

with equality if and only if E(8 Ix) 1s linear inx. 
Note that for the (harmon~c) mean of the posterior Dreclsrons the 

sampling Improves the lower bound of the element corresponding to 8,, the 
mean of the process, only and for 8, this improvement 1s given by the element 
(1.1) of (2.18): 

where You has been partitioned as follows: 

If, from the start, the model had been marglnalized on 8,, formulae (2.16) and 
(2.17) would have glven: 

E(O,(x) = [v;; + 1' V;']-'[(m/vA + 1' Vjlx] (2.21) 

V(vJ = [v;; + l ' V;' l ]  (2.22) 



The role of the slmultanelty of the 0,'s may be appreciated by comparmg the 
inverse of (2.22) and the expression (2.19): they are equivalent if, a priorr, 0,1s 
uncorrelated with the other 0,'s (i.e. v,, = 0). 

2.2.3. Secona-order ercnongeobiliw 

As for first-order exchangeability, we specify the first three components 
of B as follows: 

Second-order exchangeability is characterized by the following two 
conditions: 

where. agaln, l = (1.1,  ... 1)' E R" and(B,,B,) arerestrlcted by: 

Like V(xlB), V, = EV(x8) and V, have the same structure as an lntraclass 
correlatlon matrlx. In particular: 

V, = (m2 - m,) I,., + (m3+ v13 11' (2.29) 

Formula (2.16) specializes then as follows: 

We note that (2.30) 1s a linear function of i ,  the sample mean, (jl = n-'l'x); 
thus the L.S. approxrmatron of 0 (or of E(B X)) by x depends on i only. This 
will be further analysed in Sectlon 3. As this dependence is linear, we 
conclude: 
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An alternative proof of (2.31) would run as follows. Since: 

V(?) = n-'1'V,1 = n-'lm2-m,+n(m,+ v,,)], (2.32) 

formula (2.30) may be rewritten as follows: 

i-m,", 
B(fllx) = B ( B 3  = m +  -- 

VG) 

where, evidently, v, = V, 

From (2.17) and (2.32), the average measure of accuracy, V(?), taxes the 
form: 

The rule of additlve precision in (2.18) now becomes 

where: 

and with equality m (2.35) if and only if E(BIx) 1s linear in X. Note that the 
uncorrelated case (i.e., 8,=0 a s . )  does not ~ r o v i d e  substantial 
slmplificat~ons. 

3. APPLICATION TO THE ESTlMATlON OF A POPULATION MEAN 

We now consider a samplex = (X,, ..., X,)' with sample mean i = n-'l'x. 
Let B he the only parameter of interest. If E(Blx) 1s to be approximated by 
means of i alone. use would be made of: 
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where 

and 

Clearly this approximatlon is of interest when 0 1s the population mean m a 
first-order exchangeable process I.e. E(x.10) = 0 f = I .  ..., n. In such a case, X 
1s an unbiased estimator of 8: we may therefore pool the results of Sect~ons 2.1 
and 2.2.1.. namely: 

Therefore: 

where 

and 

E V(@]?) 5 (V(0)-' + [E V(i(O)]~'I-' 

with equality if and only if E(0 Ii) = E(O/i), (a.s.). 

In general we also have: 

E V(0 Ix) 5 E V(0 1x7 

with equality if and only if E(O ( X )  = E(8 1:). (as.). 

Therefore: 

with equality if and only if E(O (X) = E(0 (F). (as.). This allows us to state 
Er~cson's (1969) result in the follow~ng way: If E(0lx) = 4 0  Ii) (i.e. E(O X )  is 
a linear functlon of i )  then E(O (X) has the form (2.44) - (2.45). We may also 
add that E V(0 1x1 is equal to the 1.h.s. of (2.48). 

If theprocess 1s second-order exchangeable we get an expliclt form for 
E V(i(0-0 given m (2.36). With this expresslon, formula (2.44) - (2.45) 
reproduce Goldstein's (1975, b) Theorem I and formula (2.48) corrects his 
Corollary l (ii) (indeed, the 1.h.s. of the mequality is actually the (predict~ve) 
expectation of the posterior varlance and not the posterior variance itself). 
Note also that in these relat~onships, the second-order exchangeability adds 
only an explicit form for E V(i'(l) and insures that E(8 Jx) = ~ ( 0  (3. 

If we only know that E(0 1x1 = E(8 (X) (i.e. E(0I.u) IS a linear function of 
X) then E V(B1x) is equal to the 1.h.s. of (2.22). In this case. second-order 
exchangeability guarantees that E(8 1x1 = E(O 1;) and. therefore, that E V(O ( X )  

is equal to the r.h.s. of (2.48). This appears in Ericson (1970) where 
exchangeability is obtalned in the context of fin~te population. 

l 
3. LEAST-SQUARES SUFFICIENCY 

In formula (2.31) we have seen a s~tuation where the L.S. approximatlon 
depends on .i only. One may try to characterize (i.e. to find necessary and 
sufficient conditions for) situations where L.S. approximatlon depends on i 
only. More generally, we may analyze under which conditions the L.S. 
approximatlon depends on a transformation of X only. This leads to the 
concept of "least squares sufficiency". Since 8(0 X )  IS a linear funct~on of X, 

i one should take care of linear transformation of X only. Hence. the follow~ng 
definition. 

Definition Let t: RP-RS be a linear transformat~on of X I.e. t = Ax (A:sxp). 
Then t 1s least-squares sufficrenf if and only if E(0 (X) = E(0 1 t(x)) for any X 

(a.s.). 

Theorem (charactenzatlon of L.S. sufficiency)' 

I 'Commenr~ b v A  P. Dawid are gralefullvactnowledged as they pam~ea out an enor m anrtuious version 



Let f = Ax (A s x p ,  HA) = S) 

then the followrng conditions are equrvalent: 

(i) E(0 X )  = E(@ I t(x)) almost surely mx,  
(ii) C(A ') 2 C(V2 V*); 
(iii) 3 B (qx  S) such that V, V;,' = BA, 

where C(.) Indicates the linear space generated by the columns of a matrix. 

l 
Proof 

Condition (ii) 1s clearly equlvalent to condit~on (iii) and condition (i) is 
equivalent to: 

(iv) v,, v;: = v,. A '(A V-dl ')-'A. 
l 

Indeed, using a notation similar to that of Sect~on I we have: 
l 
l 

E(!) = A E(x) V,, = V,A' V,, = A VJ ' 

As C(V,,) c C(!',), the equivalence between (ii) and (iv) appears clearly once 
it has been notlced that A '(A V,A ') ' A V, 1s a diagonal prolect~on on C(A '). 
Condit~on (ii) of the theorem glves the geometric motlvatlon of condition (iii) 
and is Indeed equlvalent to !(X,) = t(x2) 3 E(@ 1x3 = R(@ 1x2). 

Definition The statistic t = Axis mmrmal L.S. sufficient if and only if C(A') 
= C(V2 V.,). 

In  other words, a mlnlmal L.S. suffic~ent statlstlc may be constructed 
from any basis of C(V2 V=/,,). 

As an application we now answer the questlon considered at the beginlng 
of this sectlon: under what condition 1s k L.S. suffic~ent? Direct application of 
the theorem Leads to: & ( B ~ x ) = & ( @ k ) o l  generates the columns of V;! V, I.e. 
3b ER. such that Vas V;lZ = bl ' .  Sect~on 2.2 has shown up one such case (with 
b=  [nV(%)]-'v, - see formulae (2.30) and (2.32)). 

Appendix: Derlvatlon of (2.18). 

Given (2.17), the Inverse of V(rl) may be written as: 

Remember that v, 1s the first column of V,,; this implies: 

Therefore: 

v; v;,' v, = v,, 

from which (2.18) 1s easily obtalned 
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Approximate Bayesian Methods 

D.V. LINDLEY 
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SUMMARY 
This uaDer aevelous asymurotlc enuanslons for the ratlos of integrals that occur m 

Bayesian analyms: for example, the postenor mean. The first term omtted is O(n-3 and it 
a shown how the term O(n~') can be of importance. 

Keywords: ASYMPTOTIC EXPANSIONS: STEEPEST DESCENT: BAYESIAN METHODS; 
POSTERIORMOMENTS: ONE-WAY ANALYSIS OF VARIANCE. 

1. GENERAL DEVELOPMENT 

In this paper we discuss the approximate e v a l u a t i o n  of the ratio of 
In tegra l s  of the form 

Here B = (B,, 8, ,..., 8,) is a parameter a n d  

1s the l o g a r i t h m  of the l i k e l i h o o d  for n ODSerVatlOns X,, X,, ..., X., form~ng a 
random s a m p l e  from a density p(- 1%). The funcf~ons W(.) and v(.) are 
arbitrary. A simple example Is  where w(8) = 8,v(fl) and v(.) 1s a p r l o r  

distribution for 8, when (1) is the posterior mean o f  8,. Not~ce that t h e  

nOtat lOn L(8) suppresses the dependence on X,, X,, ..., X.. This 1s convenient 
because ,  I n  a B a y e s l a n  analysis, the X'S, as o b s e r v e d  d a t a ,  are fixed and 
varlatlon with respect to them 1s of no mterest. 



We shall be concerned with the asymptotic behaviour as n - m under 
regularity conditions, which will not be speltfut.,m which ~ ( 8 )  concentrates 
around the unlque maxlmum likelihoodvalue R = 8(xl, X, ,  ..., X,), obtaining an 
asymptotic serles in Inverse powers of n as far as the term of order n-' 
Integrals of the form occurring In the numerator and denormnator of (l) were 

' 

considered by Lindley (1961) for unlvarlate R ,  ( m = l ) .  He obtalned 
asymptotic expansions as far as the term of order n-' We here show tnat the 
asymptotic results for rafros of Integrals are simpler. than those for the 
separate integrals; and we illustrate the use of the expansrons IU several 
sltuatlons. 

In the multivarlate case the notation requlres care. The baslc idea 1sAto 
expand the functions lnvolved about R so obtalmng terms mnvolvin~ (8;-R,), 
( i= l ,  2 ,...,m). We wrlte this devlatlon simply as O,, effect~vely using 8; as the 
origln. Many uartiai derivatlves occur and we wr~te, for example, a3~/a8;aOja8, 
as L " ~ .  Hence each suffix denotes different~ation once with respect to the 
vanable havlng that suffix. Thus L,,, IS the third derlvatlve with respect to R,.  
All these are evaluated at 8. Not~ce that the order of the suffixes is irrelevant. 
Similar notations are used for v fnd W .  With these conventions, the Taylor 
serles expanslon for L, say, about R may be wrltten 

where all summatlons run over all suffixes from I to m, the dimenslonality of 
8. We begln by considering the numerator of ( 1 )  derlvlng the multivarlate ex- 
tension of the unlvarlate results of Lindley (1961). It 1s Important m colle~tlng 
terms of like order together, to remember that L, and all of its derlvatlves, are 
O(n), whereas R.,  for all r ,  1s O(n-"z). On expanslon to O(n-') we haVC 

I ~ ( O ) e ~ ( ~ ' d 0  

= 1 [w+Ew;8;+$!Z.w,6dj+ ...l exp [ L + C L B ; + ~ , E L ~ , ~ ~ ~  + 
i j ~ E ~ u ~ . ~ , ~ ~ + ~ ! Z . ~ , i 8 ; 0 , 8 ~ 8 , +  ...l d0 

= W @  j [ l  + C W;R; + $E W$dj + ...l exp [ f E ~ , 6 ; 8 ~ ]  

X [ l  + ; ~ ~ , , 8 . 8 , 6 , +  ~ C i , , , ~ . 6 , 8 ~ ~ ,  + ( ~ E i , 8 , 0 , 8 , ~  + ...l do. 

Here W. = w./w,  etc., L = 0, slnce the expanslon 1s about the maxlmum l ik r  
lihood value, and all functions are evaluated at 8. ~t is assumed that w = W ( R )  

does not vamsh: the case where it 1s zero will be discussed below. Collecting 
terms of like order together, the lntegral is easily seen to be 

The orders of the terms m square brackets are respectively i ,  n-"2, n- lJZ,  n-L; 
n-' and n-'; with the finill term R not involving W or its derivatlves. In 
subsequent calculations R will disappear, so we have not spelt it out. 

The ~ntegratlons all Involve the moments of the multivanate normal 
distribut~on with density proportlonal to exp((1/2)C~,8~0,). The preclslon 
matrlx has elements -L,. The elements of the matrix inverse to this are wrltten 
U,, formmg a matrix E. It 1s well-known that for this distribution, E(8J = 0,  
E(R,Rj) = U ,  and E(RjRB*) = 0. It 1s not perhaps so well-known that E(0,6,8,8,) 
= u,o,, + + oi,o,,; see, for example, Anderson (1958: equatlon (26) of 
52.6). The result of the lntegratlon 1s that 

I ~ ( 0 ) @ ( ~ ' d . 9  % w @ ( ~ T ) - ' ~  1 Z. 1 X 

[ l  + fE Wt,o,+ ;EL,, W , ( U ~ U ~ ,  + uiliull+ ui,ujk) + R*],  (2) 

where R* arlses from R: the terms m square brackets belng of order n-' apart 
from the first. The second summation can be slmplified slnce all three terms In 
it are equal. To see this. remember L . ~ ~  1s unaffected by permutation of its 
suffixes, so that permuting J and k m  the first term glves CL.,  W,U,~U~, ,  and 
then lnterchanglng the roles of j and k makes this equal to CL,,W,U.,U,,, the 
second term: the third follows snnilarly. 

This result 1s of interest m its own rlgnt but 1s complicated if the term R* 
1s spelt out. However, if we pass to a rat10 ( l ) ,  of such Integrals with the same 
lik~lihood, the teims outside the square brackets m (2) cancel except for W = 
w(R) and v = v@): and on expanding the ratlo of the two terms m square 
brackets to order n-'. R*, which does not Involve W ,  cancels with the same 
term R* m the denomlnator, so that finally we have 

(It has been assumed that v 4 0 .) 
In the applicaiions we have m mnd,  v(@ = ?r(O), the prior distribution 

for R : so that the denomlnator is the normalizing constant in Bayes theorem; 
and w(0) = u(R)?i(R), so that the ratio 1s E[u(R)lx,, X,, ..., X.]. Simple 
calculation then shows that W,V, = ~ ~ / u + ( u , ~ , + u ~ ~ ~ ) / u  and W.-V, = 
ud/u. If we wrlte e(8) = log~(b'), a little more calculation finally gives 
15 



to order n- '  This 1s our baslc result. The first term is O(1) : the next are all 
* 

O(n-') and will be referred to as correction terms. Notice that, because of the 
vanishing of all moments of odd orders for a multivariate normal 
distribution, the first term neglected is O(n-2), not O(n-3'2). Remember that on 
the nght-hand side of (3) all functions are evaluated at the maxlmum 
likelihood value of 0 ,  and that summation is over all suffixes and from l to m. 
One feature of immediate interest in (3) is that it does not involve the second 
derivatives of the prior, but that those of u do occur. Secondly, the prlor is 
absent from the last correction term incorporating the third deIiVativeS of the 
Log-likelihood. 

An alternative form 1s available for the final term m (3) .  Since the matrlx l 

of elements oij 1s inverse to that of elements -L,., we have gLixo,, = -&,. On 
differentiatmg with respect to O,, we obtaln F L , ~ , ,  + FL,,(u,,), = 0 .  Hence 

= Cu,G,,(oxi),, on summing over r ,  I 

= C U , ( U ~ , ) ~ ,  on summlng overj. 
* , E  (4)  

Although it appears slmpler, we have found this form less convenient than 
that In (3)  because it uses the algebralc lnverslon of -L,,, in order to find (a,,),, 
whereas the other only requlres the numerical inversion m any application. 

e t h e r  form of (3) may be obtalned by writing A(0) = L(0) + e(0) 
which, apart from an additive constant, 1s the logarithm of the posterior 
distribution of B, glven X,, X,,  .... X,. Then, lnstead of expanding about the 
maxlmum likelihood value, A(0) may be expanded about its maxlmum, the 
posterlor mode. Considerat~on of each of the individual steps in the argument 
that Led to (3) shows that they apply when A replaces L. Effect~vely in ( l ) ,  v 
becomes I and W, U .  Hence 

Here TO = -AO and all quantities are evaluated at the postenor mode, K 
Instead of the maximum likelihood value, 6. An alternative form 1s available 
uslng a result parallel to (4). (5) 1s simpler than (3) ,  but the latter has the 
advantage of explicitly displaying the separate roles of u and n, 

An Important speclal case 1s where u(0) = B,, I r s  r m ,  so that the ratlo 
of integrals 1s the postenor mean of OS, 8, say. Since U .  = 1,  M .  = 0 for t =k s 
and U ,  = 0 ,  ( 5 )  immediately shows that the difference between the posterlor 
mean and mode for 8.1s 

A s~milar result for the maxlmum likelihood values IS, from (3) ,  

Similar calculations using u(0) = B, glve results which, when combined 
with (6) ,  show that the posterior dispersion matrix for B has elements 7ii to 
O(n~') ,  so reqmrmg no correction from the corresponding modal values. 
Equivalent use of (3) shows that T, may be replaced by a,  to the same order. 
Thus there 1s an order n-' correction to the mean but not to ;he dispers~on. An 
alternative way of obtaining this r e p  1s to use M ( @ )  = (0-03 (0-03, but this, 
and its first derivatlves, vanish at 0.  so that our expressions are no longer 
valid. The modifications necessary in th'is case are a little tedious, though 
straghtforward in principle, and we therefore do not provide a general 
treatment but discuss special cases below: from these, the reader will be able 
to see how a general discussion would proceed. 

The results simplify if the parameters are locally orthogonal: that Is, if 
L, = 0 ,  and hence ail = 0 .  for all I i J. For example, the right-hand side of 
(3) reduces to 

u + jC(uii+ 2u, ei)aii + i C ~ , ~ u ~ o , ~ u ~ ~ ,  

and (7). for the mean, is slmply 

Local orthogonality can always be Ttalned by a locally orthogonal 
transformation of the parameter space at 0, or 8: 

Parameters are usually said to be orthogonal if EL,(@) = 0 for all i =k J 

and all 0; the expectation belng overx,, X,,  ..., X .  (Jeffreys (1961)). Since L and 
~ t s  derivatives are sums of n terms, and hence of order n, they will, by the 
central limlt theorem, differ from their expectations by a term of order n-"'~ 
Hence replacement of L,, or L,, by expectations will not, as many writers 
have notlced, affect the order of the correction terms, but it will affect the 
order of the terms discarded. As polnted out above, at the moment these are 
O(n-2): if expectations are used they will rise to O(n-3'3. Consequently the 



replacements should be used with care. Actually they violate the likelihood 
principle and are hence mcoherent. In any case, as we try to show by example 
below, they are not needed in the numerical analysls of data. If they are used 
and the parameters are orthogonal, then further reductions occur: (3 )  
reducing to 

E(U) % U  + ; E ( u , , + ~ u ~ ~ J O , ,  + 
and (7) to 

These reductions arise because the van~shing of the mmxed second derivatlves 
for all B ~mplies zero values for the mlxed third derlvatlves. 

An obvious advantage of some form of orthogonality 1s the diagonal 
form of the matrlx of elements -L,, and the consequent ease of its inversion to 
give U,, . a., = -L;:and a, = 0 for i * J.  

But an additional advantage is the reduction in the numbers of third 
derlvatives that have to be considered. These are m ( m +  l ) ( m + 2 ) / 6  if all 
dist~nct ones are needed; m Z  with local orthogonality; and m with full 
orthogonality. Full orthogonality cannot usually be achieved for m > 3 .  

2 UNIVARIATE APPLICATIONS 
In this section the case is considered of a slngle parameter, written B ,  

hence m = 1. The notation L , ,  etc., for the derivatives is cumbersome, all 
suffixes necessarily belng I ,  and we revert to  the more usual form m which L,, 

for example, denotes the third derlvatlve; previously L,,,. The basic result (3) 
IS that 

whereas in posterior mode form ( 5 )  

The results for u(0) = B, glving the posterlor mean 8, are 

8-8 = @,vZ + $i3d 
and - 

8 - 8  = ;A,74 

arranging for L,, or A,, to he zero. This can be done m the case of the 
exponential family with a single sufficient statistic. Inthe canonical form, the 
denslty exp [-x8 - g(@- h(x)l gwes a log-likelihood L(@) = -XB - ng(0) with 
X = Ex; the sufficient statistic, and L.  = -ngi for 1 > 1, irrespective of the 
sample values. Suppose the parameterization 1s altered from 8 to 6 where 
d+/d8 = L:', Then dO/d+ = ril'%nd ffB/d+z = - j L , / L ~ Z ~ ~ .  Consequently 

since L ,  = 0 ,  vanishes. Hence a change from the canonical parameter B to @, 

where d+/dB = L:/ , ,  or m = IL:'"(B~B will make the final correction terms ~n 
(8) and (10)  vanish. If the conjugate family is used for the prior to the 
exponential family, the same arguments will apply to A and, from (111, the 
posterlor mean and mode will be the same to order n-' 

As an example consider the gamma distribution with p ( x / d )  2. 8Fe-8'. 
g(0) = -r log B ,  so that L, = ngz = n 1 8 - ~  Then d+/dB = B-2'3z  the constant 
being irrelevant, and hence 6 = B 1 I 3  With this parametric form, L(+) = -X+, 
+ 3nr log @ and dJ~/d+" 0 .  This is the Wilson-Hilferty transformation, 
though applied to the parameter rather than the data. 

It is a curious feature of the exponential family that in canonlcal form the 
derrvatlves of the log-likelihood above the first do not luvolve the data. An 
important effect of this is that the sampling theorist's vlolatlon of the 
likelihood prlnclple in taking expectations over the sample space does no 
damage to  the pnnclple when applied to these higher derlvatwes: in particular, 

the large-sample variance, aZ = - ~ i ' ,  is unaffected. In general the derlvatlves 
will be data dependent and a transformation that makes L, zero Is not 
available. An argument similar to that Used above shows that a change to @ = 
1 (EL(0) )lt3 d8 will make EL, = 0 .  As explained above, a change from L, to 
EL: will change the order of the neglected terms. 

Transformations assoclated with L ,  are sometimes used to control 
skewness. It is therefore of interfst to examine the third moment of B. To d; 
this we need the case u(B) = (B - in the unlvarlate form of (3 ) .  But u = u(B) 
vanishes and our results do not apply. We therefore develop an expansion 

analogous to (2 )  valid when W = 0 ,  confining ourselves to the unlvariate case. 
Multivar~ate extensions follow stra~gntforwardly. Suppose tnat the first non- 
vanishing derlvatlve of W at  8 is thes'", s>O.  The derlvatlves will be wrltten W, 
etc. Then as in the derivation of ( 2 )  

It IS clear from these formulas tnat there would be some advantage in 



There are two cases according as s is odd or even. In the even case the leading 
term is w.e'J2?uE(tP)/s!. In the odd case. two terms need consideration and 
we have 

We next need to combine the results for the numerator, for W ,  with those 
for the denominator, for v .  In applications v = e" 1s the pnor. We shall 
suppose that this nowhere vanishes, in line with the pnnclple that a Bayes~an 
should never asslgn zero probability to any value, because to do so would 
commit him to zero lrrespectlve of any data. This helng so. the domlnant term 
ln the denominator 1s ve" 6% a glving 

l w(B)eLrB'd8 * W. E(B')/s!v S even 

I v(B)e'(''d8 (w.,,E(B"')/(s+ l )  + ~ J $ ( 8 " ~ ) / 6 ) / s I v ,  s odd 
(12) 

of order n-'lZ fors even. and n-''+"'2 fo rs  odd. 

TO obtaln the posterlor moments we write w(8) =(~-8ye"'el and v(8) = 
@ l e 1 .  For s = 2, we immediately obtiun uZ, a result discussed in the general 
development. The third moment 1s a little more complicated. The first non- 
vanishing derlvatlve 1s W ,  = 3!e.  and W ,  = 4!e"@,. Hence 

of order n - 2  The fourth moment is easily seen to 30". To obtaln the moments 
about the mean write 

It is lnterestlng to see that neither of these Involve the prior distribut~on 
and that the fourth moment 1s that predicted by assumlng a normal 
distribut~on for 8. Skewness would seem to be a more Important feature of 
posterlor distributions than KUItOSlS. 

We now consider some examples, excluding the exponential family 
which, as we have seen, 1s somewhat unusual. The first is a sample from a t -  
distribution of unknown location, but known spread and degrees of freedom: 
the sample slze is n = 7, and the degrees of freedom are 5. The log4ensity for 
xis therefore C -  3 log/l + ( ~ - 0 ) ~ / 5 ) .  With truevalue 8=O the sampleis: 

The upper 1% polnt o f t ,  1s 3.36, so that the last value 1s unusual and 
almost deserves the title of an outlier: it would certiunly be an outlier for the 
corresponding normal distribut~on with v = m Table I glves the value of the 
log-likelihood and 2ts first three differences around the maximum value. 
lnterpolatlon gives B = 0.4954, and L, at this value 1s -4.923 from the second 
differences. Hence oZ = 0.2031 and U = 0.451. Simple calculation for the t- 
distributlon shows that E(LJ = -n(v + I ) / @  + 3), glving here an average value 
of Z of 0.190, slightly less than the sample value obtalned here, so that the 
sample 1s a little less tnformat;ve than an averagebone. Assuming Q,  = 0 
corresponding to a flat prlor at 8, the correction for 8, equation (IO), 1s %,a4; 
With = 0.724, by lnterpolatlon m the third differences, the correction to B 
is 0.0149, so that B = 0.5103. The correction 1s negligible in comparison with 
the standard deviation. Notice, however, that 1s very different from the 
arithmetic mean of the sample at 0.643. which is unduly swayed by the outlier. 
The correctlon for the prlor need not he negligible. Suppose that ~ ( 8 )  1s such 
that B/K 1s tw: that is, centred at the true value of B f 0 but with ;arlance 
~ ~ v / ( v - 2 )  for v > 2 .  It is easy to establish that Q ,  = -8(v+ l ) / ( ~ v + B ~ ) .  For 
example with K = 1 and v = 5, roughly making the prior equivalent to an 
extra value at 0 .  the correction term Q , U ~  = -0.115, glvlng 8 = 0.395. 
Increasing K to 2 ,  making one Initially less sure about B, glves a correction of 
-0.0589 and B = 0.451. 

The generill form of the correctlon to B due to the prlor, e,aZ. is best 
appreciated by the following heuristic argument. In a quadratic 
approximation to the logarithm, Q ,  of the prior, it can be wrltten -(8-00)2/20Z, 
where B D  1s the prlor mean (or mode) and a$ the prlor variance. Its derivative at 
8 is - ( ~ - B ~ ) / U Z , .  Hence, Ignoring the otheI correction term $,a? 

also of order rZ. ~imilarly ~ ( 8 - a ) 4  = 3$. + 0 ( m 3  . 



to order n-' This 1s the usual welghted average of 8 and 8, with weights equal 
to their preclslons. 

Table 1. ~ ( 8 )  = -32 log (1 + (X; - 812/5 l and its differences for the sample . 
(14). 

Return~ng to the sample (14), consider what happens when the outlier 
Increases from 3.0 to 4.0. The maxunum hkelihood value decreases from 
0.4954 to 0.4714, showlng tnat less attentlon 1s paid to the extreme value. The 
varlance aZ increases slightly from 0.2031 to 0.2058 and L, grows from 0.724 
to 0.825, with the result tnat the correctlon 5 L3u4 Changes from 0.0149 to 
0.0175. Hence B = 0.4889. There 1s still llttle skewness in the posterlor 
distribut~on. This is a result of the symmetry m the onglnal denslty. To exhibit 
a substantial correctlon term it is necessary to take a skew denslty for B, but 
before dolng this there 1s one more remark that 1s worth mak~ng about the t- 
distribut~on. It can happen tnat the log-likelihood has two local maxlma, in 
which case each will glve a contribution in the asymptotic expansions. 

To exhibit a skew distributlon glvlug a larger correction term, consider a 
sample, agaln of slze 7, from an F-distribution of unknown scale. We have 
taken a case with dlgrees of freedom, v, = 4 and v ,  = 8, glvlng a denslty 
proportional to 02x/(8 + 4 8 ~ ) ~ .  With true value 8 = 1, the sample 1s 

Table 2 glves the value of tne log-likelihood an: its first three differences 
around the maxlmum value. Interpolation gives 8 = 0.8110, and L, at this 
value 1s -12.399. Hence a2 = 0.08065 and a = 0.2840. The value of L, 1s 42.0, 
so that with a flat trlor the correctlon term, i L p 4 ,  IS 0.1366. The result of 
applylng this 1s that 0 at 0.81 10 is Increased to gat  0.9476, and the correctlon 1s 

almost one half the standard deviation. The posterlor distribution is skew to 
the raht,  the mean exceeding the mode. The third moment, equation (13), 1s 
0.022 and the fourth 0.0195. 

Not~ce that m doing numerical work with the results we have not used tne 
different~al calculus to evaluate L@) and then Inserted the numerlcal values 
for 8 (and X,, x2, ..., X,): lnsteadL ( B )  has been evauated for a range of values 
of 8 and the differences used to ohtan L,($). This reduces substantially the 
amount of work, both analytlc and numenc, and has the advantage of 
displaylng the form of the log-likelihood where it 1s large. 

One other applicat~on of the haslc results, (8) and (9), tnat mer~ts 
attentlon 1s to obtalu the predictlve distribut~on. Let y be an, as yet 
Unobserved, value whose density, glven 8, 1s q0.18). Often q will be p, tne 
denslty leading to L, and y, equivalently, X,,,, but the results are general. 
Then, glvenx,, X, , . .~X~,  the density o fy  1s glven by (8) with U(@) = qO, 18). The 
leading term 1s qbl8) and the correctlon allows for the uncertainty about R.  
Moments for the predictlve distribut~on are available if the moments of q are 
expressible as functions of 8.  A related use is m emplrlcal Bayes problems 
which have been treated by Deely and Lindley (1979). 

Dunsmore (1976) writes the predictlve d i s t r i hu t~on  as 
J q  0. ) 8 ) p  (@\X,, ... X,,) dB and uses asymptotic results for the posterlor 
distribution to obtain approxlmatlons for the univariate case that are slmilar 
to those in the preseFt paper. The maln differences are that Dunsmoreis - 
asymptotic results use 8 ,  not 8: a, not T. 

Table 2. L(8) = 14 log B - 6Z log (8 + 4Bx,) and its differences for the 
sample (15) 



3. BIYARIATE APPLICATIONS 

With two parameters, B, and B,, there are only 4 third derlvatlves and the 
notatlon L,, etc., m lieu of L,,, etc., seems preferable. The correctlon term 
1 L,,,u,o,uk, (equatlon (3)) becomes one half 

An alternative form uses U, = E u~o,,. The whole expression (3) 1s then 

These expressions are complicated but well-adapted for numeric? work. With 
L, U and Q evaluated, as m 52, on a grid of values of B,, 0, about B, differences 
may agan be used to form the derlvatlves, the matrlx of mlnus the second 
derlvatlves Inverted to glve U,,, and then easy arithmet~c glves the value of (16). 

For the posterlor mean of O,, say, we have u(8) = 8, and hence U, = I, 
u, = 0 and U, = 0 for all r,b Hence (also from (7)) 

We illustrate these results for the analysis of a one-way table. This 
example differs from those studied m 52 in two respects. First, we operate 
directly with the pos?er~or distribution rather than the likelihood. Second, the 
case 1s more lnterestlng because the modal values (and the maxlmum 
likelihood ones) are known to be m~sleading, so that evaluation of means by 
methods that avoids tedious bivariate integrations may be of real value m the 
appreclatlon of data from such a table. There are possibilities of extensions to 
more elaborate analyses of variance. 

The data X, (i = 1, 2 m; j = I, 2 ,... n) are, given [pil and *, 
IndeDendent with X, %N&, 02) that IS, m groups with n observations In each 
group. For the prior deuslty of the p?., we suppose them i.i.d. N(p. r2), and 
~ndependent of oZ This distributlon can be thought of as part of the 
likelihood, in which case we have a Model 11, rather than Model I, situation. 
Finally the distrihut~ons for oZ, r2 and p are supposed independent with v,A,/02 

2 2 
2. X,,, ~ ~ A 2 / 7 ~  2. xv2 and p uniform. The prlor for oZ and r2 has not been 
expressed in the mathemat~cally more convenient, conjugate form In terms of 
o2 + nr2 slnce we believe that a prlor depending on the sample slze 1s 

unrealistic. Tedious calculatlons show that the jomt posterlor distributlon of 
aZ and has logarithm equal to a constant plus 

-1 (N-m+v, + 2 ) l o g c ~ - i  (v, + 2)log72-; (m-l)log (n72+03 

- n71/2(nr2 + oZ) - v, A2/2r2 - ( S  + U, X,) /2oZ (18) 

In the notatlon used above this 1s A(O,, OJ = A(02. 73. The uuexplalned 
notatlonisN = nm. n71 = nC(x:.  and S = C ( X ~ ~ - X ~ . ) ~ ,  the betweenand 
within sums of squares. The modal values for o2 and are easily found from 
(18), and these can be used to find approximate posterlor means for the pi, 

which are welghted averages of X;. and X . .  with welghts dependent on these 
modes. However the distribut~on (18) is skew and the preferred means may 
differ from thelr modes. 

We illustrate uslng a numerical example with p = 0, o2 = 72 = I. havlng 
tne hyperparameters, v,  = U, = 4. A, = A, = 1, and with data SZ = 37.34372, 
p = 4.556774. for m = 8 and n = 5. Not~ce that the prlor ~nformat~on about 
7'. with 4 degrees of freedom, 1s comparable withthe ~nformation from the 
data, through 71, having 7. The prior expectation of is X2u2 /(vZ - 2) = 2. 
and the standard devlatlon is Infinite, but the mode is at hzv2 / (v, + 2) = 
2/3. This does not seem unrealistic m some applications,. though each case 
must be decided in the light of practical experience. Table 3 glves the value of 
A(uZ, rz), equation (l$), for a grid of values of oZ and 

Table 3. Values of 30 + A (oz. r2), equatlon (181, for the values glven m 
the text. All entrles preceded by -0. 

around oZ = I.: and r2 = 0.6. Interpolat~on shows that the modal values are 
3 = 1.08 and 2 = 0.59. (The estunates obtiuned by equatlng the values of SZ 
and p to thelr exuectahons are for oz. 1.17 and for 72, 0.42.) TO evaluate the 
correctlon terms. the differences are used to obtain the derlvat~ves. Thus A,, 
= ((-0.2267 + 0.1213) - (-0.1213 + 0.1727)) /0.01 = -15.60. Similarly Ao2 = 

-13.75 and A,, = + 0.63 . The small value of this mlxed, second derivative, m 



comparlson with the larger values of the unmlxed ones, means that 02 and r2 
are amos t  locally orthogonal and we will treat them as such m what follows. 
Exlending to the third derlvatlves A,, = 59.. AO3 = 97. and A,, and A,, are 
virtually zero. Hence we may use the two unlvarlate formulae for E (a2) and 
E (r2) separately. For a2 the mode is i .08 and the valance 1s (-A,,)~' = 0.0641. 
with standard devlation 0.253. The correctlon term 1s $9 X (.0641)2 = 0.12, 
r a smg  02 to i.20 as tne posterlor mean. For T~ the mode is 0.59 and the 
.variance 1s (-A,J-' = 0.0727, with Standard aevlation 0.270. The correctlon 
term 1s i97 X (.0727)2 = 0.26 raising T~ to  0.85 as the posterlor mean. Notice 
tnat the two correctlon terms are botn positive, the means exceeding the 
modes, and tnat they are comparable with the standard devlatlons: for oZ the 
correctlon 1s about half the standard devlatlon, whilst for T~ they are about 
equal. Hence the term of order n-' (for the correctlon) is comparable with that 
of order n-1'2 (for the standard devlation). The claim sometimes made that 
terms of smaller order may be neglected in maxlmum likelihood (or maxlmurn 
posterlor) theory may not  be true for  some skew distribut~ons. Notlce, that 
because of tne large, unmlxed, third derivatives, the skewness in both 
parameters 1s qmte large. It  1s lnterestlng that the standard devlatlons of o2 
and r2 are about equal (0.25 and 0.27 respect~vely) whereas one mlght have 
expected oZ t o  be better determined than r 2 ~  

The analytlc results of this paper enable one to calculate the difference 
between the mean and mode of certaln distribut~ons as far  as the domlnant 
term of order n-l  in the sample slze n.  The difference Involves the second and 
third derlvatlves of the log-likelihood a t  the mode and is m a form su~table for 
numerlcal calculation. Such calculations tentatively suggest that the 
differences are apprec~able even In comparlson with the standard devlatlons, 
but much more needs to be done before these clalms can be Substantiated. 

The method used here 1s essentially that of steepest descents. This tool 
has been used by Barndorff-Nlelsen and Cox (1979) t o  obtam sampling 
distributlons tnat enable Inferences t o  be made about one parameter, 6, say, 
m the presence of nulsance parameters 6,, O,, ... O,.,. It will be of interest to 
see how these sampling-theory approxlmatlons compare with the Bayes~an 
results of this paper. 

REFERENCES 
ANDERSON, T.W. 11958). A n  rniroduciron io muilivorroiesiafrstrcai anoiysrs. New YorX: Wiley 
BARNDORFF.NIELSEN, 0 .  and COX, D.R. (1979). Edgeworth and saddlepomt approxlmattons 

with Sratlstlcal applicat~ons. J.  Roy. Sfofrsi. SocB, 41,279-312 

DEELY, J.j. and LINDLEY, D.V. (1979). Bayes empirical Bayes. Tecn. Report. Umverslty of 
Canteroury. 

DUNSMORE, I.R. (1976) Asym~tatlc prediction analysis. Biomeirika, 63.627-630. 
JEFFREYS, H .  (1961) Theory oforaDobiiify. Oxford: ClarendanPress. 

l 
LINDLEY. D.V. (1961) The use of prior probabilitv distributlonr m staust~calinference ana den- 

slons. Proc4lhBerKeley Symrr. 1,453-468. 

DlSCUSSlON 
P.J. BROWN (Im~enoiCoiiege, London): 

l 
The paper by Mouchait and Simar gwes an elegant ex~osition of some results 

consequent on assumlng linear Bayes est~mates as approximations to Bayesest~mates. 1 
have not UnderLaken a historical search of the relevant literature but I think the results 

i of Hart~gan (1969) mlght be Dartlcularly pertment and the subsequent work of 
Goldsteln (1975a, 1975b. 1976), aeserves more direct incorporahon.* 

l In these linear Bayes methods one only needs ex~ress the mean and varlance of the 
! 
l lolnt distribui~on of 6 and X .  Further features are not requlrea. Of course when the 

Bayes estlmates are actually linear nothing 1s lost and in this context recently Uiaconls 
and Ylvlsaker * have shown how lineanry 1s lntlmately connected with the exponential 
family and natural conjugate priors. When one gets away from such ntuatlons as is 
often necessary on vanous grounds, e.g., the need for fattailed prlors to cope with 

I discordant observations (Dawid, 1973 and Hill, 1974) then linear estlmates are no 
longer adequate. 

! 
I would be grateful if Professor Mouchart would elaborate on his meanlng of 

~robustness'. Sect~on 2.2.1 suggesrs that the less tnat is asslgned the more rouust the 
! procedure. Perha~s  indeed in the unlvarlate or multivarlate sltuatlon it is too much to 

soecify all the means and vanances. Exchangeability as m Sectlon 2.2 is one way of 
i reauclng tne ~roblem but should one go further and allow the data to soecify the 

hyper~arameters? Efron and Morns (1973) for example lntroauce Em~irical Linear 
Bayes est~matlon where. without soecifying the distribut~onal forms. linear Bayes 
coefficients are est~mated from the data producing a rather non-linear estlmate overall. 

l These then are distributionally relaxed forms of the exciting but non-linear Stem-type 
estlmates. 

The lnrerestlng paper by Lindley seems ~otentially rather useful. There are two j polnts that bother me. On Sectlon I,  6, (deviat~on from the maximum likelihooa 
estlmate) is said to be O(n-"). It would be good to have regularity conditions on ~1101, 
model and observed data justifying this, especially In vlew of the nature of the 

l 
asymDtotlc exDanslons and subsequent lntegratlons. 

~ Furthermore, although ir 1s nlce notationally to suppress the aata, the Dostenor 
moments unaer consideration are functions of both n, the sample slre, and the data, so 
tnat Derhaps more accurate exDanslons mlght be available if the data are aso  

l Incorporated in published version af Moucnart and Sirnars paper. 



considered. It rnight even be approurlate in some sltuatlons, as for examule linear 
regression, to consider a norm deoending on the data rather than just n. At any rate, 
here, with the usual essential asymmetry of deslgn, n,  the samule size. tells us only some 
of the story. 

Overall we should uerhaus awart numerical companson with exact results before ' 

embarking on these elegant approxlmatlons. 

M. GOLDSTEIN (Unlversiry of Huli): 

Linear Bayes methods are an lmuortant recurrent theme in the Bayeslan literature 
'(as reflected by the diverse set of references in the paner by Mouchart and Simar). 
Although I am not quite sure m what sense the authors have slmulified previously 

complicated results. it is useful to have a conclse summary of some of the basic work m 
this area, and I have no uarticular technlcal Doints to make (essentially, I agree with the 
authors, presentation). Instead. I would like to raise a nontechnical uomt which uuzzles 
me a little, namely in what, if any, sense can linear ~ a $ e s  rules be said to be robust? 
This robustness is stressed at various points by the authors (and by others - I may have 
done so myself). However, all we are redly saylng is that the estlmator and dsk do  not 
deuend on many asuects of the unor distribution. Bnr we mlght, and Derhaus should. 
argue that if different ulausible suecificatlons of the full Diior distribution give 
different estlmates, then clearly the form of the unor a important, and this aspect of 
the uroblem cannot be ignored. Thus, our most consclentlous suecificatlon of a full 
prior distributlon should give a more meaningful answer than the linear rule, which 
may not approximate well to any of our dausible range of unor beliefs. I feel that the 
usefulness of the linear rules is that they say something precise and simule by carefully 
limiting the aspects of the uroblem allowed for consideration, but that it would be 
wrong to attribute any further Drouerties to this approach without careful justificatlon. 
Do the authors have any comments? 

While a is often mterestlng to  perform serles expansions of akward integrals, and 
D I C ~  out ~rnuortant terms, to make the clalm that the first term omitted is of O(n-? 
needs careful justificatlon. Thus, if we are evaluatmg 

clearly this integral is not equal to the integral that "we would obtan by replacing w(8) 
and L(8) by their respective senes expansions. (Indeed. the latter mtegral may not even 
converge). For the suggested expansions to work  we nlust hope that we can find some 
value a(n) of O(n-''3 for which 

is of O(n 2 ) .  Havmg done this, we may reulace "(a), L(8) bv tnelr series exuanslons and 
retmn only the leading terms. This will provide a valid evaluation of the integral 
between I a(n) to  O(n-2). However, even here. as the integrals of the leading terms are 
not evaluated between Ia(n) but between *m,  we must further check that the difference 

between the integrals of the leading terms between the different sets of l im~ts is also of 
O(n-Z). I suspect that we may be able to do  this in many useful cases; but it is not a 
questlon of regularity conditions so much as of rate of convergence. As a perhaps 
slightly unfair questlon, can we have some guidance as to when these conditions 
will hold?. 

The easy way to explore an approximation is by trylng it Out for nmnle ~roblems 
in which it is straghtforward to evaluate the integral and the approx~mation. A simule 
case which. I feel, ylelds some lnslgnt Into the Drocedure is to suppose that we are 
drawing a sample of slre n from a Bernoulli distribution with parameter B,  where the 
unor distribution for 8 is a beta distribut~on with each parameter equal to a common 
value y .  As the approxlmatlon procedure essentrdly estlmates the "correct~on" which 
should be applied, m large samules, to  the maxlmnm likelihood estimator f i n  order to 
obtam, approximately, the Dostenor mean, a natural way to assess the approxlmation 
1s to consider the rat10 

actual correction 
r = 

estimated correctlon 

i.e. the rat10 ($-E(B /data))/(;-& 1 data)), whereEis the suggested approxlmat~on to the 
DOSterlOr mean. 

In this case, evaluating the required quantities glves 

(One reason for choos~ng this examule is that r does not deuend on the observed 
number of successes. K ,  which facilitates a further companson I shall maKe below). 

Clearly r 1s of the rlght order, and as long as n 1s large comuared to v the 
approxlmatlon will work well. Also the correction is always in the nght direction, 
though it always overestimates the values. However, there 1s a further, perhaps 
surmising, lnterpretatlon of r for this examule, which may illuminate the relanonsbiu 
between the asymptotic approxlmat~on and the linear approxlmatlons discussed in the 
Dauer by Mouchart and Simar. In this problem, the postenor mean 1s the linear Bayes 
rule, I.e. the best rule of the fo rma  (k /n)  i (l-a)Ed. The value a m this case 1s precisely 
the valuer given above. Qualitatively, this glves an insight into the range of application 
of the two approxlmatlons. The asymurotlc approxlmation rs useful when r l s  near one, 
1.e. when a is near one and the linear Bayes rule is near 8. Thus, when n is such that the 
linear Bayes rule gives negligable waght to  the pnor mean (i.e. suecification of the 
urlor mean conveys very little conformation about the posterior mean), then it is the 
derivatives around B which convey useful prior lnformatlon about the uosterior mean. 
Two further (unfair) questions. Firstly, do  these qualitative lnslghts extend to more 
complicated clrcunstances, and in uarticular to  multiparameter problems? Secondly, 
should I be sumnsed that r is preasely equal to a (i.e. what baslc DroDerty of the 
example I chose made it work)?. 



J.M. BERNARDO (Unrversidodde Volenno): 

Professor Lindley has provided us with asymptotic expansions for often 
encountered ratios of integrals to order O(n~'). Nevertheless, I would like to know 
more about the questlon of when n 1s large enough for the approxlmatlon to be used. A 
formal answer surely depends on the specific problem and on the loss structure 
attached to the 'distance' between the true value of the ratlo of the Integrals and its 
approxlmatlon; however, maybe he Can give us a feeling of the kind of situations where 
he expects the approximation to worK. 

A.P. DAWlD (The City Unrvemly): 

Professor Lindley's lnvestlgatlon of higher-order approximatlons to DOsreriOr 
distribut~ons comes at a tlme of renewed general interest m such approximations for 
sampling distributions, although I am hard ~ u t  to recognise the relatlonshi~ between 
Lindley's work and the methods of Barndorff-Nielsen and Cox (1979). It seems to me 
to be more m the spirit of the ideas on second order efficiency considered by Efron 
(1975). That uauer used the idea of starrstrcal curvaiure, a fascinating concept but one 
which 1s (as Lindley (1975) himself pointed out m his discussion on Efron) suspect for 
the Bayes~an because of irs dependence on the sample space. Nevertheless, 1 can? helu 
feeling that a parallel, fully Bayeslan, theory might be just around the corner, based on 
a likelihood analogue of curvature, just as the Bayeslan first-order theory realaces 
exaected Fisher lnformarlon by observed information. Such a theory mlght be valuable 
for assessing the usefulness of approximatlons such as those of Mouchart and Simar. 

Alternatmely, analogues of saddle-point methods mlght yield accurate non-normal 
approximatlons for postenor distributions. 

S. FRENCH (Unrvesrly ofMmcnesler): 

Professor Lindley's paper on approxlmatlons to posterior expectations will 
undoubtedly lead to many fruitful applicatrons. However, before the formulae are 
used, pGrhaas one or two cautionary remarks are approunate. 

The approximatlons requrred that certam derlvatlves be calculated and Professor 
Lindley suggests that the necesslry of some rather horrendous differentlalion can be 
avoided by recourse to fimte difference approxlmatlons. Now; whilst it is generally 
easrer to differentlate than to integrate a functlon analyfically, the reverse is true of 
numerical differentiation and integration. Numenca differentiation is a very unsrable 
oaeratlon, smce i r  reqmres many small differences of functlon evaluations and so 
rounding error accumulate dramatrally. See, e.g. Froberg (19691, Fox and Mayers 
(1968) Blum (1972). Since these formulae require the functlons to be differentlated 
numerically three tlmes, these remarks are all the more appropnate. 

Therefore, I would suggest that, when Professor Lindley's formulae are used, the 
functions should be differentlatea analytically if at  all possible. There are, after all, 
comauter packages that will handle the algebraic operations of differentiation and 
provide the analytlc form of the differential for the vast majonty of the functlons that 
anse. If analytic differenliatlon really 1s too difficult, then 1 suggest a visit to 0ne.s 
friendly neighbourhood numerical analyst. We comalaln enough of non-stat~st~crans 

dolng statistical analyses without consulting us, perhaps we snould heed our own advlce 
and c0,nsult the experts m numerlca anahsls. 

I.J. GOOD (Vir~m,aPolyleennrcondSlale Universrty): 
Some of the mathematics m the paper resembles that used in the centroid method 

of integratlon of a ~0sitive fnnctlon of several variables. Taylor's theorem m several 
variables is used and leads to tne reqmrement of calculating the moments of the reglon 
of integratlon. See Good & Gaskins (1969,1971) and Good & Tideman (1978). 

In one of Professor Lindley's expanmons the term of order l/n was appreciable 
comuared with that of Order 1/nx This suggests that he should take the expansion at 
Least to the next term to check its accuracy m this case. 

J .  GREN (Economer~c Instrrtrte, Warsow]: 

I would like to make a short comment on the Daaer by Professor Lindley. We 
know that the Droblem of multi-dimens~onal integration is the most difficult uroblem In 
Bayeslan estlmatlon of econometric models. 

Up to now we have two m a n  approaches or directions, to solve this difficult 
Droblem. 

The first way is just 1mDrovlng the numerlcal methods for eacn seuarate multi- 
dimensional integral. They seems to be rather unuromising, even for the Carteslan 
aroduct rule with Newton-Cotes Quadrature at each step. 

The second way a to aboat the Monte Cad0 method in order to estlmate the value 
of each integral which appears in Bayesian estimation of econometric models. This is 
much more promising; see Kloek and Van Dick (1978). 

Professor Lindley is now DroDosmg a very good and operational approximallon 
for the rat10 of multi-dimensronal integrals. 

Since the ratro of such Integrals plays a cruclal role m Bayesian estlmatlon 
technlque, Lindleys uauer opens a new, third way for obtaining practical results m 
Bayeslan econometncs. 

I would like ro congrarulate Professor Lindley for showmg to us this new, very 
promising method. 

A. O'HAOAN (Unrveclrryof Warwick): 

Professor Lindley's exoanslons are extreme0 lnterestvng ana Dromise to become a 
standard technlque, particularly m models with many parameters. For although then 
the expansions contain a great many terms, tne savmg over the vasr number of funct~on 
evaluations requued for numerlcal integratlon will be enormous. The only lingering 
doubt here is whether the neglected O(n+) terms, whose number wiU also escalate 
rauidly, will cease to be negligible. 

On a point of methodol~gy it would seem most sensible to expand about the 
uosterlor mode Tthan about 8. In his univariate exampl?, with the sample from a i 
distribution, Professor Lindley uses the ex~ansion about 8, and with the Droper pnof 
he obtains the approxlmare value of ,395 for the mean 8. Yet if we expand about 8, 
usmg equatlon (11) rather than (10), we find the new approximation ,415. Which Is 



better? Numerical integratlon confirms themean to be .415 to three declmal places! 

REPLY TO THE DISCUSSION 
MOUCHART, M. (UnrversirP Catholiaue UeLouvain) and SIMAR. L. (Facultds Unrversnorres 
Sornt-Louu, BruxeNes): 

Two types of t o ~ l c s  seem to emerge from the discuss~on. The usefulness of Least 
Sauares Approxlmat~on m Bayesian Analys~s and the c lam for robutsness of such 
DTOCedUles. 

Let us first mention that the aim of the Daper was not to  justify the use of L.S. 
approxlmatlon: we only wanted to propose a slmple and self-contamed exposition of a 
host of results widespread in the literature. If justification was at stake, two types of 
arguments could be mentioncd. One argument would be to consider the cases where the 
oosterlor expectation is (exactly) linear in X. In this connection, as pomted out by P.J. 
Brown, works like that of Diaconls and Ylvisaker (1979) should be mentioned. Another 
argument would be to consider whether a grven sltuatlon 1s close to  such a case. As 
Dolnted out bv A.P. Dawid, the work by Efron (1975) appears to be relevant, m 
Dartlcular, i r  may help to appreciate the proDer role of the coordinates m the cholce of 
parameters and of statistics. In this line of thought. M. Goldstem seems to pay a special 

attention to the s~ecificatlon of the Dnor distribution. Although this is surely crucial, 
we like to  lnslst that the structure of the problem is given by thejornr disrributlon of 
@,X). Even if the sam~ling process is keDt fixed, the questlon of whether the structure 
of the Dnor distribut~on will determrneE ( B  lx) to be more or less linear mxdepends on 
the cholce of coordinates. 

P.J. Brown ralsed the question of whether, for example, fat-tailed prior 
distribution would endanger the use of L.S. approx~matlon. Surely, fat tails m theDnor 
distribution may lead to infinite Bavesian risk (under ouadratic loss): m other words the 
~ rob lem may become meaningless. Remember that in a decision context only the 
Droduct bf the prlor distribut~on and the utility functlon 1s relevant, thus the prror 
distribution and the utility funcr~on should be s~ecified and discussedjomtly. Even if 
the tails of the prlor distribut~on are rather thick (the varlance remanmng fimte), the 
lineantv of E (elx) may not be affected: for ~nstance in a multivariate student 
distribution, the regression functions are still linear: m any cases, V(?) will always glve 
an indication on the accuracy of the approxlmatlon. 

Finally any discuss~on o n j m f ~ y i n g  the use of L.S. approxlmatlans should involve 
the uroblemof robutsness. T h i s a  the second theme ofthe discussion. 

First, a comment by P.J. Brown Induces us to  clarify a possible misintemretation 
of sectlon 2.2.1. Exchangeability was Introduced as a generalizat~on of i.i.d. DrOcesses. 
As such i r  appears as a minimal assumotion that allows the reoroductlon and 
unification of earlier results; for this reason the hypothesis was decomDosed into two 
steps. Anart from this Durely formal aspect, exchangeable but not i.i.d. DrOCesses 
naturally appear e.g. In sampling from fimte populations or when integrating our 
nulsance Darameters in i.i.d. Drocesses. In the latter case. indeed, D (xJ63, the data 
denslty marglnalized on Bz, a nulsance Parameter, represents an exchangeable Drocess 

and the results of sectlon 2.2 may then be used to evaluate &B, X )  and to obtan m this 
way a more robust procedure. 

Let us now discuss briefly what we mean by the robutsness of L.S.. 
approxlmations: this was indeed questioned by both P.J. Brown and M. Goldstem. 
These approxlmations act as smoothing procedures. I.e. they are less variable from 
(some) perturbatlons of a given problem (here. D (X,@))  than the exact solutlon. A ~ a r t  
from the search for com~utatlonal s~mplificatlon, a ~ossible  motrvatlon mav be the 
follow~ng: In case of a mss~ecificatlon error it may be hoped that the approximate 
solutlon to a mlsspecified model might be better than the exact solutlon of this 
mlss~ecified model. In any case this approxlmatlon is known to be free from systematic 

error (E(?) = 0) and some idea of the accuracy may be obtalned in a slmDle way (by 
comilutlng V(?)). 

Finally we want to thank the discussants: thelr remarks provided helD and 
opportunlry in 1mDrovmg the Dresentatlon of our DaDeI. 

D.V. LINDLEY (Unrversizy CollegeLonUon): 

The most important oomt made by the discussanrs concerns the lack of rlgour m 
the derivat~on of the results and the resulting vagueness about when the 
approximations are likely to be useful and accurate. These criticisms are correct and 
thnI im~licat~ons most important: but 1 have to  admit that 1 don't see how t o  meet 
them. It 1s notonously difficult to assess the accuracy of any expansion without 
deriving some lnformatlon about the magnitude of the terms neglected. Even to obtain 
the term of order rZ would be a formidable undertaking since a would involve the 
evaluation of R * (eauation (2)) ~ l u s  other com~licated terms. The lesser ~ o m t  of 
knOwLng lust when the exDanslon is valid is easler but 1s beyond my limlred 
mathematical abilities. My feeling at the moment is that understanding will be 
improved by investlgatlng numerical cases and comDarlng the exact and approxlmate 
results. In this context, I am grateful to O'Hagan for evaluating one integral exactly, 
with the suoeib result that it agrees with the approximation to one Dart m 400. But one 
swallow does nor make a summer and much more lnvestlgation is reaulred. We have to 
be careful too m thinking that a term of order n' is necessarily less tnan one of order 
n~"' The numerical illustration of the F-distribution m sectlon 2 Drovides an example 
to the contrary; and other calculations that I have  erf formed with the Weibull 
distributlon (not reDorted m the ~ a ~ e r )  suggest that this can easily happen when 
skewness is Dresent. The example that most ~nterest me 1s that of the analysis of 
variance in Sectlon 3 - and its Dossible extenston to more complicated, higher- 
dimensional analyses. There lt is not qulte clear what is the n in the expanslon In powers 
of n ~ l f Z ,  for there are two sam~le-slze Darameters: m, the number of grouDs, and n, the 
number of observations in each grouo. Presumablv both have to tend to lnfinlty, but 
does thelr relative speed of approach matter? 

There is one comment on the approximation that can be made with some 
confidence; the expansion about the mode 1s typ~cally better than that about the 
mmmum likelihood value. This can be seen clearly in the case discussed by Goldstein. 
Using the latter he obtalns a measure of quality of the approxlmarlon eaual to  r = 



n/(n + 27). With the modal value, I find r to be ln + 2(y-l)j/(n +2y). As he Points out, 
r for the likelihood value 1s near to the desirable value of unity only when y is small in 
cornvanson with n. The m o d d  approximation only requlres n + 2y, a measure of the 
total information, likelihood plus pnor, t o  be large. This observation 1s supported by 
evaluations of the next non-zero terms In the exDansions, which is not too difficult in 
this case. 

Similar remarks apply to  the work of Dunsmore: he uses the modd  expansion and 
his results are superior to those uslng a likelihood expanslon. In partsular, the Latter 
can easily glve rise to negative values when approxlmatmg a predictive distribut~on 
whereas this only happens for very small samples when using the modal values. 

TOO much should not be deduced from these calculations since we are here dealing 
with members of the exponential family, which is unusual in that the derivatives of the 
log-likelihood above the first are data-free. It is my guess that the results are likely to be 
most useful in tne case where no suffic~ent statistics of low dimensionality exlst and 
where the sample precision vanes from sample to sample. This is why, to enlarge on 
Dawid's remark, the relationship, or lack of it, between the work of Barndorff-Nielsen 
and COX and the results of this paper 1s of interest; they average over sample values and 
thereby lose sight of the fact that some samples are more informative than others. 

I a m  grateful to  Good for drawing my attention t o  the centroid method. The maln 
difference between it and the devlce used in the paper is that the centroid uses a Taylor 
serles exDansion of a function, whereas I use one of the logarithm. As a result, where 
the centroid has moments of inertla, I have moments of distribut~ons. The logarithmic 
expanslon may be preferable here, wnere it 1s a sum of n terms, but the two methods are 
nicely complementary. 

I have to confess that a visit to my friendly neighbourhood numerical analyst, as 
suggested by French, had not occurred to me slnce 1 did not see any ~roblems in the 
evaluation of the differences that could not be solved by intelligent trlal and error 
investigation of the log-postenor in the nelghbourhooa of the maximum. I did think of 
analytic different~ation on a computer, but prevlous experience with this was not 
encouraging. My personal predilect~on 1s for simple numencal analyses uslng simple 
computers where I have the feeling, perhaps erroneous, that I know what 1s going on. 
Packages and big computers terrify me. They are like some bureaucratic machine where 
workings and output are unintelligible; like tne communlcatlon I had from the U.S. 
Internal Revenue Servlce which was most unclear as to whether I owed them money or 
they owed me. Only the subsequent arrlval of a cheque clarifies the matter. So far as 
computers are concerned, Schumacher 1s nght; small is beautiful. 

Dawid's suggestion of a likelihood analogue of curvature 1s intriguing. Efron's 
ideas are useful in discussing the merits of different estimators. But m the Bayesxan 
approach there 1s only one estlmator, the posterior distribut~on; or, if a decision 
~ r o b l e m  IS involved, the unique set of best acts. Hence no optimality considerat~ons 
arise and thus there appears to  be no need for curvature. 

Brown is nght to raise the questlon of dependence on the sample. As n mcreases, 
additional sample values are Introduced, so that any detailed consideration of the limit 
as n- m must consider how the sample could change. Two possibilities are that we 
would have asymptotrc convergence with probability one for each value of 0:  or more 

weakly, with probability one - this being the overall probability incorporating a (8). 
I do not know the answers to Goldstein's questions. The second involves a very 

specld s~tuation which 1s perhaps only a curiosity. The first 1s important because it 1s In 
multiparameter problems that the ideas put forward might be most useful. 

I am most grateful to all discussants for their sympathetlc reception Of wnat 1s an 
untidily, incomplete paper. 
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Im~erial College, London 

SUMMARY 

Impurlan; fr.aturci ui mull i~ar ta le  bncar regrcrilo,, arc cmp.7aslsed a reecllon of 
mlar d~,tribul~ons dl,;used. Prbor, u,cd by Brosn and Zldek (19781 lena lnrm rr, ac .av  
of 'Emcirical' Baves snrlnvage estimates. The strength of shrmvage is exmtned with 
respect ta an electlon forecasting example Where ollservat~ons obtaln one after ananer. 

Kc'yw,.nl.$; h l l l  l l \ ' A K l r \ T t  Rll)GF Rt ( iRTSSI0N.  hlr.:\\ SQLARk ERROR. I'HtUl1'TIT)h~ 
S l l R l K l  V 1 l 1  h l l r \ l h l \ X  1'RilPrKTIFS. k L t C T I O N  
FORECASTING. 

I. INTRODUCTION 
In numerous practical sltnatlons a set of q dependent variables or 

responses relate to a set of p 'independent' vanables. One example 1s where 
votes to q parties in an electlon depend on votes at previous elections and 
soclo-economs variables Oefining the votlng nnlts or constltuencles. In 
partsular, assumlng the customary multivarlate linear regresslon model for n 
observations on the q responses Y, (nxq) satisfies 

with X the (mp)  matrlx of 'independent' vanables, assumed fixed, and P a 
@xq) matrix of unknown coefficients, with e = ( € l ,  ... ,e3, we make the usual 
assumptions on the error of normality with 



Although the assumption 1s relaxed later, here = (y,,) n taken to be known. 
T l ~ e  problem of interest 1s to estlmate p, to predict the responses for a future 
set of m observatlons with glven .independent'vanables X, (mxp) and possibly 
attach some uncertainty to this predict~on. This last thorny problem will not 
be examlned in thls paper. We concentrate on the first two: estlmatlon of P 
and linear combinations of B. Implicitly, if not explicitly, quadratlc loss 1s 
assumed. When this 1s expliclt It will be necessary to be careful, when 
specifying the loss, about the welghtlng attached to each component of the 
matrix R. 

It 1s well established (see for example Zellner. 1971. chapter 8) that under 
vague prlor lnformatlon on p, formally Lebesgue measure on R,,, the Bayes 
estlmate of 0 under a varlety of loss funct~ons 1s 

It 1s clear that, by Savages's preclse measurement theorem, this estlmate will 
be unperturbed by 'informatlve' prlor knowledge for large n provided the 
elgenvalues of XTX are 0 (n). However, typically this will requlre far more 
observatlons than the one parameter sltuatlon (see Hill, 1974). Incidentally, 
for sampling theorists. (3) 1s the best linear unbiased estlmator (Rao, 1965 
48c.2) and is the maw~mum likelihood estlmator. 

One way of argulng agiunst (2), following Brown and Zidek (1980) and 
Sclove(1971), n to note that (3) may be written 

A . + , +  

where p = (0' ,..., p'), Y = (Y' ,..., Y.), so that YJ (nul) and $3 pertaln to the jr" 

of the q responses and thus the estimates ( 9 ,  (4) take no account of F = 

(7 ) the between regressions covarlance matnx. In the next sectlon we 'P ' 
discuss a selection of mformatlve prlor structures for p which result m 
estlmates of p' which utilise lnformatlon across all q equations. These prlors 
will have s~zeable Impact on the est~matlon of R as long as all elgenvalues of 
XTX are not large. The Importance for predictions may be even greater if low 
lnformatlon direct~ons of XTX are directions for predict~on (Goldste~n 
andBrown, 1978). 

In sectlon 3, the class of r~dge estlmates derlved from the prlor of Brown 
and Zidek (1980) 1s described in some detail. Alternative ways of estlmatlng 

the hyperparameters are also suggested. Sampling theory results on the ability 
of the ridge estimators to do better than least squares everywhere in the 
parameter space are summarised in section 4. Sect~on 5 applies favoured 
multivariate ridge estimates to 'on the night' electlon forecasting data 
illustrating thelr behav~our as Increasing ~nformat~on becomes available. 

2. SOME INFORMATIVE PRIORS FOR P 

2.1. Stage of prror consfrucflon 
A wide class of prior distributlons can be obtained as a mixture of a 

multivarlate normal distributlons with respect to a few hyperparameters. A 
su~table cholce of mlxing distributlon will lead to an overall prlor distribut~on 
which is sufficiently un~nformative m the tails to avoid the problems 
associated with large observatlons (Dawid, 1973 and Hill, 1974). Such priors, 

rat~onal functions of 110 /l for large 110 / are at least implicit in the derlvatlon of 
Stein's estimator (see Stein, 1962 and Zellner and Vandaele, 1974). One rtch 
example is glven by Berger (1980), where if we assume the model Z is t-vanate 
normal with mean B and non-singular covariance matnx C (known), where 0 is 
distributed t-vanate normal with mean m and covarlance matrix B 6) = 

A-'C - E for 0 < A < 1, an unknown parameter with generalised prlor density 
A '" With m = o, C = C = I and r = (t-2)/2 the James-Stein (1961) 
estlmator 8 of B glven by 

obtalns to o(/lzI1-'). This general prior behaves like k(6"C-'B)-' for large 1lBIl 
and some constant k .  It Leads to particularly slmple estlmates. Our preference 
for a general prlor class does not lie here, however, for at least two reasons. 
Firstly, our regresslon model (1) transformed to this framework would 
necessitate a prlor for B which 1s data dependent m the sense that it would 
depend on the elgenvalues of XTX. Such prlors have already been critic~sed by 
Lindley (1971). Secondly, the specification of a pq X pq matrlx 
corresponding to C in the regresslon case may be somewhat dauntmng. It seems 
Important to lmpose a fair degree of structure on any prlor distributlons 
assumed. However one feature of the Berger prlo~lmportant to us 1s that m 
common with t-like prlors it will produce estlmates B satlsfymg. 



Let us now concentrate on the normal distrlbutlon part of the prlor 
specificatlon. It has been Indicated in the above paragraph that highly flexible 
prlors with general covanance structures although avoiding specific crltlcisms 
such as Rothenberg s (1963), see also Press (1972) $8.62, allow, for me at 
least, too much room for manoeuvre. In other contexts other authors have 
also advocated slmplifylng prlor structure. For example when seeking 
Inference concerning a dispersion matrlx, Dickey, Lindley and Press (1978) 
suggest slmple lntraclass forms (see in addition Lindley, 1978). 

One promlslng approach 1s to construct the prlor distribution m stages as 
m the spirit of Lindley and Smith (1972). In fact, A.F.M. Smith (1971), 
unpublished Ph. D. Thesls, Unlverslty of London, with E = I details prlors 
with exchangeability between and within regressions. Suppose 

where p' = ( f l , ,  ...,p,). Thls constitutes the 'between-equation' 
exchangeability. The 'with'in-equation. exchangeability is glven by 

Further stages are envisaged but it mlght be natural to assume the prror 
distribution for y vague, leavlng just oy2 and E @xp) to be specified. 

The approacn of Brown and Zidek (1980) 1s somewhat different but also 
within the framework of Lindley and Smith. Them general covariance 
structure is lmposed across rather than within equations. In particular if it 
may be assume that 

where P,,...,@, denote the rows of 0, then a class of Bayes estimates result, 
namely ?3 (K) glven as 

where K = T;'P is a (qxq) matrut. Here 63 denotes the usual Kronecker 
product thought of as operating on the matrlx X'Y row by row. More general 
prlor assumptions allowlng m (7) a non-zero mean and possible dependence of 
hotn prlor mean and covarrance matrvt on I, L = i ,  ...,p are glven m Brown & 
Zidek (1980). Of course the appropriateness of the priors depends on the 
application but (7) leading to (8) warrants speclal attention and perhaps 
deserves the name mulfivarlate ridge regression since q = i corresponds to 
umvariate ridge regression so that K (qxq) will be termed the ridge constant 
matnx. The estimate (8) entails the (qxq) unknown matrlx K which requires 
estimation from the data usmg implic~t or explicit prlor information. Further 
justification for the use of the term 'ridge regression. will be given in Section 
3. 

Note now (7) hypothesises that corresponding coefficients across 
equations are lndependent and identically distributed. The slmpliaty of (8) 
makes it a favoured candidate at least after appropriate scaling of the p 
lndependent variables. This effectively allows a scalar multiplier c; to F, 

= I ,  ... p. One perhaps routinely Important divergence from (7) 1s the idea 
that the constant vector should have a rather different pnor structure. In 
uartlcular a diffuse prior is traditional here (Brown, 1977). 

Finally note that (8) does Indeed utilise information across all equations 
m estimating the coefficients of any one equation. 

In the next section propertles of ridge estimates are examlned further and 
some methods of estimation of K given. Particularly favoured estimates, 
utilised in the case study of section 5 are glveu by (21) and (22). 

3. MULTIVAKIATE RIDGE REGRESSION ESTIMATES 

3.1. Cononrcal form of regression model 
Followmg the development of Brown and Zidek (1978), let us reduce 

model (1) to canonical form so that propertles may be readily percelved. 
Accordingly let 

X = QAlJZP, A = diag (A, ,... A,), X, 2 ... rX,z 0 

where the @xp) orthogonal matrlx P is such that PXTXPr = A and the (nxp) 
matrlx Q equals XPTA-'/z so that QTQ = I,,. Now model ( l)  may be expressed 
as 



with Z = QTY, N = Pp and t* = we. Here Qlust provides a linear reductlon 
from n to p observations within each of the q responses. With r known this 
reductlon reta~ns the suffic~ent stat~stlcs for the (pxq) unknown matrix P. It 
results m the loss of a Wishart var~able with (n-p) degrees of freedom. When 
the case of F unknown is considered this Wlshart variable will be utilised. 

. 
Writlng t' = (E", ..., taq) then (2) transforms to 

SO that the covarlance structure 1s essentially unchanged. Furthermore. the 
prlor distribut~on (7) 1s left unchanged by the transformation a = PP so that 

3.2. The Ridge Class and its order DroDertres 

The ridge class of estlmates (8) now becomes after some manlpulatlons 

where &; (Ixq) is the least squares estimate of ai (Ixq) and 

B, (K) = Kb.1, + K).' 

These shrlnkage matrices satlsfy the lnequalitres 

where A 5 B means B-A 1s a non-negatlve definlte matrix. When q = 1 this 
was regarded by Thisted (1976) as an essential property of ridge shrlnkage: 
poorly estlmated coefficients (small X,) are shrunk most. Matr~x shrinkage 
provided by (12) 1s not quite so intuitive but it does mean for example that if &. 

m 8. and X, > h, then 

&; (K) &; (K)*/&&T 2 

&, (K) &, (KY/&, &,? 

Thus shrlnkage In relatlve length m particular direct~ons of q-dimensional 
mace strlctly increases as the elgenvalues decrease provided the least squares 
estimates lie m the same direct~on. 

3.3.  Choice of the Ridge Constant Mafru; 
The use of a prlor distribut~on for K will result in a posterlor mean for a. 

glven by Ea.' (K) where 

and the expectation 1s with respect to the posterlor distributlon of Kglven the 
data. This estlmate 1s however outside the ridge class (1 1). Note that when q = 
I ,  B, (K) = K/ (X +K) is a concave funct~on of K S O  that by Jensen's Inequality 

B; (EK) 2 EB; (K) (14) 

so that the member of the ridge class with K estlmated by E(K) shnnks more 
than the Bayes posterlor mean estlmate. The lntegrated ridge estlmated (13) 
does not seem to be particularly easy to calculate and has not been considered 
further by us. 

The literature on univarlate ridge regression suggest var~ous estlmates of 
K, the ridge constant which may be extended to the multivarlate (qxq) ridge 
matrlx K. All fall short of the full Bayes approach ment~oned in the prevlous 
paragraph. They separate Into three maln categories: 

(i) pseudo maxnnnm likelihood 
(ii) type I1 maxlmum likelihood 

(iii) emp~r~cal Bayes. 



The first of these 1s the slmplest and in that sense most applicable. Since K 

= l?;' F, F 1s known, TB 1s the varlance-covarlance matrlx of each ru and 
these a, have maxrmum likelihood estimates !it,, a natural estlmate of Kls glven 
by 

This extension of thenunIvarlate rule of Hoerl, Kennard and Baldw~n 
(1975) would replace F by F, the maxlmum likelihood estimate of r if it were 
unknown. Since the & have different preclslons, perhaps a further natural 
adaptatlon of the rules 1s 

This relatlve welghtlng of &, corresponds to a unlvarlate estlmator glven by 
Sclove (1973), and utilised by Lawless and Wang (1976). Intuition suggests 
that the Hoerl-Kennard-Baldwin rule mlgnt undershrlnk whereas (17) mlght 
tend to overshrlnk. 

Both (ii) and (iii) above derwe from the margmal distributions of the 
observations glven K. With (ii), this marginal distribution as a function of K, 

glven the data, 1s the type I1 likelihood (Good, 1963) and 1s maxlmized to 
provide an estlmate of K. The approach (iii) in the sp~rlt of Efron and Morrls 
(1972), looks for a functlon of the data which 1s unbiased for Kwith respect to 
this marginal distribut~on. 

The marginal distribut~on of Z: from model (9), (10) is q-varlate normal 
with mean zero and covarlance matrix where 

Assum~ng !? known and without loss of generality to be I,, the type I1 
likelihood of Kis L(@ where 

L(K) = K1 { ( I  B; / exp ( - ( 1 4  z; B; 2 0 )  

and numerical maxlmlzatlon of L(K) glves Bof (ii). 

Let w,(E, n) denote a Wishart distribution with scale matrlx E, degrees 
of freedom n and dimension q. From the marglnal normality of Z, above we 
know that 

Thus, in particular, 

and if we are able to choose K = Rsucn that f (K) glven by 

1s the qxq identlty matrlx then this 1s the B of (iii). In the unlvarlate case 
(q = 1) the estimate has been used by Dempster (1973) and Dempster et a1 
(1977). In this unlvarlate case with ridge constant K, f (K) 1s monoton~cally 
lncreaslng as a function of Kwith f (0) = 0 and 

f (m)  = r2 Ec, X; &?/p. Hence f (k) = i is not achievable when C X$!/p is 
less than I when k = m provides the closest solution. Evidently lu the 
multivar~ate case the equat~on f (K) = I, will have a solut~on if 

F-' E A. & ?&,/p - I, 1s non-negatlve definlte and otherwlse K' = 0 provides 
the closest solutlon to f (K) = I,. 

4. SAMPLING PROPERTIES AND DOMINANCE OF LEAST SQUARES 

Brown and Zidek (1980) for F known, extending the unlvarlate work of 
Thisted (1976), have deternuned suffic~ent condit~ons for estlmator (1 l )  with 

8; = T: v: W: (c; I, + F-' Cw; $hj),)-' (1 8) 

with T, > 0, c 2 0, W; 2 0 arbitrary scalars and v, = h -'. to dominate 
least squares. Note that this is a wider class than ridge. They take as thelr loss 
funct~ou, 



In this they regard L; = 1 as of particular importance. Softer results may be 
ohtamed if LT = X; which arises when, as in Dempster et a1 (1977), the sum of 
squares of predittion errors at the n deslgn points 1s used to measure the 
performance of P. Quadratic prediction loss at m future polnts has been 
adopted by Goldstem and Brown (1978). Different m polnts designs lead to 
different L;. Prediction at the deslgn points L; = X: favours estlmators which 
only slightly shrlnk the poorly estimated coefficients (small Xi). 

., In Brown and Zidek (1979) the assumption of F known has been relaxed 
by utilismg a trace orderlng argument m addition to Stem's method of 
unbiased risk estimation (Stein. 1973). In this case the Wishart var~able 
discarded in the canonical reduction to (19) 1s used replacing F-' in (18) by R 
where R-'d is W, v, n-p) with d an appropriately chosen scale factor. The 
ChOlce d = n corresponds to maxlmum likelihood estlmatlon of F but this was 
not generally the preferred cholce m Brown and Zidek (1979). Members of the 
class (18) within the multivarlate ridge class have c; m v; and T; v; W; c:' = 1. 

with 

(F-' - R m the unknown covariance sltuatlon). Two types of ridge estlmator 
are glven by K as in (15) (mnltlvanate Hoerl. Kennard and Baldwm) or (16) 
(Mult~vanate Sclove). In terms of P these are glven by (18) with respectively K 
given by 

Here c = p corresponds to pseudo-maximum likelihood as glven by (15) and 
(16) whereas c = p-q-I 1s the preferred cholce m the minlmax context of 
Brown and Zidek (1980). The latter will be distlngulshed from the former m 
subsequent descrlptlon by the qualifiers 'mmimax. or 'modified'. The 
preferred estlmator of F vla R-' corresponds to d = n + p + q +  l within the 
minlmax framework. 

The mnltivar~ate ridge estlmators given by (8) and R as m (21) or (22) 
satlsfy the deslred form (16) discussed earlier in connection with strength of 
overall prlor assumptions. Thus one desired requirement has heen met 
without explicitly expressing the complete prlor distribut~on. 

Suffic~ent conditions for dominance of least squares detailed in Brown 

and Zidek (1980), spec~alised to multivarlate ridge estimators, determine that 
dominance can be achieved provided that the elgenvalue spectrum 1s not too 
wide. For example when the quadratic loss is given by L; = I r = l ,  ...g the 
modified Hoerl-Kennard-Baldw~n multivariate ridge estimator domluates 
least squares provided 

(n-p) @-q-l) v/ - 2 (n-0-2q-2) (p  iZ - (q + 1) vp2 1 < 0 (23) 

with v, = X:', In the unknown F case. Note that this seems to run counter to 
the usual wlsdom that ridge regresslon is valuable precisely when near 
multicollinearlty 1s present. The fault here perhaps lies with the yardstick-least 
squares. Although one cannot be sure to do better than it. bolder shrinkage 

will pay off in most clrcumstances, at least as long as the prlor assumptions 
are merely approximately valid. Further comments directed at this polnt are 
given after the election forecasting example of section 5. 

5. APPLICATION TO SCOTTISH ELECTION DATA 
5. I. Descrrntron of the Data 

Although the data 1s only meant to illustrate the substantial 
~morovements in performance of multivariate ridge regresslon over maxlmum 
likelihood, the full set of raw data employed is included so that the reader may 
undertake further analysis. This raw data 1s presented in Table I and conslsts 
of all 71 Scott~sh constltuencles as defined by the two British General elections 

of February and October 1974. Each of the 71 constltuencles is identified by 
its abbreviated name (e.g. ''EDBR E" is Edinburgh East) and a number (from 
I to 635) denotlng its order of declaratlon m the totality of 635 British 
constituencles which fielded in February 1974. The constituencies have also 
heen ordered on this declaration order label. Thus Kilmarnock, the first m the 
list was the first Scottish constituency to declare but had 132 predeclarers ln 
Britaln. 

Variables headed wl, w2, W3,  Wq' denote votes to the Conservative, 
Labour, Liberal, Nationalist parties m October 1974 as do those headed C, S, 
L, N which apply to February 1974 (in the same order). Votes for other parties 
have not been recorded here. Var~able E is an electorate figure (February and 
October figures differed insignificantly) and R is a categorlcal var~able 
definlng region where 

I = Glasgow: 2 = Rest of Clydeside conurbation; 

3 = Edinburgh; 4 = Rest of industrial centres; 

5 = Highlands: 6 = Rest of Scotland. 



TABLE i 
SCOTTI,SH GENERAL ELECTION DATA FOR FEBRUARY AND OC1 

V\ILHNOCI: 4 130i7 
01 CFN i 3435 
I ' l i E  E a 21172 
T.i'iii"IES 6 21707 
G1 PRO,J:4 A ':v24 
L .  c : .  1472 
G!. SI-RN0 i 74152 
GL C A i i i  i 18247 
mni( N 3 
GL. BnPsc , ~ 7 3 .  
A l l ?  4 2 1 6 Z L  
Ellbii FI'T 3 10162 
fi. KELYN 10717 
GL nnrrli i a l a s  
ANiiilS 5 d 20522 
EUnR E 3 14114 
EO3R CLN J 103v3 
E n m  E : 18781 
DlihlDFT r: 6 13.171 
C i l 6 T t n I i i  2 13162 
i l l l lWLIWS 2 llPY7 
LiUTilliFLL 2 ,2725 
EnDn L T H  l i s ~ 3  
GL nrnm i 7517 
lillNLlI1II.8 4 ,077 
,l,,",: Id : I""OI, 
I'hISI.EY 2 1472s 
DL!NII:?F W 6 15715 
AOFOltN N 0 U115 
RIITIIGL.EN Z 111152 
GL PclLnli i 37nrx4 
C h l l . B R i  1 1540L 
GC. l l lLilb 1 143711 
HnNII' 6 R?52 
~nt+rin:i N 2 1.7164 
AYR5 CliN 4 17662 
G,. GhL'Oil i 304' 
HI.IIII.ION 7 7977 
BTI~?L F B  n 1 x 2 8  
n U N i M i l N  4 1479, 
[*l. C B A l G  i 10ii17 
Di1l:TNS C 2. 9775 
PC'ITII IEI '  a 211'7 
I I F P I G V ' F  L' 25715 
N i G l  OTii l i  n 201170 
RENiRW W i 1 1 5 1 0  
R . ,  4 1308, 
DHiiTliS i, 4 ,36:," 
Rnl.L.""lAl 6 13316 
'U L D I I I T N  4 l l t l l l 4  
HERWK1EI. a 21234 
IANbRK i 14723 
F I i E  c 4 7098 
AWEROII B a 21938 
S T l R L  W 1 12709 
DNRiNS t i 19019 
AIWUS NE1 6 14288 
ADERON E a 11634 
C-7TTI! ISI I  1 5104 
H D R h l l i i i l  r 147'9 
A Y R 3  l i i i i .  4 1716ti 
ASENDN W 6 17256 
AYR9 E 4 10643 
STlRL LC 9994 
K.lHi:r?llP 6 t a j ~ b  
HOX 61+P 6 lddYo 
! 5 l7350 
lNVFRNE2 5 . llhOD 
LIIO~NYIS!, 5 4 l S d  
NOJblCli:I : 7900 
U ILI I:E J ' >.(l.$? 

"OBER 1974 

E Oraer 

From this raw data were generated the four response var~ables Y , ,  y2, Y,, 
y4 and seven 'independent' var~ables X, ,...,X, where 

0.5 Liberal mtervenes, i.e. W, > 0 and L = 0; 
- 

X5 - 0 otherwise; 

0.5 R = 5,6, 
- 

X6 - 0 otherwise; 

0.5 Labour or Nat~onalist top party in February 
X, = 1974 and xZ-X, l 5 0.2. 

0 otherwlse. 

The value of 0.5 employed in these three dummy variables X,, X,, X, is 
Somewhat arbitrary but was chosen so that a prlorl coefficients for all seven 
variables would be of a similar magnitude, it being relatlve standardisations of 
different var~ables that 1s important. In most ridge regression literature 
standardisat~on 1s achieved by centerlng the independent var~ables and scaling 
SO that they have constant varlance (either I or l / n ) .  The XTX matnx for the 
first 25 constituencies (after centenng) 1s glven in Table 2 where it is seen that 

VARIABLE 

TABLE 2. X'X matrur for seven vurzables and25 observatrons (lower triangle 
as upper trrungle) 



such standardlsat~on has not been adopted here. We have taken the Bayes~an 
attltude that these varlables have names which have meanlngs and 
lmplicatlons for thelr effect. Furthermore, in relatlng Y to X m model (l) a 
constant term 1s envisaged so that strlctly X conslsts of 8 vanables. However ~t 
was thought a prlorl undesirable to shrlnk the constant term m the same way 
as the other varlables. It was m fact Left unshrunken. It may be noted from the 
result of Brown (1977) that the centerlng of var~ables 1s not necessary m this 

.case as Long as a slightly modlfied form of ridge shrinkage 1s adopted in which 
K = 0 for the q = 4 coeffic~ents of the constant term. 

5.2 The Problem and Criterra to Judge 11s Solution 
Taking the first n constltuencles n = 15,25.45,65 as data results m a nx4 

matrlx Y and a 11x8 deslgn matrlx X = (X,,X,, ..., X,) where X, is a vector of 
ones. It n deslred to pred~ct the (71-n)x4 matrlx W = W,, W,, W,, W 3  over 
those (71-n) remaining constltuencles when thelr corresponding Independent 
var~ables glven by the (71-n) X 8 matrlx are known. To do this it 1s natural 
to use the n observatlons to estlmate /3 m (1) by some method, least squares 
and ridge belng two contenders of Interest to us, and then predict the 
( 7 1 4  X 4 matrlx YIO' for the remalnlng constltuencles by 

and hence predict W by (W,) where 

Three crlterla SD, G W, PRED for goodness of predictlon were chosen 
where 

PRED = F incorrect predict~ons of wlnnlng party. 

The first of these 'SD' 1s just the square root of the mean square of 
predict~on errors. The crlterlon GW, a gamma welghted squared average 
penalises the predictlon errors according to the ease with which they were 
estlmated as reflected in the residual varlance covarlance matnx as estlmated 
by maxlmum likelihood. Finally PRED accumulates scores of i for each of 
the (71-n) constltuencles where the party predicted to have the largest number 

of votes 1s not m fact the party which galns the targest number of votes. This 
measure 1s very crude but has the appeal of slmpliclty. It does not however 
take any account of the closeness of a particular contest. One way to 
accomplish this for such a measure 1s to calculate the probability of wlnnlng as 
m Brown and Payne (1975). The criterion GW is mos: in line with the loss 
funct~on of this paper, differ~ng from (24) in the use of r f o r r .  The diagonal 
matrlx D(L,, ... ,L>) has been replaced by the pxp matrix X"'' X"' in the 
variable space formed after canonlcalis~ng XTX. No attempt has been made to 
standardise GW whereas SD has been standardised and may be thought to be 
the estimated standard devlation of predict~on. 

After centerlng the seven Independent var~ables the X'X matrlx 
exemulified for 25 observatlons, presented in table 2, has A, = 1.71 and X, = 
0.01. a very ill conditioned matnx. We have not attempted to see whether the 
ridge estimators used are minlmax for the predict~on problem with the deslgn 
matrlces X and predict~on deslgn matrlces X"', rather we demonstrate the slze 
of the Improvement for these particular examples as the number of data 
uoints, n, changes. For further details of electlon mlght forecasting see Brown 
and Payne (1975). 

5.3. Results of comDarrson of Manmum Llkehhood and Ridge 
The Sclove rule was chosen as the man ridge contender to the maximum 

likelihood estlmator. It was preferred to the Hoerl-Kennard-Baldwln 
estlmator because in estlmatlng re 11 paid less attention to the poorly 
estlmated a.. The results are glven m table 3. 

TABLE 3. Compar~son of varlous estlmator uslng crlterla GW, SD. 
PRED wlth n = 15, 25 ,  45, data pomrs. 

LEAST SQUARES EAYES-SCLOVE RIDGE MINIMAX-SCLOVE RIDGE Modlfied 
Hoerl- 

Kennard- 
Baldwln 

n GW SD PRED GW SD PRED GW SD PRED PRED 

15 975 2135 9/56* 395 1440 6156 571 1593 7156 11/56 

25 143 1561 7/46 70 1317 5/46 71 1314 6/56 9/46 

45 70 1378 4/26 47 1259 2/26 47 1228 2/26 3126 

65 52 1180 016 38 1045 116 37 1009 016 016 

- 

*second figure aenoles number ofconsislitueneres beingpredicred licted 



The estlmator denoted Bayes-Sclove h a s  a div~soi ofp =7 r a t he r  t h a n  t h e  

mlnlmax choice p-q-i = 2 I n  the constructlon o f  F,. This sl ightly bolder  

Shrlnker p e r f o r m s  sl ightly better  for this set of data with respect to t h e  all 
t h r ee  crlterla for small n, w h e n  i t  real ly matters. A l t h o u g n  tabula t ions  for t h e  

Mod i f i ed  Hoerl-Kennard-Baldwln ridge estlmator are on ly  glven f o r  t h e  - 
crlterla PRED it 1s clear t h a t  this fares  considerably worse t h a n  t h e  two Sclove 

ru l e s  and even worse than least  squares on this r a t h e r  l imited basis of 
, comparison. On t h e  o t h e r  h a n d ,  on all cr~terla t h e  Sc love  ru les  d o  

cons iderably  better  t h a n  least squares and this 1s desplte t h e  wide eigenvalue 

structure o f  X X .  
The ridge estimates depend on the  least  squares estlmates of t h e  

parameters so t h a t  wi th  for example  as few as 10 observa t ions  X X  happens to 
have less t h a n  full r a n k  and t h e  es t imates  cannot b e  applied without fu r t he r  

modification. In the se  s l tua t lons  o f  predicting with low information it is clear 
t h a t  bolder sh r i nkage  t h a n  t h a t  of minrmax sn r inke r s  1s essential .  In t h e  

circumstances as descr ibed  in table 3 'mmlmax' ridge Shrinkage pays  off 
handsomely .  
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Bayesian Inference in applied statistics 

A.P. DEMPSTER 
Horvard Unrversrry 

SUMMARY 
The tasK of assessing posrenor distributions from nolsv ern~iricai data irnnoses difficult 

Keywords: COMPUTING; MODEL CHOICE: SENSITIVITY ANALYSIS: TIME SERLES 

I. INTRODUCTION 

The subject of this talk is Bayes~an inference: what it is useful for, lim~ta- 
tions on its applicability, and how 11 can shape the way an applied statlstlclan 
approaches the study and analysls of empirical phenomena. The purpose 1s to 
describe how Bayes~an inference ought to be Implemented. The mews expres- 
sed are personal oplnlons in the sense that they convey a set of prlnclples 
which'I attempt to follow as an applied statisticlan. 

The objective of Bayesian inference is to quantify uncertain knowledge 
about a set of unknown quantities in terms of a posterior distribution of those 
unknowns. The method is to specify a lolnt probability distribution of a set 
observables and unobserved quantities, and thence obtaln the requlred poste- 
rior distribution by conditioning on the values of the observables. The audien- 
ce 1s assumed to be familiar with common statlstlcal models used in Bayesian 
mference. 

I believe that applied statistics draws on varled patterns of reasoning, 
both nonorobabilistic and probabilistlc, and that Bayes~an Inference provides 
only a part of the latter category. For example, a procedure such as least 
squares may be used to fit a linear model to data, with the intention of exhibi- 
tmg structure m the data, and if diagnostic plots Indicate a good fit the model 
may be adequate to answer all the questions arlsmg m the applicat~on, without 
any use of probability. 

i The degree of fit of the model to data can he assessed, in a sense which 
needs careful explanation, by means of tail area significance tests, which are 
probabilistlc but notBayes~an. Fitt~ng a model to data does imply that the 
values of certain unknowns are provisionally estlmated. When the applicat~on 
requlres a more refined quantification of the uncertainty concerning these 
unknowns, then Bayes~an lnference becomes approprlate I believe that 

) 
sampling distributions are Irrelevant to such refined estimation and that 
Bayesian lnference should be regarded at present as the only generally 
applicable, although not entirely satisfactory, mode of analysls. 

I take the vlew that Bayesian inference is logically separable from 
declslon analysls. It 1s true that the maln uses of Bayesian mference are 
technological, such as designing a sample to meet specificat~ons of expected 
accuracy or evaluating expected gams and losses of strategies available to a 
declsionmaker. It is also true that the effort which an applied statlstlclan puts 
Into the demanding task of determlnlng a posterior distribution, or more 
often a set of alternative ulausible determinatlons, should depend on the 
sc~entific or technologlcal application, because the statlstlclan should w~sh to 
direct effort at those refinements of posterior knowledge most useful to his 
client. But the client's utility function 1s generally very different from that of 
the professional statisticlan. In this paper, I will be illustrating the schema by 
which applied statlstlclans develop posterior distribut~ons, and I believe it will 
be obvlous that these schema have no logical the to any declslon problem. 

'1 The plan of the paper 1s to discuss Issues which arlse m applied statlstlcs, 
by making use of a current effort to develop techniques for the analysls of 

1 monthly economlc time senes. The specific proJect 1s being sponsored jolntly 
I by the Amerlcan Statistical Assoctation and the Bureau of the Census in 

i Washington. D.C. It 1s too soon to report results, so my paper is about 
approaches. How well the approaches work must be reported later. 

The applied oroblem is described in 52. The most demanding part of 
l 

I Bayeslan lnference 1s largely nonBayesian, namely the task of developing the 
overall probability model with enough detail to permlt Bayeslan ~nference. 

1 Some key issues m the modelling process are revlewed ln $3. I believe that 
1 computing IS much more important to Bayesian analysis than 1s the study of 

analytlcai uropertles of models. Computational aspects of the proposed tlme 
serles analysls are discussed m 54. Methodolog~cal aspects of the Bayesian 

I 
mference are set out in $5. Finally, rmplications of my position for future 

' I  statlstlcal research are explored in $6. 
i 

2 THE APPLIED PROBLEM 

The problem of seasonal adjustment of ecouomlc time serles has returned 

l to center stage in recent ywars both among statlsticlans and economists 





amed at satlsfactory conformity with known emplrlcal facts. Such data 
analys~s 1s the bread and butter of the statistical profession. as opposed to the 
rarer type of data analysls which seeks to uncover unsuspected scientific facts. 
The goal of Bayesian inference helps to focus data analysls on those questlons 
which are critical to the credibility of the Bayes~an Inference, such as failures 
of normality assumptions. Otherwlse much of the large and growlng body of 
data analysls techniques strikes me as a~mless. 

Turning now to modelling economic time series, the requirement which I 
believe to be most fundamental cannot be met at present. Because the basic 
tune serles are aggregates, I believe they should be represented by linear 
models m the original unlfs. Unfortunately, the only linear models Leading to 
computatlonally v~able Bayes~an Inferences are Gausslan linear models which 
do not conform to the da:a m orlglnal units. Hence the confused debates over 
addit~ve models, multlplicatlve models, and combinations thereof. 
Econometr~c~ans usually transform the orlginal scales to logarithms in order 
to obtain credible fit to Gausslan linear models. I believe the results are often 
acce~table for analysing single time series, but for multi~le tlme serles analysis 
logging 1s very awkward because the sum of log normal random var~ables is 
not log normal. Ultimately we will need Bayesian linear model theory based 
on stable distributions. Another problem with multi~le time serles analysls 1s 
the rapid proliferation of parameters, a problem which 1s already troublesome 
m the unlvarlate case, and which will requlre hidden factor models to capture 
the hoped-for s~mplic~ty. The plan therefore is to develoD Gaus~an linear 
models for transformed slngle tlme series, while adopting ad hoc procedures 
to allow for the ~nev~table stragglers in the tails. The deeDer modelling 
requlred for a satlsfactory treatment of more general econometric analysls 1s 
put a$ide for future research. 

It is lnstruct~ve to compare three approaches which have been suggested 
for tlme serles modelling. To brlng out the essentlal polnts I will start by 
supposing there are no seasonal or calendar effects. The most widely practlced 
approach is to fit autoregressive integrated movlng average (ARIMA) models 
m the manner of Box and Jenkins (1976). Data analysls is used to asslgn a set 
of dimens~ons @,d,q) whose meaning 1s that the dth order differences are 
asslgned an autoregress~ve moving average (ARMA) model with p 
autoregressive parameters and q movlng average parameters. A fairly typica 
model would be a (1.1.2) model which can be denoted by 

whereY. for t = 1,2, ... denotes the orlglnal tlme serles, Bdenotes the backshift 
operator such that BX. =X ,.,, B2X, = X  ,.,, etc., the AR and MA parameters are 

denoted by @,and (8,,03, resoectlvely, and a. denotes a Gauss~an white noise 
drlver with variance oZ 

A second approach advocated by Parzen (1977) is to fit only AR terms in 
the model permlttlng p to be fa~rly large, say p =  l5 or p=30,  to secure 
adequate fit. Varlous optlons are to lim~t the coeffic~ents @,,@,,...,@, so that 
the Y. process is statlonary, or to Introduce a speclal limited form of non- 
stationarity by using a factor of the form (I-B)", or to place no restrictions on 
the AR parameters so that explosive nonstationarlty IS permltted. 

A third approach advocated by Mandelbrot (1972) 1s to give fractional 
Gauss~an processes a key role in the modelling. The baslc model has the form 

where a. 1s no longer Gausslan white nolse but a generalizat~on called 
fractional Gauss~an nolse which is a statlonary Gausslan Drocess with 
autocovarlance functlon 

where oZ is the varlance and H is a fractional parameter on 0 <H < l .  When 
H= % the a. Drocess is white nolse. The family (3.2) can be extended in 
varlous ways, for examwle, by multiplying the spectral denslty f(X) 
corresponding to (3.3) by a smooth spectral denslty h(X) to change a. to a 
stationary process with spectral denslty f(X)h(X), or by changing the order of 
differenclngd= i in (3.2) to d=O or d=2 .  

What are some arguments for and aga~nst these different modelling 
strategies? The basic argument for ARIMA 1s parsimony. For example. 
a (1 , l  -2) model is completely described by the choice d =  1 and the four real- 
valued parameters +l,8,,B,, and o 2  A successful fit of such a model to and 
observed time series Y. obtained when the residuals 2. implied by the fitted 
model cannot be told from white nolse in senses made preclse by Box and 
Jenkins (1976). Such parslmonlous fit can often be obtalned. I argue, 
however, that while parsimonious fit 1s a worthy goal if the purDose of 
statlstlcal analysis is to exhibit detectable patterns in the data, such fit is 
potentially misleading if the ultimate goal is realist~c Bayeslan inference. The 
reason slmply 1s that probability models underlying Bayesian inference should 
reflect plausible prlor knowledge, and there can rarely be prlor knowledge 
which fixes @,d,q) = (1,1,2). The s~tuatlon can be redeemed by showing that 
more realistic prior assessments do not have rnean~ngful effects on the final 
Bayesian mferences, but such demonstrations in effect require practical 
performance of the more refined Bayes~an analyses. My criticism 1s not that 



certain alternative analyses are not routinely performed, as when extra terms 
m :he model are shown to affect little. The key distmction 1s between ad hoc 
parslmony which mechanlcally stops at @,U,q,) = (1,1,2) because the data are 
Inadequate to detect further slgnals in nolse, and true parsimony which . 
postulates slmple structure III nature and Seeks corresponding prlor 
assessments that may prove effectwe m the long run. My concern 1s that 
contlnulng lack of attention to this dist~nct~on may have a cumulative 

destrucllve effect on the credibility of Bayes~an analysls. 
The second approach rejects parslmony and conforms to the dictum 

which I first recall hear~ng from Jimm~e Savage to make the model "as big as 
an elephant" The reason 1s to scan the data for a wide range of uossible 
messages. A key trouble with the elephant prlnclple 1s that it conflicts with 
another principle whicn Jimm~e and most Bayes~an statlsticlans have 
considered a basic reason for the feasibility of Bayexan mference, namely, the 
prlnclple of preclse measurement, which holds that the nonemplrlcal 
component of the pr~or probability assessment 1s less critical than the 
emplr~cally checkable component in data rlch sltuatlons. I believe that when 
there are many parameters, the likelihood is rarely peaked enough to 
Overwhelm the ur~or, so that slmple alternative prior distribut~ons which 
assign plausible finite variances to the parameters yield suhstant~ally different 
~nferences from flat priors. 1 find the use of crlterlon declslon rules to produce 
an automatlc AR dimens~onp, followed by an automatlc flat prior analysls of 
thep  parameters, to be highly contradictory to the splrlt of Bayes~an analysls. 
I am more sympathetlc to analyses which generate genulne prlors for many 
parameters by means of hierarchical models, as advocated by Good (1965) or 
Lindley and Smith (1972), but I questlon whether the full story 1s m on the 
Strengths and weaknesses of such models. I 

The reason why I am attracted to Mandelbrot's proposal 1s that it 
hypothecates a slngle parameter H to capture a real world phenomenon whicn 
can only be approx~mated by a substantlal number of physically meaningless 

AR parameters. If successful, the hypOtheslS will exhibit genulne sc~entific 
parslmony, as opposed to the dubious statlstlcal parslmony which accepts 

l 
simple ad hoc models prlmarily because they cannot be emplrlcally disproved 
with available data. Simulatlons of the model (3.2) produce hypothetical tlme 
SerleS whose long swlngs are remlnlscent of the trends and cycles of real 
economlc time serles, especially for H i n  the range .7 to .9. The generator a. 
governed by (3.3) has spectral denslty proportional to  near X = 0, which 

I 

suggests that the nonstationary Y. In (3.2) has a non~ntegrable suectral 
"dens~ty" prouort~onal to  near A = 0, and it is this smooth progression 

across a class of nonstatlonary models as Hvarles which glves the models the 

l 
capability of representlng and lnterestlng range of low frequency behavior. 

Such spikes can be simulated close to X = 0, but not actually at X = 0, by 
uslng lncreaslng numbers of AR parameters, but should one choose to spend 
parameters this way if a slngle plausible parameter will do? 

Havlng decided to build models with fractlonal power spectral peaks, the 
m a n  lines of my modelling strategy are set. Seasonal components in the 
model will also be hypotheslzed to have fractlonal power spikes m the 
spectrum at the seasonal frequencies, m order to meet the sc~entifically real 
need for a simple model capable of representlng slow drifts m seasonal 
patterns. Further details are sketched in 54. 

The reason for the elabOratlOns of 53 has been my wlsh to exhibit the 
kind of ~~lence-orlented but nonBayes~an deliberations which necessarily 
precede serlous Bayes~an lnference from statlstlcal data. 

4. COMPUTING 

The application of lnference technlques is held back by conceutual 
factors and computatlonal factors. I believe that Bayesian inference 1s 
conceptually much more straightforward than nonBayes~an mference, one 
reason belng that Bayes~an ~nference has a unified methodology for coplng 
with nulsance parameters, whereas nonBayes~an Inference has only a 
multiplic~ty of ad hoc rules. Hence, I believe that the major barrler to much 
more widespread application of Bayes~an methods is computatlonal. Be~ng 
less limlted conceptually, Bayes~an statlsticlans should tackle the computing 

problems associated with comulex data sets and correspondingly complex 
models. The develoument of the field depends heavily on the preparation of 
effective computer programs. 

These programs Include methods for explorlng data, explorlng models, 
and fittlng models to data, but the central computing problem of Bayes~an 
lnference 1s the problem of computing posterlor probabilities and expectatlons 
from high dimens~onal distribut~ons. In the computer era, it is not sufficient, 
and often spurious, for statlstlcal theorists to express thelr technlques m terms 
of formulas and equations, slnce the haslc requirement 1s to urovide feasible 
algorithms. 

With Gauss~an linear models, the sltuatlon 1s much helped, because 
uostenor distribut~ons are multivarlate normal and the marglnal uosterior 
distribut~on of slngle components 1s normal. Hence many posterlor 
calculations depend on numerlcal linear algebra rather than numerical 

multiple lntegratlon. With most other models, mathematical analysis 1s largely 
~ntractable, although exuanslons around Gauss~an models can be heluful. In 
the end, I expect that numerlcal sampling technlques will provide most of our 
useful posterlor calculations. 

For concreteness, I now spell out some details of Gaussian linear model 
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posterlor analysis and its applications to time serles modelling. The baslc form 
of the model is 

where p is a p x ~  vector of UnKnowns which govern the system. X is a Known 
nxp linear transformation matrvt, and Y is an nxl vector of observations. If p 
has a multivarlate normal pnor distribut~on, and X has rank n, then the model 
(4.1) asserts that the observed Y condit~ons p by forclng it to lie in an @p)- 
dimensional subspace of its p-dimensional space, and hence the posterlor 
distrihut~on of 0 is slmply the restriction of the prior normal to the subspace. 
which is agaln mult~variate normal. 

The model (4.1) is more general than models which look more general. 
For example, the familiar multiple regression model Y = Yp + e is just a 
sueclal case of (4.1) wnen e 1s appended to l3 and a corresponding I is 
appended to X. The mean of the normal prlor of P may be included as another 
term m the model and hence the prior mean of the general model can be taken 
to be a vectot of zeros. The prior distribut~on of P can be stretched infinitely 
far along r dimensions, thus incorporating flat pr~ors for compounds of 0 
thought to Include components with diffuse prlor knowledge, while the 
vosterior remalns finlte normal as long as the r-space Intersects the n-space 
determined by Y in a space of zero dimens~on. 

In most applications, it cannot be assumed that the prior covarlance 
matrlx C of R is known, so that a second level of prlor distribut~on 1s required 
for E. It turns out, however, that the computations for E known are central to 
working with many models whose Z is only partially known. In the remainder 
of 54 E is taken to be known, while 55 the case of unknown E is taKen uu. 

To exhibit the flexibility of the model (4.11, I now describe a tune series 
modelling effort leading to such models. The first model will have four 
subcomponents. That IS, the elements of P will be partitioned, and the rows of 
X correspondingly partitioned, so the model appears m the form 

I take the components of Y to be a time series Y. fo r t  = 1.2, ... n and represent 

where n. is a tlme series of nonseasonal components and S. 1s a tlme serles of 
seasonal comuonents. 

The model (3.2) is adopted for n,, namely, 

where a. 1s a stationary Gauss~an process with spectral denslty of the form 
fO\)h(X) described in 53. Operationally, the model (4.4) reqnlres value no, and 
then is generated by 

n, = n,+al 
n, = n,+a, = n,+al+a,  

n3 = n2+a3 = no+al+az+a ,  (4.5) 
etc. 

It IS convenient to represent the vector of n, as Xl~l+X$2 where Bl has the 
single element nu, and p21s thevector (al, a2, ...,a,)l, while 

The pr~or  for nu 1s N (0.0;) where a: is a fairly large number whose exact Value 
is un~mportant, and the prlor covariance for al,az, ... a. 1s that ~mplied by the 
spectral denslty f (X) h (X). 

The model adovted for S, is a seasonal analogue of (4.41, namely, 

-. 
1 - 

(1-B12)s. = b,, (4.7) 

assumlng monthly data. where b. is a stationary Gaussian process with 
spectral denslty proportional to (X-X,),-2" near the seasonal frequenc~es X = 
( r / 1 2 )  for .= 1,2,3, ..., 6. Again, the model (4.7) requires startlng values, 
namely, s .,,, s.lu ,..., soand the S. are generated by 

sI3 = S.,, + bl + b13 
Sm = S.10 + b2 + b,, 

etc. 

100 ... 0 
110 ... 0 
111 ... 0 

... 

. . . 

. . . 
111 ... 1 

1 
1 
1 

I 

and Xz  = 



The vector S,, s2 ,..., S. IS now represented as X, P, +X, P,, where X, 0, 
specifies the component depending on P3 = (S .,,, s .,,,..., S,)' and x,P4 the 
component depending on P, = (b,,b,,..,b,.)'. The components of P ,  are 
assumed indeuendent N(0.a:) aprrorl where a?represents the varlance of the m 

lnitlal seasonal pattern P,, and P, represents the wanderlng seasonal which 
typ~cally has small valance commg manly from close to the seasona 
frequenc~es. 

More general models are easily constructed by adding terms to (4.2). For 
example, Initial trading day effects, and wanderlng trading day effects provide 
two more terms. The error structure of the serles Y can be assayed, and a 
further term can be added for sampling and/or other measurement errors. 
And so forth. 

A computatlonal strategy will now be sketched for (4.2). Supposing that 
the p, are Independent N (0, C.), the joint dlstributlon of Y, P,, p,, p,,@, 1s 
multlvarlate normal with zero mean vector and covariance matrlx 

New coordinates U,yl,y2,y,,y4 are Introduced which are orthonormal, the 
transformatlons from the new to old coordinates belng provided by the 
trlangular square roots of the five diagona covariance matrlces m (4.9), as 
produced, for example, by the familiar Cholesky algorithm. In terms of the 
new coordinates, the covarlance matrlx (4.9) takes the form 

whence B; are trivially seen to be the filters which provide the posterior means 
of the y j  glven U, while the posterlor covariances of the yi are given by I-BB;. 
Transformat~on back to the orlglnal P,, B,, P,, P, is vla the triangular square 
roots of the E;. The reason for including the orthonormalizatlon of the (3; m 
the computatlons 1s that the estimated yi are Interpretable as residnls and are 
used in iteratlve modelling. 

When n, and S. m (4.1) are replaced by posterlor means, the result 1s an 
estimated decompo~itlon of the observed tlme serles Into seasonal and 
nonseasonal components. The underlying idea 1s widely known, was ably 
exposited long ago by Whittle (1963), and more recently was used by 
Cleveland and Tlao (1976). I hope to facilitate applications of the theory by 
polnting out how slmple the assoclated computatlonal procedures are, and by 
developing programs to Implement these procedures. 

5 .  BAYESIAN INFERENCE 

Reported Bayeslan Inferences should be defensible as reflecting 
considered prior assessments of the real world system under study. Since 
available prlor knowledge 1s rarely adequate to support a slngle assessment, a 
range of aternatwe analyses should be prepared, and should be reported if 
they affect the end uses of the Inference process. The client can then make a 
final prlor assessment with some understanding of what rides on the cholce. 

A model should not be accepted on the basls that it cannot be negated 
from available data without a search for alternatives of comparable prlor 
ulausibility, because the inability to relect does not guarantee that similarly 

unrejectable alternatives will not lead to Importantly different end uses. The 
problem is most apparent regarding the traditional "pnor distributlon" of 
parametric Bayes~an statistics, slrrce such priors are often unaccompan~ed by 
any data which might limit the prior. I am argulng against passlve acceptance 
of any prlor assessment, and especially of so-called "informat~onless" prlors. 

Admittedly my prescriptions are vague and nnsatlsfactory, slnce in the 
end choices must be made or the possibility of refined posterlor assessments 
must be foregone. The best hopeis for statlstlclans to develop a set of evolving 
profess~onal standards, based on widee~~er~ence ,  and suffic~ent unto the day. 
New InslghtS, new computatlons, and new feedback from clients should be 
expected gradually to bring new practices. 

In the case of Gauss~an linear models, my guidelines call for reanalyses 
under different transformat~ons and different rules for identifying and coplng 
with outliers. Eventually, nonGausslan linear model analysls should become 
computationally feasible. 

Within the Gausslan framework, modelling efforts generally come down 
in the end to a need to estlmate parameters for which prlor knowledge remalns 
vague across ranges which affect end uses. For example, the stochastlc 
component of the nonseasonal model (4.4) certainly has a unknown scale 
factor and a unknown fractional H, and may have a few more parameters to 
Shape the spectral denslty factor ha). Similar remarks apply to the stochastlc 
seasonal model (4.7). 

I wish to compare three attitudes which can be taken to parameter 



estimatlon. The slmplest approach 1s to compute point estimates of the 
parameter values, and adopt the Gaussian model with the estimates 
Substituted for the unknown values. The second approach is to adopt 
continuous prior densities with simple analytic forms, and to repeat the 
analysis with several choices to assess sensit~vity. The third approach is to' 
compute the Gauss~au ~ostenors  and the assoc~ated likelihoods at an array of 
polnts in the parameter space, and then requlre the user to specify a final 
cholce of prlor welghts over the array, if such a cholce 1s needed. 

The first strategy if often used because it 1s easy to implement. Its validity 
depends on the scale of the posterior distribut~on of the parameter values 
bang reasonably small relatlve to the scale of changes m parameter values 
requlred to produce Important changes in end uses. The posterlor mean of p 
calculated at k should not differ greatly from the posterior mean of B 
calculated by averagmg over a tosterior distribut~on of E,  but the posterlor 
covariance of p calculated at E will generally understate a more refined 
assessment of posterlor variability. Hence, for example, the first method 
would typically Lead to an overly optimistic posterior probability that a 
component of 0 resides within desirable tolerances. 

The second strategy requlres a quantum lncrease in computatlon. For 
example, if the varlances are glven Inverse gamma prlors, then the posterlor 
density of p glven H is the product of multivariate factors, from which 
posterior probabilities could be computed at considerable expense, at least in 
terms of algorithm development, and still the posterlor distribution of H 
would need to be found by numerical quadrature. Even assumlng feasible 
computations, there are potential disadvantages. The client does not 
automatically recelve direct information about the sensitivlty of end uses to 
value changes m the parameters themselves. A separate evaluation of the 
sensitivlty would be requlred, because low sensitivlty would imply that the full 
Bayesian analysls 1s not needed. Moreover, if sensitivity 1s exhibited, then the 
client finds that a cholce must be made m a space of hyperparameters which I 
find difficult to relate to personal experience. 

The feasibility of the third method depends on the number of parameters 
and the deslgn of the array of polnts where the Gaussian posterlor 
computations are performed,. Again, a study of sensitivity 1s requlred, but 
here it can be part of a sequential process of array deslgn. If sensitlvlty is low 
relatlve to accuracy of parameter determination by the data, then a Slmple 
grid will do. It appears that the third approach 1s a sensible starting place In 
practlce. 

6. IMPLICATIONS FOR STATISTICS 
The future of Bayeslan applied statlstlcs clearly depends on practitioners 

with sound tools for complex examples, emphaslzlng realistic models and 
correspondingly tailored analyses. Statlshcal research should become much 
more orlented to elimlnatlng the computational barrlers to the widespread 
practlce of Bayes~an analysls. Academlc research needs lucreaslngly to 
organlze ~tself Into teams able to cope with expanding technological 

possibilities. Statlstlcal sclence may then be freed from its excesslve 
dependence on theoretical lnslghts and studies. openlng the way to more 
theorles which better match real needs. I hope also that the statlstlcal 
profession may wm a place of leadership m applied fields such as med~clne 
and policy analysls where current practices fall far short of achievable 
standards. 
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DISCUSSION 
P.J. HARRISON (Unrversrfy 91 Warwzck): 

In relatlon to Dr. Brown's paper, I would recall that this mornlng George Barnard 
mentlonea the cornparlson done by I.C.I. Ltd. between Ridge Regression and ordinary 
Least Squares Regression. The recommendatlon arising from that study was to 
connnue to use thelatter. 

Now one has to be very careful in making compansons. Most of us w~ll have 
suffered from what we would regard as totally unjustified compansons. For example, 



consider ule comparison of a sledge with a car as a means of transport. In the &tic the 
sledge with its husky dogs would tend to win whereas on a motorway m Spam the car 
clearly wns. But Derhaps we are on the sea when neither a sledge nor a car is 
partlcularly useful! Consequently the major duestlon about the current ComDanson 
concerns its relevance. Are we on ice, road or sea? 

Multivariate analysis n always worrying slnce'its successful application demands 
great care. In Phil Brown's example my worries are about robustness and model 
adequacy; about 

(i) me global linearity with fixed coefficients over time; 
(ii) associated Normality; 
(iii) the structure of tne variance matnx, particularly since the data are roughly 

propoItLons. 
So by what standard can we Judge the validity of the companson? Examples give 

us agood opportunity for assessment and Phil is courageous enough to glve us his data. 
Taking his specific electron example, since one of the maln purposes of election 
forecasting is to forecast as soon as possible the number of seats which will be won hy 
each Parry, I looked at the 'Pred' cornpanson. Remembering that October 1974 and 
February 1974 are not far apart m tune, 1 first postulated a 'no change' model M,:- 

'Each Party will retain a seat previously held'. 
Looking at my table I ,  this IS seen t o  outperform all Phil's models as glven m his table 
3. Since M. may be lnter~reted as a redundant 

TABLE i 
A cornpanson of vai~ous estlrnarors uslng Prea. 

Shawng a nurneer of incorrect forecasts for varying n 

Number of Least Mod Min Bayes 
results (n) sq. H-K Rid S. Rid M, M, M, 

ordinary Bayes regression model with an unshakeable Drror, Phil's conciuslons are 
clearly quest~onahle if based on such examples. 

We may investigate the comparison further using a very s~mvle model in which we 
wnte for seat K 

where party I won the seat in February and r,,* is the number of votes then cast for Darty 
J relatlve to those cast for party I. R, is the corresponding quantity for October. B, is 
an unknown regression coefficient and U,, a Normal random variable with zero mean 
and here the variance 1s mappropnately taken as a constant V. 

Thus the model can be written over all tne constituencies as 

R = r B + U  U %N(O; diag (V)) 

where R and V are the vectors of all the meanlngful R,;s and U,,'s, r 1s a matrut with 
only one appropriate non zero quantlty in each row and R is the column vector of the 
8,'s. For model M, we will take an exchangeable ignorance prior structure at tlme f = O  
as 

(R It = 0) % N [l; diag 101001 

Thus M, effectively performs independent least squares regressions in sequentially 
estlmatlng each of the elements of R. At any tlme the Pred forecast for a wmner of a 
constituency Seat is that party with the hlghest expected proporclon of votes. The 
performance of M, is given m Table I. 

The particular Durpose of this election was for the Labour Party, who held a small 
malonty of seats, to go to the country and o b t l n  an increased majority. Consequently 
rather than the ignorance prior on B of model M, it could be argued that although such 
a  nor would he sultable for seats held hv Dartles other than the Labour Partv. there 
was a strong pnorl argument to say that Labour would retain seats it Drevlously held. If 
this 1s SO then perhaps amore realistic pnor for R would have been 

where the lower block only relates to seats held in February by Labour and where f 1s 
small. With such a model M,, the performance on Pred is extremely good as shown m 
the table and again outperforms all others with a great deal to spare. 

Whether or not one accepts model M,, the performance of the elementary models 
M, and M,, ana the ~esults of the I.C.1. study seriously question the authors 
COnCluSlOnS and stress the need for great care in making compansons of technique 
Dartlcularly when one of them appears to lack robustness to variation In its 
assumptions. 

There has been little trme to study Professor Dempsters paper and I will lust 
consider a few points. He asKs is there such a thing as a good or valid method of 
seasonal adjustment? I suppose that m order to answer this we need to be very clear 
what we mean by seasonality and thus I would ask what does it mean? 

In his case, at the Bureau of Census, if a deseasonalised senes of official statistics 
1s to he produced for many anonymous users with a variety of utilities, some of them 



are going to want to know what has been filtered out of the data and what has not. 
For example m my own imDlementation of short-term forecastlng sltuatlons m 

which we use structured state-space or Dynam~c Linear Models we discuss with users 
what will and what will not be parmetensed and what it will mean. This is uarucularly 
lmuortant with resuect to seasonality. If we are considering monthly tem~eratures m 
Central England (Box-Jenkins) then we mlght be happy to describe the seasonal effect 
by a first harmonic describing the effect of the elliptic orbit of the earth round the sun. 
But what about 1976 when there was a very hot summer and a drought. In order to get 
a deseasonalised figure do we take out the 'average seasonal factor over the years or do 
we somehow sueculate that we have had a uarticularly hot summer but that this is no 
reason to think that the so called deseasonalised level has changed? To me you take 
your cholce deDendent upon Your use of the resulting figures. But of course in Arthur's 
case he does not know all the uses to which the figures will be put. To be more concrete 
on this Domt. one of our recent clients who is a manufacturer of alcoholic drink has 
experienced a major rlse In demand over 1975 and 1976. This was naturally attributed 
to great marketlng success although what had really happened largely resulted from the 
unnsuallv hot couule of months m the two Years combined with an advantaee relative 
to the other alcohols of no V.A.T. When the summer weather reverted to its more 
typical pattern and the brewers successfully lobbied for V.A.T. on this ~artlcular drink, 
sales fell dramatsally. Clearly in this sort of case it is of vltal Importance to the 
ComDany to estlmate how much of its sales is to be thought of as due to relatlve Dnce 
advantage, promotions, variation within year etc. But agam what is the deseasonalised 
series? Do we take out the seasonality of advertising, of the earth gomg round the sun, 
of the uartlcular weather conditions glvlng nse to a freak summer, the seasonal buylng 
habits of the customer, which m the case of government instrtnuons may just reflect the 
current policy of placlng orders regularly at quarterly Intervals and not any seasonal 
usage. and so on. 

If asked why they like deseasonalised senes. many users would remark that they 
are looking for turnrng points and trend changes. Perhaps also they are now ~nterested 
In other forms of change such as jumps m 'nnderlymng level'. For most official senes it 
1s Drobably good enough to filter out regular seasonal effects ln the traditional ways, 
uslng local linearity and smoothing. However, this is not adequate to deal with sharp 
changes in the serles or ln any of its structural comuonents. The absence of any 
Daranetric formulat~on m Professor Dempsters vaner sururises me. At this meeting we 
have heard from Professor Akaike, Adrian Smith and Dr. Makov about such 
formulations and of course Colin Steven and I have used these successfully for many 
years under the title of Bayes~an Forecasting (1976). The big advantage of the 
uarametric or  state-space formulation e that it allows one very easily, to attribute 
vanatlon to many sources and is, after all, in the spirit of the Bayesian statistical linear 
model with the associated estlmatlon of effects m terms of the11 distribution functions. 

We have also had success with this Bayesxan approach In hierarchical forecasung 
and gave apaDer on this at the Royal Statlstlcal Societies Conferencem 1977 (Harnson, 
LeOnard and Gazzard). Here we were commssioned to develop a method of 
forecastlng aggregates and theu constituents ensuring compatibility in the sense that 
the sum of the uarts was equal to the whole at all levels. Aga~n with urobability 

distributions this reduces to conditional forecastlng and this method has been fully 
documented by I.C.I. who use the resultant software agreat deal. 

However in expressing my surprlse at the ommlsslon of this type of representation 
let me admit that I am unfamiliar with Mandelbrot's approach and that since I only got 
a copy of Arthur's paper yesterday I have had no chance to looK UD the literature. At 
first glance I am not attracted to it and on a technicality with equation 3.3 would ask 
why with H = 0.5, the variance C(0) = O? 

I would close with one important uolnt. It is my personal vlew that stationanty 
impiisons us. Surely we must recognise that variables have urobabalisric effects. That is 
if I launch an advertising camuagn described only in terms of the amount of money to 
be spent I am unsure of its effect and hence my view of the future 1s much more 
uncertain. I can learn on line about this probabalistlc effect and I can model it or I can 
uretend a nalve srationanty and ignore rt. The most convenient way of modelling that I 
know is the uarametnc approach and 1 would urge that this be @ven much more 
attentlon. 

A. ZELLNER (Unrversrw q/Chicago): 

The Dapers by Brown, "Aspects of Multivariate Regression" and by Dem~ster,  
"Bayes~an Inference in Applied Statistics" are valuable contributions which treat 
lmportant Droblems. Since I vrefer reverse alvhabetlcal order for an obvlous reason, 1 
shall comment on Dempster's paper first and then turn my attentlon to Brown's paper. 

First, Dempster presents a personal view of how Bayesian inference ought to be 
implemented. According to Demoster, "The objectwe of Bayewan inference is to 
quantify uncertain knowledge about a set of unKnown quantities In terms of apostenor 
distribution of those unknowns." (p.1). In connection with this definition, f is 
LmDortant to Include as yet unobserved values of variables In the "set of 'unknown 
quantities" and t o  mentlon ~ ~ e d i c t i v e  distributions. In addition, I believe that 
Demuster's discusnon would be enriched by relating it to various theones of scientific 
method. for example Jeffreys's and those,of other philoso~hers of science. Without 
such considerat~ons, it IS difficult, if not impossible, to apprase Bayeslan and other 
systems of statlstlcal inference. For example, the Issue of whether urobability is better 
regarded as a frequency or non-frequency conced requires analysis in terms of a theory 
or alternative theories of scientific method. 

As regards some specific Issues m Dempsteris discuss~on of Bayes~an Inference, his 
remarks on "tail area significance tests" should, m my oainmon. be expanded to 
consider Jeffreys's Bayes~an significance test Drocedures. As polnted out m my and 
Siowis DaDer for this Conference, for many testing uroblems Jeffreys-like uosterlor 
odds ratios relatlng to oaus of hypotheses are monotonlcally increasing functions of 
tail areas associated with usual f and F statistics used by non-Bayesians in testlng 
hypotheses. Thus there 1s a direct link between Jeffreys-like uostenor odds ratlos and 
tail areas, a relationship which may exulmn why many applied statisticians have 
~erslsted in thelr use of tail areas or "u-values" in appraising hypotheses. 

I am SYmDathetic to Dem~ster's view that "Bayeslan inference 1s logically 
sevarable from decision analysis" De Finneh at a 1968 conference at Frascati 
expressed a snnilar view and I believe that R.A. Fisher and H. Jeffreys also agree with 



Dempster's view. However, I.J. Good and others appear to taKe the position that 
"quasl-utilities" are generally employed in inference and that inference may be vlewed 
as partially contained within decision analysls. Clearly there is a need for more work on 
the m o m  systems underlpng inference (or learning) and decision (or utility) analysls to 
help resolve the issue of separability. For example, the relatlon of Jeffreys's and . 
Savage's axiom systems could be studied to determine whether the separability view is 
logically tenable: 

Second, 10 connection with Dempster's discussion of the practical problem of 
modelling seasonal time senes, let me draw partlclpants's attention to the recently 
published volume, Zellner, ea. (1978), m which many of the issues discussed by 
Dempster are treated at length m contribnhons by a number of statisticians and 
econometncians. In the volume, three approaches to the analysis of seasonal tlme serles 
are distinguished, namely (1) the descnphve, non-modeling approach, (2) the statlstkcal 
modeling approach and (3) the subject-matter causal modeling approach. Dem~ster's 
approach 1s an ingenious example of a statlstlcal modeling approacn that he compares 
with two Other statistical modeling approaches, the stochastlc seasonal ARIMA 
approach associated with Box and Jenkins and an AR approach aavocated by Parzen 
and Hiplel and McLeoa. One mlght add to this list the mlxed aeterminlstlc-stochastlc 
seasonal models developed am3 applied by Pierce, (1978). While these statist~cal 
moaeling approaches can yield useful results, rt 1s my mew that tney must be augnlented 
by a subject-matter causal modeling approach. Without a good subject-matter 
understanding of the nature of seasonality and factors which produce changes m 
Seasdnal patterns, it is the case that mechanistic, stat~tlcal models do not have a firm 
foundation. 
Practlcally speaking, this means that parameters of such models may in fact be 
variables and thus the difficult problem of assessing good Dnor distributions for these 
"parameters" may be mtractable. Further, as Ploser (1978) notes, analysrs of 
economic models makes it highly unlikely that the restnctlons on the movmg-average 
~o l~nom~al - lag  operators needed to produce the Box-Jenkins multiplicat~ve seasonal 
ARlMA schemes will be satisfied in general. Also, the variation of policy-control 
vanables can Introduce non-stanonary effects in the hme serles processes for Individual 
variables. These considerations, and others which could be added, polnt in the 
direction of devotlng more effort toward understanding the causes of seasonality and 
Droducmg reasonable, serlous subject-matter models which will enhance our saentific 
understanding of seasonal phenomena, for example changlng seasonal patterns ana 
differences in seasonal processes for different vanables. Bayesian tecmaues can be 
emDloyed to apprase alternative subject-matter models, estlmate their parameters, and 
use them for prediction and policy Durposes. It could very well be the case that 
fractional Gausslan processes will be valuable m the context of subject-matter causal 
modeling of seasonal time series. My ~mpression is tnat Dempster appreciates these 
POlntS and plans to devote more attentlon to them ln future research. 

I am in full agreement with Dempster on the importance of computation m 
Bayes~an analyses and the need for good Bayesian computer programs. In connection 

with our NBER-NSF Semlnar on Bayes~an Inference, we have established a 
Comuutat~on Committee heaaed by Josepn B. Kadane. S. lames Press, a memoer of 

the Computatlon Committee has wrltten a uaper, Press (1980), which provides 
information about a number of computer programs. 

With respect to Brown's paper, he is critical of the usual least squares estimate or 
diffuse-onor posterior mean for the regresslon coefficients shown m (2.3) and (2.4) of 
his Daper on grounds that it does not take account of the between regressions 
covanance matnx, r = [y,,]. This is not a reasonable critique since (2.3.) is the 
postenor mean relative to a particular pnor and the mawmnm likelihood estimate 
based on the normal and other symmetric distributions for the error terms. The fact 
that the symmetry of the problem results m the regresslon coefficlent estlmates not 
depending on the nuisance parameters m P seems to be a blessing and not a fault. Also, 
Hill's cogent discuss~on~ o{ near ~dmissibility or restricted admissibility of "usual" 
estlmates, such as B = V,, P2, ..., Pq) in (2.3), indicates circumstances m which B can be 
justified as an estimate -see Hill's paper. mted by Brown, pp. 566-568- Whether 
these particular c~rcumstances obtaln is the cruual .sue. If tney do not, then it is 
unreasonable to use B: if they do, it is reasonable to use B. As Hill remarw, "Thus 
stable estlmatron may justify the use of Lebesgue measure and the estimator Y Ihere, 
B],  as approximations.. . but it is important to be aware tnat the approximat~on must be 
justified separately in each usage and that it cannot hold for ally." (p.568). Hill talks 
of "approximatlons" because he believes that some prior informatlon is available. On 
the other hand, Jeffreys views Lebesgue measure as a canonical prior for representing 
ignorance regarding the values of the regresslon coeffic~ents and L? the appropriate. not 
approximate, estimate glven the assumed state of ignorance. Of course, if more 
lnformatlon 1s available, as assumed by Hill and by Stan, it can be employed and will 
lead to estlmates of B = V,, P,, ..., PS which are not independent of F, assummg, as 
Brown does, that P has a known value. For example, in the case of exact linear 
restnctlons on the elements of B, ~t is well-known that the maxlmum likelihood 
estimate will usually depend on I-. 

Rather than assess a senous prlor for the elements of B, a chore which Brown 
considers too onerous, he opts for use of the exchangeability assumptions described on 
p. 5. It 1s important to emphasize that these assumptions are hard to defend in many 
practical applications. In the Lindley-Smith approach p i  - N b,E) implies that all q 
regression coefficlent vectors nave the same mean p ,  hardly a satlsfactory assumptlon 
In many economlc applicatlons. Further, the assumption that pi - N (y, &) implies 
that the elements of p have a common mean, agan hardly a tenable assumptlon m 
many appiications. Also, the zero mean assumption m (3.3) leading to (3.4) is tenuous 
in many applicatlons. However, Brown notes that the zero mean assumutlon can be 
relanea and also wntes, "Of course the approprlateness of Dnors depends on the 
application ..." (p.6). Thus Brown emphasizes, aulte reasonably, tnat one must assess 
the appropriareness of prior assumptions and I contend this process is not far different 
from assessmg an approvnate prior distribut~on for the regression coeffic~ents. 

I pointed out some years ago tnat the restrlctlveness of the natural conjugate prior 
for the elements of B, ment~oned in Rothenberg (1963) can be avoided by assessing a 
general normal Drior for the elements of B -see Zellner (1971), pp. 238-240.- If we 
wrttef3' = (P; ,  P;. ..., PO. thennor whichIsuggestedis: 



a diffuse DnOr for the elements of r (or I: in my notation), and a normal Prior for the 
oq elements of p, with  nor mean B and onor covanance matrix C. Using this orlor, I . 
derlved the following approx1rnate Dosterlor mean, b. for P:  

b = (C-' + S-? +X,X)-LIC-lB + (S1 + x,;na1 
(7-1 

= D + [I,, - (C-' + S-' + XrX)-'C-'l &-B) 

A .  A ,  * 
where$' = (p,,  p, ,..., p3 and S = (Y-XB)'(Y-XB)/~. 
It IS Seen that b is a ma:nx-welghted average of the prlor mean vector, B, and of the 

least-squares estimate, p, with thelr resDecttve preasion matrrces as welghts. The 
second line of (2) puts b i n  a"shnnkagen form where the shrlnkage 1s toward the Drlor 
mean vector g.  If it B appro~na te  to  suecialize (2), for examDle by glving Ca Dartlcular 
form or by assuming B = 0, it is possible to obtaln uartlcular "ridge-like" estrmates. 
The critical issue 1s whether these Dartlcnlar s~ec~alizmg assumotlons are reasonable. If 
they are not, it 1s unreasonable to lmoose them. Also, it should be mentioned that (2) is 
the mean of an approximate normal Dostenor distributlon for 0 with covarlance matnx 
( C  + S-'+ X ' a - '  With additional effort, a better approximate postenor 
distributlon for P could be obtamed. 

Two Issues arlse regarding the Drior m (1). First, i r  would be useful to have an 
informative onor for the elements of F. Ando and Kaufman oolnted out that a unor In 
the Inverted Wishart from places strong restnct~ons on the prlor varlances and 
covarlances of the elements of I'. While Lindley and Press have made some orogress on 
the ~ r o b l e m  of formulating an mformatlve ~ r l o r  for r, 1 do  not believe that the 
problem has been satisfactorily solved. As regards procedures for assessing the normal 
pnor for 0 in (l) ,  an extension of the approach (Zellner, 1972) which I formulared for 
assessing normal vriors m umvanate, multiole regresslon models is ~ossible. Applying 
this approach to each regresslon equation yields the unor mean and covanance matrlx 
for each pi, L = 1, 2....,q, namely 8 ,  and C.:, the matrlces on the diagonal of C =  ICjj). 
The extension of the approach Involves the assessment of C, for ! t J ,  that 1s 
covVi, Bj), r # j* .  Brown's paper has stlmulated me to consider this problem which I 
regard as tractable. 

In summary, I urge Brown and others who utilize Drocedures based on 
exchangeability assumDtlons or ridge-regression Drocedures to consider carefully the 
assumDtlons underlying their urocedures. I believe that careful attentlon to  these 
assumotlons will lead to a senous assessment of Dnor distributions which 1s requlred to 
avoid introauc~ng erroneous rnformatlon in analyses 

F u r t h e r ,  rhearrersrnenr Drocrdurccan and shouldincludeenecksonthearsurnednoimal formof the~rrar 

REPLY TO THE DISCUSSION 
P.J. BROWN (Im~enal College, LOnUonj: 

I am most grateful for the two mnvlted discussions presented here and the verbal 
contributions from various Darticlpants at the symposmm. Professor Zellner has a 
number of pomts concerning the first Dart of my Dauer. Let me comment generally on 
these. The motlvatmg force of our work 1s the orior distribution for the regresslon 
coeffiaents m multivariate regresslon. It seems Important to me to  delineate sets of 
archetypal DnOIS, lnvestlgate thelr lm~licatlons, choosing between these priors, In a 
oractlcal sltuatlon by means of my prlor knowledge for the Dartsular situation together 
with accumulated knowledge of the implications of divergence of behaviour should the 
prior be mappropnare. Indeed L.J. Savage (un~ublished book, The Subjective Bans of 
Statistical Practice, 1961, Section 2.15) emphasises the fuzzmess of held or101 oolnlons. 
He states "In practical work, I try to  rake advantage of wharever commonproDertles of 
the acceotable oroDabilities I can discern". Exchangeability 1s a very lmuorrant feature, 
valid in some sltuatlons but not m others as emphasised In the paper. Furthermore, 
results such as the sam~ling theory results of sectlan 4 enable one to rnvestlgate 
theoretically the ~erformance of a class of estimators resulting, relative to the Bayes 
estimator which corresDonds to  vague onor Knowledge. Synthes~s of Bayessan and 
sam~ling theory prooertles is. I think, imoortant. 

I very much appreciate the substantial contribut~on from Professor Harnson. He 
has mdeed hit the nail on the head in questioning the general relevance of least squares 
and his models aeserve careful consideratcon. 1 naturally disagree with the nature of his 
cririasm of 'ridge regresslon'. I think 'ridge regression, provides a range of ~ossibilities 
of wide but of course no means unrversal usefulness. Let me answer some of his polnts 
In detail. 

1 echo Jeff's concern for careful ComDarison, Dartlcularly m the I.C.I. study he 
mentions. I do not wish to criticlse the comoany that gave us both sustenance for a 
number of years; rather the summary nature of the conclusions stated here. Both 'ridge 
regresslon' and even ordinary least squares are not s~mole well defined techniques. 
The~r  application to  a Dracncal uroblem Involves varlous DrOtOCOlS such as, which 
variables to mcluae, whether to  transform them, etc. Additionally 'ridge regresslon' 
demands careful scaling of the exDlanatory var~ables guided by Drlor tnformatlon. 

Also of cruclal im~ortance 1s the estimation of the ridge constant. Many of the 
methods of estlmatlng this constant mentioned in our Daoer were not available when 
the 1.C.I. study was concluded in the early 1970's. In the absence of detailed evidence I 
must therefore be rather sceDtlcal about the study. 

As far as the study m our paDer is concerned one does need to beware of umng the 
PRED cnter~on m isolation. Continulng Jeff's nautlcal metauhor, rt is a bit of a red 
hernng. Its vlrtue of slmoliclt~ of calculation masks the fact that n 1s really the 
orobabilities of wlnnlng each seat that is important. These orobabilities may be 
summed to give overall ~redictlons. Integrations necessary for thelr calculanon are 
performed in electlon night forecastlng for the B.B.C. (Brown and Payne, 1975) but I 
did not go to the trouble of calculating them m this uauer. In theu absence goodness of 
predicrlon is better reflected by such measures as SD which measure the closeness of 
observed and uredicted values. For this small subset of the full 635 constltuenaes in the 



Unlted Kingdom there are many models that do well retrospectively using the criterion 

PRED. In fact a very simple well establishea model gwes the same performance on 
PRED as M,, the most flexible of Jeff's models. This model estimates the percentage 
change for each Party and adds the average of these changes uniformly to all the 
undeclared Constltuenaes. The calculations for n = 15 observations declared are glvem 
m Table 4 in the fine detail necessary to assure oneself about what is happemng in the 
data. 

TABLE 4 
Votes (in thousands) and Percentage Changes of Electorare for each party 

from February to Octooer 1974: 

v0 v0 v0 v0 
EIecLorSte 

CONSTITUENCY ,thousands, C2 C1 AC S2 S1 AS L2 L1 AL NZ NI AN 

KILMNOCK 
GL CEN 

FIFE E. 

DUMFRIES 
G.L. PROVN 
G.L. SHETL 
G.L. SPRING 
G.L. CATH 
EDBRN. 
G.L. GARSC 
AYR 
EDBR PNT 
GL KELVIN 
GL MARYHL 
ANGUS S 

Averages -7 -2 -3 + 5  

Kev: *Denotes 10 cantending candidate for that Daitv 

Notlce that the percentage changes m proportion of the electorate are reasonably 
stable. Conservative votes are tending to go down by about seven percent, Labour by 
about two percent, L~beral by about three percent and Nationalists go UP by around 
five percent. There is some evidence that Glasgow constltuencles (hsred as GL) move 
less towards the Natlonal~sts (only a three Dercent Increase). 

Wlth these esnmated changes four constltuencles are wrongly predicted on PRED. 

GL GOVAN and STIRL EG are wrongly predicted as changlng hands from Labour to 
Natlonalist. Perth and EP is wrongly predicted as remarnlng Conservative and finally 
ROSS and CRM is wrongly predicted as switching from Conservative to Natlonalist. 
Also, aside from re-estimation of average changes as n Increases, slnce all but thelast of 
these four constltuencles fall m the 25 to 45 declaration band they will not cause 
~red ic t~on  problems after n = 45. 

NoUng that the constant term 1s generally left unshrunx (section 5.1) this model is 
actually our ridge model with a very large ridge constant. With a lower value of ridge 
constant allowance 1s made for possible aependence on the Other vanables and indeed 
the varlable for the incumbant party in February 1s typically of some usefulness in 
predict~on. Looking back we might have envisaged that a Labour incumbancy would 
have been more valuable than a Conservative lncumbancy but the effect 1s mlnlmaJ on 
crlterla other than PRED. Overall let me say howwer that In the electlon night 
forecasting context of predicting 635 comhtuencles, prior information from a 
multitude of sources is usea and more var~ables entertarnea than used here: Of some 
importance, for example, are variables which define the perceived tactics sltuatlon m a 
constltuency, for if ones favourite party stands little chance in your constltuency you 
mlght decide to vote agalnst the party you don't like by votlng for the party that you 
dislike less. In general local lnfonnation 1s available from ~sephologlcal experts, 
oplnkon polls and 'post' polls. For details of Electlon night forecasting as implemented 

for the B.B.C. see Brown and Payne (1975). The example in this paper does not clalm 
to reflect the multitude of concerns to be found there. Additional experience m the two 
1979 eiectlons (Genera and Direct Electlon to European Parliament) will be reported 
ShOrtly. 

A valid point to come out for our present paper 1s I thinx that the method of 
estlmatlon of the ridge constant 1s critica and notwithstanding the success of our 
study, when the number of ooservatlon 1s small compared with the number of 
parameters, methods such as HKB and Sclove do mlmlc least squares too closely. They 
are not applying the implied  nor information strongly enough m these cacnmstances. 
In antlclpatlon, m all electlon work for the B.B.C. we have usea a fixed ridge constant 
specifies from prevlous experience. Relteratmg, ridge regresslon 1s not a slngle 
universal tool but requlres careful molding to available prlor mformatlon. 

Our exDerience of electlon forecastlne aoes give us confidence that the concerns of - - 
'robustness' and model adequacy as listed under (i), (ii) and (iii) of Jeff's discussion are 
not compelling. Indeed it seems that here Jeff himself does not fina them compelling 
slnce his models M,, M2, lnvolve the additive assumption of normal homosceaastic 
error ana constancy of parameters over tlme. Multiplicative anaysls of proportions in 
the votmg context is fairly well established, Hawkes (1969) considers various models 
accounting for the transitions between Dartles from one electlon to another. These 
models are typically rather unstable with respect to electlon data and seem not to be 
much used although Miller (1972) has used a verslon of ridge regresslon to aid 
estlmatlon. Model M, is somewhat simpler Ulan those models m that In much the same 
spirit as the ubiquitous 'swng' (average of party i increase ana party j aecrease m the 
share of the total vote (or two party vote) lt concentrates on the i j  transition without 
accounting for the effects of otner parties. 
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Both models M,, M, have the air of prlor distribut~ons constructed retrospectively 
SO as to  perform well on PRED. Both models concentrate on the Drevious winner (party 
0 and provide no linkage between R, for different i .  Thus after fifteen constituencies 
have declared, all of which had been Conservative o r  Labour held, no information is 
available on R,, i denot~ng Liberal or Nationalist. Total reliance is on the pnor. 

If there is a case for a change of model it is that votes be assumed to be Poisson 
(before conditioning on the electorate size) and that the log of the votes be linear ln a 
Set of vanables. The com~utational burden of such a log-linear approach does not seem 
to be very necessary over the typical range of election data as evidenced by even the 
slmple calculations of Table 4. Also Model M, with additive error is to  me a little 
unnatural. Modified to a multiplicative error all the calculations of our present pauer 
could be applied, if so desired, to  changes m logpro~ortron of electorate. Further, if S, 
1s the ratio of October to  February votes for uartyjin constituency k,  the model 

Log S,* = p,, + e, 

where p,, has a linear structure m terms of explanatory variables (which could include r ,  
the previous wlnnlng party) naturally leads to an appealing measure of "log-swmg' 
from partyj to Party 1 aven by 

However, ~t 1s easy to  lose the tnclination to study such modifications when our 
exlstlng prediction methods  erf form as well as evidenced in the recent Direct Elections 
to the European Parliament. 1 hope you did not rmss the B.B.C. programme 'Decision 
for Europe' (June 10th 1979) which presented them. 

A.P. DEMPSTER (Harvard Unrversrty): 
I thank Professors Harr~son and Zellner for thelr wise comments, most of which 1 

takeas friendlvamendments. 
I have, over 25 years, spent much time studpng the vlews of many past and present 

leading thinkers on lnference, feeling close to some such as Fisher and deFinetti and 
more distant from others such as Jeffreys and Savage. I hope one day to develop a 
reasoned ex~osition of my Dosition, Including its almost total debt to others. For now, 
however, I think more is to  be galned by uslng the actuality of exDerlence m applied 
statlstlcs to lnform theones of scientific methods than vice versa. In partsular, the use 
of axloms t o  buttress a largely transparent logical system seems to me less valuable than 
extended testlng of the consequences of the m o m s  m Dractlce. 

Zellner wishes that I would use more econometric theory and causal modelling, 
and I certainly hope to  do  so. I do wonder, however, whether the so-called causal 
models of macro-econometncs have much to do with the real causal factors which 
necessarily operate at a very mlcro level. The ~roblems of inadequate informat~on to 
s~ecify  a realistic causal system are so great that causal lnterpretatlons of feasible 
macroimodels may do more harm than good, if taken at all seriously. 

I agree with Harrlson that seasonal techniques should be documented publicly. 

They also should be defended ratronally, which I think means having thelr Bayes~an 
onglns exposed. A good technique needs to  make a ratlonal assumption about how 
much one hot summer should affect one's ]udgmeuts about the followmg summer. If 
good climatic theones (e.g., about ocean temperatures and currents) are available, they 
should be used, but m the end there will be a residual deoendence on unverifiable prlor 
assumvtlons. Ideally, several different scenarios should be presented so that the nalve 
user can be warned and the so~histlcated user canintroduce his own  nor beliefs. 
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Pivotal inference and the Bayesian controversy 

G.A. BARNARD 

Unrversrrv of Warerloo 

SUMMARY 
The theory of ulvotal inference applies when Darameters are defined by reference to 

thelr effect on abservatkons rather than thelr effect on disrributlons. It is shown that 
pivotal inference embraces bath Bayes~an and freauentlst reasonmg. 

Keywordx INFERENCE: PIVOTAL: ROBUST: BAYES. 

I .  PIVOTAL INFERENCE 

I. Aprvotal model of an Inference sltuatlon arlses typically when we have 
a relatively precise idea of the way m which the parameters are related to the 
observatlons, and a less preclse idea of just how the observatlons are 
distributed. Thus for example, we may have observatlons X. (i= 1.2, .... n) for 
which p and a, respectively, are locatlon and scale parameters. but we may not 
be sure as to the preclse form of thelr distribut~on. Then we know that the 

have a distribut~on which does not involve the parameters, but we may not 
know exactly what this distribut~on is. If we suppose that the X, are nearly 
distributed independently, each In a double exponential distribut~on, we mlght 
suppose that the jolnt denslty ot the p, could be expressed, suffic~ently 
accurately, m the form 

= (1-E)(;). exp -Elp ,  + c(*)-" exp-i E@; - a J 2  (2) 



for some E between 0 and 10-6, and for some vector a with if+omponent a;. 
This would correspond with an idea that, less often than once in a million 
times, the observations were from a 'rogue' normal distributlon: but it will 
become apparent that the role of this small mixture of normality is to be 
viewed rather differently, as indicating perhaps only part of the small 
uncertainty in the form of the distribution.* 

We use A to denote the palr (€,a) whicn serves to specify exactly which 
member of the family (2) applies in a specific case. Although A would 
ordinarily be called a parameter, we call it, mstead, a label, because its logical 

role in the inference 1s different from .that of the palr b,u)). Aud the term 
'nuisance ~arameter ;  which mlgnt be used instead of label, we wish to reserve 
for a somewhat different concept. 

The term 'pivotal' was introduced by Fisher, to denote a quantity such as 
Student's t:  

whicn 1s a functlon of the ObserVatlOnS and of the parameters whose 
distribution does not lnvolve the parameters. We use the term in the same 
sense. 

2. The elements of a pivotal model of an inference sltuatlon are five in 
number: (S,R,p,P,D,). S is the usual sample space, of possible observations 

and R. 1s the usual parameter space, of possible parameter values. p 1s a 
mapping from S X R. to P, the pivotal space. p is called the basrcprvotal. We 
suppose that measures are given on S and on P, and tnat for each 8 in R the 
mvqrse mappingp '(.,8):P - S is 1-1 and measurable. D is a set of probability 
distributlons on P, specified by denslty functions @L. It 1s conveluent, though 
not logically necessary, to assume the distributlons m D to be absolutely 
continuous with respect to each other. 

3. For any specified label h the plvotal model defines a likelihood model 
LA, conslstlng of the usual triplet [S,R.,$AJ of sample space, parameter space, 
and probability function $, 

In accordance with our usage, a function F (X,@ will be pivotal m L, iff its 
distributlon, derlved from does not involve 8. 

i f  there weresuen a thing as a 'fuzzy distribut~on', this would convey tneidea better. 

Now if Ei(x,O) = G (p(x,8)), for some functlon G, then it is evident that 
F will be plvotal in L, for every A.  F will then be called a robmt prvota1.- 
defined as a function of observations and parameters which 1s pivotal in for 
every X. 

4. We now introduce the concept of a separatrng family of distributions. 
The family D is said to be separatrng iff the only robust pivotals are functions 
of the baslc pivotal-- I.e. iff F (X,@ pivotal in L, for every A implies that there 
ex~sts a G such that F (x,O) = G (p(  X ,B)). 

In the pivotal model for which S = R", R. = RI X R+, P = R", and the i'" 
component of p is p 1n (1) above, we use Lebesgue measure, and D 1s the 
family glven by OX In (2) above, the family D 1s separating. The steps in 
provmg this are: 

(i) If D is complete (in the sense of Lehmann) it is separatlng. (I owe this 
remark to Barndorff-Nielsen.) 

(ii) The family of spherical normal densities with arbitrary centre 1s 
complete. 

(iii) If D' is complete, and 4 n arbitrary, then for any 6 > 0, 

is complete. 

We may also note the obv~ous 

(iv) If D is separatlng m a glven plvotal model, and if D'  3 D, then in the 
pivotal model in which D' replaces D, D' is separatmg. All this lmplies that a 
very small element of uncertainty m the form of the distribution of the basic 
plvotal is enough to ensure that the family of distributlons 1s separatmg. 

From now on we assume that the family D 1s separatmg. 

5. The baslc mferentia steps which justify the term 'pivotal inference. are 
of two kinds: (i) Making 1-1 transformatlons which amount to no more than 
renaming the entities involYed; (ii) conditioning steps. These latter make use 
of what I have called 'Modus ponens probabilitatis, (MPP), by analogy with 
Modus ponens of classical logic: 

Modus ponens Modus ponens prnbabilitatis 

We know 'A implies B ' We know* Pr(Bgiven A) = g. 

We know 'A' is true. We know that A is true. 
Therefore 'B' is true. Therefore Pr(B) = g. 

o r  'agree' - see Sec. 10 bellow 



The general procedure of plvotal inference thus consists m transformlug the 
baslc plvotalp, l-l ,  to another plvotal q which splits Into two parts: 

The second part, q,, 1s ancillary, that is, it is constant on the parameter space, 
so that its value 1s known when the observations are known. Then the Original 
plvotal model can be replaced by one for which the basic pivotal 1s q,, 
endowed with the conditional distribution which it has, glven the observed 
value of q,. 

The role of the concept of 'separating family' can now be seen. It 1s to 
guarantee that there 1s an essentially unlque maxrmally rnformatrve ancillary 
(MIA). For any two functions f,g, we say that f is more informative than (mit) 
g iff there exists h such that g =  h(n i.e. g = hof in Bourbaki notation: that is, if 
the value of g can be calculated when the value o f f  is known, but not 
necessarily conversely. If f mit g and g mlt f then f and g convey the same 
lnformatlon and are regarded as equivalent. The relation k i t '  1s a partial 
orderlng on the set of functions of the basic pivotal: and if f (p) and g@) are 
both ancillary, the vector-valued function ({j:)) n also ancillary, and it 'mit' 
each for f and g. It follows that the maximally informative ancillary is unlque 
up to equivalence. 

6. The 'conclusion' of aplvotal inference 1s then .a statement of the 
conditional distribution of the pivotal ql, together with a statement of the 
values of the functions of the observations which enter Into ql. From this 
statement, if desired, a confidence level of, say, 95% can be chosen, and 
corresponding confidence sets for the parameters can be f0nnd;'but such an 
'arbitrary. choice of confidence level (and 'arbitrary, choice of e.g. 'shortest', 
or 'one-sided', for the form of the confidence set) means that lnformation 1s 
lost at this stage. Thus, it 1s suggested that the conclusion should be expressed 
m the form of the conditional distribution of q,, with the necessary functlons 
of the observations, allowlng each reader of the conclusion to form 
confidence sets in accordance with his specific interests. 

7. To illustrate. we consider the case of the example of sectlon 1, where 
the parameters are locatlon and scale. Here we transform to 

=if., - 
(where denotes, as usual, mean and S:, denotes 
variance) 

g, with P' component 

Then smce, from (1) 

- 
p = f j  - p)/a. S, = s,/a (6) 

and 

(p, - p)/s, = (X. -$/S. (7) 

lt easily follows that q2 1s the mammal ancillary. The Jacobian of the 
transformation fromp to q 1s 

if the last two components of q, are regarded as functlons of the first n-2 
components. Thus, thelomt denslty of the transformed bas~c plvotals 1s 

andif the observed values of the ancillaries are c,, c,, ..., C., 

the conditional denslty of ql = 

where K(.) here, as later, denotes a nonnalislng constant whose value 1s 
determined by the condition that the Integral of the whole expression, over the 
whole range of the vartablesp,~,, should come to 1. 

If now Cis a Set m the space of @,S,), such that the integral of (11) over 
the set Cis 0.95, we have 

Pr (@.sp) €Cl q, = c) = 0.95 

and so, by the usual argument, if we assert that m our case @,S,) E C, I.e. that 
for our Observed ?,X,, 



we have a jornt 95% confidence set for &,a), having the usual coverage 
frequency property. 

7. To express the conclusion of our mference in a convenient and easily 
understood form. without destroying its full informativeness and u~queness, 
I propose we should revert tothe practice still common in the physical sciences 
of expressing our information about a parameter in terms of a 'preferred 
value' and a 'standard error', for example: 

which, stnctly lnterpretea, means that our knowledge of p 1s equlvdent to 
k n o w  tnat (X - p)/b IS distributed in a standara normal distribut~on, and 
that the observed value of X is X,. A natural extension of this notatlon to the 
example we have been consider~ng would be: 

to be ~nterpreted as meaning that = (i - p)/a and S, = s,/o have the joint 
distribution $@,S,), ana that the observed value o f ?  is xo and the observed 
value of S, is sx,. The sign '-; ' is mtended to suggest subtraction (thought what 
precedes ' -  ; 1s a number, and what comes after is a random variable). 
~oGever ,  such a mode of expression suffers from the disadvantage that there 
can be a wide vanety of densities $, whose properties may be by no means 
easy to discern from their analytical expression. It seems reasonable, m cases 
such as the example we are considering, to relocate the distribution so that its 
mode is at the origm, and then to make alinear transformation of the pivotds 
if necessary, to secure that in the neighbourhood of the mode the density can 
be treated as approx~mately that of two independent standard normiu 
deviates. This means tnat the second denvatlves of the logarithm of the 
density J., taken at the mode, should be u ~ t y  for the repeated derivatives and 
zero for the cross derivative. If this is done, the 'preferred values' would be 
the maximum likelihood estimates of the parameters, and the matrix 
multiplying the plvotal vector would be the inverse of the information matrix. 
This would lead to a 'justificat~on' of the method of maxlmum likelihood in 
~ t s  wider context (i.e. as it is used in situations other than those to which 
pivotal inference applies), as an approximation, in a certain sense. to an exact 

pivotal ~nference. It is Important, however, to realise that maximum 
likelihood estimates here have a direct lustificat~on, as those polnts m the 
parameter space which will be contamed in any shortest confidence sets, qulte 
separate from the justification for the use of maxlmum likelihood m more 
general cases. 

When, as with the example we have been considenng, one of the 
parameters appears as a factor m the error of estlmate of the other, speclal 
issues arlse Into which we do not enter in this summary account. This is where 
we need the term 'nulsance parameter , reserved in sectlon 1 above. 

8. In the example we have been considenng, we can find a p a r  of 
functions of the baslc plvotal one of which contans the Locataon parameter 
and not the scale parameter, while the other pivotal contans the scale 
parameter and not the location parameter: If 

t = P qms, = (i - F )  +/S., S, = s,/o (14) 

tne Jacobian of the transformat~on is 

l and thelolnt density (condit~onal on c) of t,s, 1s 

We can now take the marglnal denslty for t by lntegratlng out S, (after 
substltutlng u = s,t, S, = u.t, ds, = du/t) 

(~howlng that under wide regularity conditions on q, the tails of the t denslty 
behave like~/t/"). 

The step of integrahng out S, is an rnformatron-losrng step. Even if we are 
really interested only in p,  the use only of the margmal distribut~on of t means 
that any external lnformatlon we may have concerning the value of o and 
which could give mformatlon about the error in p,  becomes unusable. In fact, 
if we knew, for example, that o was distributed with denslty JI(o), we should 
take the Integral of (15) after weighting by n(a). While if we knew that, say, a 
= 2, to a sufficient approximation, we should take the distribut~on of t 
condrtional ons, = s,/2. 

1 



9. The possibility that we have, or may acqulre, lnformatlon which 
enables us to asslgn a denslty to a will be taken Into account m the general 
theory by notlng that if a 1s assumed to have a known (.nor) denslty n(a) then 
a satisfies the definition of a plvotal and should be Included In the baslc 
plvotal, which thus becomes @,a), with denslty 

The maximal ancillary is now larger than before. We can transform from @,a) 
to (d,o,q,,s.), with q, defined as m ( 5 )  above, and 

The new maxlmal ancillary 1s (q,,~,). Making the 1-1 transformation, and 
conditionlng on the observed values c for q, and S, for S, we obtam, for the 
jomt conditional denslty of d and a: 

( a  c , )  = . ) / a 1  ( ( d + s c )  . . . d +  (19) 

With this additional information about a we can improve our confidence 
statements about p by baslng them upon the marginal distribution of dderlved 
from (19) by Integrating out a. Alternatively, if it is a we are Interested in, we 
can integrate out d. and obtain a 'quasl-posterior' density for a which can 
serve to derlve confidence limits for a if required. This 'quasi-postenor' will 
be identical with the 'postenor, for a which would be obtaned from the 
'improper' uniform prior for p, Independent of a. 

,Finally, of course, we may assume a known prior denslty for both u and 
a, so that the baslc plvotal becomes @,$,a). The maxlmal ancillary will then be 
the whole set of sample values, or equivalently i ,  S. and q,, and our 
conditional distrihut~on will be for &,a), glven the sample. It will clearly be 
identical with the posterior distribution derived in accordance with the usual 
Bayesian rules. 

10. The fact that u~votal inference, as formulated here, includes, without 
requirrng the use of the standard form of Bayes, theorem 1s Important from 
the polnt of vlew of the Bayeslan controversy. The present wrlter goes a very 
long way with de Finetti's arguments concerning the way we should react to 
uncertainty as mdividuals: as a follower of Wittgensteln I lay less stress on the 
mental materlal dichotomy than de Finettl seems to do, but my disagreements 
here come at a philosophical level remote from applicat~ons m statistical or 
declslon making practice. What does differenhate me from many of those 

who call themselves Bayeslan is a respect in which I agree with de Finett~ when 
he stresses the distinction between what he calls the Bayes~an standpomt, on 
the one hand, and Bayes~an techniques, on the other. By the latter, which he 
condemns along with other 'ad hockery', he means the formal applications of 
Bayes theorem to a prior distribution chosen, not because it corresponds to 
any mdividual's actual prlor beliefs, but because it has some convenient 
mathematical property, such as 'smoothness' or 'conjugacy' An essential 
part of the true Bayes~an standpolnt IS the careful lnvestigatlon of the prior 
beliefs of the ~ndividual concerned, m the expectatlon that tbese prlor beliefs 
will turn out to be peculiar to the individual in questlon. 

If it 1s accepted that the personalistic Bayes~an standpolnt 1s concerned 
with the coherent development of attitudes in asingle Individual, the questlon 
anses as to what functlon thestatisticran has in relation to his client or clients 
where at least two mdividuals are involved. It seems to me that it could he 
argued, by one who accepts the personalistic mew, that the statistician has two 
functions: (i) he nas experience of types of random behavlour-- such as, for 
example. the likely shapes of measurement error distributions to be found in 
given circumstances-. which enable him to advise his clients about 
distributional shapes, and thereby effectively communlcate additional 
emprrrcal data, (ii) he then should base his reasoning on those probabilities 
which can be taken as agreed by all partles likely to be Involved. Such 
agreement about probabilities may, In a glven case, extend to the 'full 
Bayesian' case, m which (to refer to our example) the basic plvotal is taken as 
(p,p,a); but in another case there may well be room for individuals to differ 
concerning thelr assessment of the prlor distribution for p, m which case the 
agreed probabilities would extend only as far as the jolnt distribution of @,a). 
And in yet anotner case agreement may extend only to the approximate 

specification of the denslty of p. In each case the plvotal inference procedure 
of condition~ng on known quantities having known (agreed) distributions can 
be carrled through and the result stated m the form suggested m section 7 
above, leavlng it to individuals, if necessary, to assess, to within sufficient 
accuracy (which often will not need to be great) their personal prlors with 
which the statement of the statistical inference should be combined. 

To sum up this sectlon, we can say that pivotal inference by-passes the 
Bayesian controversy by making the lnference depend on what 1s agreed 
between ~ndividuals as its basls: how far this goes m the direct~on of a fully 
Bayes~an Inference will depend, in a glven case, on how much agreement there 
IS among those concerned. There remans, of course, disagreement with those 
'ultra-Bayeslans' for whom statistics is a branch of psychiatry, concerned only 
with purely personal coherence, and wno consequently lnslst that there 1s no 
need to ask whether or not there 1s agreement about assigned probabilities: 



and there is also disagreement with the 'ultra emplric~sts', for whom there is 
no such thing as statistical 'inference', only 'inductive behavlour' The rule of 
Modus Ponens Probabilitat~s has as mucn rlght as its older, narrower 
Correlative to be regarded as a 'prlnclple' of 'inference' 

APPENDIX 

I .  We glve here the details of the proof outlined in Sectlon 4. 

(i) Theorem: If D = [q5xl is complete, D is separatmg. 

Proof: Suppose F (x,B)*s a robust plvotal, then the mean value 
of F 

= F @-'(u,8),8) @,(U) du 
does not depend on 8. Hence for any fixed B,cD, 

I .  - .  
D (F @ '(u.0) F @ '(u8o),Bo)I $,(U) du 

vanisnes for allh. Hence, by completeness, 

F @-'(u,B),B) -F  @.'(u,Bo),Bo) 
vanishes for all u. Thus ident~cally 

F (X,O) = F (p-'(u,o),e) = F @-I(U,B,),B~) = G(u). 

(ii) If g(u) ( a ) - " e x p  -%(U-a)'(u-a).du = 0, all u, 

and g(t) is the Four~er transform of g(u), then 

g(t).e"'--'"'Z = 0 , all 1 

so g(1) = 0 all l 

so g(u) = 0 all u. 

(iii) U D' = I$,) and is complete, if X = k] and 

@A = (l-e)$, + 6@* for 056  8 and if lg(u)@,(u) du = 0 

for all X then for all E in (0,fi) and all a, 

S S (1-6) P g(u)40(~) du + E P ~(u)$.(u) du = 0 
SO that 

I , g(u)@,(u) du = 0, for all a 

which, by completeness of ($,l implies g(u) = 0. 

2. ON THE BAYESIAN - ANTIBAYESIAN CONTROVERSY 

1. It would be foolish to lmaglne that in tne course of what must 
necessarily be a short paper one could hope to revlew any more than a few 
aspects of the issues m a debate which has already gone on for upwards of a 
century and a half. But of late the controversy seems to have become sharper, 
with extremists on one side seemlng to say that the Bayeslan model is the only 
one which can be used to represent expenmental loglc, and on the other 
seeming to say that it should never be used. One 1s concerned lest such sharp 
divls~ons should cause us to lose the respect of the community of experimental 

scientists which we have only relatively recently gamed. It seemed worthwhile 
to take the opportunity presented by this conference to test whether we are 
ready to move towards the middle ground. 

2. The central a m  of the theory of statlstlcal inference I take to be the 
modelling of the loglcal structure of experiments with a vlew to assisting in 
thelr interpretatlon and combination for the advancement of knowledge. In 
pursulng this alm it has set up many types of logical model, some of which 
are: 

(i) The Sign~ficance Test Model (ST model). 

Here the elements of the model are the sample space S = [X] of possible 
experimental results, a 'null hypothesis' H, specifying fo(x), the probability of 
xif H, IS true, and a discrepancy functlon D (X) such that large values of D are 
thought of as explicable if some alternative to H, is true. We calculate the P 
value, P = Prob[D (X) 2 D (x,):H,] and if this IS small we are disposed to 
glve serlous considerat~on to the alternatlves to H,. (Here X, 1s the observed 
result). 

The canonical case for this mode of reasomng 1s provided by Dame1 
Bernoulli. Asked to consider why the polnts on the unlt sphere representlog 
the poles of the planetary orbits should lie so close together, and why they do 
not exactly comcide, he began by testlng the slgnificance of the departure 
from a random (uniform) distribut~on on the sphere. Here D (X) was a 
measure of clustering, such as the reciprocal of the radius of the smallest circle 
contalnlng all the points. 

It is of the essence of the situation that Bernoulli did this before SerlOuSlY 
considering alternatlves. And to apply Bayes' Theorem he would have had to 
have given serious considerat~on to these alternatlves. 
20 



(ii) The Bayes Model (B model). 

Here the elements are S as before, Q = [B], the parameter space, f (X,@) 
specifyng the probability of X if B is the true value of the parameter, and 
Pr(O), the prlor distributlou of B. We calculate the conditional distribut~on of 
B, glven X,: 

and the posterior distribution represents our conclusion. 
The Inferential step here conslsts In cond~tionlng on knowing the 

observed value X,, the probability of which 1s completely specified by the 
model. It should be noted* that if, in addition to the given four elements we 
also have a discrepancy measure D, we can calculate a P value as in the ST 
model and if this is small we may be Led to modify our B model. The 
calculatlon of the posterior belongs to what George Box has called 'model 
analysis' and the calculation of a P value belongs to what he has called 'model 
cnticlsm'. 

(iii) The Likelihood Model (L model). 

Here the elements are as ln the B model, except that P r  (B) 1s mlsslng. If 
special interest attaches to a particular O,, and we have a discrepancy measure 
D, associated with this value, then we can agaln calculate a Pvalue. If. on the 
other hand, all values of 0 are to be considered on an equal footing, and there 
are no other logical relevant features in the situation, the inference is given m 
terms of likelihood, the likelihood function being f (xo,O). For any pair of 
values B, B', the ratio f (x,,B)/f (xo,B') measures the relative ~lausibility of B as 
agunst 0'. on the given data. 

A principal disadvantage of the L model is that we cannot, in general, 
derlve the plausibility of a disjunction of hypotheses represented by a range of 
values of 0. This is because, In general, a disjunction of hypotheses does not 
specify the probability function of X, nor does there in general exlst a funct~on 
y = y (X) whose distribution is specified by the disjunction. Sometimes such 
reductions are possible. Thus In the case of a sample from a normal 
distribution with unknown mean p and unknown standard deviation a, the 
disjunction of hypotheses given by p = 60, 0 < a 5 m, for each 6 specifies 
the distribut~on o f t  = XJii/s,. 

Finally, an L model may serve to generate a confidence distribut~on. 

(iv) The Pivotal Model (P model) 

Here the elements are S and Q as before. together with a spaceP = [ul of 
values of a basrcprvotal function p (X,@ = U. The fifth element 1s a family 
F = [a] of densitles on P representing the range of uncertainty we oftefl are III 
concerning the form of the distributlon of the observatlons X. The parameter 
w, lndexlng the members of the family F, is a model adjustment parameter. 
(MA parameter). It 1s required that for each B in 0 the mappingp (.,O):S"-- P i s  
mnvertible, with Inverse p;'(u) = X. For each a the distribution of u specified 
by U ylelds a probability functlon of X, depending on B, glven by 

where J i s  the Jacobian of the invertible transformation u = p (x,B), for each 
B. 

A plvntal model is appropriate typically when we take observatlons to be 
normally distributed, when we usually mean that we thrnk they are 
approxrmately normally distributed. Because of the uncertainty in the form of 
the distribut~on we can give a preclse definition of the parameter 0 only by 
reference to the way in which it affects the observations X rather than by the 
way it enters the distributlon of X. 

From a given plvotal model P, for each w we can derive an L model 
L(P,u), with elements S, Q, fa. In this L model we can define a prvotal, 
following Fisher. as a function of X and 0 whose distribution does not depend 
on B. In the Pmodel we require, for a plvotal, that it should be plvotal in the L 
model sense for every a. To emphasize this we sometimes call such a functlon 
a robust plvotal. It can be shown that, under very weak conditions on the 
family F, for a functlon q (X,@ to be a (robust) plvotal it 1s necessary and 
sufficient that it should be a funct~on of the basic p~votalp (X,@: 

If q 1s constant on Q it 1s called an ancillary, and if it is constant on S it 1s 
called a Bayesian plvotal. If a functlon 4(0) exists such that q (X,@ = q (X,+), 
and such that for each X the mapplng q (X,.) from 4(S) to r(P) n invertible, 
then q 1s said to be a confidence plvotal for m. It can be used to generate a 
confidence distribut~on for $. 

The inference procedure consists in transforming p (x,B) 1-1 to q (x,B) 
where 

a s  ~ o ~ n t e a  out by Box 

is Bayesian 

1s ancillary. 



Then when the observations are known, q,(x) 1s known, and as m Bayes, 
argument we can condition on this known value to obtan the jomt 
distribution of q, and q,. The former will glve a marglnal distribution which 
ylelds the posterior distribution of @,, while the latter will often be a 
confidence plvotal for a functlon q, of B, and the mapplhg from B to (+l,@J 
will be Invertible. 

A noteworthy feature of the plvotal model for inference 1s. that 1s always 
unlque, m that the maxlmal ancillary on which we should condition 1s unlque. 

An example of plvotal inference 1s sketched in the Appendix. 
The scheme of plvotal inference can be extended to cover cases where the 

observatlons conslsts of classifications of Items into categories; but this 
involves considerable complication and loss of some of the des~rable 
properties of the model, which 1s best suited to quantltatlve observatlons. 
discrete or continuous. Over this field it can be seen to cover both the model B 
and the L model. If the baslc pivotal contalns a Bayesian component for all 
the parameters involved, then the maximal ancillary will conslst of all the 
observations X, and the Inference will be the usual Bayeslan postenor: if the 
baSlC plvotal contalns no Bayesian component, and if F cohtarhs only one 
element, then we obtau a likelihood model. In general we obtiun a mlxed 
model. 

It is far from my lntentlon to suggest that the four models listed above 
exhaust the possibilities. For example the 'predictwe sample re-use' models of 
Seymour Ge~sser have not been mentioned. Our selection has been made with 
a vlew to raislng some questlons which I hope those present will see fit to 
answer. 

3. The questlons are these: 
(i) Was Danlel Bernoulli nght or wrong to argue as he did? Am I wrong 

In thinking he could not have used Bayes' Theorem? If so, how 
would he have used the theorem? 

(ii) If it be adnutted that the personal theory of probability would always 
provide complete Bayesian plvotals m the P model, are there not 
Instances where a bevy of Bayesians (in Dawid's useful phrase) mlght 
agree on parts of the basic plvota~ only, so that the Inference could 
not, with agreement, be Carled through to a complete Bayeslan 
conclusion? If so, could not the partial ahalysls be useful in that it 
mlght show that remalhlng differences of opinlon are likely to be 
unimportant? 

(iii) Carrylng this sltuatlon envisaged in (ii) further, could it not happen 
that the bevy could agree only on the consitnents of an L model? If 
so, how should they proceed? 

It should be clear how I would hope these questlons will be answered. If 
they are so, I think ~t would be worth emphasls that out differences amount to 
much less than might be thought. 

APPENDIX 

Pivotal Inference 
Example: S = R", D = R' x R', p = R", p(x.8) has i'Qomponent p ,  = 

(x,-83/O2, F = (+.:@.(U) = II K exp- / U .  l *+ e, 1 5 as- l .  Here K, as 
later, 1s a normalising constant (not all K's are equal!), t 1s a small 
'error. term expressing uncertanty m q. suffic~ent to ensure the 
'separauhg' property -- I.e. that any robust plvotal must be a 
funct~on of p(x.8). 

Here the maxlmal ancillary may be taken as c, with Ph component defined by 

Pi = ~,((t,/<%)+c,, E c: = 0, F C? = n-i. (i= i,2 ,..., n) 

The Jacobian 1s of the form J(c)s,"-' and Ignoring the error term the jolnt 
denslty 1s 

KJ(c)s~"-' exp -S,- E 1 ((tJq5) +ce 1 

and in terms of the observations and parameters the tqansformed plvotals are 

exhibiting the fact that the c. are ancillary. 
For the complete inference we condition on the observed c= c,, ODtalnlng 

the jolnt denslty 

KS;-' exp -sps C I (t/Jn) + c,,\ " 

from which jolnt confidence sets can be Obtamed. But if we are Interested only 
m B,, and ignore the possibility of further ~nformatlon about O,, then we can 
Integrate out S, and obtarn the margmal denslty of t, as 

and we may note that m the case of normality, with a=2, the side conditions 
on the c. make this denslty Independent of C*,, and in fact equal to Student's t 
denslty on n-l degrees of freedom. The fact that the condition i aenslty m this 



case does not lnvolve the c:,  corresponds to the fact that when the 
observations are normally distributedi ands, are jo~ntly sufficient for 8, and 

8,. 
If we find a set T such that the denslty (4) Integrated over T is equal to 

0.95. then if i, and sXo are the Observed sample mean and standard deviation: 
the set (8,: t, E T )  is a 95% confidence set for 8,. The smallest such set will be 
obtaned if T conslst of all points t, for which the density (4) exceeds some 
suitably chosen constant. 

Box and Tiao have discussed this model from the Bayes~an polnt of vlew, 
using a 'non-rnformative pnor' for 8, and 8%. For given a, the posterior 
distribution they arrive at 1s the same as the confidence distribution derlved 
from (4). That this is not accidental can be seen if we change our plvotal 
model so that P becomes R"*' X R', and define the first n components of p as 
before, but addp,,, = B,, p,, = 8,, and regard the $.(U) as glvlng the denslty 
of p,, ...,p ., glven andp.,,, and giv~ng to these last two components the 
distribution corresponding to the prlor used by Box and Tiao. In so far as 
strlct Bayes~ans sometimes object to these lmproper priors, it mlght be said 
that the Pivotal analysls glven above is more Bayes~an than the Bayesian 
treatment!. 

Box and Tiao also asslgn a prior distribut~on to a, on the basis of external 
information to the effect that the observations are nearly normally 
distributed, though they are careful to examlne whether, over the plausible 
range of the MA parameter* a, the value of makes any drastic difference. This 
IS, of course. a perfectly reasonable way of dealing with an  MA parameter, 
provided the ~nferences are su~tably qualified. As a matter of fact, for the 
Darw~n data examlned by Box and Tiao, it appears more probable, from a 
reading of Darwin's own detailed account of how he obtained his data, that 
two of his observatlons have been grven the wrong slgn, and that the corrected 
observatlons are quite closely normal. If, of course. informat~on was available 
providing an  observational bans for a prlor for either or both of 0, and 8, the 
plvotal analysis could be carrled through on this basls. 
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DISCUSSION 
A.P. DAWID (The City Unrvers~ty, London): 

I have learned to be wary of those who clam that they would like to reconcile the 
varlous opposmg mews on statistrcal mference. In my exper~ence, the invariable 
consequence is, rather, a polansatlon of attitudes and agreat deal of fruitless apoulexy, 
and Professor Barnard's paper has succeeded in bnnglng such a reaction. If there 1s any 
common attitude that all statlstlclans myht take to Bernoulli's reasoumg, it should be 
that it does not fall within the ambit of any of the standard Datterns of inference. For 
example, use of the P-value In the ST model Dresupposes that the measure of 
discrepancy is chosen before looking at the data. But if it had happened, say, that the 
poles of the ulanetary orbits lay approximately m one plane, rather than belng almost 
comcident, Bernoulli would surely have used a different discrepancy measure, and it 
seems ~mpossible to correct for this selection effect. This. to me, discredits the ST 
lnterpretatlon of Bernoulli's argument. I do not believe that Bernoulli's reasomng was 
unsound -1t has obvious common-sense appeal- but it 1s a weakness of all modern 
statlstlcal orthodoxies that they cannot really justify such reasonmg. 

I a0n.t think ~t matters much whether or not we can brlng about close agreement 
between urouonents of different baslc v~ewpoints. What 1s rmuortant, I believe, e that 
we should be willing to learn from the lnslghts of our colleagues (both statistical and 
substantive) of all comulexlons, and not interpret whatever vlew we hold so narrowly 
that we dismiss those insights out of hand. I am happy that this attitude of glve-and- 
take seems to be becomlng more common In the statlstlcal communlty. One area m 
which I believe it has been fruitful is tnat of imuroved estrmatlon 1n linear models, 
following Stein's discovery of the inadnnssibility of the usual estimator: Hoer1 and 
Kennard (1970), Lindley and Smith (1972), Efron and Morr~s (1973). More generally, I 
think that Bayes~an ideas will prove extremely valuable to sampling Uleory skatlstlclans 
when they come to consider more carefully the modelling process: for example, a 
Bayeslan approach to finlte populaflon sampling can be usea to justify a 
superpouulatlon model (Ericson, 1969). ,This, to some degree, answers Barnard's 
questions (ii) and (iii), slnce such a model would represent the agreed component for a 
bevy of Bayes~ans wno all shared the vlew tnat the elements of the Douulatlon were 
exchangeable. 

M.H. DEGROOT (Cornegre-Mellon Unrversrty): 

In the story about Daniel Bernoulli we have an example of the senous difficulty of 
tryhng to make ~nferences about some part5cular hypotheses from some data when the 
hypotheses themselves have been suggested by the data. The null hypothesls of a 
random distribution on the sphere is tested only after it is noted that the poles of the 
planetary orbits seem to he close together. A discrepancy funchon 1s chosen after the 
data have been observed, and then evaluated at these same data points. Under these 
conditions how are we to interpret the calculated P values? 

Every set of data exhibits some peculiarities. It would be very surprising if we 
could not look over some data and then set up a hypothesls Ha and a discrepancy 



functlon D (X)  that would yleld a very small P value based on the same data. But does 
that mean that H, has been d~scredited? To some extent, perhaps, but not nearly as 
much as if H, and D ( X )  had been selected before the data had been observed. How 
much must we discount the observed sgnificance because of this double use of the 
data? 

The Bayes~an approach suffers from the same dangers. We open the newsuaper m 
the mornlng and read some data on a topic we had not previously thought about. In 
order to process the data, we try to thint about what our prior dlstrihutlon would have 
been before we saw the data so we can calculate our Dostenor distribution. But we are 
too late. Who can say what our prlor distributlon would have been before we saw the 
data. We lost our vlrglnlty when we read the paper. 

J.M. DICKEY (Unrversrly College of Wolcs): 

I have three points to make on this thoughtful paper by Professor Barnard. 

1. The slgnificance test seems to be a more urmitive method than the Bayes factor. 
Thinking is not free, and thinking about alternatives to the hypothesls under test is 
often more difficult than thinking up a discrepancy measure, or test statistic, to use. 
There often seems to be an unaenylug relatlon between the discrevancy measure and 
lnterestlng alternative hypotheses, even when it cannot easily be traced. 

2. The arguments I have heard made agamst slgnificance tests seem to be based 
either on the mlsuse of tests or on grounds of ideology. ("Whatever is not overtly 
Bayes~an is useless"). 

In practice, there seem to be two kinds of hypotheses tested: (a) null hypotheses 
(no-effect models); and (b) working models subject to diagnosbc checks. Samvle eze 
considerat~ons can play havoc with tail-area tests m the context of (b); Less so in (a). A 
small tail area should not be relied on as an excuse to consider alternatives to a null 
hypothesls. But if the tail area 1s nof small, one is well advlsed not to Dother to build up 
elaborate theories to explan an apparent effect, for lt could very well have been an 
accident under the null model. (PracticaI cases where this latter use appear 
unreasonable tend to Involve a poor cholce of test, for examvle, one in which pnor 
informat~ou on the variance is ignored). 

This limited use for slgnificance tests m context (a) is justified by the inequality, 

where B (H) is the Bayes factor m favour of the null hypothesls H based on the test 
statistic f, and Tis the tail event [t> 11. See Dickey (1977) and references cltea theran, 
and also Good (1950, footnote D. 94). Note that the Bayes factor 1s approxrmately the 
same as the ~osterior urobability for H when it is small and tne pr~or  urobahillty 1s 
moderate, 

3. It n not generally true that the Bayes factor 1s a monotonlc funct~on of the tail 
area. In the case of a polut hypothesls, H: p = p, versus H' . p  t pax wnte the Bayes 
factor m terms of the likelihood funct~on Q ) ,  

Suppose, as is comrpouly the case, that the tail area decreases to zero asthe maxlmum 
likelihood estlmate p goes to Infinity. If the likelihood has a location form, 

then it is qulte clear that the limiting behavlour of the Bayes factor depends ernclally on 
the reiatlve tail behaviours o f f  and n OllE). For example, if the prior denslty IS 

Supported on a bouhded set and the likelihood has a tail like a Student-f density, then 
the Bayes factor will go to  unity (no widence) lnstead of zero. Data $ very far away, 
then, will not distinguish between H a n d H '  (Dickey, 1977). (It mght be said to indicate 
tnat neither model is reasonable). 

I.J. GOOD (VirgrnroPolitecnnrc andStale Universily): 

I would like to answer Professor Barnard's questlon concerning Daniel Bernoulli's 
use of a tail-area probability in an astronomcal context. But I have already given a 
detailed discussion of tail-area probabilities from a Bayeslan or rather "Dooglan" 
point of wew m Good (1950, pp. 93-94: and 1976a, pp. 162.165). I would be grateful if 
people interested in this toplc would read those few pages. Perhavs the Editor would 
regard this contribut~on as too long if I included covles of those pages here. Some slight 
impression of tne nature of those Dages may be gleaned from the followlng footnote 
from gage 94 of Good (1950): 

"There are two maepenaent reason wnv the facror m favour of Hexceeos P (xo2). 
The first is tnat to prerena tnat the result isx 2 X, wnenit is really x = x,~s unfair 
to H. The second i s  that P (X 2 X,IHI < I, so tnat the fact01 from the evldenee 
ICx 2 xi' IS 

After the formal meetlng, Professor Barnara drew my attention to Boole (1854, 
pp.365-368). By usmg modem term~nology Boole's argument can be condensed into 
the followlng few lines: 

The final odds of anull hypothesls areequal to thelnitial odds tunes the Bayes 
factor, Out we do not usuallv have pnysvcal knowledge of the ~nitial odds nor of 

the ~rooability of the ooservea event glven the non-null hypotnexs. 

Althougn Book does not (here) mention Bayes, he is in effect saying that Bayes's 
theorem cannot be used when the approurlate ~ r i o r  urooahilities are unknown and 
Boole could therefore DC considered to have somewhat antlclpated von Mises (1942). 
They both ignore the uossibility of uslng partially ordered subjectiveprobabilities. 



This oossibility is not ignored m the 1950 and 1976 references that I have just 
mentioned. Those references explain why it makes sense to use tail-area orobabilities m 
many circumstances: they often have a loose relationship to approxlmate Bayes factors. 
This relat~onship forms a part of the Bayes/non-Bayes comprormse that I advocate and 
which Professor Barnard should welcome. 

It is worth emuhasmng that the Bayexan or Dooaan explanation of the use of 
tail-area  roba abilities shows very clearly how the sample size is relevant: The larger the 
sample the more the subjectwe distribution of the statlstlc, gwen that the null 
hypothesis is false, moves away from the distribution given that is the true. Hence a 
smaller tail-area urobability e requued to undermlne the null hypothesis. For example, 
if m Barnard's Bernoulli example there had been a million ulanets, a tail-area 
urobability of say 1/1000 would have been unconvlnclng for refuting the null 
hypothesls (that the normals to the planetary orbits were flat-randomlydistributed in 
all directions). 

When selecting a significance test criterion we have at least a vague idea of the 
alternatives to the null hypothesis, and the cntenon can be selected as one giving rise to 
a large expected welght of evidence for distinguishing the non-null hypothes~s from the 
null hypothesis. This welght of evidence (logarithm of the Baves factor) is based on the . . 
rest cntenon, which does not usually exhaust all the informatlon from the sample. 

There are also approxlmate relationshius between Bayes factors based on all the 
data and tail-area urobabilities based on sensible statistics. For examule, see Good 
(1967,1976b), Good and Crook (1974) and Crook and Good (1980). 

B.M. HlLL(Unrversrty of Michigan): 

Professor Barnard inquires as to the scientific value of Daniel Bernoulli's 
slgnificance test for the hypothesis of uniformltv of the planetary orbits on the celestial 
sphere. Here we are not considering the varlous ways in which s~gnificance tests are 
routinely mlsapplied nowadays by even supposedly well-traned statlstiaans, but rather 
the slenificance test in the hands of a master. Althoueh I must be hesitant to critize a 
Daniel Bernoulli for anything whatsoever, I would still like to questlon the value of his 
tests. The only comprehensible uurpose of a significance test without specified 
alternatives 1s the purpose of deciding when there is a need to search for new and better 
models. (In Bernoulli's problem there is m fact a natural alternative. namely coulaner 
orbits. but Professor Barnard wishes us to lenore this). A ovalue can be used for such a - 
purpose, but so can many other quantities. for example, the surface area of the smallest 
region of a given shape contauung the pomts, as a percentage of the total surface area. 
Apart from cases where thep  value is an approximation to a posterior probability thep  
value has no natural interpretation, and so the question "how small 1s small" for such a 
surface area corresuonds precisely to the quesuon "how small is small" for a p  value. 
Professor Barnard, of course, mlght not use conventional levels of s~gnificance such as 
.05, .01, but in this case he must tell us how to allow for sample size and cholce of the 
cntical reglon afterseerng the data in our interpretailon of the evidence against the null 
hypothesis. SO I ask what does a p  viuue offer over and above simpler and more direct 
quantitative measures as a guide m the search for better models? Professor Barnard 

suggests (pnvate conversation) that it allows one to comuare different problems on a 
common scale. However, it seems preferable to me to choose whatever feature strikes 
one's eye m a uartlcnlar problem. I see no reason to comuare different problems on a 
common scale. Perhaps Professor Barnard could make clear the uurpose of such a 
cornpanson. Note that with the approach I am suggesting there would be less likelihood 
of ascribing sratatlcal significance when there is no practval wgnificance, slnce it rests 
uuon a more direct perception of the striking features of the data. Often Berks0n.s 
~nterocular traumatic test will suffice. 

1.B: KADANE (Cmegre-Mellon Universrty): 

Professor Barnard rightly calls to our attention the quest~on of the reuutation of 
statlstlcs m experimental disc~ulines. However 1 disagree with his diagnosis of the 
uroblem: he uroposes that sharp divisions among us may lose us resoect, while I believe 
that our reputation lies in the quality of statlstlcs we uropose. 

Significance testing is a critical uomt In the uhilosophical discussions surrounding 
statlstlcs. The baslc questlon is not so much whether Daniel Bernoulli's use of it was 
felicitous, but whether we are to endorse present dav statistical practlce which uuts 
great weight on such tests. Several experiences have led me to conclude that s~gnificance 
resting is much less generally useful than its urouonents vroclaim. Bnefly, some of 
those experiences are: 

(1) (testing a new theory). A distinguished colleague had a new theory (of city 
sizes) he wished to uublish in a statistlcs Journal. The journal insisted on a s~gnificance 
test, so he found the least uowerful test so that his theory would not be rejected, by the 
test and by the Journal. But he never thought that his theory held exoctly. 

(2) (The catastrouhy of too much data). In a soclologlcal study of the frequency of 
contributions to group discussions, there was a theory Kadane, Lewls and Ramage 
(1969), wanted to compare to the data. After observing significance at less than 10~6 ,  we 
found ultimately that Plotting the data was much more helpful. This was because we 
had about 104 observatlons. 

(3) (The catastrouhy of too little data). A governmental wished to know whether a 
machine extensively tested in the laboratory worked as well in the field. A significance 
test revealed "no significant difference", although further analysis showed it was 
working 75% as well, on the basis of 5 observatlons costlng I million dollars each. 

In each of these cases enhancing the model and estimating a parameter is much 
more revealing, although often graphical techlllques suffice. There may be an 
extremely limlted role for significance tests, in my view, when the following pertain: (i) 
the null hypothesis is honestly believed by some partles and (ii) the alternatives are 
expenslve to figure out and suecify unor diStribut~ons for. In such cases a significance 
test may be understood as a (weak) approximatlon to a proper Bayesian analysis. 

But in my statistical. uractice, (i) is almost never the case (and (ii) is almost always 
true!). The only exception for me in recent years is an experiment Dlanned with an 
astrologer who clamed to be able to distinguish drug offenders from others on the 
oasis of birth dates. Here I put some positive probability on the hypothesls of identsal 
frequency of drug offences. In general, however, the null hypothems has zero prlor 



~robability, and hence zero Dostenor probability whatever the data. Attempts to rescue 
even Bayesian versions of hypothesis testlng (Dickey (1976) have lead to thelr 
abandonment (Kaaane and Dickey (1980)). 

On Professor Barnard's word that my cnteria (i) and (ii) are met m the case of. 
Daniel Bernoulli's application, I do no object to significance testlng in this case. But as 
a genera matter, I believe that slgnificance testing threatens the respectability of 
statlstlcs more than any other slngle factor. 

T. LEONARD (Unrversrty of Warwrck): 
Professor Barnard has stimulated a genera discusslon on significance testmg on 

the basis of a practrca example with only five observations. 'Could I slmply remark that 
for larger sample sues the ~rob lem of goodness of fit should no longer be 
controvernal? It is possible to show that we would compare the chisquared statlst with 
the product of the degrees of freedom and the log of the sample slze. This approximates 

the Bayes solution under a very wide range of pnor assumptions, and essentially fixes 
the slgnificance level for any partlcular sample slze. For very large sample sizes n 
confirms that the standard test 1s too much ready to reject the null hypothes~s. 

D.V. L.INDLEY (Unrversity College London): 
What ought Daniel Bernoulli to have done? Use a Fisher-von Mises distribution on 

the sphere and looK at the ~osterior distributlon of the spread, particularly in relation 
to the value of the spread corrsponding to a uniform distributlon. (This is effect~vely 
what Jaynes described modern physicists as domg, in his discusslon of Zellner's and 
Bernaroo's papers). The difficulty with a test of a hypothesis using a tail-area, 
slgnificance level is that there is always something that 1s sinificant. The introduction of 
a discrepancy function tacitly Introduces the notion of an alternative and hence of the 
Bayes approach. 

A. ZELLNER (Unlversrty of Chicago): 
In this Interesting contribution, it 1s indicated that in the STmoael approach, a 

discrepancy function D(x) is introduced and no formally stated alternative hypothesis is 
used. However different cholces of the discrepancy funct~on can lead to different 
results. Could it be that cholce of a particular discrepancy function implicitly implies an 
aternatwe hypothesis (H,,) which the investigator has m m~nd?. If so, why not 
formulate a posterlor odds ratlo for Ha and the alternatlve hypothesis, HA? To oe 
specific, if for a norma mean problem, H, is the hypothesls that the mean 1s zero, 
p = 0, one might use as a discrepancy functlon f2 = np/s2 and compute the P-value 
assoclated with t2, i.e., P r  ( f Z  2 filH,] where ti 1s the observed value of fZ .  The 
problem here lies in the interpretation of the P-value. It 1s not equal to the posterior 
 roba ability that the mean is zero, as is well-known. Jeffrey's analysls of H,:& = 0 vs. 
HA.@ it 0 leads to the followrng posterlor odds ratio, KO* K, 4 m/2/ (1 +P /v ) ' " -U"  

where P = n-l, with n the sample slze, and involves the 'discrepancy function" t2. It is 
apparent that K, is a monotonicaly Increasing function of the P-vaue and thus. in my 
opinion, glves a ratlonalizatlon for theuse of P-values m this ana other problems. 

This example illustrates how use of a particular discrepancy functlon can be 
rationalized in Bayesian terms. In Bernoulli's problem, with the null hypothesls of a 
ranaonl (uniform) distribution on the unlt sphere, it wouldbe interestmg to find the 
alternatlve hypothesls (or hypotheses) which leads to a posterior odds ratio that is a 
monotonlc functlon of the particular discrepancy funcuon for the Bernoulli problem 
ment~ooed by Barnara and to show how use of various alternatlve hypotheses affects 
the form of the discrepancy function. That Bernoulli employed a partlcular 
discrepancy function, apparently without justifiyrng its use should not be mterpreted as 
good statlstlstlcrd practice in general. 

In addition, it 1s the case that Bayes' factor (BF), the rat10 of the postenor odds 
ratio to the pnor odds ratlo, can be interpreted as an "inverse" discrepancy functlon. 
For large sample s l y  In many problems, -2PnBF = X: - 4 thu or BF = "*la expl-x2/21, 
where -2 nLR = xo j  with LR = the likelihood ratlo, 4 = the number of restnc&ons 
under the null hypothesis, and v = degrees of freedom. For this large sample 
approxrmatlon, xZe can be mterpreted as a discrepancy function m Barnard's sense but 
S not as satisfactory as BF which has a direct interpretat~on and involves a dependence 
on andthe quantities q and U. 

REPLY TO THE DISCUSSION 

G.A. BARNARD (Universrfy of Waferloo): 
Since discussion concentrated on the first part of my paper 1 will confine my reply 

to this. I hope the issues rased m the second part may be discussed more fully at 
another Conference as pleasant and stimulating as this one. 

I agree entirely with Joe Kadane and with Morns DeGroot. In their day to day 
Work Statisticians are amost always concerned with estimation rather than with 
hypothesis testmg. But the importance of an Issue cannot De judged entirely on the 
bans of its frequency of occurrence. The need for slgnificance tests, such as Daniel 
Bernouilli's anses at the growrng pomts of sclence, when a new departure, involving 
concepts not yet thought of, is reqnlred. Such occasions are rare, out their Importance 
cannot be over-estimated. And before undertaking the arduous task of thinking UD new 
concepts we would normally inslst on Pvaues  much lower than the fossilised numbers 
0.05, 0.01, or even 0.001; this, at least partly, because we need to make allowance for 
selection, though the slze of this allowance cannot be determined with any precision. 

All the other discussants seem to assume that it 1s just as easy to compute 
Pr(E1 not-H) as it 1s to compute Pr(E1H). Only if this is so can we convert the measure 
of relatrve plausibility glven by Bayes Theorem: 

mto an aDsolute measure ay setting H' = not-H. But this is, almost Dy definition, 
impossible when not-Hinvolves conceots not yet thought of. 

To glve just one illustration, m the paper to which Goodrefers m his contribut~on, 
he assumes that it 1s known that the ODservatlons are mdependent; but such an 
assumption would often be false in real life. I would suggest that the many and strange 



forms of dependence that could aI1se would defeat the possibility of computlng 

Pr(EJnot-H) in this case. 

I n  practlce we ussually can think of no t -H  as consistlng of the disjunction of a 
mlxture of well specified alternat~ves (such as Lindley's suggestion, in :Daniel 
Bernoulli's case) with an  ill-specified 'something else'. For  the well specified. 
aiternatives we should quote the  likelihood ratlo versus H, while for the  'something 
else' we can have not alternatlve to the P-value. I look forward to  the day when In 

sltuatlons such as those we are considering we will specify, not only H a n d  P, but also a 
s~eci f ic  (and reasonable) H'. with its assoclated. the likelihood ratlo. But we should 
not oretend to the omnlsclence lnvolved in assuming that ( H o r  H') exhaust the range 
of possibilities. 
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ra~sed here. In the story about rr (Sect~ou 2) either the non-Bayes~an will suffer 
the same discomfort as the Bayes~an or he will say it is not a statistical issue 
which shifts the problem to others. The Inadequate treatment of cost of thin- 
king (Sectlon 3) appears to be common to all current statistlcal theorles. The. 
tension between the effic~ent use of standard statistlcal models and tailor- 
made procedures 1s common (Section 4). 

Randomuation (Section 5) in sampling and assignment of treatments 1s a 
.. very appealing process but it 1s seldom easy to show the need for it. Current 

statistical developments ralse new toplcs and some discuss~on of imputation 
(Sect~on 6) is appropriate. 

Confidence intervals and maxlmum likelihood estimation (Section 7) ha- 
ve recelved an extensive nou-Bayeslan development. In applicat~on they often 
are glven a Bayes~an mterpretatlon. This raises ethical and educational issues. 
In Section 8 a few annoymg details are mentioned. 

Three closely related topics not covered m this essay are data analysls, 
model making, and concept formation -see Suppes (1966)- The lack of a 
mechanlsm of discovery m the Bayesian framework is cruclal in the use of sta- 
tistlcs In scientific research. In this conference Box has argued that the Baye- 
Slan framework must be inadequate m this respect. Also, the conference pa- 
pers of Leonard and Dempster are much concerned with this pomt. 

The author does not claim any new results. The references cover the dis- 
cusslon. Perhaps hringlng these toplcs together with a minlmum of technical 
distract~on will be helpful. The presentation emphasizes the problems arlslng 
from the noninclusion of the cost of rationality m the Bayes~an framework. 
Even if it should be argued that these costs are impliclt in theory, it 1s clear 
they are not expliclt in use. 

2 SOME THOUGHTS ABOUT r 

At no cost you can wln a bottle of sherry if you correctly state the 29th di- 
glt of the declmal expansion of n; an Incorrect statement ylelds nothing. In 
this sltuatlon I think I would plck my favourite diglt. 7, and expect my chance 
IS .I to wm the sherry. A moments thought tells me I am a bad Bayes~an. 

What I should do 1s think about the problem and compute the 29th dig~t. 
Since the Bayeslan 1s ratlonal he should be able to perform this task. Even if 
ratlonal means something more restricted than perfect reasonmg, it still must 
be noted that the usual Bayes~an model does not Include the cost of compu- 
tlng. So agam m this sltuatlon the correct Bayes~an actlon 1s to find the correct 
answer. 

Some reading this story mlght know the requlred dig~t; ~t has often been 
computed and it 1s available m standard sources. In some s~tuatlons it mlght 
be worthwhile to go to the library and look up the dig~t. If one bottle of sherry 

IS replaced by a lorry load of sherry, I would come up with the correct dig~t. 
Apparently thought 1s very much like data. One has lncentlve to do more 

thinking (more data collect~ng) when the stakes are mcreased. Pure thought, 
stored data, and data not yet acqulred are costly ways of removlng uncer- 
talnty. 

I.J. Good (1950, p. 49; 1968, pp. 125 and 129: 1976, pp. 135-136: 1977) 
has used the terms Type I1 rat~onality and dynamlc probability m discussmg 
the toplcs of this sectlon and of Sectlon 3. Also. de Finett~ (1975, pp. 278,291) 
has discused 71 In this context. 

3. THE COST OF THINKING, ANALYZING OR COMPUTING 

Recently, Watson and Brown (1978) have discussed the problem of how 
much value there 1s in dolng an analysis -m the operations research context- 
before the analysis 1s performed. Thelr situation must include the analysis re- 
qulred to deslgn a statistical mvestigation. Watson and Brown's references 
summarize the related work, including then efforts to find the value of analy- 
s ~ s  in several case studies. 

The costs of analysis do not appear explicitly in statlsttcal theorles. In lar- 
ge scale statistical activities, such as a national census, there will be explic~t 
budgeting for items such as planning, data handling, and publication. This 
process appears to be empirical; theory to help choose optimal amounts of 
these items 1s not used. Watson and Brown sugges't that emplrlcal evidence 
would be a good way to solve their operations research uroblem. It 1s not clear 
how well this process of learning can work because of the great variety of 
complex sltuatlons that one needs Information about. In the public sector, it 
often appears that there is inadequate budget for anillys~s after data are collec- 
ted. The problem mlght be that it 1s relatively difficult to obtain appropriate 
budgets for soft items like analysls m contrast to hard items, like data. 

Econom~c theory perhaps could make a formal background for the optl- 
mal cholce of amounts of thought and analysis. Those commodit~es are 
known to be valuable but they are hard to value. Most statistical consulting 
does not have the market mechanism to help establish value. 

We will come back to this toplc when we discuss standard models, rando- 
mlzation and imputations. To avoid givlng the impression that the discuss~on 
does not relate to the usual activities of statlsticlans consider the cost of the 
followmg tasks: 

(a) Limiting the scope of analysls, determlnlng which vanables need 
analysls. 

@) Specify~ng jomt distribution of all vanables, Items to be measured 
and states of nature. 

(c) Evaluatmng losses associated with decislons and states of nature. 



(d) Searching for the best kinds and amounts of data to collect. 
(e) Determining how much to spend on analysls and communication of 

results. 
If these aspects of the problem are handled properly their costs might b$ 

comparable to the usually considered costs, such as sampling costs and terml- 
nal losses. It is my lmpresslon that we know very l~ttle about the correct expen- 
ditures on Items (a)-(e). At thls polnt statlstlcal theory does not automatically 
help us to choose good levels for these activities. Subject specialists must be 
able to help with some of the cholces such as limiting scope (a). Careful work 
on (a)-(e), even if the resultmng sample slzes must be reduced, should provide a 
powerful mechanism to avoid superficial data collect~on and glib analysls. 
The difficulty 1s that we already think we know how to collect and analyse da- 
ta and it is still challenging, if not frightenmg, to think about (a)-(e). One is 
put off from theorizing on these top~cs because of the nuw~eldy anticipated 

resuns. One fears an lnfiulte regress. 
Moore (1978, p. 72) considers some of the above costs are trivial but he 

incorrectly related them to total costs in contrast to costs due to uucertamty. 
(He does discuss many problems in applying Bayesian declslon theory). 

4 STANDARD MODELS 
"Assume ... are iid ..." 1s an expression seen so often that one is tempted 

not to check its appropriateness. Although this set of assumphons is used by 
pushers of nonparametrlc statlstlcs they are proud of their lack of use of as- 
sumptions. Some reflection could lead to different results: 

I. The care for experimental detail to assure iid can often yield stronger 
assumptions such as normality. 

2. In fact iid might be replaced by a weaker exchangeability assumption. 
Two standard models of great Importance are the packaged programs 

and the Raiffa-Scblaifer conjugate priors. These examples well illustrate the 
advantages of standardization: A great varlety of problems can be handled at 
low costs. A convenient mode of communication 1s developed. Many people 
can use advanced technology. The problem is to make sure that these advanta- 
ges greatly exceed the disadvantages: One can force a s~tuation Into the wrong 
model. One can be lazy and not take full advantage of the available optlons. 
One can unwlsely restrlct the kinds of data to be obtalned just so a standard 
model can he used. 

The ideal is to have the standard models available and that their use 1s su- 
pervised by skilled individuals. The net results are to increase resources for re- 
search and to make sure that unusual sltuatlons recelve approprlate attention. 

5 .  RANDOMIZATION 
A Bayesian is about to sample a finite populatlon. Should he take a ran- 

domsample? If a random sample costs no more than a grab then why not ran- 
dom sample? I f  the Bayeslan acted as if the populatlon elements were exchan- 
geable then random sampling has no disadvantage. (For a discussion see Eric- 
son 119691.) In this s~tuation there is an advantage to the Bayes~an in taking 
the random sample, even if he is unhesitating about the exchangeability. In 
part~cu~ar, random sampling gives others confidence that the work has been 
done properly. 

This confidence mlght be at two levels. The use of random sampling 1s an 
indicator that the whole lob has been done with profess~onal care. For some. 
there will he increased acceptability of the results because they feel random 
sampling 1s a necessary part of a valid procedure. How much the Bayesian 
should pay to buy confidence of others isnot clear. 

When would the Bayes~an have an aversion to random sampling in the 
above situation? This would happen if be did not really accept the exchange- 
ability assumption; he mlght really prefer some form of stratified sample. In 
fact, the acceptability of random samplii~g can be used as a form of self exa- 
minatlon of the Bayeslan to tell if he strongly believes in exchangeability. 

The Bayesian might use randomizatlon as a technique to avoid expenslve 
activities such as thinking. Thus m the current example Let us assume his inte- 
rest centres on the total income of the population. He might well have many 
var~ables that he could use for stratification, such as age, sex, address, educa- 
tion, profession, number of children, etc., etc. Regardless of the costs of the 
various types of samples the Bayesian may conclude it 1s more economsal to 
ignore the other variables and just Work with income. He saves thinking about 
the complex multivariate distribut~on of all of the variables. This averted task 
1s one where there is limited experlente. He might have other substantial sa- 
vings in data collection and analysls. 

If the Bayes~an followed this slmple path then he might even be willing to 
pay for the randomlzation for his own peace of mind. To put this into a for- 
mal analysls could be awkward. 

Rubin (1978 a, Sect. 5) contains a technical discussion of some of these 
comments. His 1974 article 1s a s o  relevant. Savage (1962, pp. 34, 88-89) vi- 
vidly describes a Bayeslan's problem with randoITUZatlOn. 

6. IMPUTATIONS 
It 1s common m handling large data sets to have mlsslng values. Those 

are replaced by imputed values. The data set is then ready for analysls. No 
matter how much or what kinds of analysis are to be performed there usually 
1s lust one imputation process applied to a set of data. 



The greai advantage of dolng the lmputatlou is that statlstical methods 
for complete data sets are much simpler than those for data sets with m~ssing 
values. So if there is going to be much analysis it 1s less expensrve to do one 
costly Imputation and many routlne procedures than many complex nusslng 
data procedures. 

If compuhng costs did not domnate then presumably ~mputatlons would 
not be used. For it is hard to believe that one set of imputat~ons will be correct 
for a varlety of problems involving different loss fnnct~ons and different prior 
distributions. Agan, the Bayeslan probably cannot afford to think it out in 
detail -thinking 1s expenslve- so that he a Inclined to use the single imputa- 
tion process. (See Rubin -1978h- for a more technical discussion). 

7. CONFIDENCE INTERVALS AND MAXIMUM LIKELIHOOD ESTIMATION 
The first few times I was told about these procedures it sounded like gib- 

berish. The Instructors knew the correct definitions and attempted to present 
them. The definitions are awkward and appear to be about the wrong thing. 
Compare: 

(a) The mle is that value of the parameter which would have maximized 
the probability of the data. 

(b) Given the data the mleis the most probable parameter value. 
Or: 
(a) In the long run the procedure for 95% confidence Intervals will 

create mtervaJs Including the parameter 95% of the tlme. On any 
particular occaslon the probability of coverage 1s either 0 or 1 but 
there is not evidence from the data to say which value 1s correct. 

(b) A 95% confidence Interval includes the parameter with probability 
0.95. 

Both of the (b) statements are false. Many users of the procedures have 
(b) and not (a) statements in mlnd. In a Bayesian framework the (b) state- 
ments are good approxlmatlons when the samples are large or the prlor 1s dif- 
fuse. Since these are important and commonly used procedures how should 
the statistical community reduce the large number of errors? I am convinced 
the non-Bayesian can do nothing. They have had little success in fifty years of 
expositing; thelr message is useless. Perhaps the Bayesian should help the 
users of the (b) statements to understand the implicatlous. This aJso might not 
be useful for most people don't want to expand their formal knowledge of sta- 
tistics. The Bayesian can often let well enough alone. 

8. FINE TUNING 
In practice it is hard to even begin to be a Bayes~an. One generates mcon- 

slstent prlor distribut~ons. Computation of exact probabilities would be me- 

aningless. Utilities are often not even approximated. Since the theory does not 
provide for the expense of these costly activities lt 1s not surprlslng that the 
behavlour required by the theory does not occur. 

Lindley, Tversky and Brown (1979) present a mechanlsm for the resolu- 
t ~ o u  of inconsistencies (they assume no cost for this mechanlsm). Without gi- 
ving any details here, it seems appropriate to suggest that in investlgatlng ways 
to remove inconsistencies one should not discard the possibility of the Baye- 
sian doing further introspection. 

Many discussions of axlom systems for the Bayesian have appeared. Sup- 
pes (1974) specifically evolves theorles which do not requlre the Bayes~an to 
glve exact values. Agam, the cost of accuracy is not in the model. 

Absence of utility measurement in much of applied Bayes~an statistics 
can reflect a variety of causes. such as lack of interest, excess cost, or unable 
to produce at any cost. It does seem possible that a statistlctau could present 
probabilities that would be moderately acceptable to all interested partles. On 
the other hand the interested individuals mlght have widely varying utilities. 
An example of some interest 1s the allocation of funds from central to local 
governments. This 1s now often done by formulas uslng social and economlc 
data. The utilities of the clvil servant statistician, the executlve, the Legislative 
body, the local governments, pressure groups, and the people might all be dif- 
ferent and all hard to approximate. Even for such major activities this work 1s 
seldom begun. It would be costly and it would be, techmcally, hard tolustify. 
At this time the evidence regarding the usefulness of such analysls is ambi- 
guous. 

"The coherent ~ndividual is supposed to assess his probabilities and utili- 
ties for everything. Of course, taken literally, this 1s absurd: but it does not m- 
validate the theory any more than the failure of the clam to predict the whole 
future of the umverse, glven the and velocities of part~c~es now, mva- 
lidates Newton's theory" Lindley's discussion of Suppes (1974, p.181). 
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SUMMARY 

Currenr methods of conductmg climcal trials require the .patlent to agree to nave his 
treatment asslgned randomly, where his Individual cnaractenstlcs are tanen ~ n t o  account 
Only to balance the treatment groups. A Bayeslan alternauve Involves eliciting the pnor 
ODmmans of the group of clinicians who deagneo the study. Eacn patlent is then 
guaranteed that the treatment he will recave 1s the best for him either m me oplnton of at 
least one mdiridual clinician or as a consensus of several, given the patlent's 
cnaraeterlsucs and all the lnformatlon available from the trial when the assignment e 
made. 

Kc,vwur~I~: tTIIICS. VtCISIOS IIlEOK1.. L'TII 111.. El ICllhTIONOt OPINIGN, ,\CCII'Innl r 
1 KE..\T\IFXl. RA~Olll ' , \ l  ION. 

1 .  INTRODUCTION 

In this paper, we explore  the notlon t h a t  every  patlent m a clinlcal t r l a l  

shou ld  be  assigned a treatment respons ib ly  believed to a f f o r d  t he r apeu t l c  

advan t age  to him. 
The clin~cal tr lals  considered h e r e  lnvolve  several  d i f fe ren t  treatments 

admlnls te red  to pat len ts  w h o  arrlve sequentlal ly.  In general ,  a patlent must 
recelve treatment shortly after a rnva l .  Patlents m a y  b e  he terogeneous  with 
respect to features or attributes recognuable prlor to the determlnatlon of 
treatment ana likely to affect prognosis. A weU-defined measure of 
therapeutlc efficacy 1s assumed. 

For example, consider a s t u d y  of  patlents admltted to a hospdal ' s  trauma 
nnlt whe re  two new m e t h o d s  of preventing sepsls  are belng eva lua ted  m 
comparison with surveillance. Intenslve care 1s glven to every patlent m t h e  



unlt. Patlents arrlve follow~ng masslve trauma and requlre Immediate 
attention. Recogn~zable characterlstlcs Include type of trauma (accident or 
post-surg~cal complicat~on; head injury or not: long-bone fracture or not) and 
type of patleut (age; probably general physlcal condition immediately prlor t? 
trauma). Proport~on of hospltal tlme free from sepsls 1s taken to be the 
measure of efficacy. 

Commonly m this type of cliu~cal trlal, a patlent recelves a treatment 
drawn at random from the set of treatments under study. The probabilities of 
select~on for the treatments are fixed throughout the clinlcal trlal and usually 
are equal. The randomness may be UncoustrauIed, or an overall study deslgn 
may be based on random selectlon of one of the possible permutations of a 
sequence of treatment asslgnments including a fixed number of asslgnments to 
each treatment. Further structure for the deslgn may be Imposed by 
generating separate sequences of asslgnments for different types of patlents. 

The most frequently clted motwatlon for these randomlzed deslgns 1s 
removal of the treatment selectlon from the control of the attending 
physlclan. This reduces his ability to manipulate the treatment asslgnments, 
and hence decreases the possibility of confounding effects of treatment and 
prognostic factors m the observed results. The use of constraned randomlzed 
deslgns 1s promoted in order to Increase the efficlency of the study (to reduce 
the varlance or mean squared-error of treatment effect compansons). Also, 
hypothesis tests about treatment effects can be based on the permutatlon 
distribution mduced. 

Ethics for such a t r~a l  have been justified by arguments hke the one glven 
by Gilbert. McPeek and Mosteller (1977): 

"Let us consider the questmn of whether a present ~ a u e n t  should glve UD 

something for future Datxnts. We, or our Insurance carriers, pay the monetary 
cost of OUT care. What we do not pay f o r e  the contributlon to the medical svstem 
by pasr patients. These Datrents, through thar suffering and ~arr id~at lon  m 
studies, have contributed through then illness and treatments to the Dresent state 
of evidence for all patlenrs. Such contributions cannot be Durcnased by money but 
can be re~aid in Dart by making, when appropriate, a contributlon to the same 
system. One good way is througn uarticioation m well-deagned climcal trials when 
the oatlent falls lnta the limbo of medical knowledge ... Thus the patlent has an 
interest not only m the trial he or she has the opportunity to engage m, nut also a 
staxem a whole svstcm thatorodueesimprovedresults that may well offer mnefits 
tn the future, if the Datlent survlver the Dresent difficulty. Thus, the social systwn 
will likely offer benefits through the larger svstem even when a particular 
comDonenr of the svstem may fail to  ay off directly far a ~atient ,  his family, 
friends, or some other social g r o u ~  he betongs to" 

Need for such an argument arlses when some patients are asked to acceut 
a less efficacious therapy under study m order to treat later patients more 

knowledgeably. If he enters the trlal shortly after it 1s begun, when d~fferences 
among the effects of the several treatments may be imperceptible or unknown, 
the patlent's sacrifice, if any, may be slight. However, if he enters the trial 
after a substanclal amount of data 1s available, treatments which appeared 
equally likely to prove efficacious at the outset may no longer be equally 
desirable. In this case the patlent's exchange of expected therapeutlc benefit 
for expected information may be markedly to his detriment. 

This approach asks the patlent to accept whatever therapeutlc 
disadvantage may come his way m the name of scientific progress. Such an 
emphasls on the greater soc~al good relative t o  the legitimate Interests of the 
patlent 1s less than satisfactory. In this paper we seek an alternative which 
Incorporates new lnformat~on as it 1s generated by the trlal to protect patlents 
from ~nadv~sable treatments. 

2.  MODELING THE CIRCUMSTANCES OF A CLINICAL TRIAL 

A cliulcal trlal may be proposed in order to reduce controversy about the 
relatlve merlts of the therapies to be studied and/or to galn mformation about 
the efficacy of one or more of the therap~es in the absence of any strong prlor 
OpImonS. In a study to evaluate several theraples, there may be agreement 
among responsible scientists, physicians m this case, about some of the 
treatments, disagreements about some and lack of firm op~nlon about others. 

In general, it 1s reasonable to assume that a set of prevailing oplnlons 
within the sc~entific m e d i a  community is represented by varlous phys~c~ans 
~nvolved in the clinical trial. Establishing and defending cr~teria for selecting 
the "prevailing oplnions" to use 1s outside the purview of this paper. It a 
usefull to express each of these opinlons about the efficacles of the theraples 
studied as a proaability distribution for the efficacy measure conditional upon 
the prognostic factors considered impbrtant by one or more of the physiaans 
involved. Once "prevailing opinions" are expressed as distributions, the 
acquisition of data during the conduct of the study permits updatlng m the 
usual fashion. Thus at each polnt dunng the study, all oplnions are "current" 
an Important divergence from a classical, fixed deslgn for a randomlzed tr~al. 

Two dist~nct sets of utilities are involved in the conduct of a clinical trial. 
One, obviously, is defined in terms of accomplishing the study objectives, I.e., 
reaching a consensus about preferred treatmeuts and/or acquiring 
information about treatments. The role of this set of utilities 1s akin to that of 
effic~ency measures or power function requirements for tests of hypotheses in 
conventional (non-Bayesian) designs for clinlcal tnals. The second set of 
utilities is the set of patlents' utilities. For each patlent, this utility function 
represents his own valuation of therapeutic results; there is no apparent 
counterpart in conventional designs for clin~cal trials. 



Much of the difficulty m reconciling ethics with efficiency m the design of 
clmica trlals seems to arise from ignoring the patlents, ut~lities, or from 
confuslng the two sets of utilities with each other, or argulng as Gilbert, et al. 
do that it is reasonable to assume that the sets are the same. 

The two sets of utilit~es govern our experimental deslgn m different ways: 
the former as an object~ve functlon to he maximized, the latter as a constrant 
on the solutlon set. 

In the formulations to be discussed, each patlent's set of utilitles 1s used 
to define an acceptable set of possible treatments for this partlcular patlent. 
Then the selection of treatment from this set 1s made with respect to the 
overall scientific objectlves of the study. 

3 IDENTIFYING ACCEPTABLE TREATMENTS 

An acceptable treatment for a patlent 1s considered to be one which In 
some sense max~mlzes the patlent's mterests, where these are expressed as a 
utility funct~on: an unacceotable treatment 1s one which m no sense maximizes 

the patlent's expected utility. The patlent may himself express a utility func- 
tlon or a general form for the utility functton may be supplied for him. In 
either case, the patient himself 1s not assumed to have a prlor opmlon, 
although he has at his disposal the collection of current "prevailing 
opmions" Thus the expected utility for the patlent reflects his own utility 
functlon and the expert oplnion he consults. Followmg the custom of 
"seeking a second medical opmlon", there 1s a set of expected utilitles for a 
partlcular treatment corresponding to the set of (updated) prevailing opl- 
mans. 

For a study of T treatments where P prevailing opinions are available, a 
paiticular patient will have a T x  Parray of expected utihtles [ u , ~ ,  where U ,  1s 
the expected utility of each treatment t according to the updated opinlon of 
expert p. Define a treatment t as acceptable if there 1s some set of convex 
welghts for prevailing opln~ons {W,] satlsfylng W,  2 0 for allp and Z. W, = 
I ,  such that 

for all other treatments, t'. Acceptable treatments Include the treatment most- 
favored by each expert, and possibly other, generally well-favored treatments. 
Wepropose that eachpatrent beguaranteedan acceptable treatment. 

As an example recall the sepsis-prevent~on study in the trauma umt. For 

the three treatments, A, B, C, two hypothetical prior op~nlons of partlclpatlng 
Dhyslclans are Shown below for the proportion of hospitalizat~on time likely 
to be spent m a septlc state. 

0 0 . 2  1 . 0  0 0 .2  
Septe Time 

~ ~ i 
1.0 

Septic Time 
Hospaalizatlon Time 

Opmron 1 

Hasp~talizanon Time 
Opln~on 2 

In this case tne patient's utility funct~on may be supplied for him, in viewof 
his inability due to ignorance as well as to mcapacltatlon, to express his own 
interests. Thus medical knowledge is Imposed, in this case by recognition that 
total septlc tlme in excess of 20 percent of hosp~talizat~on tlme is decisive for a 
patlent's recovery. Hence expected utilityis defined here to be the probability 
that less than 20 percent of hosp~talizat~on time IS spent a septic state. 

Using the prlor op~nions deplcted, all treatments are acceptable, since the 
three vectors of welghts W ,  = (1,0), W,  = (0,1), W, = (1/2, 1/2) satisfy me- 
quality (1) for the three treatments, A, B, C ,  respectmely. 

However, even for identical patients the acceptable set of treatments may 
differ, due to differences m utility function. As an example consider a clin~cal 
trlal of "soft" contact lenses. In this case, the objective may be the mlnlmiza- 
tlon of adjustment time (duration of accelerated eye-fatigue and increased 

eye-strain), A single expert opmlon about the lenght of adjustment time might 
have the form depicted below. 

- 
TIME IN WEEKS 



Thus the expected utilities for two patients who measure utility 
differently, that 1s immediate adjustment (0.5 week of discomfort) and 
eventual adjustment (2 weeks of discomfort), will be maxim~zed by lenses of 
types A and B, respectively. A third patient whose utility is defined in terms of 
one weeK of discomfort will be indifferent between the two types of contact' 
lens. Consequently, the acceptable sets of treatments (lens types) differ for the 
three patients. 

Finally, note that the acceptable set of treatments is defined for each 
patient, as the patient arrives. Thus the opinions used In the ClCUlatlOn of 
expected utilities are the orlglnal prlor distributions (representing "prevailing 
prestudy opinions") updated by all accrued data. Hence, the definition of 
acceptable treatment is current for each patient at the time his treatment must 
be determined. 

4. DESIGNING WITHIN THE CONSTRAINTS 

Restr~cting treatment selection to the set of acceptable treatments does 
not, in general, completely specify the design for a clinical trial. Under this 
restrict~on the ethical considerations are satisfied for any deslgn, therefore 
other criteria can be used to determine the deslgn. 

For example, a group of physicians committed to the idea of IandOmIZed 
clinlcal trials could use a random process to choose among acceptable treat- 
ments for a patient. In this case, definition of the proper permutation distri- 
bution and proper consequent analysis would be complicated greatly. Further- 
more, it is logically inconsistent to discard philosophy and to ignore the ex- 
perts, opinrons in this aspect of the design. 

Consider, therefore, a criterion based on the overall scientific study ob- 
]e~tives, r.e., reaching a consensus and/or acquiring mformabon about the 
treatments. The relevant set of utilities 1s defined for the experts in terms of 
the informatlon to be gained following treatment of the patlent. Thus the tre- 
atment is selected from the acceptable set to maximize progress of the study, 
expressed as a functlon of the experts expected utilities. 

A fully optimal sequential deslgn would take Into account the history of 
the clinical trial, including patient charactenstics, assignments and results. It 
would require specification of a probability distribution characteristics of fu- 
ture patients. I t  would also require specification of a probability distribution 
for future patients. utility functions in order to consider the acceptable sets of 
treatments for the future patlents. In face of such complexities, we restrict at- 
tentlon to myopic deslgns, treatlng each patient as if he were the last one to be 
studied. 

There are two distlnct aspects of definlng the treatment selection proce- 
dure. First, a reasonable utility function must be determined for each expert. 

Second, and conceptually more difficult, Individual utilities must be agregated 
to form a ~ O U D  declslon. - .  

For a single expert, Raiffa and Schlaifer (1961) propose choosing treat- 
ment t to maxlmize 

where O E e  is the parameter, x E X  is the outcome of the experiment, V is the 
expert's utility function, d E D  is the declslon reached by the clinical tnal, in 
Lindley's (1971) notation. Here D is the set of possible recommendatlons of 
treatments at the conclusion of the clinica t n a .  Note that D may include dea- 
slons of equivalence among a Subset of preferred treatments, as well as selec- 
tlon of a smgle recommended treatment for each patient. Good (1956), 
Lindley (1956) and Lindley (1971) suggest maximizing expected information 
over possible experiments, in this case possible treatment selections. Bernardo 
(1979) shows that mmmlzing information can be treated as a special case of 
maximizing expected utility. 

In general, expected utilities for experts will differ because of initially dif- 
fering oolnions, whether or not the experts' utility functions have a 
common form. 

Suppose that treatment t belongs to the acceptable set for the current pa- 
tient. Denote by V, the expected utility of treatment for the expert holding 
prevailing opinionp. For the first oatient, without loss of generality, 0 C V,n 
C 1 for all t andp, slnce [Ks] are unlque only up to a positive linear transfor- 
matlon (see Savage, 1954) and hence can be standardized with mm V, = I 

and m& V, = 0 for eachp. This standardization may be repeated with each 
subsequent patient. 

Alternatively the expected utilitids ffo the first patlent to enter the trlal 
can be standardized in the foregoing manner. Then the standardization coeffi- 
clents for each expert can be used throughout the remander of the study. In 
this case the range restriction on V, will not necessarily hold for patlents after 
the first. 

Selection of treatment can then be made to mawlmlze a su~table function 
of [V,). For example, one treatment selection procedure is given by 

Choose t to maxmze m;n V,p. 
Clearly, a variety of other measures of aggregate utility are possible, as 

well. 

5. CRITIQUE 
For clinical trials conducted m an atmosphere of conflicting views the 

formulation given thus far seems workable. However, studies undertaken in 



the absence of prlor lnformatlon are vulnerable to premature discontlnuatlon 
or to unwarranted degeneration of the deslgn. In the definition of the set of 
acceptable treatments, this difficulty arlses from the limltatlons of determl- 
nlng expected utility as a slngle number for each treatment. The result 1s an 
(unnecessary) narrowing of the definition of acceptable treatment, with resul- 
tant loss of flexibility m the overall study deslgn. 

Consider two possible sltuatlons, one m which there 1s very little mforma- 
tlon about one of the two treatments, the other m which thkre 1s ample mfor- 
matlou about both. For a particular expert, the prlor oplmons for these two 
cases mlght be dep~cted by the densities shown below. 

I: PRIOR DENSITIES 
TREATMENTS A AND B 

There are smooth monotone utility functlons for which the expected utilities 
calculated for case I and I1 are the same, with treatments A and C considered 
acceptable. In Case 11, the rejection of treatment D may be considered dea- 
table; whereas m Case I it would be desirable to consider both treatments A 
and B acceptable. 

It is useful that different patlents may express different utility fnnctlons 
resulting, for example, m Treatment A belng acceptable for some patlents, 
Treatment B belng acceptable for others, as m Case I. However, one objectlve 
of a clinlcal trlal deslgn is that the study be vlable without dependence upon a 
broad distribution of patlent utility functlons. For the case where diagnosis 1s 

inconclusive, Lindley (1975) describes nrcumstances permlttmg valid inferen- 
ce, despite the identical utility functions for all patients. This case is consl- 
dered further by Good (1978). 

Several alternatives deserve investigation. Note that the difficulty arlses 
when the treatment with smaller expected utility also has the more diffuse 
prlor distribution. This suggests that Treatments A and B may both be cons]- 
&red acceptable because theu expected utilities differ by.iess than some 
E > 0. 

Since a resolution of this problem acts as a governance on the study, ade- 
quate soiution is essential to the viability of the method. 

6. IMPLEMENTING A CLINICAL TRIAL 

Many of the essentials for carrying out a cli~ucal trial are available now; 
others require only moderate efforts to be developed. Representations of 
"prevailing oplnlons" must be elicited from physicians holding these views. 
When then measure of efficacy can be assumed to have a normal distribution 
or a lognormal distribution, a member9f the conjugate prior family can be 
elicited using the methods of Kaaane et al. (1978) in the univarlate case or of 
Dawid eta!. (1979) in the multivanate case. . 

Updatlng of prlor distributions can be done automatically as data is ac- 
qu~red; and for the conjugate family this can be accomplished quite easily. 
The major tecnnlciu difficulty m this regard is the incorporation of censored 
observations, particularly when the lognormal model is Used. Seeking ade- 
quate approximations may provide the most effective solution to this 
problem. 

Substantial commitment of programming effort will he required to deve- 
lop and implement efficient algorithms for the definition of the set of accep- 
table treatments and for the treatment Selection procedure. 

Finally, careful selection for a pilot effort should include the following 
favorable c1rcumstances:nmary objective of resolving sharp conflict of opl- 
nion (case where the formdatlon seems to have least vulverability), modest 
rate of accrual of patients, and single prominent measure of efficacy with 
clear definition. 

7. CONCLUSION 

In reply to John Tuitey (1977), 

"Many of us are convmced, Dy wnat seems to me to De very srrong evidence, 
that the only sources of reliableevidence anout the usefulness of almost any sort of 
therapy or surglcal intervention a that obtaned from weU-planned and carefully 
conductea randomlzed, am, where possible, double-blina experiments lsee review 

Dapers of Byar er al. (1977) and Peto et 01. (1977) I .  Dare we prevent outselves 
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from obtomng reliable evidence?". 

the  only word we  questlon is "randomized" 
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DlSCUSSlON 
D.V. LINDLEY (Unrversrty CollegeLondon): 

Unlike Savage, I feel comfortable with the Bayeslan position. I know of no case 
where it glves an unsabsfactory result and there are many cases where it produces an 
answer which is more satisfactory than others. This is not to  say that there are no 
difficulties: there are, but they seem to  be the sort that should yield to an adequate 
amount of research effort. 

In the case of v ,  the resol~tron may lie in remonng the excessive formalism 
sometimes imposed. There is a story that every paper appearing in the Annals of 
Mathemabcal Statistics had to  have (X, A, P): a triple in which A is a a-field of events. 
But why should we have a o-field? In the case of T the o-field is complicated and we 
could not do all the probability assessments demanded of it. What we do  1s to  glvesome 
p-values, but not all. The important polnt is that those values w e n  must be coherent. 
This, I believe, is essentially de Finetti's resoluDon. 

Randomization is a puzzler to  a Bayeslan. Consider a tnal to compare two medical 
treatments. T, and T,. Suppose the result of the trial is inat D(R/TJ > D(R/TJ where 
R is the event of John% recoven, so that T,  is preferred to  T2 for John. Suppose 
however there was a random qnanbty X such that p(R / X,TJ < p(R I X,TJ for all X: 
would T, still be preferred for John? Such a set of inequalities constitutes Simpson's 
paradox. The paradox can be avoided if in the tnal, X and the treatments are 
lndependent. Now a random al loca~on of treatments IS, by the Bayesian meanlng of 
random, lndependent of any X, so that a Bayesian might prefer randomIzatlon, though 
independence is what he 1s really after. 

Rubin, (1978) shows that with randomlzatlon, the Bayeslan calculations are much 
simpler. Simplicity is connected with the cost of rationality, mentioned by Savage. 
There has been little mvestigabon of this and Savage does the conference a sernce by 
drawing our attenaon to the problem. When is it worth drawing a decision tree? 
Clearly the answer must depend on how well the utilities and probabilities can be 
de te rmed .  We usually draw the tree if they can: otherwise we nught content ourselves 
with the i i t i a l  utility. In the pauer b y  myself, TversKy and Brown that Savage 
mentions, we studied the assessment of probabilities and suggested using measures of 
precision associated with them, rather like other determinations in sclence. Although 
this made the calculations complicated, and so more costly, my own feeling e that such 
measures are essential to  any resolubon of this important ~roblem.  

At this moment in statistss, my advice I$ to try the Bayes~an paradigm. 1 think you 
will find that if works rather well. 

The difficulties with Simpson's paradox d s o  arise in considering the ideas put 
forward by Kaaane and Sedransk. For suppose that the experts were all affected, either 
consciously or subconsc~ously, by X; then could it not happen that the resulting 
confounding of the treatment allocation with X would vlciate the conclusions of the 
tnal? Of course, if the confounding were recoguzed, it mght  be possible to  allow for 
rt: thereal danger lies in an unrecognized confounding. 

The criterion (1) has an attractlve property: namely, it is lnvarlant under linear 
transformations of the utilities and hence of the expected utilities. For suppose U ,  1s 
replaced by P,u , + m,, possibly a different transformation for each expert, then the 



linear form Zu,*w, becomes ZU',~(!,W,) + Zm,w, with the final term independent ofp  
and the new weights !,W, (it is not necessary that these add to one). I feel this is 
Important slnce utilities are arbitrary up to linear transformat~ons. 

The authors admit the possibility that the patient may use his own utility function 
or have one supplied for him. May he not do the same for the probabilities? It is not 
Clear to me that in evaluahng my probabilities; I should use the expert's stated values, 
for I may feel him to be biased in some way. Thus if the motorxng organuation tells me 
their probability of getting stncK m the snow, I shall use a smaller value for my 
probability, slnce 1aelieve they exaggerate the hazards in order to discourage people 
from uslng the roads and so reauclng their chances of having to assist them m snowy 
conditions. As L.J. Savage polnted out, what the patlent really needs is the expert's 
likelihood function (not his probability) to update the patient's prior. 

A.M. SKENE (University ofNotfmgnamj: 
Professors Savage and Kadane though discussmg qulte different topics are both 

grappling with problems of utility. The fust paper 1s essentially concerned with the 
utility structure of the decision problem "How shall I analyse this data?" while the 
second is concerned with the thorny prohlem of whose utilities to consider in clinlca 
trials. 

Professor Savage 1s concerned that the practical Bayesian doesn't practlce what he 
Preaches and Claims that the decision theoretic frameworg doesn't take the cost of 
thinking Into account. Now I believeI'm rational yet I would also guess the 29th diglt of 
nand hope to wm the bottle of sherry. It follows that in taking the decision to guess as 
opposed to computlng the eluslve digit I prefer the expected return from gnesslng 
viz 0.1 (Sherry - E )  + 0.9 (Nothing -6) to the return (Sherry - Effort of compuhng - E ) ,  

where c 1s the small effort necessary to maKe the snap judgement between the two 
alternatives. Thus it appears that I think that mne tenths of a bottle of sherry is not 
WORh the extra effort. If I am happy with the outcome of this exercise in self 
enlightenment then my clam to rationality is unshaken for the tlme bang at least; 
otherwise I must ponder afresh the fallibility of my decision making process. 

There are two issues here. First, there is nothing in the aecision theoretic 
framework which prevents one from ~ncluding the cost of thinking. It can be 
incorporated quite naturally (in theory at least) as one of the attributes in a multi- 
attribute utility funcDon. Secondly there may be some positive advantage in 
retrospection. It can be very much easler to see what a partrcular aecision implies for 
the utility function, than attempting to assess the utility function directly. In medical 
decision making, for example, it is very difficult to get a Physlclan to asslgn utilities and 
costs to various treatments particularly when there is the possibility that a patient may 
be incorrectly allocated a treatment which is positively harmful. Havlng attempted such 
an exercise however, the Phys~cian can then be observed making decisions on a long 
serles of patlents and from this informailon some idea of his actual utility function can 
be gamed. (By considering which misclassification rates are considered aceptahle for 
mstance). The value of this exerclse lies m the fact tnat reconciling the two utility 
functions so obtained may lead to better decisions in the future. 

Consider a Statistician, invltea to asslst m the analysis of a set of data. He sees 

several ways m whlch he mlght proceed and must choose one strategy. While the 
factors which influence the utility he has for each strategy are the personal cholce of the 
decision maKer, he nught, for example, consider how far each strategy satisfied the 
experimenter s ohjectlves and h a  own interests, the financial reward involved, the Dme 
necessw to execute each strategy, the computlng cost/effort lnvolved and perhaps 
how closely each strategy adhered to Ule pnnclples of Bayesran statistics. In reaching a 
decision, the Statlstlcian would, of course, find it necessary to choose weights reflecting 
the relative Importance of these attributes. This situation a surely not unfamiliar. 
Perhaps we should be asking ourselves what welgnt we would give to the last of these 
attributes or, like the Phys~nan, be thinking through the decision in abstract and then 
Observmg how we act m practice. 

Turnlng now to the paper by Professor Kadane, I accept the author's remark tnat 
the paper is primarily a statement of intent: not a polished work where all the issues 
have been resolved, but rather an enunaatlon of a possible direction m which to 
proceed, together with the problems which are likely to be encountered. 

In certain types of societies the practical solnbon to the ethical clin~cal tnal 
problem could he achieved quite easily. When the allocation of a treatment depends on 
whose utility functlon you consider -the patient's or the physician's- we must 
combine the utilities in some way. 

If the society is such that it sees it as the right or duty to define the role of an 
individual in a clirucal trial then the problem vanishes. In the absence of such political 
involvement however the concept of an acceptable treatment seems an lnterest~ng one 
and worth mnvestigatmg, though I am somewhat skeptlcal that these ideas will, In fact, 
lead to a new type of climcal tnal. 

A major problem as the author points out, n that in tnals where there are no 
strong prior oplnions it is possible for the procedure to converge to the wrong 
treatment and this leads the author to the idea of 'nearly acceptablei treatments. 
However, m practice no patients are denled treatment and in the standard randomised 
tnal patlents are all already receiwng acceptable or nearly acceptable treatments. In 
effect, the current argument agalnst randomisea trials is based on tne prenuse that 
'nearly acceptable' is not 'ethical'. 

It may sometimes happen that the patient's utility functlons prevent certain 

treatment cornpansons. Consider, for example, a tnal comparing mastectomy with a 
form of radiation therapy for breast cancer. Given that all the partlclpating physicians 

believe tnat there is little difference m efficacy and that effectwe treatment means 
surnval as opposed to death then the utility functlons of women involved will reflect 
preferences between the secondary consequences of the treatments, and thus, for 
example, the radiation therapy maybe nmversally preferred. 

Instances such as this of course don't prove that such a tnal will never w o r ~ .  What 
a of greater concern is the possibility that such a tnal is feasible but is mlsused. Will the 
utility functlons of the participating experts be allowed to reflect things like loyalty to a 
particular company or the need to fustify a particular research project to guarantee fu- 
ture funding? It B just conceivable that under the guise of an 'ethical clinical tnal' mo- 
re uatlents receive a less efficacious treatment than m a randomlsea tr~al. This would 
certanly be possible in trials where many patients were admitted to a trial before the 



first results were known. Here, presumably, the experts could contrnue to use theK 
prior opinlons until the first results came to hand. 

J.M. BERNARDO funrversidaade Volencro): 
Professor Kadane pomts out that "an emphasls on the greater social good relatlve~ 

to the legitimate Interests of the paOent 1s less than satisfactory". I think we must dis- 
tinguish between the uatient's mierests before and after he is known to be affected. 
For, it seems likely that, before he has got aparticular disease, he maximizes hisperso- 
nalexpected utility by voting a law which will oblige him to accept particiuate in a clim- 
cal trial were he to become ill and the tria! necessary. 

Indeed. he must balance his better chances of survlval because of general scientific 
prog~ess with the risk of hav~ng to accept a particular less efficacious therapy. 

M.H. DEGROOT (Carnegte-Mellon Unrversrty): 
Since so much of the discussion of the varlous papers at this meetlng has had a the- 

ologrcal tone, it would seem appropriate to introduce the theological terms probobr- 
lrorrsm and probabilmm to help describe the situation considered m this paper. In 
Webster s Third New International Dictionary we find the following definitions: 

Probahilionsrn - a theory that m moral questlons where certainty is impossible only 
the more probable course may be followed. 

Probabiism - a theory that m moral questlons where certanty is ~mpossible any course 
may be followed that 1s seen as solidly probable either through clear per- 
ceptlon of the pnnclples lnvolved or through awareness of the support of 
judinous sound authonty ... any solidly probable course may be followed 
even though an opposed course 1s or appears to be more probable. 

The authors seem to be urglng us to be probahilists in carrylug out clinlcal tnals. 
The patlent. however, must strongly hope that his doctor 1s aprobahilionst. 

1.1. GOOD (Virgrnro Politechnre ondSioie Unrversrly): 
I have often wondered whether most clients who are glven confidence intervals use 

them m some sense as Bayeslan estlmahon lntervals; see, for example, Good (1969, p. 
184). Perhaps a sample survey is needed to answer the question at any moment in his- 
tory, and for any field of application. 

I have proposed a way of combining judgements of quantiles of distributions by 
vanous judges or experts m Good (1979) by methods rather different from those of 
Lindley, Tversky and Brown (1979). The applicatlon that directly provoked my work 
on this problem was the estlmatlon of mneral resources. This application was brought 
to my attention by Dr. Larw S. Mayer. 

To Professor Kadane, I have to say that, as a patlent, I would be not happy with 
treatment A if two or more clinicians recommend treatment B and only one recom- 
mends treatment A ,  if I had no reason to prefere one cliniclanis judgment to those of 
others. I would prefer to accent a majorlty vote. 

Lindley (1975) had an lnterestlng idea for improving the ethics of medica tnals, 

but m Good (1978) his idea was shownnot to be as apphcable as it at first seemed. I said 
there that one way to make clinsal tnals ethical is topoy people to undergo them, and I 
doubt if this proposal was ongmal, m fact it IS already done when patlents are Dven 
free treatment in exchange for entering the tnal. Another way to pay pabents, if they 
happen to be pnsoners, is to glve some rermsslon of sentence as the form of payment. 
An objection that was rased in conversation by Dr. Kadane is that some are sentenced 
largely to Keep them off the streets. To meet this objection the judge could be allowed 
to pass such sentences as: "Ten years without the nght to enter medical trials and a 
further twelve years but with the right to enter such tnals" 

Another idea for making medical tnals more ethical, when there IS very little to 
choose between some treatments, would be to arrange to admlmster the treatments sr- 
mulfaneourly to a sample of patients, perhaps at numerous medical centers. But this 
proposal rmght seldom be pracbcable. 

A. O'HAOAN funiversliy of Warwick): 

All statistics m practice 1s approximate. Perfect analysis requlres an infinite 
amount of effort to achieve. Therefore the ideal of rationality must be tempered by 
pragmatism. This theme lies at the back of several papers at this meeting but I think 
Professor Savage hits the nail on the head when he relates it to the cost of effort. The 
degree of approxunation finally accepted in any analysis results from a balance between 
the gams accrlung from more nearly optlmal decisions which might be made with an 
Improved approximation, and the cost of that improvement. The cost of better appro- 
XlIllabon may have many components, but the costs of thought and of computer time 
spring quickly to mmd. Professor Savage suggests that it may be possible to measure 
these costs, but I doubt if that would help much because the measurement of the gam 
from improved approxlmatlon a much more difficult. It nbvionsly deuends on the true 
analysis, which is unknown, and any attempt to theonse about it will introduce new 
quantities which themselves must be approximated in practice. Statistics will always be 
a matter of subjectme, unfomulated judgements. As Professor Good says in his paper, 
"I stou when the guessed expected utility gf gomg further becomes negabve if the cost 
1s taken mto account" 

The fact that no practical statistics can ever be more than an apprommation to the 
ideal Bayesian analysis 1s no reason to desplse Bayeaan pnnclples and theory -that is 
the trap into which Dr. Leonard nearly falls with his paper at this meeting. Theory ser- 
ves at least two disbnct purposes. First it provides guidelines. If we know that a certan 
anaysa a optimal for a mven problem which we can think of as apprommatmg our 
own problem, then that analysa serves as an mitial approxlmation for us. Some 
thought about ways m which the real problem deviates from the theoretical one sug- 
gests (by reference to oUla theory) ways in which we should modify our initital anay- 
sis. Dr. Leonard acknowledges this role of theory but ~ v e s  the lmpresslon that it is 
unimportant, yet without Ule guidance of theory the applied statistician would be 
completely lost. 

The second purpose 1s to reduce costs. A new piece of theory means that in 
appropriate circumstances the statistlnan can proceed imediately to a greater accuracy 
of apprommation with ollly slight costs in extra thought or computing. Professor Sava- 



ge recognlses this, particularly in section 4. The Investment tnat the theoretlclan's 
thought represents can yleld rich dividends for the practitioner. 

REPLY TO THE DISCUSSION 
I.R. SAVAGE (Yale Unrversrty): 

As noted earlier I Walm no onglnality for this essay. Good's (1979) revlew of Co- 
.lodny (1977), hints at my borrowng from L.J. Savage as expressed i fh is  late essay 
"The Shifting FounaaOons of Statistics", 

This Conference's success should be evaluated in terms of its nelpmg to create the- 
ory and application of Bayesian staOstlcs. In doing this there 1s no last word. I am glad 
I had the opportunity to participate and I'm thankful for the lively remarks of the dis- 
cussants. 

J.B. KADANE (CornegreMellon Universrty) and N .  SEDRANSK (S. U.N. Y.  atAlbony): 
We thank Professors Bernardo. DeGroot. Good. Lindlev and Skene for their at- 

tentlon to the problems we pose and for theuusefulideas. 
The pomnt made by Professor Skene and also rased by Professor Bernardo, that 

socletles differ in the degree of coerclon they exert on theu members, 1s unarguable. 
Hence, the balance between the nghts and interests of iU citizens seeking the "best pos- 
sible" treatment and the rlehts and interests of tiie rest of the socletv m fosterlne medi- - 
cal research is not uniquely defined for all natlons and societies. In the Ututed States, lt 
has been requlred for some time that a patient consent to partlclpatlon In a clinlcal tnal 
pnor to the begInnmg of any therapy or procedure under-study, and further that the 
patient's consent must be glven with full !uIowleage of ail relevant information 
currently available. In this context, both the legality and the feasibility of a clinicai uwJ 
revolve about the question of whether or not a pabent ratlonally would give lnformed 
consent to partlclpate m the clinlcal tnal. Thus the statistical deslgn and analysis must 
address this questlon and a Bayesian approach provides a natural formulation. (Consl- 
aeration of optimal legislation to define a new context 'for'human experimentation 1s 
beyond the scope of this paper). 

The Intent of this paper is to formulate a model for clinical t r i l s  which would em- 
body both the nghts of tne patient and thenghts of society and which would exploit the 
variety of expert oplnlons within the sc~entific community to justify study of alternatlve 
therapies. Both Professors DeGroot and Lindley express concern that the pallent be 
allowed to modify the expert oplnlons and/or relect selected expert oplnlons alto- 
gether. When a patlent considers entenng a clin~cal tnal, he acquires a collect~on of ex- 
perts beyond the particular physician he consults directly. A very sophisticated paOent 
nngnt want to correct for me several phys~cians varied biased; this modification pre- 
sents fewer matnematlcal difficulties than Dractrcal obstacles. A much less so~histlca- 
tea patlent nngnt choose to Ignore all oplnlons except that of the pnyslnan he consults. 
However, this model for a clinical tnal returns to that of an "uncontrolled" tnal, 
which offers less assurance that the best treatment will he identified correctly. 

Sources of potential vulnerability of this class of deslgns are viewed with concern 
by botn Professors Lindley and Skene; but whereas Professor Lindley considers the 
possibility of nnrecogn~zed factors, Professor Skene worries over infelicitous confzu- 

rations of known factors. The confounding of unrecognized factors with treatment ef- 
fects can vitiate the results of any study. To the extent tnat an unrecognized factor is 
correlated with a recognued factor, its effect 1s controlled by the mncorporat1on of the 
recogmzed factor m both the statlstical deslgn and tne statlstical analysis. Of course, if 
the unrecogmzed factor 1s lndepenaent of all the recognized factors, its occurrence m a 
pattern resulting in confounding its effect with the treatment effect requlres'two snnilar 
sequences for the sequence of treatment asslgnnlents and for the sequence of values for 
unrecognized factor. (Then purely probabdistlc arguments apply; and, for example, m 
the case of an unrecognized binary factor, the risk of confounding 1s mnnnuzed for ba- 
lances designs). Untoward influence of recognized factors, can, as Professor Lindley. 
points Out, be averted by proper design and analysis. Precisely for this reason, it has 
been presumed throughout the paper that covanates are used directly m the probability 
distribut~ons, and therefore are included in botn the aeslgn and tne analysls. 

It rs CeItaLNy possible, as Professor Lindley suggests, that a physiuan could inject 
his (knowmg or unmttmng) bias Into the climcal trial by way of his prior distribuhon. 
One strength of the class of designs proposed is its / a c t  of vulnerability to a angle phy- 
sician's bias. Only in the event of a rather uniform bias on the part of all experts should 
the confounding occur, a somewnat less likely possibility than the occurrence of a signl- 
ficant bias on the part of a slngle physman. 

Professor Skene's concerns about failures of the clinical trial design caused by 
Known factors, pose much smaller problems since these possibilities can be examined 
specifically for eacn t r~a l  before it starts. The possibility tnat the patients' utility fnnc- 
tions Prevent certatn treatment compansons 1s not well illustrated; m fact, m the 
clrcumstances Professor Skene cites, no patient ratlonally would agree to a randomlzed 
trial. Professor Skene also expresses apprehension that less than honest scienbsts could 
explolt this class of deslgns. The use of fraudulent experts can nun a climcal trial of a -  
most any design; m tne class of des~gns proposed here, as in all designs for sc~entifically 
responsible research, experts with conflicts of interests are assumed to be ineligible for 
mfluentlal decision-making roles. The possibility that tnere is insufficient agreement 
among experts or that tnere is near unanipty preventmg either Initiation or ternuna- 
tlon of a clinlcal trial can best be exarmned by slmnlatlon; comment must be deferred 
until these slmulations have been completed. 

Professor Good's notion that a tnal might be made ethical by simultaneous admi- 
nlstrahon of treatment at several medical centers bears some resemblance to what is 
now done. But doesn't it address the ethical issue by failing to generate relevant data 
for any of the pat~ents? A more sequent~a approach would yield early returns and 
mlgnt avoid glvlng bad treatments to at least some of the patients. Payment for priso- 
ners m direct form or by sentence teductlon 1s specifically prohibited within the US., 
and remunerabon to non-prision participants may not be of such a magnitude as to im- 
pair the individual's judgment of the medical ments of the options offered him. 

AU these Issues are difficult, and well worth discussion and further research; We 
are grateful to our discussantsfor thelr stimulating thoughts. 
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On the number of outliers in data from a linear model 

P.R. FREEMAN 
Unrversrty of Lereesler 

SUMMARY 
This paper reviews models for the occurrence of outliess m aata from the linear 

model. The Bayexan analyses are all closely similar m form, but differ m the way thw 
treat suspected outlier5. The models are compared on Darwin's data and one of them 1s 

used on aata from a Z3 factorial expenment. 
The questlon of how many outliers are present involves cornpanson of models with 

different numDers of parameters. A sqlutlan uslne proper prrors on all parameters 1s . . 
glven. On two trial datasets i t s  found to De insensitive to cholce of pnors an all except the 
parameters representmg the amount of contamlnatlon m the outliers. Here, cholce of even 
a slightly "wrong" prior can De very misleading. Moreover, it a difficult to choose an 
appropriate prlor when eontarmnatlons can ue 00th positive or negative. 

KqWOrOS: CONTAMINATION; LINEAR MODEL: MODEL DISCRIMINATION; OUTLIBRS: 
PROPER PRIORS: SPURIOUS OBSERVATIONS. 

1. A VARIETY OF MODELS 
Consider the common problem m which a statlstlcian would like to use a 

standard linear model to represent the generation of a dataset arising from 
some expenment. He has, however, some doubts about whether all the 
observatlons were generated by tnat model and feels there 1s a chance that 
some (hopefully, a few) observatlons will have been contaminatea in some 
way. Recording errors, temporary changes in expenmental conditions or the 
use of abn0rmaJ expenmental unlts are the kinds of flaws he has m mma. In 
analysing the data he must therefore elaborate his slmple linear model in some 
parslmonlons way so as to guard himself aganst such gremlins and ensure 
inferences about the parameters of interest tnat are robust. 



The word "~utlier" will here be used to mean any observatlon that has 
not been generated by the mechamsm that generated the majonty of 
observations m the datatest. Note that we automat~cally assume that outliers 
are a small miuorlty of the observahons and that for each possible alternative 
we must use a different model for outlier generahon. 

In this sectlon we shall bnefly revlew three such models. We first 
establish some common notation. 

We wrlte the standard linear model as 

w h e r e y l s n x l a n d ~ n n x p .  
If a partlcular subset y,, ... y,, of the y's are suspected of belng outliers, 

we partition they vector mtoy ,., andy,..,,. 
A slmple application of Bayes theorem shows that P, the parameter of 

interest, has posterlor distribut~on that can be written 

where the summation extends over all 2" possible partitions of y, W,., denotes 
the posterior probability that the subset y,' ... y. are Indeed outliers and 
p,,,@ly) the posterior density of P glven that they are outliers. The presence 
of outliers is thus handled automatically. If a subset is particularly discrepant, 
the corresponding weight W,,, will he large and our ideas about P will allow for 
the discrepancies. 

In each of the following three models,p,.,@ ly) turns out to be ap-variate 
Student's t distribution with mean P,,,, dispersion matrix B-',,, and degrees of 
freedom U,.,, say. It is the different ways m which they treat the suspect 
observations m arrlvlng at the quantities, especially P,,,, that is interesting. 
The posterlor weights W ,., are complex. but for a given number of outliers we 
always get W,,, inversely proportional to some power of S:.,, a kind of 
"residual sum of squares" from the analysis allowing for outliers. 

We shall refer throughout to the standard least-squares values 

Box and Tiao (1968) first considered this problem and thelr model (BT) 
assumes that each observatlon has probability 1-0 of belng generated by the 
usual linear model and small probability w of comng from the same model 
but with error valance k202 instead of just a2 They took k and w as known 
and used the usual improper uniform prlor on P and log a. 

Here 
81.1 = Lx i - - - ,~~- . . ,+k .~ i - ,~<- , l -~  IXL-.L~~..,I + k - 2 ~ . ~ g l r , ~  

S:,, = b,"-rl -xl"-~l~,~l:~bl"-~l-xl"-r,blr>l+k.2bl~,-x~~lblrll~b,~l-xlrlb,~ll 
U ,,, = n-p 

1 4.1 = @-P) [xb--,xe-.r f k ~ z ~ b ~ ~ ~ r , l / ~ r p ~  

and W,,, a ta/k(l-oa)J'I~[-.,~~~~.,, + P-'x&,xI.I I ' " 'SI,~~'"~~' 

Each suspected outtier 1s thus dealt with by dividing they value and the 
corresponding row of the X matnx through by k and then do1ng the usual 
least-squares analysis on this new dataset. 
Additive, rather than multiplicative, contaminatlon of the data was 
considered by Abraham and Box (1978). Thew model (AB) was 

where Z is a vector each of whose n elements has probability a of being 1 and 
1-a of being 0. The amount of contamlnatlon 6 is thus assumed to be the same 
for each outlier. A y  partlcular Z vector wrltten Z,,, say, corresponds to a 
subset of observations being outliers. 

Taking u Known and improper uniform pnor on 8,6 and log a gwes 

'4 

P,,, = Ix'v,.,xl-3x'V,,gwhere V,., = I-rlZl.,Z&, 

s:,, = b-xPc,,l ' v;,,rY-xb,.,l 

U,,, = n-p-l 
n-p-l 

B,., = - X'VIVIX 
S:,, 

and W,,, [a / ( la)y rUZ ( X '  V,,IX (-''2 SI,;'"-~." 

This model thus copes with outliers by d0lng a welghted least squares 
analysls uslng the we~ghtmg matrlx V,,,. 

Guttman, Dutter and Freeman (1978) consider additive contamlnatlon In 
a rather different way. Then model (GDF) is 

where a 1s a vector exactly r of whose elements are non-zero. They assume the 
value of r is known, but hedge thew bets by dolng separate analyses for r = 
0,1,2, ... . The non-zero elements of a are not forced to be equal, but form r 
extra unkown parameters which are duly glven a uniform Improper prlor 
aIong with 8 and log a. We now get 



n 
RI,> = Ixi"-r>xl"-~ll-ix~"-.~l".~, 

2  n 
S171 = bl"-~,-xl"-r,R~~ll'bl"-rl-xl".,,blr,l 
u ,,, = n-p-r 

n-p-r , 
B,,, = - X I ~ - ~ I X I ~ - ~ ,  

sb, 

The effect of allowng "totally unknown" amounts bf contannnatlon 1s 
therefore the dramatic one of droppmg suspect observatlons completely and 
dolng aleast-squares analysts on the others. 

2. DARWIN'S DATA 
All these papers apply thnr results to the famous set of data due to 

Darwln quoted by Fisher (1960) and eternally popular with students of 
outliers. 

Here then = 15 observatlons are 
-67 -48 6 8 14 16 23 24 28 29 41 49 56 60 75 

and P is the unknown population mean, s o p  = ! and X 1s a column\ector of 
ones. 

Box and Tiao display the posterlor densty of R when a = .05 and R =  5. 
In identifying outliers, the largest posterlor probabilities are as follows: 

Outliers None Y, and Y Z  Y, only y2 only YIE only 

Prlor prob ,463 ,0013 .OX .024 .24 
Postemor prob ,462 .l90 ,175 ,036 .016 

If we condition on a fixed number of outliers, we have 

W,. ,  a S,,,-'"-" 

where 4., = E,.-,,I~~-~~,,I~+K-~E~,,LY~-~~,,I~ 

n I : I ~ . , L Y I + ~ - ~  EI.IY( 
and R, , ,  = 

n-r + 

m obvlous notations. 
The largest of these conditional probabilities, for r=  1 and 2, are glven m 

the columns headed BT of table I .  

TABLE 1 

Postenor probabilities, glven one or two outliers, for D a m ' s  data 

One outlier Two outliers 

Obswatlon Observ~iion Obrsrvatlon Obseniat~on 

numoer BT AB=GDF Pair BT Pair GDF D= AB 

A sensitivity analysls showed tnat the posterlor mean and varlance of P 
are hardly affected by large changes m the value of k. While changes In a are 
rather more cmclal, there 1s still a falr amount of robustness and the results do 
not vary much as a ranges between .03 and .07. 

In the Abraham and Box model 

The f i s t  term here clearly arlses as a consequence of the assnmptlon of 
the same 6 for each outlier, j,., belng the natural estlmate of R + 6. 

Conditionally on r, 

Note that, smcep= l,  all suspect observatlons are Ignored in fornnng b,,,  
but contribute towards q,, except when r=  I .  In that case these results 
co~ncide with those of the GDF model. 

Abraham and Box glve the posterlor denslty of P for a range of a values, 
do a sensitiv~ty anaysls on the mean and varlance of l3 as w changes, and 
quote conditional posterlor probabilities W , . ,  for r =  I and 2, reproduced here 
m table 1. 



In the Guttman, Dutter and Freeman model, 

these latter belng inherently conditional on fixed r. 
As Table 1 shows for only one outlier all three models agree on 

observatlon l(-67) as belng by far the most likely candidate. All the central 
observations from 6 to 29 get aImost identical postenor probabilities, as 
dropplng any one of them makes very little difference to the sum of squares 
about the mean. For two outliers, however, the Abraham-Box model diverges 
from the Others m that it cannot encompass the possibility that outliers mlght 
occur m both tails of the distribution. It also glves less posterior weight to the 
most obvlous Pair (-67, -48) and spreads the posterior probability pretty 
uniformly over all except three pairs. The model is clearly not a good one for 
identifying outliers and so must necessarily be weak at providing robust 
estimates of p under some circumstances. 

3. A 2' FACTORIAL EXPERIMENT 
John (1978) discussed the results of a Z5 factorial experiment m two 

blocks with the ABCDE interacoon confounded. Visual inspection of a plot 
of residuals against fitted values suggests that there mlght be two outliers. 
Havlng derived a suitable test stat~stlc and simulated its sampling distribution, 
a significance level or = ,117 was obtained, from which it was concluded that 
there were not two outliers. Had a test for only one outlier been performed, 
however, the result would have been significant with or = ,044. 

Besag (1979) reports that a robustified regression analysis, uslng Tukey's 
" exploratory data" approach, clearly shows the presence of one outlier, not 
two. 

An analysls using the GDF model fitting main effects and first-order 
lnteractlons confirms this approach. Table 2 shows that assuming one outlier 
glves posterior probability ,734 to one of the observatlons, whereas the most 
likely p a r  only gets probability .147. The Posterior mean of p changes 
markedly as we change from 0 to I outlier but hardly at all when we progress 
to 2 outliers. The sum of the posterior variances of the elements of p is agan 
least for one outlier. 

TABLE 2 
~ a t a  on 25 faetorid exsenrneni, from John (1978) 

DATA 

(1) 1.4 d 5.0 
a 1.2 ad 9.0 

b 3.6 ad 12.0 

ab 1.2 abd 5.4 
C 1.5  cd 4.2 

ac 1.4 acd 4.4 
ac 1.8 bcd 9.3 

abc 1 . 6 a a c d  2.8 

e 1.7 
ae 2.0 
be 3.1 

abe 1.2 
ce 1.9 

ace l .2 
bce 1.0 

aace 1.8 

p06TERIOR PROBABILITIES 

Onr outlier Two outliers 

,736 aa 
,098 d 
,010 acd 
.OO? bce 
,008 abcd 
,008 abcde 

POSTERIOR MEAN AND VARIANCE OF a 
MEAN 

No 
outliers 

0 I 2 

(1) 4.36 4.24 4.22 

a -0.89 -1.04 -1.09 

b 0.46 0 5 8  0.60 

c -0.71 -0.58 -0.58 

d 2.66 2.53 2.51 

e 0.27 0.40 0.42 

ab -0.64 -0.49 -0.44 

ac 0.16 0.31 0.32 
ad -0.63 -0.79 -0.83 
ae -0.17 -0.01 0.03 
ac -0.15 -0.28 -0.27 
bd 0.29 0.41 0.44 
be -0.12 -0.25 -0.27 
cd -0.49 -0.36 -0.36 
ce 0.05 -0.08 -0.07 

de 0.24 0.36 0.38 

Total 

ae 
ade 
bde 

abde 
cde 

acde 
bcde 

abcde 

,147 ad. acd 
,090 a,  ad 
.050 ad, allcd 

,047 ad, bcde 
.040 aa, ace 

,040 ad, abce 

VARIANCE 



4. HOW MANY OUTLIERS? 
While this question is less interesting that the m a n  one of the unkown 

value of p, there are some examples in which it is important to nave a fairly 
clear answer. A central laboratory receiving routine radioimmunoassay 
readings from a number of medical centres, for example, needs not only t d  
allow for outliers during analysis of the collected data, but also to note which 
centres are consistently producing relatively Large numbers of outliers so that 
thew experimental techniques can be kept up to scratch. 

In answering the questlon we always have to be careful not to compare 
models with different numbers of parameters since if we do, using Improper 
priors of different dimensionality, the posterior probabilities we ObtaUI will be 
meanmgiess. Box and Tiao can safely derive the probabilities we quote in 
secaon 2 of 0, I or 2 outliers since their model always has p +  I parameters, 
independent of r. 

TO attempt to do the same for the AB model would be disastrous, 
however, as this has p + i  parameters when r#O but only p when r=O. The 
GDF model carries this problem further as each new outlier adds a new 
unknown parameter. A nave attempt to apply the formal analysis would 
merely lead to nearly all the posterior probability being heaped onto the 
largest number of outliers considered, since it can never do any harm to add 
more parameters. There is much current discussion about what 1s a fair 
penalty to expect a complex model to pay when comparing it with a 
parsimonious one, but as yet no genera agreement. Akaike's (1973) very 
popular AIC criterion cannot be used here as the likelihood functions of all 
tnese models are themselves sums of 2" or, (for GDF) "C. terms each of which 
are products of normal distributions, so that the maximum likelihood 
estimates needed to evaluate the maximum of the likelihood functions are 
impossible to find analytically. 

We propose here to sidestep this general question by pursuing the GDF 
model using proper priors throughout. While this automatically removes all 
doubt about whether the answers are right, it simultaneously introduces the 
need for a sensitivity analysis to see to what extent those answers depend on 
tne particular priors used. 

We first assign prior probability a ,  to there being r outliers (r=O, I ,  ..., 
n, ET. = 1 )  and refer to this as "model r". Within this model we look at all 
"C, possible partitions of the observations and assign prior probability a , , ,  to 
a particular subset being the outliers (E,, ,air1 = 1). Conditionally on this we 
now assign prior densities for the unknown parameters. We take p given aZ as 
p-variate normal with mean b. and dispersion matrix v2B0 and a given a2 as r- 
variate normai with mean a. and dispersion matrix 02A,. Finally we take u v / 0 2  
as chi-square on v degrees of freedom. We suppress the subscript (r) on the 

quantities b.,B,,a,,A., u and v partly for simplicity but mainly because in 
practice it is difficult to envisage how these could depend on the particular 
subset being considered. 

Conditional on any glven subset being outliers, the posterior for 1'3 is 
Student's t with 

h,! = B,,,-'U,,, 

U,,, = n + u  

B,,, = Bo., + X ~ ~ - , , X , ~ - , ,  + xi,,(Ao + I ) - ' x ~ ,  

and 1 B ,  1 .,,2D .<"+",,2 
W(7] I ? )  (I) A o + I I 1 ' z a , , ,  

where U ! , ,  = Bi'b, + x ; . . , , ~  ,,.,, + x&,(Ao+I)-'CV,,,-a,) 

and D,., = b,'Bilb, + uv + y ; , ~ , , ~ , , ~ , ,  + Cv,,,-a,)'(Ao+I)-' 

Cv<,,-ad - d,., 'Bi:,d,,,. 

The posterior mean of p, for example, given model r, is 

the sums being over all "C, possible parations Into rand n - r observatiO~s. 
The prior probability a ,  that moael r is true is changed into the posterior 

probability 

We note that the effect of taking very vague, but proper, priors on a 
within each model is to throw all the posterior weight on r = 0, the simplest 
model, since then IA,+I 1 - l t2 decreases geometrically in r .  Like many 
"modern" results this simply rediscovers the work of Jeffreys (1961). The 
contrast with improper priors which put most posterior weight on the most 
complicated model is, however, so stark as to be worth mentioning agan. 

5 .  SOME TEST DATA 

The trouble with proper priors, of course, is actually specifying them. A 
sensitivity analysis is essential to establish the influence of fairly large changes 
1x1 the priors on the postenor statements. Darwin's data are not a very suitable 
set for seeing how well the above results perform as it is not at all Clear how 
many outliers there really are. Accordingly, 10 random observations from 
N (0,1) were taken. Dataset I was formed by adding 4 to one of the 
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observations, and dataset 2 by further adding -5 to another, see fig. I. Any 
self-respecting method ought to he able to get the right answers in such clear- 
cut cases. 

e eqe .B em e . m 

- 6 - 4 - 2 0 2 4 

Dataset 1 

Dataset 2 

FIGURA I 

We assigned equal probability to the number of outliers r helng 0,1,2 or 
3 and assumed that within model r all "C, subsets of r outliers were equally 
likely. We also took the elements of a to be ident~cally and independently 
distributed N (a,, AQaZ), where UQ and An are now scalars, the same for each 
value for r.  

Thinking firstly of dataset 1, we nnght agree that the "nght" priors are 

The last of these gives prlor mode = f ,  mean = : and varlance 4 for d We 
allow AQ to vary between 10-4 and 10' slnce we know that this will cmc~ally 
affect the answers. These come out to be as m fig. 2(a), that 1s that we get the 
clear, correct message that there is one outlier so long as A.  is not too large. 
When we use the same prlors on dataset 2, however, we get fig 2(b), which 
completely fails to detect the two outliers. This is hardly surpnslng slnce the 
prlor on a is now highly inappropriate. 

FIGURA 2a 

FIGURA 2b 
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Returning to dataset I, if we use N (0,10003 for p we get virtually the 
same result as we do also uslng ~(5 ,1000~) ,  but ~(5.02)  glves fig 3(a) m which 
we end up qulte sure that r = 0 or I but fail to dist~ngulsh clearly between 

2 
them. Replac~ng the prlor for d by 2rr2 %X:, havlng the same mode of j but . 
lnfinlte mean and varlance, makes the results slightly Less sharp but 
substantially unaltered. If we get the prlor mean of a wrong, though, the 
results are disastrous. Figs 4(a) and 5(a) show the effects of taking a, = 2 and 
a, = 0 respectively. The latter can be thought of as the closest the GDF model 
can get to tbe Box-Tiao philosophy. Not surprlsmgly, small values of A, give 
posterior probabilities exactly the same as the prlor ones. As A, mcreases the 
probability of one outlier starts to build up but doesn't get near to being 
decislve before the ~nevltable slide towards no outlier sets m. 

Turmng to dataset 2 ,  the corresponding results m figs 2(b), 3(b), 4(b) and 
5(b) are all disappolntmng, especially the last. Taking zero prlor mean with a 
large prlor varlance for a mlght have promlsed to model successfully the 
occurrence of "two-sided" outliers, but that large prlor varlance proves its 
downfall. A preference for two outliers is just startrng to show when 
Increasing A, pushes the probabilities down towards one and zero outliers. 
Another hopeful prlor mlght be the nnxture A~(4, A,aZ) + a ( - 4 ,  A,$) but fig 
6 snows tnat while this continues to p~ck  out one outlier successfully, it has no 
better luck with two than any of its predecessors. 

Perhaps this poor performance 1s not so disgraceful as it seems at first 
blush. Gentle (1979) reported slmulat~on studies of his proposed frequentlst- 
based outlier aetectlon procedures. For twenty observatlons with p (the 
dimension of p) = 2 two outliers were correctly identified only 28% of the 
tlme. This rose to 74% for 40 observatlons and 82% with 60. One hope for 
our'approacn, then, mlght be to lncrease n m this fashion, but this would 
immediately create the usual combinator~al explosion and beCOme 
prohibitively expensive on computer tlme. By thelr very nature all three 
models can only be used with small sample slzes unless a maxlmum of two 
outliers a contemplated. 

6 DISCUSSION 
The GDF model uslng proper prlors can tentatively be clamed to be 

lnsensltive to cnolce of prlor on oZ and p,  so long as a too-precise wrong value 
of b, IS not used. It IS, however, very sensitive to cholce of a, and care must be 
taken not to set A, too large. There 1s also at present no known prlor structure 
tnat permlts Large positive and negahve contamlnatlons to show themselves 
s~multaneous~y. On the other hand there 1s no set of improper prlors that 
would generally be agreed to be appropriate for this problem. Perhaps some 
of the other papers at this conference will propose a way forward but it mlght 

be that attempts like the AIC crltenon to produce a standard way of 
answering a wide varlety of questions regardless of thelr different contexts are 
doomed to failure. 

Although the questlon 'How many outliers' may easily be dismissed as an 
unimportant one, so long as robust Inferences about p and az are possible, I 
prefer to see it as just one manifestation of the model discr~minatlon problem 
that is the biggest current challenge to Bayeslan statlstlaans. 
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Sampling Inference, Bayes' Inference, and 
Robustness in the advancement of learning* 

G.E.P. BOX 

unrversrty of Wiseonsin-Modison 

SUMMARY 
Scientific iearrung a seen as an iteranve process emplovlng Criticism and Estlmatlon. 

Sampling theory use of predictive distributions for model criticisms eramlned and also 
the implicat~ans for significance tests and the theory of precise measurement. Normal 
theory examples and ridge eshmates are considered. Predictwe checking functions for 
transfarmat~on. serial eorrelatlon, and bad values are revlewed as a therr relatron with ~ ~ . .  
Bayeslan ootlons. Robustness n seen from a Bapeslan vlew pomt and enam~les are glven. 
The bad value IS also considered and campanson withMestlmators 1s made. 

Keytvoru.,: ilrn:\rl\t LF.&RSING; S I O U ~ L  BL#II . I ) I~( ; .  I S F ~ H L \ C T .  D A ~ F S  T I I ~ O K L L I .  
S:\hlPLISti IHEUKI.: PRtOI(.IIIi. DI;TRIBLTIOI(: DI:\ti\OSTIC CHFCK'i. 
~K. \NSfORIIAIIOU~:  StRL.41 CORREL.\TION: 1l:\1> V \ L L  1.5: OLITLLLKS: KORL'sl 
ESTIMATION. 

This IS an extended aostract of the paper ''Sam~ling and Bayes' Inference m Scientific Modellins and 
Robu~mcsr~~ later read before the Royal stat~sucal Soeletv at Cardiff, Wales, on Mav ISth, 1980and published 
m J.  Roy. Sratisr. Sm. A. 143. 

Scientific method Is a process of guided learnlng m which accelerated 
acquisition of knowledge relevant to some questionunder investigatlon 1s 
achieved by a hierarchy of iterations m which induction and deduction are 
used in alternation. 

This process employs a developing model (or serles of models lmplicit or 
explicit) agalnst which data can be viewed. At any given stage of the 
investigation, the current model approximates relevant aspects of the studied 
system and motivates the acquisition of further data as well as its analysis. By 
the use of a prlor distribution it is possible to represent some aspects of such a 
model as if they were completely known and others as if they were more or 
less unknown. 

Now parsimony requlres that, at any glven stage, the model is no more 
complex than 1s necessary to achieve a desirable degree of approxlmatlon and 
Slnce each investigation is unique we cannot be sure in advance that any model 
we postulate will meet this goal. Therefore, at the various polnts m our 
lnvestigatlon where data analysls 1s requ~red, two types of Inference are 
mvolved: model criticism and parameter estimation. To effect the latter, 
conditional on the plausibility of the model, and glven the data, we can, uslng 
Bayes' Theorem, deduce posterior distributions for unknown parameters and 
so make inferences about them. But. before we can rely on such conditional 
deduction, we ought Logically to Check whether the model postulated accords 
with the data at all and, if not, consider how it should be modified. In 
practice, this question is usually lnvestlgated by inspecting residuals, by other 
informal techniques, and sometimes by making formal tests of goodness of 
fit. In any case this Inferential procedure of model criticism whereby the need 
for model modification 1s induced, 1s ultimately dependent on sampling 
theory argument. These principles may be formalized by an appropriate 
analyms of Bayes' formula. 

TWO COMPLEMENTARY FACTORS FROM BAYES FORMULA 

If we accept the prlor probability distribut~on of parameters B as an 
essential part of a model then all aspects of the model. hypothesized at some 
particular stage of an mvest~gat~on, are contamed in the joint denslty obtalned 
by combimng the likelihood and the prlor 

where lM is understood to Indicate conditionality on some aspect of the 
model and y 1s the data vector. 

This jolnt distributlon which 1s a comprehenslve statement of the model 
can also be factored as 



and can be computed before any data becomes available. In particular the 
second factor on the rlght 

. whicn 1s thepredictrve distribut~on, may be so calculated. It 1s the distribut~on 
of the totality of all possible samples that could occur if the model M were 
true. 

When an actual data vector ys becomes available 

The first factor on the rlght is then Bayes' posterlor distribut~on of B 
m e n  Y, 

and the second fact01 

1s the predictlve denslty assoclated with the data set y. actually Obtained. 

If the model 1s to be believed, then the posterlor distribut~on p(8 / y,,M 
allows all relevant estlmatlon Inferences to be made about 8. However even if 
the model were totally mcorrect, this could not be shown by any abnormality 
m this factor whicn 1s conditional on both data and model specification. 
However, plausibility or otnerwlse of obtrunlng such a sample r f  the model 
were approprlate may be assessed by reference of the denslty p(y,IM) to the 
predictwe reference distribut~onp(y 1M). An unusually small value ofp(y, /W 
as measured by Pr(p(y /M) < p(y,llMj casts doubt on the appropriateness of 
the model M. 

Now p(y IA4) 1s an n-dimensional distribut~on and it will usually be true 
that if the model 1s Inadequate tt a most likely to be deficlent m certam 
direct~ons assoclated with unusual values of certaln specific functions g,(y) of 
the data. Examples of such funct~ons are sample averages, vanances, moment 
coeffic~ents, coeffic~ents of serlal correlation, and measures of standardized 
devlatlons from a norm. In every case the approprlate reference distributlon 
to which the realized statlstlc g,(yd) should be referred 1s the distribut~on 
p(g.(y IM)], when the model Mi s  true, derlved by approprlate lntegratlon of 

P(YIM). 
In practice, criticism or diagnostic checking of the model is often 

conducted by vlsual inspection of residual displays and other more 
sophisticated plots. But such a process, although it 1s Informal, still, it seems 
to me, falls within the loglcal framework described above. The statlstlcian 1s 
looking for "features" in the data which would be surprlslng or "unusual" if 
the model M were true. Such a feature can be described by a functlon g{y,) 
and its unusualness, if formalized, would have to be measured by reference to 
P ~ ( Y  M)] .  

DIAGNOSTIC CHECKS AND ROBUSTIFICATION 

A questlon which confronts the statlstlclan at every stage of an 
lnvestlgatlon 1s "HOW complex a model should I use?" An apparently 
d~fferent questlon 1s "Should I use a robust procedure?", but I will argue that 
this 1s subsumed by the broader questlon. The possibilit~es for model 
elaboration are of course limitless. For Instance a commonly used model 
assumes errors to be Independently, Identically and Normally distributed 
(IIN). It 1s easy to lmaglne a sequence of fallback models which begln like this 

MO -M1 -Mz -M3 - 
IIN IIW PIN YPW 

Obv~ously compromlse is necessary; for on the one hand, slmpler models 
can allow better scientific understanding and better estlmatlon. while on the 
other hand, more complex ones can be, but need not be, closer to the truth. 

This ralses the problem of where should the compromlse be made. 
Suppose some deviation from an "ideal" model M, can be parameter~zed by a 
discrepancyparameter P or a vector of such parameters. In each case there are 
two ways to handle the possible model discrepancy, depending on whether the 
parameter p is Omitted from, or Included in, the model. We call these 
diagnostrc checking and robustification. 

Diagnostic checking. If the discrepancy parameter 1s omltted from the 
model then an approprlate diagnost~c check can be made. Formally this may 
be done by referr~ng some suitable funct~on g,(y) of the data to a reference 
distribution derlved from the predictlve distributlonpb IM,). 

Robustficatron. If the discrepancy parameter 1s included then robust 
estimat~on of B is provided by the posterlor distribution 



I n  the last expresslon 
(i) p@) can be chosen to represent approximately the probability of 

occurrence of  different values of R feared in the real world 

(ii) the functlonp.(/3 ly) 1s a pseudo-likelihood which reflects mforma- 
tion about p supplied by the data 

(iii) considered as a function of 8,p(BIP,y) reflects the sensitivlty of 
estlmatlon to the cholce of the discrepancy parameter. 

Numerous authors (Huber, Tukey, Andrews, Hampel. etc.) have 
proposed various methods of robust estimatlon relylng o n  the empirical 
modificat~on of classical estlmation procedures. I seems more loglcal t o  me to 
modify the model which 1s presumably at  fault rather than the method of 
estlmation which is not. Furthermore this has the advantage of clearly 
revealing the assumptions which are belng made. 

The primary candidates for Inclusion in the model (robustification) 
reflect features which mrghf easily elude diagnostic checks a n d  could then 
rnvalidate subsequent analysrs. But, however the model may be elaborated it 
will still be necessary t o  apply diagnostic checks (for example, to study 
residuals). Thus model criticism uslng sampling theory and parameter 
estimatlon uslng Bayes theorem fill different but necessary roles in the 
scientific iteration. 

DISCUSSION 

W.F. EDDY (Cornegre-MeNon Unrversrty): 
I predict that by the end of this century the religious cult of Pure Bayeslan 

Statistics (PBS) will die. There will be no martyrs. Righteousness is not the question: 
God will not decide m favor of incoherence and destroy Las Fuentes as he destroyed 
Sodom and Gomorrah. PBS will die the death of the buggy whip, through disuse. 

Lest I be misunderstood, Dy PBS, I mean the belief that finding the distribution of 
unknown parameters conditional on the dara assumlng the frufh of fhe model is fne 
objective of slarisfrcs. The fundamental difficulty with PBS is that all inference 1s based 
on the truth of the model. And despite disclamers I doubt that any Dractlclng 
stataticlan believes m the truth of his model. 

Professor Box apparently agrees. As 1 understand his tbeas, one first uses 
sampling theory to find a "true" model and then uses Bayes theory to estimate the 
parameters m this model. The thrust of his argument is that allowance must be made 

for the possibility that the model was not sufficiently broad and thus the pnor 
distributlon didn't really account for all uncertanty. On the face of it, this is a valuable 
thought. 

However, Professor Box suggests that one should consequenuy do diagnost~c 
checking. That is, after finding some unusual aspect of the data one should comoute a 
discrepancy functlon and compare the observed value with the appropriate reference 
distribut~on. 

This, I believe, is a mlstake. Because the part~cular discrepancy function was 
chosen after looking at the data the reference distribution will usually suggest the 
observed value IS unusual: but this is exactly the reason we computed the discrepancy 
functlon in the first place. Comparing an ohserved discrepancy to a reference 
distribut~on can only be useful for specific aprloridepartures from the model. 

This is not to say that examlnlng residuals and com~utlng discrepancies 1s 
worthless. On the contrary, there 1s no substitute for careful residual analysis. 
Professor Box and I agree on this point and its implicanon: Model Building/Data 
Analysis is subjective. Different people see different things m thelr data and 
consequently add different parameters to their models. 

I don't believe. however, that Professor Box has solved the fundamental dilemma 
of statistics: How to generalize from the specific data at hand? 

Professor Freeman has presented us with a very practical comparison of several 
"outlier" linear models. I have been ~ntngued by the models and then implicahons but 
I am Duzzled about their Bayeslan-ness and thus the quotes around "outlier" In 
common usage, an outlier 1s an observation which appears to be different than the rest 
of the data (I emphasize appears because it 1s obviously a subjective matter which 
asoects of the data one examlnes). Now the Bayeslan 1s compelled to choose his 
model(s) before seelng the data and thus, it seems to me, is m a quandry as to how to 
include the outliers m his model slnce he doesn't yet know which aspects of the data 
appear to De different. Since the models here are obviously geared to location and scale 
shifts (slippage outliers) perhaps the outlier-ness of the models a not to be questloned. 
The solution to my puzzlement may be that Professor Freeman uses the term "outlier" 
as shorthand for "what a non-Bayesian would call an 'outlier'." Enough philosophy. 

By partitioning the data into outliers and non-outliers he wrltes the postenor 
distrihuhon of p as 

This devlce has two advantages: first, it allows analysls to proceed conditionally on 
Dartlcular observatlons belng outliers and thus greatly s~mdifies calculations: second, it 
allows subsequent inference about which observatlons are outliers. Professor Freeman 
considers three specific outlier models: BT, AB, GDF. All three models suppose that 
the outliers are uniformly distributed over the observatlons: a more realistic model 
might distribute them conditionally on X. 

The BT model says outliers have the same mean but are scaled by a factor of k. 
The posterior  roba abilities (W,.,) will be largest when the outliers are observatlons at 
one or both extremes. The AB model says all outliers have a different (common) mean. 



Consequently, the posrerlor probabilities will be largest wnen the outliers are a group of 
observatlons at one extreme. The GDE model says outliers each have a different mean. 
Thus, they are elimlnatea from the analysis since they contaln no lnformatlon about 
either 0 or 02: furthermore, the W,. ,  will be largest when the outliers are two groups. 
One at eacn extreme. 

All three of the models can be viewed, conditionally on partlcular observanons 
being outliers, as we~ghted least squares with the welghts depending on the Dartlcular 
outlier model. That is, for all three models 

i?,., = (x'y,.,X)'XrV,,ay 
S?., = CV-XP,.,)' V,.,CV-XP,.,) 
B,,, = (u,.,/s?.,)X' Vcr,X 

and 
W,., m c,,, X'V, . ,X  -'lZs,., 

For s~mpliclty suppose the observatlons are permuted so the r outliers Occur first 
Then for the BT model 

a i  l and 
c"' = [k<l-m), 

for the AB model 

where J, is an r x  rmatrut of ones 

U,.) = n-v-l, 

c,., = (~ / ( l -a ) ) ' r - "~ana  

for the GDF model 

The great advantageis tnat we can now examine the V,., to see if we really want to 
use a Dartlcular model: we can quickly examine new proposed outlier models. 

I personally find the GDF model somewhat disquieting; completely lgnoring 
extreme observatlons seems dangerous. An alternatlve I would prefer is a m e d  BT-AB 
model as follows: With probability a? each observation has mean X0 +a, and varlance 
kZioZ for j = 1 , 2  and with probability I-a,-a, eacn observatlon has mean XP. Take 
a,,a~,K,,kz known and uniform (improper) Dnors on /3,6,,6,, and log o. For r, and r, 
outliers. respectively, this yields (in obvlous notailon) 

This model uses either locatlon or scale (or both) ~nformatlon from the outliers: 
only wnen the 1's are one does it reduce to the GDF expedient of ignorlng data. 

A. O'HAOAN (Unrversny of Warwick): 
Professor Box argues tnat sampling theory methods are appropnate m diagnostic 

checking, and 1 strongly disagree. But whilst elaboratlng on this, let me say what a 
pleasure it IS to find that be e actually tackling the rlght ~ rob lem In basically the right 
way. The crucial pomt 1s the recognition that every stat~st~cal analysxs, Bayeslan or 
otherwise, is conditional on the trutn of its assumptions. Any analysis which goes no 
further, which does not challenge these assumptions. is mcomplete. So Professor Boxis 
nght In pointing to a need for procedures for diagnost~c checking. And with the 
accuracy of an expenencea data analyst he chooses the rlght tool, the predictive denslty 
p(y/M). Then inconceivably ne uses the tool m entlrely the wrong way. There 1s a 
perfectly natural Bayes~an approach which uses the predictive aenslty but never lapses 
Into the discredited sampling-theory use of tail area probabilities. 

Consider the basic model M and an alternatlve M,. Conditional on M we obtain 
the baslc Dosterlor dens~typ(O/y,,M). Or conditional on M, we could obtan a different 
Dostenor denslty p(B/y,,M,). We now widen the analysls by condition~ng on the truth 
of either M or M,. We need extra prlor probabilities P(M/M or M,) and P(M,/M or 
M 3  = 1 - P(M/M or M,), then the uostenor analysls is completed by finding the 
corresponding postenor probabilities P(M/y,, M o r  M,) and its complement. This can 



be done uslng Bayes' theorem, which gives: 

P(M/y,,Mor M 3  P(M/M or M,) 
= F. 

P(M1/ya,M or M,) P(M,/M or M,) 

where 

rs the so-called Bayes factor, which converts prior odds Into postenor odds. This 1s 
where the predictive denslty enters the analysis, but since the approach Is Bayes~an and 
obeys the Likelihood Princlule, only the predictive denslty for the observed yd 1s 
relevant. By looking at tail-area urobabilities, involvlngp(y/M) for other vidues of Y, 
Professor Box is making a fundamental deuarture from the correct Bayes~an solutlon. 
Whyshould he do this? 

Perhaps the answer is that his approach seems to avoid the need to suecify the 
idternatwe model M,. Formally, of course, we cannot discredit M without 
consideration of alternatives. It is to be discarded if u(y,/E/nis small not relative to the 
value it might have taken had some other sample been observed, but relative to the 
value it would take under some v~able alternative M-. The word "vlable" is to convey 
the fact that P(M,/M or M J  should not be extremely small, othenvlse a very small 
value of Fneed not lead to posterior odds strongly favouring M,. 

In uractlce we cannot formally consider all the possible alternatlves, and if 
Professor Box has succeeded m avoiding the need for them then this 1s quite an 
achievement. He actually refers to the way his procedure mght  be applied informally, 
m uractice. as follows. 

"In practlce ... diagnostic cnecking ... 1s often conducted by visual inspection 
of residua displays or other more sophisticated plots ... The statrstrclan is 
looking for features m the data which would be surprising or unusual if the 
model M were true. Such a feature can be described by a functlon g(y,) and 
its unusualness ... measured by reference top(g(y)/iM)." 

The reason for suddenly rntroduclng g(yJ a mentioned in his ureceding 
Daragraph, but 1s much better shown in an example which unfortunately does not 
appear m the shortened version of the paper. This example was of a sample. acoording 
toM, from a normal distribut~on. Indiagnoshc checking in relat~on to this example, he 
clearly has m mind the ~ossibility of outliers as one potentially surprising feature of the 
data. But the ~ ~ e d i c t l v e  denslty p(ys/iM) deuends only on the suffic~ent statistics sZ and 
j. Therefore d registers only weakly the sururise we feel when the data suggest the 
presence of outliers. for then it is more the  att tern of data pomts than the11 locatlon or 
surend which catches our eye. But clearly Professor Box can choose a g(y3 which 
would reglster our surunse much more strongly. This 1s why g(y) is a necessary artefact 
m his approach, but of course the cholce of g(y) 1s no different from a cholce of 
alternatlve model. 

The correct Bayesian approach makes it clear that surprise 1s not enough. What a 
uractising statistican does when he looks for surDnslng and interesting features in his 
data is more so~histlcated than Professor Boxsupposes. He may have no alternatives in 
mind ex~licitly beforehand. and may find it difficult to formulate one afterwards, but 
vlable alternaoves are implicit in all the ways m which he chooses to look at his data. 
This is where his skill and experience tell - m what he chooses to look at. m what he 
registers surpnse at. His reactlon s~gnifies not ody  that u(yd/iM) is small (surpnse!) but 
also that his exuenence tells him that he will probably be able to find an aternatwe M, 
such thatp(y,/MJ is much larger, i.e. the surunse 1s removed, and such that P(M,/M 
or M,) is not negligible. 

The case of surprising outliers leads neatly to Professor Freeman's uaper. He 
presents three different alternatlve models, each of which allows a mechanlsm for the 
occurrence of outliers. Each would in general greatly reduce the level of sururlse we 
would feel when confronted by data exhibiting outliers, but each mechanlsm is 
different. Consider Professor Freeman's anaysls of the Darwm data. On the 
assumption that there are two outliers the Abraham-Box model fails to identify "the 
most obvlous Dalr (-67, -48)" as the cul~rits. and he concludes that "The lABl model is 
clearly not a good one for identifying outliers" The conclusion is far too strong. The 
Dolnt IS that if we believe the AB model to be approunate then (-67, -48) is not a terribly 
obv~ous outlier u a r ,  since to accommodate both these as outliers with a single value of 
the discreuancy uarameter 6 still necessitates large residuals. The element of surprise is 
still qmre strong. Whereas under the BT model, for examale, the Darwin data would be 
much less surprising. The concluslon is that ifthe BT model were aprrorr viable then 
the data would favour it through the Bayes factor F, and we would say that the AB 
model is urobably not correct for theseaota. 

Professor Freeman's other examples are slmilar. What he sees as an outlier may 
not be the kind of outlier generated typically by one or other of the three models. 
Performance is Inversely related to surunse. The examples are mstructlve because they 
tell us something about the different outlier-produclng mechamsms of the various 
models, which in practice will help us to assess prlor urobabilities. 

It 1s mterestmg that by focussing his attention on identifyrng outliers Professor 
Freeman places very different emphasis from Professor Box, who would be more 
concerned with estimating p. The unstated imulicatlon 1s that all three methods would 
y~eld robust inference about 0. but this v, not true. The AB method ?.Imply gwes 
suspected outliers a reduced welght, and if they devlate far enough from the others 
their mfluence can be strong. In O'Hagan (1979) I have looked at how robustness can 
be achieved simply by assumlng that the data are sampled from a distribut~ou with a 
suitably thick tail. Outlier rejection will then take place regardless of our pnor 
distribution for p. It is Interesting that, m an earlier uaper than their one on outliers, 
Box and Tiao (1962) examined the Darwln data under thick-tailed alternatlves, but that 
none of their distributions had thick enough tails to guarantee outlier rejection (see 
O'Hagan (1979)). I hope to uublish uurnerlcal results soon. 

I would like to end by emphasising that I found both papers profoundly 
stlmulatlng, and that, if I have appeared to be highly critical, this is merely because the 



questions they ralse are so important and so deep. I would like to congratulate and to 
thank both autnors. 

J.M. BERNARDO (Onrversidodde Valencia): 
Professor Bars thought provoking paper distinguishes between model criticism 

and parameter estimation and goes on to advocate a (conditional) Bayeslan analysls for 
the Latter but a frequentlst-type one for the former. 6 feel tnat the division between 
model and onor is somewhat illusorv. What one really needs 1s the loint distributlon 
~(x.0)  and it is only tradition which gwesp(x8) map(@)  a different theoretlca status. 
Indeed when one uses some sort of plot to 'test' empirically p(x10) what one is really 
'test~ng' is rather the predictive p@). Wbether you callp(x,O) a 'model' or 'a pnor' is 
unimvortant, but it seems to me that empirically testable vrediction conditional to 
p(x,R) is often what is precisely neeaea 

P.J. BROWN, (ImpenaiCoilege, London): 
Some of the discusslon on outliers so far today does seem a little unreal. In my 

expenence identification of an outlier 1s just a signal to Investigate further. On closer 
lnspectlon and with more data there may well be good reasons to so regard it. In 
electlon nlght forecasting, for examvle, 'stnngers' waiting at the countlng halls are 
relied uvon to telephone in the results as soon as they are declared. It 1s understandable 
that a few may take to alcohol to while away the long n~ght. An absurd result, if 
flagged, will result m further corroboratory telephone calls to the constltuency. Thus 
this outlier problem is sequential. 

I would like to see much more precision in the definition of the term 'outlier' 
Obviously tnere are workable definitions outside that of data transmlsslon errors but, 
without more careful examination of the utility of the concept and its realisatlon. I 
think one cannot vroceed beyond accepting tnat there are a number of different 
ppssible conclusions, each havlng some plausibility. 

A.P. DAWlD (Thecity Unrversrly): 
It is not necessarily true, as Professor Box suggests, that the use of imvroper prlors 

does not allow model critiasm. Suppose our observation n y,  with the binomlal 
distributlon B(n;O), and we use the Improver pnor distributron 8(0,0), viz. 
a(0) a R-'(I-@)-'. considered, say, as a linut of P(cr,w) with ru - 0. The limiting 
~redictlve distributlon has Ply = 0) = P@ = n) = %, so that any vaue  0 < y < n 
discredits this "model-cum-pnor". However, if we believe the weak spot to be m the 
vrlor specification, rather than the sampling model, we should not be too hasty to 
discard our assumptions, since our posterior distributlon 1s not likely to be sensitive to 
the cnolce of pnor. Somewhat paradox~cally, it is for the casey= 0 (or n), which does 
not discredit the lmorover vrlor, that we must be most careful about svecifying the 
"true" Dnor distribution. This example ~ndicates to me thar model-checking uslng 
vredictive distributlons may not always be appropnate. 

J.M. DICKEY (Wnrversrry College W&, Aberysfwylh): 
Professor Freeman has not made the assumptlon of condition continuity in his 

paper here on outliers, m the sense that m Secuon 4 his prior oplnlon concerning a 
single outlier 1s not necessarily the same as if he had been told that of two outliers one 
nad zero disturbance. I am wondenng what kind of relationship one would want 
between these Integrable vnor distributlons conditional on different models. (See my 
discusslon to the Paper by Professor A.F.M. Smith in these Proceedin~sl. . ~ 

I don't like the assumptlon m Section I of a uniform improper pnor distributlon m 
as many dimensions as the number of outliers (G.D.F. approach). In DnnclDle, the 
number of dimenslons can be as high as the sample size, and constant nonlntegrable 
densities are notoriously troublesome in high dimenslons. 

I hope Professor Freeman will develop further his interesting mtegrable-pnor 
methods (Section 41, and revort his experience m thelr use bearlng on the lmvortant 
questlons of cholce of Dnor distribution. 

I. J.  GOOD (Virg,nraPolyleenn~c andSmle Wnrversrly): 
I am pleased to see tnat so distinguished a statlsticlan as Professor Box has 

emvhPslzed a Bayes/non-Bayes comvromlse or synthesls because thar has been my 
philosophical position for a long time, although I regard the Bayeslan side of it as more 
fundamenta. One examvle of such a marriage, espec~ally close to the theme of 
Professor Box's lecture, is the use of orthodox significance tests for chooslng a 
hyperparameter, and for testlng a Bayes~au moael, for denslty estlmauon and bnmp- 
hunting. This idea was presented in August 1974 in the lnvlted General Methodology 
lecture at the annual meetlngs of the Amencan Statistical Assoclat~on m St. Louls, 
Missouri. Practlcal applications of the method are aven m Good and Gaskins, (1980). 
In the Journal of the American Statistical Association, 75 (1980), 42-73 (with 
discuss~on). 

By saylng that the Bayeslan side of the coln IS more fundamental I mean that the 
use of tail-area probabilities can be roughly justified by Bayesian arguments when it 
can be justified at all. (See my contribution to Professor Barnard's semlnar for 
references). 

A.F.M. SMITH ( Wnrvernty ofNoiiingnom): 
Box argues that criticrsm must ultimately appeal to sampling theory for its 

justification. He may well be correct, out 1 am not convlncea that the development 
given here succeeds m clearly demarcating an area of critical activity tnat 1s out of 
bounds to a Bayeslan. There would seem to be, m Droad terms, a one-to-one 
relationshiv between any diagnostlc checking procedure and an rmplicrf family of 
alternatlve models. Indeed, Box comes close to conceding the vrlmacy of such imvliat 
aternatives when he turns to "Choosmng the diagnostlc checks" The ensulng 
discuss~on of "Diagnostic checking and Robustificat~on" appears to acknowledge this 
one-to-one correspondence and thus, surely, to admit that whatever can be probed 
using a diagnostic check function can also be probed by using Bayes factors against 
appropriate alternatlve models. Some of the authors general discusslon seems lntendea 



as a defence agalnst this latter accusatlon, but it has equal force, or rather lack of it. 
agamst both approaches. Either we attemut no criticrsm (i.e. no diagnost~c checks. no 
Bayes factors) or we attempt some limlted critic~sm (i.e. apply afinife number of 
diagnostic checks, calculate a correspondingfinrte number of Bayes factors). In neither- 
case can we test aganst all possible departures (usmng allpossible diagnost~c checks, or a 
totally comprehensrve model). 

I am not disposed to think that "it" (the advancement of lcarnmg?) can all be 
done with Bayes, but I do feel that the kinds of local model criticism discussed in this 
Daper can be carrled out within the Bayes~an framework and that, at most. we are here 
discussmg rather Dragmatlc issues and not fundamental questions about mferentmal 
Daradigms. 

REPLY TO THE DISCUSSION 
P.R. FREEMAN (Lercesler Unrversrly): 

Several discussants mentioned the need for a proper definition of an outlier, so 
that we are all clear what we are talking about. It seems to me ~mpossible to ever get a 
fully operatlonal definition, although we can all recognlse an outlier when we see one, 
since if we try to model formally all the possible kinds of outlier, we shall end nu with 
something which 1s far too complex to be of any use. For examule, Professor Eddy's 
suggested model galns in flexibility, certainly, but loses m comDlexlty slnce we would 
have to take a double sum over all values of r, and r,, and the combinatonal explosion 

would defeat us for evenvery small sample slzes. 
I think that outlier identificat~on is lmDortant smce ideally we want to do the 

sequent~al checks just as Dr. Brown describes (and to ensure that the faulty "stringers" 
are not emDlOyed at the next election). There is no real substitute for the hard work of 
going back over records and finding the exact source of error (or for failing to find any 
erto:), and for then re-analysing the data with the susplc~ous values either corrected, 
deleted or  left unchanged. But m the real world this a lust far too much trouble and 
some robustness of analysls is also desirable so as to save much of this work. It was m 
this sense that I criticised the AB model. I should have said that it 1s not flexible 
enough to detect some kinds of outliers that I think I would like to have detected, 
namely those occurring at both ends of the data. 

I take Dr. O'Hagan's polnt that we need some automatic Drotectlon aganst very 
extreme observatlons. The GDF model does this by ignonng them completely, but I 
agree that models with thick tails should be used In many sltuatlons where we 
dangerously use normal tails at present. Dr. Eddy finds this asoect of GDF 
unattractive, but 1 would justify it by saylng that the overall effect 1s somewhat 
comparable to that of the lack knife with the more sensible refinement of taking a 
woghted average of the results obtaned by Uoppmg one or more observatlons at a 
tlme. The extremely devlant values only get Ignored comDletely when they are so far out 
that one subset attracts all the Dostenor weight to mtself. 

I thank Dr. Eddy for unifying tne notatlon of the 3 models. I only wish I had 
thought of dolng so when 1 wrote the paper. 

Professor Dickey comes close to the heart of the ~rob lemats  area of my paper-the 
cholce of pnors. I ,  too, am Derturbed by the ImproDer Dnors m the GDF model. 
though Uley do In practlce glve beautifully robust results for parameter estlmatlon. I 
am not too worned by the lack of condition contlnulty m my mors  as I can see no 
rntuitively compelling reason to obey that condition and it 1s not, as far as I can tell, an 
essential requlrement for coherence. The deDendence on the enact form of the 
conditioning again makes me sceptical of its usefulness. 

The ~ r o ~ e r - ~ r l o r s  sectlon of my paper still seems to me to contravene what was 
enunciated verbally at the conference as Lindley's prlnclple - that if you take a 
problem. treat it coherently and use sensible Dnors you will always get a sensible 
answer. It is not clear to me what  art of the conditions I am vlolatmg, thought the 
answers I get are disappo~nt~ngly misleading. Perhaps the attemps t o  discnmmate 
among members of a nested family of hypotheses 1s doomed to failure due to lack of 
enough data, whatever the pnors. Only further work and deeoer considerat~on will 
tell. 

G.E.P. BOX(Un,versrry oJ Wisconsin): 
It 1s DerhaDs hardly sur~rising that I have not been totally successful in convlnclng 

a conference of Bayes~ans of the auxilliary need for Sampling Theory and I have 
symuathy with some of my critics. 

In resvonse to Professors Smith, O'Ilagan and Eddy, my man  polnt 1s that smce 
Bayes 1s conditional. if it 1s to be used exclusively In the Dursuit of an adequate model, 
we lnev~tably find ourselves engaged in a game of "Yes but". It is rather as if, when I 
was Drepanng for my early mornlng dash to the amor t  on leaving Los Fuentes, my 
conversation with the hotel manager had gone as follows: 

Do you think I can catch my plane? 
Yes, if the taxi is on tlme. 
Do you think the tax1 will be on tlme? 
Yes if the taxlman gets UD eany enough. 
DO you think he will get UD early enough? 
Yes if his wife remembers to wake him. 

etc.. etc. 

More s~ecifically, however far the model building process had been carrled by 
Bayesian methods the final model would still be 

ana there remalns me n-dimensional space of the marglnal ~redictlve distribution 
p(yMk) which has not yet been explored and which can, on a sampling theory 
argument, discredit the relevance of the assumDt1ons on which Ule Bayeslan analysls 1s 
conditional. 

1 grant that, as soon as we start to consider specific alternative models, then 
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Bayesian verslons of diagnost~c checks are available. In particular for the case of a 
discrepancy parameter 0 taking the vaue 0 = 0, for an ideal model M, one way in 
which this aualitv mav be formalized is as follows. A natural funchon of the data to  . . 
consider for making diagnost~c checks 1s 

But slnce .D.(@ Y )  = u(P y)/u(P) we see that p.(PIy) = ~ ( ~ 1 0 )  so that g,(y) 1s 
Fishers score functlon for the parameter R. So it may be argued why not lust look at 
the distribut~onp,(P / y)? 

The amount of effort that can be exuended on any Dartlcular analysls is finlre and 
we may not want to expend a full Bayeslan analysls on every discrepancy that occurs to 
us. In mauv cases the moael builder would he satlsfiea with era~hical  cnecks. Even so - .  
such checks need not be entlrely ad hoc and inaeed it is possible to show that g,(y) 
defined above 1s often valuable m showmg the form that graphica cnecks should take. 

I, of course, agree with Dr. O'Hagan that the predictlve rat10 !~(ylM,)/p(ylM~) 
can be used not only to Indicate the appropriate form for diagnostic checking 
functrons. but also m the direct Bayeslan assessment of the relatlve evidence of any one 
moael versus another. Notlee, however, that the Inherent Bayeslan limltatlon of 
conditionality ensures that, however large this rat10 may be, the preferred model M, 
can still be manifestly implausible becansePrlp(y IM,) < p(y,IM,)] is small. 

I am grateful to Professor Good for his enconragmg comments and references. 
Consider Professor Dawid's example when the limlt a = 0 is not approached, 

remembering to make aue allowance for the fact that while B is continuous is discrete. 
The cho~ce of pnor P(w,a) 1s equivalent to snpposmg a uniform prlor m 
#= lsl(l-lp-'dt. If we taKe a =  i the predictlve distributlon p(ylM) 1s such that 
uW/NIM) = (N+ l ) . '  (y = 0,1,2, ... M and the predictlve cumulative distribuhon 
ulotS as a linear "stalrcase functlon" against ?/N. Thus supposed indifference about B 
Itself results in no predicuve critical ability for y/N. But suppose following Jeffreys we 
sec a = X, then 4 = sln-'40, 0 r 4 5 a/2. The corresponding predictive distributlon 
for sln-'&/M is, of course, unequally spaced but agan the cumulative distributlon 
even for small samples approxlmates a stralght line and supposed indifference about 
sm-'J0 rerests in no uredictlve critical ability for sm-'J(y/N). The approxlmatlon holds 
for other non-zero values of a ,  however, as we go to the limlt a =O the range for @ goes 
from -m to + m and consequently the discrete predict~vc distributlon 1s dominated by 
vaues corresponding to y = 0 and y = N which are lnfinltely removed from other 
realizations. I would argue, therefore, Ulat this example reconfinns the unsuitable 
nature of this uartlcular pnor, the unsuitability of which as Professor Dawid says 1s not 
clear from consideration of the postenor distribuhon which over the range considered 
1s sensitive to  the cnanges discussea. In chooslng prlor distributions we must clearly 
consider therr predictive consequences. 

Although I much enjoyed this Bayeslan Conference, there was for me an eene 
feeling that something important was masmg. Bayeslan Inference 1s an Instrument for 

use m sclentific enaulry. But except for a couple of rather distant echos we seemed to 
have talkea for a week securely Insulated from the world of real investlgatlon. It has 
been said that 

"Theory and Practice are like man and wife m a happy marnage; 
each complements and InSDlrCS the other and without lnteractlon 
between them there can be no new life" 

Certanly the work of such pract~cloners as Gauss, Laplace, Danlel Bernoulli. Fisher 
and Jeffreys provides n o  reason to  doubt this aphorism. 

I believe lt is agreed that sclentific lteratlon employs m alternation the dual 
processes of moael critiasm on the one hand and explodatlon of the tested model on 
the other. Suppose we accepted, as I suggested in my paper, that two different kinds of 
Inference are neeaea to conduct these two different activities convemently. Suppose it 
was agreed that the first actlvlty (which subsumes moael s~ecificatlon/identificat~on 
and tests of fit) although often conducted informally under the name of Exploratory 
Data Analysls ultimately requlres Sampling Theory for its justification, while the 
second requlres Bayeslan Theory. Then it would De understandable why a wrely 
Bayesian conference would have little to say about any real scientific mvestlgatlon (and 
perhaps a conference entlrely devoted to "Exploratory Data Analysis" mlght be 
equally disappomntmg). 

It is rather as if we called a conference of arplane pilots* who knew everything 
about landing a ulane but nothing about how to take off (or vice versa). At such a 
conference there should be little surpnse if in a welter of papers v~ewmg from every 
angle the finer theoretical points of landing an arplane the discussion seldom turned on 
going anywhere or on lnterestlng voyages expenencea. 

*The" might more orowilv be callca ''landers'' rather than ~ilots,  lust as some ot US are called 
Bayeslan~ rather than Slatatieians. 
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Improving Predictive Distributions 

M.H. DeOROOT 
Cornepre-Mellon Univemty 

SUMMARY 
Consider a sequence of decision problems S,,S,, ... and suppose that m problem S, 

the statlstician must specify his predictive distribut~on F, for some random variableX and 
then maee a decision Dasea on that distributron. Far example, X mlght be the return on 
some particular investment and the staostician must aecide whether or not to maee that 
mvestment. The random variables X,,X,, ... are assumed to be Independent and 
completely unrelated. It a also assumed tnat each predictwe distribuuon F, asslgned by the 
statrstician e a subjectwe distribuuon based on his lnformat~on and beliefs about X,. In 
this context, the standard Bayeslan approach provides no oasis for euauatmg whether the 
statlsticianis subjective predicttve distributlon far X. is goad or bad, ana does not even 
recagmre this question as onng meamngful. In this pamr we describe models m which the 
statlstician can study his process for specifving predicwe distributrans, identify bad 
habits, and improve his predictions and decisions by gradually breaking there habits. 

Kqvlrora.~: \UBJE<TI\'F PROBABILITY: I'KIOR D I F I K I H L I I O U S .  ?PTCIIICAIIOU DI1\5: 
I FAKN1NG;SEQl T N l I  \ I  UtClSlON h l4KIUG.  P R F I ) I C I l V t  OISTRIRUI IUKS. 

L INTRODUCTION 

Consider a statlstlcian who must specify his sub]ective predictwe 
distributlon for some vanable X. Suppose tnat after duly considermg all of his 
available mformatlon, the stahstician specifies a particular normal 
distributlon as his predictive distributlon for X. Suppose also that the value of 
X is subsequently observed and is found to Be far out m the tail of the 
stahstlcian's distribution. 

How should tne statistician react to this observatlon? The Bayesian 
approach to statistics provides no answer to this questlon. In fact, it does not 
even recognize the question as belng relevant or meamngful. As long as the 
statlsticlan supplies a proper probability distributlon as his predicttve 
distributlon and makes denslons that are optlmal with resuect to that 
25 



distribution, and as long as the observed value of Xactually lies in the support 
of his predictive distribution, there 1s no reason to question that distribution 
and no mechanlsm for doing so. 

Although much has been wrltten on how to specify a prior or predictlve 
distribution [see e.g., Savage (1971) and Hogarth (1975)l and on the pltfalld 
for the unwary statistician [see, e.g., Spetzler and Stael von Holstein (1975) 
and Tversky and Kahneman (1974)l; little or nothing has been written on how - to check back to see if the distribution was reasonable. Indeed, a prior or 
predictive distribution is regarded as the statistician's personal oplnlon and it 
1s not to be challenged or questioned. 

In practice, however. I believe that there are four possible reactions to an 
observation that falls far out m the tail of a predictive distribution: (1) The 
statlstician could feel that his prior tnformatlon was bad and misleading, In 
the sense that it had indicated that Xwas not likely to lie in the region in which 
~t actually did lie. (2) He could feel that a rare event had occurred because a 
very unusual observatlon has been obta~ned. (3) He could feel that he had 
made his predictive distributlon more concentrated than he should have solely 
on the basis of his available mformatlon, and that his distribution should have 
been more spread out m order to better accommodate the observed villue of 
X. (4) He could feel that there is not, and should not be, any relation between 
his predictwe distributlon and the observed value. 

We can probably rule out reactlon (4) on the pragmatic basls that the 
statlsticlan should try to make his predictive distribution represent his view of 
where X is likely to fall as much as possible. However, it is typically not 
possible to decide which of the first three reactions is most appropriate on the 
basis of just a single observatlon unless two or more statisticians have 
specified their predictive distributions for X, in which case we can make 
comparisons among them [see e.g., Roberts (1965) and DeGroot (1970). page 
1541. In this paper we shall study just one statistlcian who must repeatedly 
specify his predictive distribut~ons in many different problems as they arise. 

Specifically, we shall consider a sequence of similar but unrelated 
declslon problems S,, S,, ... and we shall suppose that in problem S, the 
statistician must specify his predictive distribution F. for some random 
var~able X. and possibly make a decislon based on that specification. For 
example, X. mlght be the return on some particular investment, and the 
statistician may have to decide whether or not to make that mvestment. The 
statement that the problems S,,S,, ... are unrelated is meant to mean the same 
thing as the assumption that the var~ables X,,X,, ... are independent. 

Suppose that the statistician finds that m a large proportion of these 
problems, say 80 percent of them. the observed values of the variables lie far 
out in lower tail of the specified predictive distributions, say more than five 

standard deviations from the mean. Since Bayesian theory tells the statlsticlan 
that his predictive distributions are just as valid as anyone else's, he might 
simply think that he has had an unusually severe run of bad luck. It is much 
more reasonable, however, for the statlstlclan to feel that in some sense the 
world is different from his perception of it as represented by his predictive 
distributions, that his perception has some systematic bias, and that he should 
change his perception and his predictive distributions. This idea is also 
ment~oned by Winkler (1967). 

A "ratlonal" person cannot go through life continually belng surprised 
by his experiences and observations. After a while, he will revlse his 
perception so that the unexpected becomes the expected, and observations 
that were formerly surprismg become routine. The "ratlonal" person who 
regards the rising of the sun each morning as a sequence of independent trlals 
may be surprised for a while to discover the sun each morning at dawn, but 
after a week or two he will merely yawn, turn over in bed and go back to sleep. 

In this paper we shall present some models of the process by which a 
statistlcian adjusts his perceptions and the way in which he specifies predictive 
distributions. In effect, these are models of how the statisticlan can Learn 
about his own biases and errors m the specification of predictlve distributions, 
and how he can adjust for them and gradually eliminate them. 

Before beginning the development of these models, we conclude this 
section with two comments: 

(1) Since we are studyng a sequence S,, S,, ... of similar and independent 
declslon problems, we could model the process by which the statistician 
adjusts his predictive distribution in "frequency" or "sampling theory" 
terms. For example, we could develop models in which statlsticlan changes the 
way he specifies predictive distribut~ons if some test of significance mdicates 
that the observed X;'s were not generated by the predictlve distribut~ons F,. 
However, since we are trylng to model the process by which a Bayesian 
statlsticlan adjusts his subjective distributions, it seems more apt to use a 
~aykslan model. 

(2) Although the declslon problems Sl,S,, ... are mdependent, they do 
have one element m common that permits learnlng and adaptation from 
earlier Si's to later ones. The common element is the statlsticlan himself, and it 
is the statlsticlan's behavior that we are trying to model. 

2 NORMAL PREDICTIVE DISTRIBUTIONS 

We shall continue to consider a sequence of declslon problems S,, S,, ... 
In which the statlstlcian must specify his predictive distributions for Xl,X2, ... 
It will still be helpful to think of the specific context in which X 1s the return 
on some mvestment. and we shall use that terminology whenever it 1s 





observlng the outcome of S, about the type of specificat~on errors that he 1s 
likely to make and, consciously or subconsclously, he will use this knowledge 
about his own personality when he Initially specifies the predictlve distribut~on 
of Y,. Hence, the specificatlon bias for Y, 1s likely to be smaller that rt was for* 
y,. 

The maln thrust of the remainder of the paper will be to develop models 
In which the statlstlclan tends to reduce his specificatlon bias m succeslve 
problems and ultimately eliminates it entirely. Thus, in the l im~t,  the 
predlctlve normal distribut~on that he Initially specifies at  the beglnmng of a 
declslon problem will actually represent his subjective o p ~ n ~ o n  without any 
further second-guessmng or other adjustments. We shall now present some 
slmple models of this type. 

4. MODELS OF THE LEARNING PROCESS 

After the value Y, = y, has been observed in the declslon problem S,, the 
statlstlclan will calculate the posterlor mean p; of his specificatlon bias 8, and 
carefully contemplate its value. Since p; is the statlstlcian's mean value for his 
specificatlon bias, we shall assume that the result of his careful contemplation 

IS that he SubcOnsClOuSly changes his bias m the next problem by an amount 
equal to some fractlon of I*;. In brlef, we shall assume that 

where Y IS a fixed number (0 <r 5 1) .  
The entlre process evolves as follows: In the problem S&= 1.2, ...), the 

statlstlclan will initially be tempted to specify that the predict~ve distributlon 
of a certaln var~able Y. 1s N(0,l). He will recogmze, however, that because of 
his specificatlon bias, he should actually specify that the predict~ve 
distributlon of Y. 1s N(O,,l). The statlstlclan will asslgn a prlor distributlon to 
8. and, after observlng the value Y,=y., he will calculate the posterlor 
distribut~on of 0,. 

We shall assume that a relatlon like (4.1) holds throughout the process. 
Thus, we assume that 

where u:is the posterlor mean of 8,. 
We have already assumed that the prlor distribut~on of 8,ls Nb,, 7,). It 

now follows that both the prlor and poster101 distsribut~ons of every 8, will be 
normal. If the urlor distribut~on of 8. after Y,, .... Y.., but not Y. have been 
observed is N&.,rn) and the posterlor distribut~on after Y. has been observed 

1s Nb.', 73 then the follow~ng relations are statnfied: 

It follows from (4.3) and (4.4) by lnductlon that, for n = 1,2, ..., 

As discussed in Sectlon 3, we are Interested in conditions under which 8, - 0 in some appropriate sense. Since 8"% N~.,T.), and 7. - m by (4.4), it 
follows that 8. - 0 in probability if I*. -0. 

If y = 1, then it can ~mmediately be seen from (4.3) that @.+I = 0 for n = 

1 .2 ,  ... Hence, if the statistician's learnlng process as represented by (4.2) is 
such that the mean of his specification bias is 0 at each stage after the first, 
then the statlstlcian will ultimately elimlnate his specificatlon bias. 

Now suppose that 0 < y < 1 .  Then, from (4 .9 ,  I*, - 0 if and only if 

The relatlon (4.6) will be sat~sfied for most sequences of observations y,, 
y,, ... In fact, (4.6) will be satisfied unless ly,l grows large at a relatively fast 
rate. Thus, the stahshclau will ultimately elimlnate his specificatlon bias 
unless there a something about the specificatron and learnlng process that 
leads the random vanables Y,,Y,, ..., to fall farther and farther out lnto the 
ta ls  of thelr predictlve d~stributlons. In partsular, it can be shown that the 
specificatlon bias will be elim~nated if A. = l / n  c=, ly,l converges to a fin~te 
hmit or more generally, if A. 1s bounded as n - m 

5. LEARNING ABOUT LEARNING 

The constant y that appears m Eq. (4.2) characterlzes the learnlng process 
of the statlstlclan. Presumably, different statlst~c~aus would subconsclously 
reduce thelr specificatlon bias at  different rates, and they would therefore 
have different values of r .  In this sense, r can be regarded as another 
parameter of the model. 

It 1s not necessary for the statlstlclan to assume that y SlmDly has a 
particular value. He can asslgn a prlor distribut~on to r at  the beg~nnlng of 
problem S, and Learn about its value as the process evolves. With this 



approach, for n = 23 ,  ..., the conditional distribut~on of Y, glven 8. and r 
will be N(O.,l). The conditional prlor distributlon of 8. glven y, based on the 
observed values of Y,, ..., Y.., but not of Y,, will be N[(l-y)t~;.~,~;.,], lust as 
before, and y will have some specified marglnal prior distribution C. on the- 
1nterval0 < y  5 l. 

Since the statistician is now uncertmn about the values of both 8, and y, 
the actual predictive distribution of l'. that he must specify will be the 
marginal distribution of Y, obtained by Integration over the jolnt pnor 
distributlon of 8, and y. After Y,, has been observed, the posterior conditional 
distributlon of 8, glven y will be Nb:, T"', lust as before, and the posterior 
distrihution of 7 will be some new distribution c:. The prior distribution of y 
for the problem S.&, will be C.., = C:. 

C There do not seem to be any natural or neat prior distributlons for y, and 
we shall not pursue any calculations here. Until the statlst~cian has learned his 
value of y, he will be forced to specify nonnormal predictlve distributlons for 
I.. 

The Important point of this discussion is that it is possible for the 
statlsticlan to learn about his learmng rate. Of course, this idea could he 
further developed in a hierarchical model m which a prior distributlon a 
assigned to hyperparameters that appear m the prlor distribut~on of r. In this 
way, the statlstlcian can learn about me rate at which he learns about his 
learnlng rate, etc. We shall not explore this toplc in this paper. 

6. MlSSPEClFICATION OF THE PRECISION 
Suppose now that Instead of the statlsticlan tending to specify predictlve 

distributlons that are shifted too far to the left or the rlght, he tends to specify 
pre'd~ctive distributlons that are appropriately centered but are either too 
concentrated or too widely spread out. We shall assume that when the 
statlstlclan 1s tempted to state that his predict~ve distribut~on for a certan 
variable Y. 1s N(0,1), he recognizes that because of his tendency to mlsspecify 
the distribut~on he should actually specify the distrihutlon of Y. to be 

N(0,RJ. 
The statlsticlan does not know the value of R.. If R. > I ,  the 

lnterpretatlon 1s that the statlstlclan tends to be overly conservative m his 
predict~ve distribution and makes it more spread out than he has to. If R. < 1, 

the rnterpretatlon IS that he tends to make hls predictlve dlstributlon more 
concentrated than 1s warranted on the basls of his Knowledge and 
information. 

The gamma distribution with parameters a and p (a >0, >O), denoted 
G(a,P), 1s defined by thepdf: 

We shall assume that the prlor distributlon of R,, after Y,, ..., Y,., but not 
Y. have heen observed is a gamma distributlon with parameters a. and 0.. 

Since the conditional distribut~on of Y. glven R, 15 N(0,R.) and 
R,%G(a,,P$, it follows that themargmalpdf of Y.is of the form 

1 
L~ m 11 + - yz)]-(".+ '1 for -m < y < m  

2P. 
(6.2) 

Thus, (a./P.)"Z Y. has a t distributlon with 2a. degrees of freedom. 
Because of the statlstlclan's uncertainty about the vaue of R,, he must specify 
this marglnal distribut~on of Y. as his predict~ve distrihut~on. The posterlor 
distributlon of R,, after Y. = y ,  has heen observed, 1s G(d,p.'where 

The mean of the distribution G(ar,P) 1s a/p and the vanance n a/p2 
Therefore, generally speaking, the larger the values of a, and P. are and the 
closer they are to each other, the more Concentrated that the distributlon of R. 
will be around the value R. = I. 

As before, the statlstlclan will study the posterlor distributlon of R, m 
order to learn about, and reduce or elimmate, his specificatlon bias. We shall 
assume that the learnlng process a characterized by the following relations for 
n=1,2, .... 

a.+,= a.'+6 and B.+, =p:+ 6 (6.4) 

where 6 1s a glven positive constant. 
If the statlstlclan 1s successfully reduclng his specificatlon bias as the 

process evolves, then the distribut~on of R, snould he gettlng more 
concentrated around the value 1 as n mcrease. It can be seen from (6.4) that 
the prlor mean a,+l/P.+l of R,+, will be closer to l than the posterlor mean 
a:/p:/p, of R,, and the prior coefficlent of variatlon a.,,-"2 of R,,, will be 
smaller than the posterlor coefficlent of variatlon a: of R.. In this sense, 
the slmple model (6.4) does represent learnlng by the statlstlclan and reduction 
of his bias at each stage of the process. 

It follows from (6.4) that 



If E(R.) = cr./&-l and Var(R.) = a,/@?-0, then R.-I in probability 
and the statisticlan ultimately will completely eliminate his specification bias.. 
It follows from (6.5) that a./P?.-O. Furthermore, a,/@.- l if and only if 

If the random varlahles Y,, Y,, ..., are independent and each actually has 
a N(0,l) distribution, then Eq. (6.6) will be satisfied with probability 1. More 
generally, if the learning process 1s working properly, then the "actual" 
distribut~on of Y, should be approaching a N(0,l) distribution as n- m,  
because the statisticlan feels that Y"'bN(O.1) and his specification bias should 
be vanishing. There IS, however, a fundamental difficulty in speaking about 
the "actual" distributlon of Y.. In what sense does Y. have an "actual" 
distribuhon, or any distribution other than the subjective probability 
distribution of the statistic~an? 

Thus, we would hope that (6.6) holds and expect it to hold, but about all 
we can say with authorlty is that (6.6) will hold if the statistiaan's predictwe 
distributions are becoming free of specification bias, and these distributions 
are becoming free of specification bias if (6.6) holds. That statement may not 
be very reassuring because of its clrcularlty, but it would be disastrous if it 
were not true. 

As before, the statistician need not assume that the parameter 6 has a 
parhcular value. Rather, he can asslgn a prlor distribut~on to 6 and actually 
learn about the value of 6 that is approprlate for his own learning rate. 

7. CONCLUDlNG REMARKS 

In this paper, we have considered some models in which d is assumed that 
when a statistician specifies a normal predictive distribut~on for some 
vanable, there is a bias either in the mean or in the precision of the 
distribution but not in both. We could obviously present other models in 
which there is a specification bias in both the mean and precision. so that 
when the statistician specifies that Y.%N(O,l), he should really be specifylug 
that Y,,%N(B.,R,). 

However, we shall not present any models of this type here. It is clear that 
there is a wide varlety of models of the Learnlug process that could be 
postulated for this two-parameter problem as well as for the more limited one- 
parameter problems that we have discussed in the paper. Some of these 
models are similar to the ones that were presented and some are quite 
different. 

At present, we have no substantive basis for choosing among these 
models. The ones that we have presented here were chosen more or less 
arbitrarily because of thelr simplicity, merely to serve as vehicles for 
conveying the ideas that were to be communicated. It would be worthwhile, I 
believe, to study actual psychological learung processes In order to be able to 
build more appropriate models. 
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Bayesian inference in group judgment formulation 
and decision making using qualitative 

controlled feedback 

S.J. PRESS 
Untversrty of Caiifonrra, Riverside 

SUMMARY 
This paper considers the problem of making statlsrlcal inferences about group judgments 
ana group decisions usmg Qualitauve Controlled Feedback, ftom the Bayeaan pomt of 
view. The qualitauve canrrolled feedback procedure was first introduced by Press (1978), 
for a slngle questlon of interest. The Procedure a firsr revrewed here lnduding the 
extension of the model to the multiple questlon case. We develou a model for responses of 
the panel on each stage. Many questions are treated simultaneously and an autoregresslve 
model is aeveloped for exulaimng the rewonses of the group members as a function of the 
feedback The errors are assumed to follow a matrix Intractass covanance structure. 
Marg~nal anb conditional postenor distribut~ons of the regresslan coefficient vector are 
found in both small and large samples. The broadly definea genenc family of 
multidimensional Student-l distributions is found to play a major rme m the results. 

Keyworm: BAYESIAN, MULTIVARIATE, GROUP DECISION MAKING, QUALITATIVE 
CONTROLLED FEEDBACK. 

l. INTRODUCTION 
Group judgment formulation and aecislon making using qualitat~ve 

controlled feedback (QCF) was introduced in Press (1978). The work was 
extended to the multivarlate case of many questions in Press (1980). In this 
paper we carry the work further by adopting the Bayesian pomt of view and 
developing the posterior distribution of the coeffic~ent vector tnat relates 
lndivi&al responses of group members to explanatory variables. 

The methodology was originally conceived in order to study how the U.S. 
Air Force might be reorganized. We will motivate the procedure, however, in 
a different context. 

Suppose, for examples, a city plannlng bureau would like to resolve some 



public policy issues that are of importance to the clty m various ways. They 
would like to determine how to allocate the resources in thelr budget so that 
"appropnate" funding is devoted to police, fire, and other mumclpd 
services, consistent wlth environmental considerations. political . 
considerations, economlc feasibility, engineering and scientific constraints. 
and perhaps other factors as well. These factors affect most people in some, 
possibly mdirect, way, and no one person is likely to be knowledgable m all 
related areas. 

It 1s decided to adopt a QCF procedure to assist the policy makers 1U 

generating the factors that argue for one allocation over another. A Sample of 
panelists is taken from the clty population: the panel members are each given 
a survey instrument that includes a battery of questions. 

The survey instrument could be administered by mail, by telephone, by 
on-line computer, or whatever. The data collection protocol of QCF requires 
that each panelist respond to the questions independently of all other 
panelists, and without any panelists knowing the identity of any other 
panelists. Thus, the social pressures of face-to-face confrontation in a room, 
perhaps at the expense of logical reasoning, are avoided. 

In applying a QCF procedure, each respondent is typically asked to 
answer a set of basic questions. I n  addition, the subject is asked to provide 
distinct reasons for each answer that will help justify the subject's answers. He 
will usually also be asked to answer some subsidiary questions that will serve 
to provide demographic and attitudinal lnformatlon about the degree of 
expertise of the subject, his likely institutional biases, etc. 

An intermediary is asked to collect all the answers. This person then 
forps a merged composite of the reasons provided by the panel for the answer 
to each question asked. This merging can be carried out with the aid of a 
computer editor. That IS, in some situations this step may be curled out 
mechanically (if most reasons are listed in advance, panelists can Check them 
off and a computer can talley them). Reasons can be coded and classified into 
some intrinsically orthogonal set (many reasons are probably lust paraphrases 
of one another). The end product generated is a composite of reasons 
corresponding to each pair of questions and answers. 

The composites of reasons are now presented to each panelist in a simple 
form (such as a checklist). Each panelist is then asked to answer the same set 
of questions a second tune, only now, the panelist is exposed to the reasoning 
used by all other panelists. The numerical responses given by the other 
panelists are not provided for any subjects, nor do they recelve any other data, 
such as sample group mean vectors. The composites of reasons are the only 
data fed back. As a result, the second stage response of a panelist 1s likely to 
differ from his first stage response only because he feels he has ignored some 

arguments used by other panelists. Note that panelists are not told the 
proportion of paneiists who gave a particular reason; a panelist does not have 
any basls for deciding how much to weight each reason, m his own thinking, 
other than by adopting his own weighting system according to his own 
perceptions of value and importance. 

This procedure is repeated until the process stabilizes, in the sense that 
respondents are not changing thelr responses very much from stage to stage. 

There is room, however, for mampulation of the outcome by a devious 
intermediary who might misrepresent the composite fed back to the panel on 
each stage. This effect can be minimized by using a group of intermediaries to 
accomplish the task of forming a composite of reasons. 

Earlier research involving group decision making and judgment 
formulation, and the effects of social interact~on pressures, is summarized in 
Press, 1978. In Section 2 we develop a model for StudYlng the relationships 
between responses to the questlons, and the rationale the panel feels is most 
important to explan tile answers. The model can also be used for predicting 
the next round's responses (in many sltuations, for economlc or other reasons, 
it may be difficult or undesirable to carry out the process for one more stage). 

The multiple question model is treated in greater detail from a sampling 
theory viewpoint in Press (1980). The methodology was applied to study a real 
problem in Press (1979h). Section 3 presents several distinct developments 
that provide methods for making Bayesian inferences useful for predicting the 
next round's responses. Finally, Section 4 provides a summary and 
conclusions. 

2. MULTIPLE QmSTION MODEL 

2.1 First Stage 
Let z,,Q denote the numencal response of subject r ,  on stage n, to 

question j; = 1.2 ...., N; J = 1,2 ,..., q. Let F, denote the totality of 
information obtained on stage n and feed back to each panelist at the 
beginning of stage (a+ 1). Let F'-# denote the n-vector (4)). Finally, let X:Nxr 
denote a regressor matrlx of explanatory variables observed for the N 
panelists (these are answers to subsidiary questlons). TakeFIo' 0 .  

For the first stage model we adopt a simple regression with uncorrelated 
errors (subjects respond lndepeudently On the first stage). Accordingly, 
assume 

z10 l X = XPW + ulO, 
E(u3 = 0, var[ul(lll = a:01, 

where: 

~ I Q  = 1~110, ..., Z,~WI': ul = [ul,@ ,..., ~ ~ ~ 0 1 ~  



uilQ denotes an error term, and PO denotes an m1 vector of unknown 
coeffic~ents. For convenlence, take 

v = u 1  . u l q l ,  V '  = I v ,,..., v-l, 
(Nxa (Nil)  ( N W  (qml  (qrl) (qrl) 

and assume 

l 
*: , = j  

E(v.v,'J = 

0, I*J 

the model may be wrltten m the compact form 

where: 
E(V) = 0, cov(v.,v,) = 0, L+J, var(v.) = ** 

The model of course represents a classical mnltivarlate regression. The 
Gauss-Markov estimator of B is therefore 

2.2 Feedback Stages (n 2 2) 
For later stages, beyond the first, the model must change. This is because 

the composites of reasons fed back to each respondent cause thelr responses to 
be mutually correlated. Since they all get the same feedback, however, their 
responses on the next stage are likely to be srmilarly correlated (homogeneous, 
or lntraclass correlation structure). Moreover, their answers on stage two are 
likely to be related to tnelr answers On stage one. Adopt the autoregressive 
model 

R..,"' 
- - c c!='@ [l-S!7L.,(,)] p'='@ + U,.@, 

a= I 
(3) 

401 

where R,@ denotes the number of dist~nct reasons glven by the panel (this is 
the number of reasons in the compos~te) for the answer to questlon~, on stage 
n; S!:!, is unity or zero, depending upon whether or not respondent I records 
reason a for his answer to question J, on stage n; cb'O is an unknown 
constant of proport~onality (to be estimated); and pi"' Q denotes the 
proportion of respondents who record reason a for questlonj, on stage n (this 
will he interpreted as the welght or importance the panel gives to this reason). 
Note that even thougn the panel members do not know p;"'O, it can 
nevertheless be used m our model since the Intermediary knows it or can 
compute ~ t .  

The model in eqn. (3) may be Interpreted as follows; 
&,.W represents the change in response for subject L ,  on question J ,  from 
stage (n-l) to stage (n). This change results from an incremental effect 
attributable to each reason (linear combination of effects). If the subject gave 
that reason on the last stage, there is of course no effect, while if he didn't glve 
it, the effect 1s proportional to the Importance of the reason (as measured by 
the proportion of panelists who gave the reason). 

l 2.3 Error Structure (n 2 2 )  

Then, E(u.) = 0, and l 26 



Q. is seen to be a matnx lntraclass covariance matrix. Some of its properties 

are given, e.g., m Press, 1972, pp. 21, 48, 49 and m Press, 1979a. The 
assumption of equal diagonal blocks m Q, means we are assuming 
multivarlate homoscedastlclty. All off-diagonal elements of the qxq blocks 
are assumed to be identical (A.). We are therefore assuming that in many 
situations it 1s reasonable to expect that the panel will be constituted with 
members who are sufficiently homogeneous in background so that a pattern 
of homogeneous correlation is reasonable. 

2.4 Transformahons to Canonrcal Form 
Let 

nz.. = [az..(i), .... az,.(q)il . 
(4x1) 

and assume 
c!='a = X! a,@ , 

(lirl (m11 

where X,  denotes the (rxl) vector of explanatory variables for subject r ,  and 
a&') denotes an (rxl) vector of unkown welghts. Forcompactness, let 

and 

so that 
eiO = (I m X, )  a'"-110 

where m denotes the direct product. We next combine all the observable 
explanatory data Into one matnx. Define 

l 
where: 

and define 

and 

where: 

The model now becomes 

Az.. = W,, X a'. + U,, 
(4x1) ( ~ h . . 3  h x  (4x1) 

Combining all subjects, ( 5 )  becomes 

AZ. = W" X a l " - l ,  + U" , 
(Nqxl) (Nmn..J (h. .XI) (Nqxl) 

where: 

az .  = (Az,, ,..., Azh,,) ' W" = (W;", ... , Wh") ' , 

Iterating over then stages gives 



n-r 
whereforh= E h; n z 2  ; 

,=1 

a = (acll ' ,..., a$"-l] '1' : 

(fix]) 

The transformed error vector m (7) satisfies 

where 

3. BAYESlAN INFERENCE 

In this sectlon we examlne the unknown coefficlent vector m the model 
defined by (7) and (S), from the Bayes~an polnt of new. Four d~fferent 
appioaches will be taken. First we will examlne the coefficlent vector 
conditional on the error covarlance matrlx. Then, we will develop an 
approxlmate conditional Bayes~an estlmator which 1s useful when samples are 
large. Thls approach Ignores the lntraclass structure of the covarlance matrlx 
and is useful for cases where the lntraclass structure cannot be assumed. Next, 
In subsectlon 3, we will use the lntraclass covarlance structure when we 
develop the margmal posterlor distribut~on of the coeffic~ents. The result 1s 
complicated, and so a large sample solutlon 1s found. In the final subsectlon 
we develop a result which 1s useful in small samples. 

3.1 Known Covarzonce mafrrr 
From (7) and (8) ~t follows tnat under the assumption of normality on U, 

the density of the response vector (likelihood funct~on) glven the parameters 
and explanatory vanables, 1s 

Hence, if we adopt a vague prlor for a (assummg O is known), its denslty 
1s glven by 

p(a) cc constant, 
SO that the posterlor denslty 1s glven (from Bayes theorem) by 

p(alz,W,O) cc exp ((-1/2)[(z-Wa)'O-1(z-Wa)]] (10) 

Note that we are uslng the common Bayes~an convention of uslng the 
symbolp(.) to denote a generlc denslty; the densities differ from one another 
according to the arguments and condit~on~ng variables used. 

Define the generalized least squares (and maxlmum likelihood) estlmator 

Completing the square m the exponent In (10) shows tnat 

p(a / z,W,O) a exp ((-1/2)[(a-Z(O))'(W 'O-'w)(a-i(Q)ll ; 

SO that 

That IS, conditional on Q, a postenon, and adoptlng a vague prlor on a, a 
1s normally distributed, centered at the MLE, with preclslon matrlx 
(W'O-'W). 

We remark m passlng that i(O) 1s the same estlmator found from a 
frequentlst polnt of vlew m Press (1979a). 

3.2 Large Sample Esfrmafor 
One approxlmate large sample Bayes~an estlmator of a may be found 

(when Q 1s unknown) by uslng the result Obtained conditional on O, and then 
replacing O by a conslstent estlmator. This approach follows the splrlt used in 
the frequent~st analysis. 

Suppose S i  IS a consatent eshmator of O (for unknown 0). Then, the 
approxlmate posterlor distribut~on of a 1s 

A conslstent estlmator, 1s developed m Press (1980). Thus, m Large 



samples. 
a(@ a(Q) 

and a 1s approximately normally distributed. 

3.3 Mnrgrnal Disfribulron of a 
In this subsection we find Bayeslan estimators based upon the marglnal 

posterlor distribution of a. The likelihood in (9) a equivalent to 

where 

The posterlor densrty of a 1s found by first reduclng (13) to canomcal 
form; then adoptlng a prlor for the canonlcal form parameters, and finally 
applylng Bayes theorem. 

Define the orthogonal matrlx = l', m I,, where ro denotes an 
orthogonal matrlx of order N whose first row has equal elements. Then lt 1s 
straightforward to check (see Press, 1979b. Theorem 5) that if 

Q, I$ block diagonal of the form 
E 0 \ 

E, = E + (N-l)A, E, = E-A.Accordingly, definez* = r z ,  W* = rW.  Then, 

(z* I w*.a.Q0) %N(w*a.Qo) (14) 

We now vlew eqn. (14) as the canonical form of the problem and adopt 
(E,,E,,a) as the canonlcal parameter set. Equ~valently, if 

the canonlcal problem 1s the followmg: 

(z:, . . . , 2%) are Independent and 

for all j  = 2, .... N. A fundamental difficulty at this polnt is that C, depends on 
the sample slze N (slnce E, = Z + (N-1)A). To circumvent this difficulty we 
will seek a Bayes~an solutlon to our problem which lgnores one data pomnt, 
namely, z:, and then we will seek a large sample solutlon, so that the loss of 
the one data point will be irrelevant. 

Accordingly, we consider the joint posterlor denslty 

wherep'(a,EJ denotes the jolnt prlor denslty of a and C,, 

and 
z = (2:' ...., G') ' ,  * 3 (W:' ..... W*')' 

It a lnterestlng to note that the sample covarlance among the (z:, ..., z*) 
vectors follows a non-central Wishart distribunon. 

Adopt the prlor denslty 

where: 
p;(a) o: constant, 

That IS, the pnor denslty of a 1s vague. and the prlor denslty of E, 1s 
Inverted Wishart. Note that (G,n,) are assumed t o  be known 
hyperparameters. The posterior density now becomes 



The marginal posterior denslty of a is found by integrating the lornt 
denslty of (a,&) with respect to C,. Because of the known form of the 
Inverted Wishart denslty, we readily effect the requlred integrarlon and find 

where u = N+n,-9-2. The posterior densty m eqn. (15) is in the matrvr-T 
family, but 1s qulte complicated analytically. It could always be evaluated 
numerically, of course, but we seek Instead a large sample approxlmatlon. An 
alternative approach will he developed for obtlnlng simple Bayeslan results 
m small samples. 

Large Sample Approxrmation 

Let @ = (wra-z:, ..., w$a-z$). Then, eqn. (15) becomes 

p(aI2,*)cc IG+++'1-"'2m /I+@'G-l+/-"'Z . 

or 

p(a / 2,*) cc exp ((-u/2) log /I,.,+ + 'G.'@ 1 l 

Let O\,, ..., h,.J denote the latent roots of +'G.' G, and let 
D = diag (X ,,..., X,.J. Then 

p(a E,*) cc exp[(-v/2) log ~I#.I+ D, 1 l 
= exp[(-u/2) log lI7-' (1 + h31 
= exp((-u/2) ET-'log(l+ h,)] 

It will be shown snoruy that X, decreases with sample slze, N. Thus, for N 
suffic~ently Large, IX, Id, so that log (1 +h.) I h.. Then, 

Each term in the exponent 1s a quadratic form In a. Combining terms 
gives 

To simplify, complete the square in a to get 

where: 

That a, a posteriorl, in large samples, 

The only unfimshed item remaning m this large sample approxlmatlon 1s 
to show that the latent roots of +'F-'@ go to zero with lncreaslng sample slze. 
The matrlx +'F-'+ = (r,,) where 

r, - (wTa-~:)'G-l(~r~-~,+) 

But 

where W only changes in dimens~on with Increasing N. But l?, 1s an orthogonal 
matrlx each of whose elements 1s of order N-l1z. SO r,, IS of order N.'. So I ~ S  

latent roots must vanish as N - m 

Remark (1): 
We note that slnce C, = C+(N-l)h, as Ngets large, C, becomes very 

large, so zf is less and less ~nformatlve as N- m. As a result, ignorlng this 
observation 1s no great Loss in large samples. 

Remark (2): 
The large sample Bayeslan result shows that the elements of the 

regression coefficient vector a are, for large N, jointly normally distributen, 
SO that Inferences about partlcular coeffic~ents are readily made. 

Remark (3): 
The large sample Bayesian result lust found is meaningful when the 

number of subjects on the panel is large; the number of feedback stages may 
still be small. 



3.4 Small SamDles 

To obtain a Bayesian result useful in small or moderate samples we adopt 
a different polnt of vlew than that used in subsection 3.3. Our approach now 
is to first ignore the (possibly) intraclass covariance structure m the likelihood 
function, but to recapture the structure in the prior distribution. 

We begln with eqn. (141, 

Thus, the posterlor distribut~on of (a3%) is 

p'(aPO) 
p(a,Q,l z*,w*) m exp[(-L/z)trDi1H1 . (17) 

I Q0 1 'l2 

where 
H E (z*-w*a)(z*-w*a)' 

andp'(a.0) denotes the prior denslty. Note that we are ignoring the lntraclass 
structure of Q, at this point. 

For the prior density, assumep'(a,Do) = p;(a)p;(fio). and 

p;(a) a constant, 

where (m,M) are assumed to be known hyperparameters. M > O  . 
The joint posterlor density becomes 

1 
p(a,Qo 1 z*,w*) m exp [(-L/z)trOil (M + HI l Q p l  ,?"+1,,2 

In Q, this expression is the kernel of an ~nverted Wishart distribution so a 
is readily ~ntegrated to give the marglna denslty 

Completing the square in a gives 

That is, a follows an h-dimensronaIStudent t-density with mean a*, and 
U* degrees of freedom. Then, 

Discussion of Prror 
The mean and varlance of the Inverted Wishart distribut~on are well 

known (see e.g. Press, 1972, p. 11 1). Therefore 

But if we subjectively believe that 

we should take 

M  Mz '1 , M l > O , M z > O .  
'M2 

Then, 



and E(&) = 0 for all elements of 0, not in the block diagonal elements. 
Moreover, if 0, = (W.,), for all (a$) not in the block diagonal elements 

where M-(m,,). Note that var(w,,) is of order m'; that is, var(w.@) goes to 
zero with increasing m3 We can aways choose m large enough so that all 
elements off the block diagonal elements of Q, are centered at zero, with very 
small vanance. Note from eqn. (19) that var(a/z*,w*) goes to zero with 
increasing U* (which is linear in m). By selecting (Mi,MZ) appropriately, and 
choosing m sufficiently large this prior distribution will be sufficiently rlch to 
accommodate many classes of subjective mformation. 

This type of prior is not recommended for the genera case, since the 
structure of the prior distribut~on is too restnctlve"' Our reasomng 1s that 
although elements of Q, not in the blocks on the main diagonal are centered at 
zero with arbitrarily small vanance, because there are only two parameters m 
the inverted Wishart distribution, viz. (M,m), the elements of Q, that do lie In 
the main diagonal blocks are amultaneously constralned in all of their 
moments (by taking m large). Such constrants may not always be desirable. 
For the general case, an alternative prior for Q, which is richer in parameters is 
recommended. We propose such a prior below. 

Generalized Prlor Distrlbuhon 
A generalized family of Wisnart type distributions was Introduced by 

Roud, 1971. The generalization Includes hypergeometrlc functions of matrut 
argument. A form of the associated density whicn widens the parameter 
spaces 1s given (for a generalpds matrix li) by 

for 2: qxq, XZO,  6 (6 ,,..., a.*)', 7 = (7 ,,..., q.*)', J: 4x4, R: p q ,  J > O .  
R>O, and .*F,*(.) denotes the generalized hypergeometric functlon of matrlx 
argument (see Constantine, 1963). The normalizing constant is glven by 

C = 
I J I ?  

~,(Y)~,*+,P~*(G,Y;V;JR) 

111 =he restnctnenen of the structural form of the Inverted Wishut distribut~on has aiiieadv been noted bv 
~omenberg, 1963, m a different context (seeReferences). 

1 where F,(?) denotes a q-dimensional gamma function. The parameters (6.,7,), 

l ' = I  ...., r*, J =  l ,..., q*, are restrlcted to take those values for whicn Ali) is 
positive. 

Now let Q,=xl, replace q by Nq (the dimension of Q,), and transform 
the density in (20) to y~eld the generalized inverted Wishart density 

l Using eqn. (21) in eqn. (17), with p'(a,Qd p;(Qo), gives the lolnt 1 posterior density 
l 

1 The marginal posterior density of a is found by Integrating (22) with respect to 

l Q,. The integration 1s carried out by reference to eqn. (21), uslng its 

1 normalizing constant. The result is 

I 1 

l 
p(a / z*,w*) 

/2J+  (z*-w*a)(z*-w*a)' / -r+'/Z 

where: H = (z*-w*a)(z*-w*a)' If we identify M -- U ,  2r  S m-Nq-1, and 
take R S 0, it is immediately seen that the result obtalned in (18), for the 
inverted Wishart pnor, is a special case of eqn. (23). This result, however, has 
the advantage of be~ng ncher In parameters and can therefore accommodate a 
much greater variety of types of subjective information. Inferences about a, 
however, are more complicated, and will require the use of zonal polynomial 

tables in order to evaluate the hypergeometrlc functions in (23) (see James and 
Parkhnrst, 1974). The parameters of the hypergeometrlc functions are 
selected so as to satisfy the block diagonal structure of Go. 

4. CONCLUSIONS AND SUMMARY 
The qualitative controlled feedback process of formlng group judgments 

and making decisions has been examined from a Bayes~an viewpoint. The 
group responses to many questions was modeled as an autoregressive process 
with coefficient vector a. 

It was shown that if the error covarlance matrix, Q, is known, the 



posterlor distributlon of a 1s normal, and centered a t  the generalized LSE. In 
l 

large samples, if Q 1s unknown, a consistent estimator may be used to make 
l 

conditional inferences about a. 
Bayeslan Inferences can also be made rnargmnalLy, without reference to Q. 

Assumlng lntraclass covarlance structure, the marginal posterlor distribut~on 
" 

of a was shown t o  be, approximately, a complicated member of the matrut T 
family of distributlons. We developed a normal distribntlon approx~matlon 

.which 1s very useful m large samples, however. For small sample sltuatlons 
mnvolv~ng the lntraclass covarlance structured sltuatlon we developed a 
posterior multivarlate Student t-density for a. This result although useful for 

i 
many sltuatlons 1s somewhat restrlctlve in the types of prlor mformatlon i t  will I 
accommodate. A more general result was obtalned uslng generalized inverted 
Wlshart distributlon pnors. The result is more complicated to use, however. 

Finally, note that the enhre QCF process is subjective m nature. It  1s 
therefore not surprlslng that Inferences about the relationship between the 
responses of the panel members, and thelr Individual characterlstlcs and 
judgmental behavlor regarding the reasons other panelists glve, would depend 
heavily upon the nature and qnantlty of the pnor  lnformatlon available. I 
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DISCUSSION 

I.R. DUNSMORE lUnrvers~ty of Sheffield): 
We heard in the discuss~ons yesterday a prediction that Bayesian statlst~cs would 

be dead by the end of the twenueth century. Many of us may still be around then to 
ensure that this will not be the case; and some of us are golng about this task by 
concentrating attention on predichve distributions of future observations rather than 
on posterlor distribuhons of parameters. A welcome step m the nght direcUon 
therefore is this Interesting and clearly Presented pauer by Professor DeGroot in which 
he attempts to model how a stahsticlan prouoses predictive distributlons m a sequence 
of sxnilar decision problems. Can we apply Ule method practically? 

After neanng and assessing all the information at my disposal my Initial 
(predictwe) statement is that the theory 1s beautifully modelled but from the practical 
viewuomt I am dubious of its worth. Yet Professor DeGroot a a leading authonty, and 
so f0ll0~1ng his aoctnne of probabilism or probabilior~sm that a aoctrrne recognized 

by a leading authonty to be correct can be taken to be correct, the realitymust be that I 
am subject to appreciable s~ecificatlon bias and tnat what has been presented lies well 
out in the tails of my initial predictive distribution. So I must learn to do better and 
reexamme the information available. 

MY m a n  stumbling uoint is the separation of "previous informahon" from 
"tenaency to mis-suecify". Consider the problem S! m the location-shift model. After 
duly considenng UN his available rnformatlon the statrstiaan specifies a uredictive 
distribution for X,, say N(M,.TJ. Professor DeGroot argues that we could arrive at 
this distribution by modelling the stahstician's behavlour as follows. He is lust about to 
specify that X, 1s N(m,,rJ when he remembers his specification bias 8,, and so taKes X, 
as N(m,+84/r:12,rJ. This of course presumes that he can separate his rnformation for 
assessing N(m,,rd from his specification bias information. With a onor N(pl,rJ on 8, 
this distribution averages out to a predictive assessment of N(M, = m,+p,/r!'Z,T, = 

(?,/(l + 73)rJ. Now move on to problem S,. The statistlclan will learn something from 
observing the outcome of S, about the type of specification errors he is likely to make 
and, consciously or subconsciously, he will use this knowledge about his own 
uersonality when he initially specifies the predictive distributlon of X, as N(Mz,TJ. 
Professor DeGroot then suggests the same procedure for modelling the learnlng by 
argulng that the statlstiaan is just.about to specify aN(m,,rJ distribution for X, when 
he remembers his second suecification bias 8,, with prior Nh2.r2). so that he gwes his 
predictive distribution as N(M, = m,+p,/r:'Z,T, = (T*/(T*+ l))r2). But here O2 must 
measure in the learning Process that statistlaan's "failure to correct sufficiently" in 
soecifying m, and r,. These seem to me to be much more nebulous quantities to deal 
with, and it is most doubtful if the assessment of m, and r, 1s now lndeoendent of the 
Information for assessing 8,. 

For the location shift Parameter Professor DeGroot models his procedure most 
elegantly, but I am much less convinced with the modelling of the scale or precision 
example of 56. There does not seem to me to be any intuitive appeal in the learnlng 



process a, = w;+S,P,  = 8;+6 when R2 somehow measures the statistician's "failure 
to correct sufficiently" The problem presumably Intensifies for the locatlon and 
precision shift problem. 

One final comment concerns the element of distribution dependence m the 
arguments presented. No observation will allow the statistician to move away from a 
normal distribution (or a Student distribuaon) for examole. Might it not be that if 80% 
of your Observations lie more than 5 standard aeviatlons below the mean of your 
predicted distribution then skewed predict~ve distributions may be more appropIiate. 

Turn~ng now to the second paper, my first task is to thank Professor Press for his 
Interestme talk toaav. The Bavesian modelline. of his aualitatlve controlled feedhacK - 
ideas was clearly the next progression in his study of group judgment formulatlon - 
althought many here mlght presumably have expected it to be the first step. Professor 
Press has Presented us mth several different Bayesian approximate models n a  some 
elegant and intricate matrix manlpulatlon. 

My second task 1s not as easy. The questlon I wish to pose is "What does it all 
mean from a practical polnt of view?" The prachcal relevance and interpretation of 
the postenor distributlon for a somewhat defeats me. For example, iyst consider the 
dimensionality of a. This a an hxl vector m the moael (7) where h = XL, h, = EL; r ET=, 
R, a. So if, for example, there are r=5 explanatory variables, q = 2  questions, and 
R,(l) =4, R,(2)= 5, R,(I)= 6, R2(2) =9, then DY the third stage h is already 120. 
Another polnt 1s that some of the reasons within the list Rdl), for example, will be 
contamed in the list R,(l). Is it then necessary to have different a.(l)'s for stages I and 2 
or could we allow the pm'-'m's m the model to account for the vqability over n? 
(Although the notatlon is not explicit on this fact it seems that the a s are considered to 
vary with n). 

It 1s also clear that the adequacy or otnerwlse of this mgenlous moael must be 
thoroughly mvestlgated. One question on this count that I would like to Dose a to ask if 
the model can cope with someone who "about turns" In his answer or Oplnion wen 
wlth thesame reasons, which after all is acommon tactlc of some commltteemembersi 

Turnlng Drlefly to the approxlmatlons to the poster101 distribuuons I have one 
comment on the large-sample approximation of 53.3. Is it sensible to ignore the 
variable with the "largest" vanance matnx? To an outsider it must look as though your 
conclusrons will be more accurate than they should have been. 

My third and final task is simply a plea. Please may we see this elegant statlstlcal 
theory transformed into useful statlstlcal practice. 

S. GEISSER (Unrvers,tyofMmnesoto): 

Professor DeGroot, no doubt manifesting his great flax for the sensibilities of our 
Spanish hosts, presented this paper because it nnplements what that renowned Spanish 
and Amerlcan philosooher, Santayana, rather broadly intimated that those who Ignore 
the data are doomed to repeat the mlstakes of the past. 

DeGroot has elegantly formulated a Bayeslan apparatus that mght serve to 
dampen and eventually avoid suhjectlve biases. In some respects, he is more vltally 
concerned with the nonBayes~an aspects of the problem. He lists several possible 

alternatlve conclusions to be drawn from the fact that a subjectively predicted value is 
far from where expected: 

1) The subjective predictive distributlon 1s misleading (model doesn't 
fit). 

2) A rare event has occurred because of an unusual observatlon (all 
we nave to do 1s stick the cOnjunCh0n "or" between (1) and (2) 
and we have Fisher s so-called loglcal disjunction). 

What 1s left then is the last alternatlve which states: 

3) There 1s no relatlon between the predstlve d~strlbut~on and the 
Observed value. 

I would call (3) the archsubjectivlst~c vlew, but 1 refuse to pay it much heed 
because if anythlng could persuade me to turn m my Bayesian credentials, it is this 
extreme vlew. And, of course, DeGroot is also too sensible to accept this. (What then 1s 
the point of a predlct~ve dlstribuhon if it is to bear no relatlon to an observatlon?) At 
any rate, he clalms to model what he terms the "behaviour" of the Statmtslan. (Wasn't 
11 Neyman who coined the term lnductlve behanour?) It would appear that the 
accretions of the past are not so easily disposed of on the ash neap of history, and 
perhaps rlghtly so. In modelling the sltuatlon he finds he must explore the mind- 
boggllng hyperworld of hyperparameters. But DeGroot 1s a slippery Bayeslan and he 
refuses to assume an extreme position by not twng to n-guess himself, thus extncating 
himself from the hvoeroarametrlc thicket he has created. .. . 

He sensibly assumes that his specification error should be smaller the second time 
DY a fractlon of the first expected specification error -and so it goes, recurslvely tnat is. 

There is also the hyperworld of r itself, the DeGroot rate of learn~ng parameter 
which is also subjected to a distributlon and as decisions made and observations 

obtained he iearns about his learnlng rate -and he learns about how he learns about 
his learning rate- a ver~table underworld of learnlng snnilar to Fisher's underworld of 
probability. 

It seems that this method of "learnlng" could easily DC called the "DeGroot 
Oplnion Processor and Evaluator" whose descrlptlve acronym aptly describes the 
learner. It is a smooth "rational" method that has none of the qualities of human 
learning at its best - inspiration, acuity, perception, and concentration - and is better 
suited for plodding, dull, and unimaginative automatons. 

In the light of all this perhaps mildly unfair critic~sm, let me also give Professor 
DeGroot something less amorphous to which he can respond. Consider the predictive 
subjective model which is normal and unbiased, but may be more widely dispersed than 
lt should be, whatever tnat may mean, then how Important is it for the statistician who 
guesses only the mean value of his subjective distribution, and if so. how concerned 
should he be about having too large a subjective mns~ecificatlon variance if he only 
will guess a slngle value? 

Also, couldn't the statlst~c~ans' m~sspecificat~on bias really be due to a misreading 
of auxiliary conditions which may affect the uayoff of investment decisions, and 
instead of smoothly adjusting his parameters, he may want to radically reconsider his 
whole set-UP after afew "bad" decisions. 



In conclusion, let me say that 1 thoroughly enjoyed this paper as lt compelled me 
to consider how important 11 IS for a Bayes~an to become lnvolved In the human 
learnmg process and what a glant step DeGroot has taken m grappling with this 
uroblem and developing a polnt of view which is certiunly not entlrely orthogonal to 
the truth, if there 1s any here. 

Professor Press 1s to be congratulated on his usual v~rtuoso performance m 
maniuulatlng distributions of random matrices. But the refraln "Whars it all about 
Alfie?" keeps coming to mmd. If our good friend the new soclalist mayor of Valenc~a 
wanted to resolve a Dresslng public policy Issue -say the building of a Bayesian 
conference Center- why should he use Qualitat~ve Controlled Feedback rather than 
having an open discussion and apopular referendunl? 

Another difficulty that I have previously polnted out about feedback procedures is 
the uotenual for rmsuse by a devious intermediary who would feedback false or slanted 
lnformatlon In order to manipulate the outcome. 

J.M. BERNARDO (L'ntversidaade Volencin): 
The nlce mathematical uropertles associated to the combinat~on of a normal model 

with the inverted Wishartdistribution used by Professor Press m his pnor specificailon 
have been exulolted in a number of Bayeslan papers. However, as he uomts out, this 
may be too restnctlve. I would like Professor Press to exuand on this uoint, making 
expliclt the type of sltuatlons for which he feels this pnor mrght be sensible, and 
commenting whether he knows of any real life applications. Informatlon about 
uossible interactlve computer routines for this type of prlor specification would be 
valuable. 

A.P. DAWlD (The City Un~vecnty) 
Professor DeGroot 1s surely right to argue that the Bayeslan should he ready to 

confront his internal urobahilistlc mew of the world with some external reality, and to 
modify his vlew, rather than the real world, if there appears to be a conflict. One of the 
weaknesses of subjectivlst theory, confined as it is m its comfortable coherent cocoon, 
1s that rt does not seem to make any formal allowance for such a confrontation. 
Something can be said, however. 

Suppose that a weather forecaster has to make, each day, a statement of his 
urobability of Dreclpltatlon within a specified 12 hour perrod of the next 24 hours 
(Murphy and Winkler, 1977). He need not have any model in mmd, but is merely 
stating his conditional urobability of "rain tomorrow". given his whole knowledge 
today. Let us now consider all those days for which his forecast probability lay m the 
range, say, 1/3 -+E. and suppose that the number of such days 1s (conceptually) infinlie. 
Then, uslng martingale theory, one can show that the limiting relative frequency of ram 
on such days lies, with probability one, In the same range 1/3 4. The probability 
referred to here is, of course, that corres~onding to the forecaster's subjective 
ouin1ons. 

Similarly, if each day he glves a credible lnierval which he assesses to have, say, 
50% probability of containlng tomorrow's mmmum temperature. then he should 

believe, with probability one, that in the limlt 50% of such Intervals will contan the 
true value. 

Note uartlcularly that the above theory does not require any assumption of 
independent or "unrelated" problems, merely that each forecast be made In thelight of 
full. knowledge of the outcomes of prevlous forecasts. So, m a sense, the Bayeslan is 
out-frequenclng the freouentlst. 

Now suppose that, in a very long sequence of such forecasts, only 30% of the 
forecaster's 50% credible intervals are covering their true values: then an event has 
occurred to which the forecaster asslgned very low probability. It seems to me clear that 
the world is relling the forecaster that his Bayesian beliefs, coherent though they may 
be, are out of touch with reality. However this 1og1c is squarely m tne spirit of 
s~gnificance testlng (or of Professor Box's contribution to this conference) and 1 cannot 
see how tolustify it from the uosition of the self-contaned suhjectiv~st. 

The above considerations apply for the forecaster's "true" probabilities. It 1s easy 
for him to cheat, by quoting probabilities m which he does not really believe, so as to 
appear "well-calibrated" (DeGroot, 1979). Moreover, even if his true probabilities are 
well-calibrated, this does not necessarily mean that they are "accurate" in all respects; 
and even if they are accurate, they may not be of much substantive value if the 
forecaster is a poor meteorologist. 

Professor DeGroot is working in the following framework. The forecaster sets up 
a mathematical model which, he hopes, 1s an adequate approximation to his true 
lnternal beliefs, which he ln turn hopes correspond, somehow. to the real world. But 
the real world says "Not so". So the forecaster replaces his mitial model with a more 
complex one, which he hopes will lead to more "accurate" forecasts. Clearly the 
process can be iterated, and now bears a very close resemblance to Box's cycle of 
estimation and criticism. 

But I believe there 1s a danger of falling into an lnfinlte regress. However much we 
refine our subjective models, or learn about our learning process, the real world may 
still surpnse us Dy throwing up events which we believe shouldn't occur. So in what 
sense, if any, have we improved our urobability modelling? 

W.H. DUMOUCHEL (Massochussers Instrlure of Tecnnology): 
Professor DeGroot should be thanked for tackling the somewhat taboo question: 

"What can a Bayeslan do who 1s consistently wrong?" I would like to suggest another 
possible approach and solution. 

Suppose the statlstlclan encounters a sequence of tnals in which it is necessary to 
uredict a contmuous vanable S, after which the observation X=x ,  IS made at the n'" 
tnal. Let F,, he the statistician's ~redictlve distribution funct~on for X just before then'* 
tnal, and let 

U" = F"(X") 

which 1s observable after the n'" tnal. Now. if the statlsticlan computes F. correctly lust 
before the n" tnal, the sequence, U,, U,, ... should be indist~nguishahle from a 
sequence of independent uniform variables on (0,l). If me uredictive distribution F. IS 

belng consistently comuuted Incorrectly, then it may be that (Ua) behaves like a 



sequence of i.i.0. var~ables from some unknown distribution G. A possible assumvtion 
1s that G is a beta distribution with parameters cl and P. Then the questlon of whether 
the stat~stlclan is consistently wrong m computing F. for the predictive distribut~on of 
X. boils down to an hypothesls about n and P, where the variable U*=F.(X.) has a 
Beta (a,P) distribut~on, i.e. 

This problem can be treated as a sharp null hypothesls problem. The statlsunan 
formulates a prior distribution on (a,/3) with 

Q, = Drior odds in favor of H 
Q. = odds m favor of Hconditional on U,, U ,,..., U. 

Then the vredictlve distribut~on of U,,,, is &.(U) = IC(u;u,P)dP.(a,P), where 
G(u;a,@) is the beta distribution function, and P. is the postenor distribution of (a,@). 

My proposed decision rule is then: 

I .  Make no corrections to inferences about X a s  long as Q. s l ( o r  Q s k ) .  
2. If Q. < I ,  then correct F.,, to make U",, uniform. That is, Urn,, = 

=,(X) = B.(F, . , (~ ) .  The 100 u vercentile of X.., 1s Pi., G ,!(U). In 
general, for kz I ,  replace F,,+~ by G,.F~,, 111 all inferences about X. 
3. Whenever Q. < I  and step 2 above has been taken, start over with a new 
reassessment of Qo,P,(a,P), etc. corresponding to the new definit~ons of F 
and U. 

If the assumption that 1U.l is approximately a Sampie from some Deta distribut~on 
1s correct, then when n is large, 6" F.,, will produce just the nght correction to F.,,, as 
simple calculations show. Of course it is no slmple calculat~on to compute Q. or c?", 
which depend on tne choice of pnor P,(u,P) for u and 4 when n 1s small, but less so 
when n is large. 

Although this method poses computational problems, 11 is very general, oelng 
applicable to any continuous predictive sltuatlon, and it provides a method for 
simultaneously correcting for error In scale and location, since the two parameter (a$) 
are available for the estlmatlon of G, and even more general families could be used 
Instead of the beta family. I hope to develop this method in furure work. 

S. FRENCH (Unlversrly ofMoncnesier): 
1 should like to comment on Professor Pressi Raver. It seems particularly 

important to emvhasrse a pomt that was clear from Professor Press' presentation at the 
conference, but not clear from his written paper. At least, I for one was misled. The 
methoas of this pave1 are directed at the problem of gathering and summarising group 
oplnion for a decision maker exterior to the group. They should not be considered as 

methods to help a group of decision makers reach consensus amongst themselves. That 
no such methods can exlst should now be well known, Arrow (19-53, Luce and Raiffa 
(1958), Patternaik (19781, French (1980). 1 say "should be" slnce I am aware that some 
decision analysts see their task of advising a group as one of generating a group 
probability distribut~on and a group utility function and then of advising the actlon 
with maxlmum group expected utility. Such analyses are unlikely to be ratlonal in the 
Bayesian sense. Professor Press' methods appear tailor-made for such "irrational" 
analyses. I was glad to hear from his presentation that such a close fit was 
unlntentlonal. 

Turn~ng now to the correct use of Professor Press' analysis, I am far from 
convmcea tnat anonymity will lead to "objetivlty" 1  ers son ally judge a person's 
opnions and his reasons for holding those oplmons agarnst the background of his 
character. Moreover, I am aware that some of the best oDinmns are held without the 
holder belng able to express wny he holds them. Consider a firm taking advice from a 
group of experts within a research and development department. How will Professor 
Press' method assimilate the oplnions of a man with a hunch. By definition he cannot 
articulate his reasons for his opmlon. So his new will not communlcare Itself to the rest 
of the group. Yet, the rest may all agree "Old Charlie has a gut feeling for wlnnlng 
projects. If he says it's a wlnner then that,s good enough for me" This example 1s 
contnvea maybe, but 1 hope rt maKes my pomnt. One gathers lnformatlon through a 
g r o u ~  of experts rather than the literature, when it is clear that there are too many 
uncertainties involved for them to be object~vely analysed. Thus one intentionally asks 
the vane1 to use tnelr intuitive expertise. Yet this method concentrates thelr attention on 
that part of thelr judgemental process which they can artlculate, Out not necessarily 
directly upon the Dart for which they were employed, 

It may well be that Professor Press does not see this metnod as being used to 
sample exuert opmnlon, Out rather a large populatlon of consumers. His paper does 
indeed concentrate on an example where a city planning bureau surveys public o~lnlon.  
(However, see Harman and Press (1978)). Here too, I am worried about the 
applicability of his methoas. A sample survey is meant to be representative of the 
population sampled. Yet it is a basic property of qualitative controlled feedback tnat it 
changes the initial opinions of the group. So the output of a sample survey conducted 
qy Professor Press' methods is unlikely to be representative of the opinions sampled. 
At the eno of the analysls those in the sample will have thought about the11 Dosirion 
more carefully than the rest of the populatlon. However desirable it is that public policy 
should be based upon weil informed and well thought olImlon. I suspect that politicians 
would rather base it upon oplnmn as lt is. 

1. I. GOOD (Virginia Polyrecnnic andstore Universily): 
Dr. DeGroot referred to the sltuatlon where there are two or more statlsticlans 

who have specified predictwe distribut~ons for X. I think that theory is directly related 
to the problem of how a slngle statisr~clan can Improve his judgement, namely by 
comvarlng a number of procedures for specifying prlors as if they were provided by 
several stat~stlclans. In other words he can, so to speak, split his personality. One of the 
ways of seeing which stat~stic~an 1s better at predict~ng 1s by means of the ~ogarithmlc 



payoff function which I advocated in 1951 (Good, 1952). If the probability or 
probability density of the observed value of X (say X) 1s ~ ( x ) ,  the logarithmic payoff 
function L! of the form a + b  log p(x). This is one of the payoff functions that 
encourages the statlsticlan to be honest, and when companng two statisticians the g a n  
of the first over the second is oroDortlonal to logln,(x)/p,(x)] (in a self-explanatory 
notailon). This has a further justification; we can imagme that there is a demlurge with 
perfect judgement whose probability (density) is p,(x). When companng a statistlcian 
with the demlurge we could imagine that we were trylng to find out which of the two 
was the demiurge. Then log Lp(x)/@o(x)l would be the weIght of evidence m favour of 
the statistician's berng the demlurge. We could i m a ~ n e  that we score each statlstlclan in 
this way against the demiurge. Then the gain of statistician I over stat~sticlan 2 would 
be 

so we don't need to knowpo(x) for trying to decide which of the two is better. If there is 
a true vrobability denslty, then the expected advantage of 1 over 2 is 

I have a comment concerning Dr. Box's comment. Dr. Box said that the observed 
ordinate ~ ( x )  of the probability denslty should not be compared with the denslty at the 
mode, and so he asked about uslng Ule tail-area probability. If instead you compare 
p(x) with the average value of the ptobahility uenslty then you would be uslng Warren 
Weaver's surprlse lndex. I generalized Weavers surpnse lndex to a contmuum of 
indexes in Good (1953, 1956) where I invented what has been called Renyi's generalized 
entropy. (Perhaps it should be attributed to Good). A speclal case of the generalization 
.IS J&).logp0l)dy- logp(x). 

D.V. LINDLEY (Unrversily CollegeLondon). 
An alternative way of handling this Droblem is to suppose that the statistlcian 1s 

observed by a totally coherent person who takes the statisteian's views and updates 
them in the light of expenence with slmilar outcomes. This has been explored by 
Lindley, Tversky and Brown, (1979) . Equivalently, the statlstlc~an can think of his 
mcoherent, natural self being monitored by a coherent person inside him. It e not 
obvlous to me which approach is preferable but ours does appear to avoid the need for 
assumptions l ~ k e  (4.1), This conference has been dominated by technical papers and it 
is a~ealaieasure to welcome this thoughtful paper which tackles an ~mvortant problem. 

A. ZELLNER (Universirv ofChicogo): 
In connection with DeGroot's suggested adaptive learning approach, consider two 

hypotheses regarding a parameter 8. namely H,:8 = B,, a glven value and H,:8#8,. If 
we have posterior probabilities for these hypyheses, p, and !-p,, the pptimal (relatrve 
to a symmetric loss f y t l o n )  estlmate of 8 is B=p,8,~(1-D,)O, where 8 is the postenor 
mean of 8 under H*. 8 can be equlvalenuy expressed as 8 =E,+ (1-p,)@- Bo) and it 1s seen 

that l-p, is an "adjustment coefficient" that is data dependent. Similarly, when we 
consider two alternative models with posterlor probabilities, p, and l-p,, the optimal 
point prediction is $=pG,+(l-pJ$,=$,+(l-p3V2-$J where 9, and 9, are means of 
the predictive distribut~ons for the two models. Again I-p, appears as a data dependent 
adjustment coeffic~ent. These traditional Bayesian procedures Incorporate adaptive 
learning and thus there may be no need for an alternative learnlng model such as 
prooosed by DeGroot. 

REPLY TO THE DISCUSSION 

M.H. DEGROOT (Carnegie-MeNon Universiry): 
I am grateful to all the discussants for the11 comments and their appreciation of the 

general problem that I am trying to attack m this DaDer. Both Dr. Dunsmore and Prof. 
Gasser comment on possible shortcomlngs and difficulties with the models that I have 
presented. As Dr. Dunsmore suggests, I should extend my models to cover shape 
misspecification and to Include skewed distributions. 

Prof. Geisser says that the learning process m my model doesn't provide for 
insplratlon and is "better suited for plodding, dull, and unimaginative automatons" 
At first I thought that he was criticizing my model, but then 1 realized that he was 
actually ~oint ing out that my model appropriately describes the learnlng process of 
most statistlmans. More seriously, learnmg proceeds in my models neither too slowly 
nor too quickly, but at just the nght rate, 1.e.. Bayesianly. If one wishes to allow for the 
"lns~iration" of changrng models based on the data. then these possible changes must 
be, and can be, ~ncorporated into a supermodel. 

I agree with these discussants-we do need better models. But I believe that the 
development of such models should go hand-in-hand with the necessary psychological 
modeling. 

In answer to a question rased by Professor Geisser, precision mas~ecification 1s 
relevant, even if the statlsticlan is only going to use the mean of his predictive 
distribution as his predicted value. Although the statl~ticlan's predicted values may be 
unbiased. he will find that thev tend to be much closer to. or much farther from. the 
correct values than he antianated. Incidentally, it would be nlce if one fringe benefit of 
lhls work was to introduce colorful terms like "bias" and "unbiasedness" into 
Bayeslan statlstlcs and reclaim them from sampling theory statlstlcs where they have 
been wasted on useless concevts. 

As Professor Lindley suggests, I am sure that there are times when it can be helpful 
to suppose that an incoherent statistician has a shadowy coherent alter ego looking over 
his shoulder or a tlny coherent elf somewhere inside him struggling to emerge. But two 
aspects of my work should be emDhaslzed: First, the statistician may be biased, but he 
IS coherent. Secand, an Important purpose of the models is t o  reduce and ultimately 
eliminate the need for the statistician to carry on any dialogue with himself. 

Professor Good also suggests that the statistician can split his Dersonality and see 
which Dersonality makes the best predictions. He should then, I suppose, adopt that 
personality (at least whenever he must make a uredictlon). Professor Good suggests the 
use of sconng rules to see which personality is aomg best. One difficulty with the use of 



any partrcular scorlng rule is that it must be assumed that the statlstlclan's expected 
utility functron is simply his exDected total score over a sequence of predictions. But if 
the different personalities have different subjective ~robabilities, wouldn't they also 
have different utility functlons? Again, I emphasize that one purpose of my models is 
to eliminate sdi t  ~ersonality, which is a step toward better mental health as well as 
better stat~stics. 

Professor Zellner is correct m suggesting that the standard Bayesian methodology 
for chooslng among different models may be adequate in describing the learning 
Drocess m many sltuatlons. The essence of my models, however, 1s to carry over Into 
future problems what we have learned in earlier problems about how to specify Drlor 
distribunons. That idea seems to me to be new. 

Professor Dawid makes several interesting and valid points. 1 do believe, however, 
that when the world tells the forecaster tnat his beliefs are out of touch with reality, the 
forecaster can recognize this message and make adjustments wholly within the Bayeslan 
framework. He does not need to use the logic or methodology of significance testing, 
although a forecaster whose faith is weak would be tempted to do so. It is true that In 
order to maKe these adjustments, the forecaster must go to a hierarchical model with 
perhaps a large number, possibly even an infimte number, of levels. But if, as Professor 
Good states m his paper at this conference. the hyperparameters at the higher levels 
matter less and less, then he will have imvroved his forecasts. 

Professor DuMouchel proposes a clever new moacl, and avoids the methodology 
of s~gnificance testlng by carwng out a Bayeslan test of his hypotheses at each stage. 
The model promises to be fairly comprehensive and clearly warrants further study, 
develoDment, and application. 

S.J. PRESS (UniversrryoJC~lifomia, Riverside): 
The qualitatlve controlled feedback (QCF) aata collechon protocol is a procedure 

for collecting lnformatlon of varlous kinds from a group; the information can be used 
and alialned in a varlety of ways. This broad base of applicability 1s one of the greatest 
assets of the approacn. The proceaure can be used for example, merely to collect 
arguments and justifications m favor of one policy or another that has been advocated. 
Group members can bring to bear arguments based upon lnformatlon each of them has 
separately, and informatlon they have generated together as a group, and they can also 
argue various positions on the basls of informatlon they mlght not have ongmally, but 
later are exposea to, and they can evaluate it in a meaningful way. Group members may 
differ m the amounts of informatlon they have available, the type of information they 
have available, and in thelr ability to verbalize arguments using this information. They 
will differ m then experience level, mtellect, intuitive ability, and expertise. They will 
share however, a large base of intellect, rationality, and informatlon, The variation m 
opinion, after several rounas of QCF. is in rtself a measure of the uncertainty or lack of 
knowledge surrounding the snuatlon. The results are therefore very mean~ngful even 
when consensus 1s not achieved. Many applicatlons will involve no more than just a 
collection of arguments arnved at after several iterations of the QCF process. Such 
arguments may be useful for assessing risks and for evaluatmg a complicated sltuatlon. 
In other applicatlons it may be useful to develot) quantitative informatlon about some 

Important questlons uslng oplnlon and arguments generated by the group. In these 
cases, the absolute answers may be of fundamental importance, or what may really be 
of interest is the change, over time, m the group's Derception of the baslc answers to the 
fundamental questlons. In these kinds of applicatlons it is useful to use the QCF 
procedure with a quantitative base. Finally, m still other applicatlons, it may be useful 
to use a model, such as the one developed in the paper, for predicting the next round's 
quantitative outcome based upon earlier developed information. With these prefatory 
remarks I now turn to the thoughtful questions ralsed by Dartimpants at the Bayeslan 
Conference. 

Professor Bernardo rased the questlon of how one actually uses an inverted 
Wishart distribut~on m practice. An then, how does one use the more complicated P? 
generalized distribution discussed in the vaper? This question 1s an Important one from 
the ~ o m t  of new of Dractlcal applications of Bayeslan methods m general, because the 
Inverted Wishart distributlon family is the one most often proposed as the family of 
natural conjugate pnors that should be used for scale parameters. The ~nverted Wishart 
distribution of course has some vroblems assocrated with it, as I discussed in the Daper, 
and tnese problems relate to there belng some Inherent constrants imvosea on the 
DaIamCters within the distribution, which the analyst may find unaeslrahle. This 
problem was first pomtea out by Rothenoerg, (1963). The argument 1s also summarized 
in Press, (1972,' Dage 233). Nevertheless, the parameters of the lnverted Wishart 
distributlon may be assessed by assessing quantiles of the margmal distributions, which 
of course are inverted gamma distributlons. The quantiles are related to vanances, 
medians, etc. Methods for assesssmg quantiles of univariate distributlons are by now 
well known; see for example, Schlaifer, (1961); Stael von Hoatem, (1970); Winkler, 
(1967a and 1967b); Lindley, Tversky and Brown, (1979). Methods for assessing the 
correlation or covariance for higher dimens~onal distributions are currently belng 
aeveloped; see for examvle, Gokale and Press, (1979); Dawid, Dickey and Kadane, 
(1979); Kadane, Dickey, Winkler, Smith and Peters. (1978). There are also several 
computer routines that have been develoDed to assist the analyst in assessing the 
hyperparameters of prior distributlon families such as the lnverted Wishart (see Press, 
1980 for a summary). Methods for assessing the parameters of generalized distributtons 
involving generalized hypergeometric functlons have not yet been developed. Such 
methods will depend upon development of the theory that relates to these distributions 
in terms of marginal and conditional distributlons. Once these procedures are known, 
methods that have already been developed can be readily applied. 

Professor Dunsmore was sururlsed that the Bayesian development o f  QCF 
appeared much later than the earlier aeveloDment. The ex~lanation 1s of course, that 
the earlier aeveloDment emphasized the use of qualitative controlled feedback as a aata 
gathenng tool, while the Bayesian development Imposed some distributions structure 
above and beyond that whicn was assumed earlier, and this structure uermlttea us to 
make postenor Inferences about results that might be obtaned on alater round of QCF 
tnat we are not able to carry out. Such an analysis, while mrerestlng and useful in some 
applicat~ons, 1s not as generally av~licable as 1s the baslc aata collect~on DIOCess inself. . . 
In terms of practical relevance of the procedure it should be understood tnat the QCF 
approach can be easily implimented in a real world context for one, or even several, 



questions of importance without any applicatlon of the modeling itself. The ~ractlcality 
of the modeling stems from the fact that m our limlted exuerlence lnvolvlng an 
empirical application of the methodology (see Press. Ali, and Yang, 1979) we found 
that after three stages, the process had pretty much stablized. We antlcluate that only 
two or three stages will be necessary for stablizatron of the process in more genera 
situations as well. Thus, if there were two stages, and we wanted to predict a third, and 
we used preasely the same numbers that Professor Dunsmore suggests In his comment, 
the dimension of the a vector would be 45*. It a of course always possible, and often 

.reasonable, to keel, the dimension of the a vector small by the devlce of uslng only 
those reasons for the prediction of the next stage's response. which were glven by large 
numbers of respondents, and deletlng the remamder. In that case, the dimens~on of the 
coeffic~ent vector would always remmn quite manageable. I will not comment further 
on the coeffinents varylng with the number of stages, beyond my saying that the model 
assumes that they do  not so vary, m order to mamtmn a ~arslmonlous approach to the 
number of parameters m the problem. 

Professor Dunsmore talked about a respondent who m~ght reverse his position 
from that on an earlier round, at some point in the process. This should occur only 
when some new information has been Introduced into the comooslte of exDlanat1Ons 
for resD0ndent.s answers. If such a turn-about were not based upon new mformat~on, 
other group members would be totally confused and disappointed by the apparent lack 
of ratlonality of the turnabout group member. 

In ignorlng the varlable with the "largest" variance matrlx we are merely ignonng 
one observation out of many, and the Ignored observation 1s one which 1s known with 

final plea, which 1s to "see this elegant statistical theory transformed into useful 
statistical Dractice". It is my fond hope that practitioners of statistical methodology m 
varlous areas will apply qualitatlve controlled feedback to  practical vroblems. 

Professor French has made some excellent ~ o m t s .  His first 1s that the methodology 
presented in this oauer 1s applicable to  a sltuatlon m which there is a slngle decision 
maker who plans to use the ouinmns of the group to  help him make his decision. Thus, 
the decisron maker is m fact exterior to  the group. This volnt will be made later In my 
comments to  Professor Moucharr. 

Next I must talk about "old Charlie" who has a gut feeling for wlnnlng projects. I 
was not pursuaded by this argument because I don't agree with Professor French that, 
"some of the best opmlons are held without the holder being able to  express why he 
holds them" This 1s the same kind of argument used by anti-Bayeslans to show why 
the entire Bayes~an approach is not useful. They clam that while Bayesians must use 
pnor distributions to  develop thelr analyses, most people cannot really quantify thelr 
ludgments, and for this reason, it is usually impossible to assess a prior distributlon. 

Because me ~iocess Labiiized, we could take R,(1) = RjZ)  = 0. So if R#) = 4, R,(2)  = 5, the dirnenslon or 
me a vector would be 45. Moreover, a may often be assumed tnar 1.0) does not varv with a and j ,  h which ease 
the  number of distlncf clemenis in a that must be esumated is n(n-I): ro if n = 5 .  
n = 3, we mun estimate a l ~ d i m e n s ~ o n a l  vector. 

The limrtatlons of these types of arguments have been elucidated on many occasions, so 
I will not repeat them here. In the applicatlon described in this paper it is of course 
necessary for people to Introspect about thelr oplnlons, just as they would regarding a 
onor distributlon. In this case, they must mtrosuect to  derive arguments for why they 
believe what they believe. 

Professor French's final polnt deals with the question of how representative are 
the results developed in a qualitatlve controlled feedback data collection urocess. The 
answer 1s that the results obtalned after several stages of QCF are reuresentative of 
what would be obtalned if a census were taken of the entlre poDulatlon, and QCF 
procedures where applied. Thus, public policy or any other kind of policy, can be 
formulated for a large Douulation based upon careful reasoning of a "representat~ve" 
subgrou~. 

Professor Gelsser raised the very lnterestlng question, of whether or not the QCF 
procedure could be mrsused by an mdividual who was trying to control the outcome of 
the urocedure? The answer 1s of course, that the Drocedure could in fact be m~sused by 
a devlous mtermediary. He could manipulate the outcome by mlsrepresentlng the 
comoosite that was fed back to the panal on each stage. This is mentioned briefly in 
sectron one of the final form of the uauer. It 1s not anticipated, however, that m most 
applications the context would be one m which manipulation is likely. Of course, the 
effect of manipulatron can always be minimized by uslng a small group of 
mtermedianes. rather than a slngle mdividual, to accomdish the task of formmg the 
composite of reasons. 

With respect to the issue of "What's it all about Alfie", there are slmple and 
straightforward answers. Suppose, as Professor Geisser suggests. the "mayor of 
Valencla wanted to  resolve a Dressmng public Dolicy lssue say the building of a Bayeslan 
Conference Center". First, I would commend the mayor on his good taste, assumlng 
he was the one who exercised the foresighted leadership to suggest such a center. Next, 
I would propose that he use qualitative controlled feedback on auestlons uosed before 
a panel of peoole aPProDnate to  the political context of Vdencla (a clty council, a 
random sample of concerned citizens, etc.) In an "open discuss~on", the Mayor (with 
the help of other high ranking, verv local, and strongly influential people) might very 
well bully Valencla Into a decision that 1s really lnapproprlate for this clty. Using QCF 
the decision would have to be made through careful reasonlng and rational dialogue. A 
Dopular referendum shares some of the features of careful reasonlng with QCF, but 
because cerraln very vocal and affluent groups advertise heavily to persuade ueople to 
their uosition. regardless of the common good or the ratlonality of the argument, such 
decisions are often mappropnate. The soclal Dsychologlcal literature abounds with 
examules of how s~eclal  interest groups tend to domnate such "open discuss~ons" (for 
a summary, see, e.g. Press, 1978). 

Professor Mouchart asked about the properties of the oumion pooling process 
~roposed in this paper? The answer to  this question denves from the context ln which 
this procedure should be evaluated. The context was carefully detailed and discussed in 
an earlier paper; see Press, (1978). There, it was polnted out that our context is one m 
which we always assume there Is a slngle decision maker who wants to take every group 
member's ODlnions Into account, but he will make the final decision. This is the same 



context assumed by Kirkwood,  (1972), and  it avoids the  conflicts a n d  difficulties 

addressed b y  the  Arrow "im~ossibi l i ty  theorem" A s  a result of uslng this context, 

conventlor~al  decislon theory applies to any  decislon made by a decision maker  on the  

basls o f  QCF. 
I would like t o  close oy  thanking the  individuals w h o  where k lna  enough t o  

comment on t h e  paper m an effort  t o  clarify the  nature of  the  process being discussed. I 
a m  also par t su ia r ly  grateful t o  Professor Dunsmore fo r  his thoughtful  suggestions fo r  

!mDrovlng the  fo rmat  o f  t h e  pauer .  
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Predictive sample reuse techniques for censored data 

S. GEISSER 

Unlverslry ofMinneroto 

SUMMARY 

Predictwe sample reuse metnoas usually appliea m low structure aparametilc 
paradigms are snown ro be useful in cerratn high srructure s~iuat ions  when conjornea with 
a Bayeaan approach. Parrlcular attentxon is focusea on the incomplete aa ta  sltuatlan for 
which two alternative sample reuse approacnes are aevaed. The fiisr )"valves different~al 
weighting ana  the secona a recurswe sample reuse algorithm. There are appliea t o  
censarea ex~onenr ia l  survwal data.  Thc algorithmic approach appears to be preferable 
from both a compuiatlonal ana  modelling vxewpamt. 

Keywords: BAYES, CONDITIONAL PREDICTIVE FUNCTION, CENSORED DATA, 
DISCREPANCY MEASURE, FUNOIBLE, EMPIRICAL BAYES, MAXIMUM 
LIKELIHOOD, METHOD OF MOMENTS, PREDICTIVE DISTRIBUTION. 
PREDICTIVE SAMPLE RBUSE, PSEUDO-OBSERVATIONS, SAMPLE RBUSE 
ALGORITHM. 

1 PREDICTIVE SAMPLE REUSE 

The p r e d l c t l v e  sample reuse (PSR) m e t h o d  was presented m a varlety of 
detailed forms, Ge~sser (1974, 1975a), Stone (1974). Here we s h a l l  dellneate i t  

1;1 a very slmple manner appropriate to the particular applicat~ons that flow 
from it under discussion ID later sections. 

Suppose we have a set of observations x C N '  = (xi, ..., xN) and we are 
I n t e r e s t e d  m predicting a future observatlon from t h e  process generating 

Obse7VatlOnS of this kind. We f u r t h e r  assume a predictive f u n c t l o n  used to 
forecast a potent~ally observable value, 

where cr 1s defined as some u n k n o w n  constant or set of such unknowns whose 
doman 1s a. Next we define a discrepancy f u n c t l o n  

28 



D (a) = D (d,, ..., d,, E) (1.2) 

where d, = d (x,f,) represents a discrepancy between the observed value X. 

andf, = f,(x?-l) , a )  which IS defined as in (1.1) except that X, has been deleted 
from f and E = E (a,  xCN)) represents some scheme of weighting the varlous d, 

singly or jolntly. For example 

where a,(cu) is the welght assgned to thej'" discrepancy or 

D (a) = d'Ed (1.4) 

for d '  = (d,, ..., d,) would be two such schemes. In most cases fungible' data 
would lead to @,(m) = N or C = N-'I. Then D (m) 1s mln~m~zed for values of 
u restricted to Q which we assume yields a unlque value &. This leads to the 
predictor 

For a more detailed exposition of the method involving multiple observational 
omissions and varlous schemata of omission, as well as applications, see 
Geisser (1974, 1975a, 1976). 

In applying this method to survival or realiahility data, it is qulckly 
apparent that an Inherent deficiency exlsts. The method as stated deuends on 
the full knowledge of the sample values. But for this type of problem quite 
often our knowledge for a uortion of the sample 1s restncted by the fact that 
the observatlons were censored at partlcular values. In order to remedy this 
lack of knowledge of fully observed values we Introduce pseudo-observations. 

They depend on a and are determlned from defined conditional predictlve 
functions. Two procedures utilizlng a pseudo-observatlon approach are 
presented. The first proposal substitutes the pseudo-observations Into the 
discrepancy measure prior to muumizatlon. This leads rather naturally to 
considering schemes whereby the censored observations are welghted 
differently than uncensored ones as opposed to prevlous applications where 
a; (a) = I on the hasls that the data were Inherently fungihle. Of course, there 

' We use the term fungible to extend the notlon of exchangeable ta data that are not necessarilv 
a realizat~on of a random set of variables. For random variables the terms are eamvalent. The 
extensron, though ill defined, convey an attltude tnat one could raXe towards observable data for 
which it 1s inapprooisate to assume that they were necessarily generated bv a ranaom Drocess. 

could arlse sltuat~ons where a sample of uncensored observatlons may requlre 
d~fferent welghts because of a declslon as to thelr treatment or a model for 
thelr generation. Here, even though we start with a scheme that treats the 
observatlons fungibly, the approach of fitting the censored observatlons Into 
the predictlve sample reuse framework naturally Induces considerat~on of 
differential welghtlng schemes. 

A Second proposal lnvolves the substltutlon of the pseudo-observat~ons 
Into the solutlons as if all the values were fully observed and solvlng the 
requlslte algorithm. Let xCd' = (X ,,..., X,) and X* = (X ,,,,.... X,) represent 
respectively the completely and part~ally observed data sets with the 
understanding that the observable X, for j > d represents lncom~lete 
information of some kind on an observable entlty, or when appropriate, a 
realization of the random var~able X,. Let y = l-vdtlr...,yN) remesent the set of 
values which would have been observed hut were partially observed as X*; I.e. 
the fully realized value of X, would have been y,,bur we were only able to 
record the partially observed value X,, j > d. We then comuute a complete 
solutlon for a ,  say 

m the usual fashion, as In the fully observed case, but as a funct~on of y. But 
we need values for y, the components of y. We now assume a conditional 
predict~ve functlon for the components of y, 

Now let x*(w) represent the set of values inserted for y; i.e. for each 
component yj  we Insert x;(w) in (1.6). Lastly we then have the algorithm 

which needs to be solved for a. Call the solutlon & and one then uses this 
either to predict a future observation condit~onally or unconditionally. 

2. AN APPLICATlON--UNCENSORED CASE 

The applicat~on of these ideas for forecasting m a partlcular survlval or 
reliability data sltuatlon will he presented where the predictlve samule reuse 
technique 1s used in partlal conjunct~on with a Bayes~an approach. Initially we 
shall assume the entire fine structure of an exponentlal survlval distrihut~on 
cum gamma prlor distribution on the exponentlal parameter. Subsequently 



the predictive distributlon of a future observation from the urocess 1s 
obtalned. In the gamma prlor we essentially assume one of the 
hyperparameters known (or guessed) and the other unknown. An estlmate for 
the latter is produced by the predictive sample reuse method essentially as a 

% 

by-product of derlvlng a polnt predictor. The questlon of censored data, 
where ambiguity exists m the execution of the predictlve sample reuse method 
IS treated in the next sectlon and tentatively resolved by the ploy of useudo- 
bhservatlons that are supplied from a partial Bayeslan or other structure. 

The utilization of the approxrnlate predictive distributlon:i.e. with one 
hyperparameter estimated, as a forecasting tool 1s valid to the extent of the 
appropriateness of the fine structure assumptlons with uncertainty 

commensurate with the roughness of the approximat~on. On the other hand 
the predictor itself may be useful considerably beyond the bounds of the 
Initial structure assumed m that it may be robust as a polnt predictor for a 
variety of possible structures. Further it may be most useful in a low structure 
sltuatlon, where any specific distributional assumptlons are fraught with peril. 

Suppose we have a random sample X,, ..., XN on an exponential random 
variablex whose density 1s 

If our prlor objective or subjective information 1s subsumed in a prror denslty 
for p, 

p (p) a pd-'e-"; 7 > 0,6 > 0 (2.2) 

and !$e are Interested In predicting a value X,,, for the random future 
observation X,,, glveu the prevlous N observations X'"'. say, then the 
predictlve denslty for X,,, is easily calculated to be, for X,,, > 0, 

where i 1s the sample mean a n d p b  1~'"') 1s the posterior aenslty of p glven the 
prevlous N observatlons X'"' Hence our forecast about X,,, lnvolves the 
hyperparameters y and 6 which enter the problem vla the distribution of the 
uarameter 6. Before any observatlons are taken one can also find the 
predictlve (marginal) denslty of the generlc var~able X, namely 

Hence ~t 1s convenient and perhaps more approprlate to think about these 
hyperparameters in terms of predictmg X before any observatlons are taken 
rather than m how they modulate the assumed prlor distributlon of p. 

Therefore, prlor to the sample, we have 

E(X) = r/(6 - l) = g 

(2.5) 
Var (X) = 6r2/(6-2)(8-1)2 = gZ(l + a)/(l-a) 

where a = (6-l)-'; 
Clearly Var(X) exists for O < a < l ,  and E(X) exists for a > O  while the 

distributlon exlsts for all a$ [-1,0]. Hence if one could frame his prior 
opinions about the potent~ally observable values of X m terms of its 
expectation and varlance then one can easily execute the whole predictlve 
process by solving for the approprlate values 6 and r from (2.5) and 
suostltutlng them in (2.3). 

It 1s to be noted that (2.3) and (2.4) were obtained from (2.1) and (2.2). 
However, for the predictivist who would prefer to start from (2.1) and (2.4) in 
terms of convenience of framlng his predictions this 1s somewhat awkward. 
Interestingly enough in this case startlng with f(x/p) and f(x) 1s sufficient to 
obtain p b )  andf(x,,,li) which IS a more loglcal and appealing approach for 
the predictiv~st. This 1s true here because f(x) 1s the unique Laplace transform 
of p - ' ~ b ) .  

Now as we mentioned previously making all of these assumptions ylelds 
the requlslte lnformatlon for making probability statements about a future 
value provided that one has specified values for g and a .  However while one 
may often be willing to hazard a guess at g, one may be far less willing to 
specify a value for a. 

We now shall apply the predictlve sample reuse method in order that the 
data itself should yleld a value for w once g has been assumed. 

If we had already observed XIN' =xIN1 and wished to predict a future 
value for X,,,, we could use the posterior expectation of X,,, obtained from 
the predictlve density given by (2.3). This is easily calculated to be 

Note that when 6 - I and r - 0, we obtaln the usual predictor i. 
In terms of the predictlve sample reuse method, Gelsser (1975), equatlon 

(2.6) may be utilized as a predictlve function. In order to supply a value for a 

we apply the method uslng one-at-a-tlme omlsslons and a squared discreuancy 
as follows: The average squared discrepancy 1s 



where f, and i are defined respectively as the predict~ve functlon and the. 
sample average with X omltted. In order to find a su~table a ,  we mlnlmlze 
D(a) with respect to a for a 2 0. (Note agaln that for the denslty glven by 
(2.4), Var (X) exrsts only for 0 < a < I. although the distrihut~on for Xexlsts 
for 6 > 0 and hence for all a [-1.01. Nevertheless we shall not restrlct 
ourselves to a > 0 although this 1s essentially the range on a for which the 
prlor mean exlsts), but also Include a = 0, a value, which 1s possible when r n 
a functlon of a and a - g as a - 0.) 

We can easily evaluate 

where s2 = (N-l)-' zN .=I  ( ~ - i ) ~ ,  Taking the derlvatlve with respect to a and 
settlng this equal to zero ylelds the solutlon 

& = (tZ-l)/N for P > 1 

where tZ = N(g-i)Z/sZ. Hence this ylelds the predictor 

o f  course for the strlct Bayeslan the use of & and its derlved value % 
contradicts the fundamental canon of Bayeslan~sm that the prlor 
hyperparameters should not depend on the data. However it should serve as 
an approximate solutlon to the problem In the sense that the unknown 

h .  A 
hyperparameter 6 is replaced by 6 if ar > 0 m (2.3), glven the high structure 
assumptions. This problem and method for solutlon was first proposed by 
Gelsser (1975b) with further commentary, Gelsser (1976, 1980). 

It may also be mentioned that the predictor f can also be conceived as 
totally Independent of the Bayeslan process and the likelihood when Obtatned 
from this approach in the sense that we have merely chosen f as a polnt 
predictor for X,,, and have ascertalued f by a squared discrepancy measure. 
We also note that the ~redictlve functlon f is basically a linear combinat~on of 
the mean i and the prior guess g with welghts a N  and 1. There are 

i undoubtedly other models that can lead to forecast~ng the next observation as 
linear combinat~ons of a prlor mean and the sample mean when the pred~ct~ve 
expectatlon of a future observatlon is utilized. In this regard then one could 
define a predict~ve functlon that 1s a linear combinat~on of the mean and a 
guessed value g 

f* = a*?+ (1-a*)g, 0 S a* 5 I (2.11) 

l 
I This ylelds, for squared discrepancy and one-at-a-tlme omlsslons, Ge~sser 
l 
l 

(1975a), 

@* = (t2-l)/IP+(N-l)-'] fort2 > I ,  

= 0, for t2 S 1 

l 
l 

Hence 

n 
f* = [(tZ-1): + N(N-l)~'g]/[t2+(N-l)-'], for tz 2 I 

(2.13) 
= g  if tZ < I 

Clearly a *  = aN/(aN+ l) for a 2 0 in terms of the transformed 
predictlve function. On the other hand &* < &N/(&N+ l), for t2 > l ,  the 
estlmatlon procedure not belng lnvarlant under such a transformation. 
However they will be qyte  cltse as they are asymptot~cally equivalent for 
large N. Compar~son off withf* reveFls they $Is0 converge for large N. but 
slightly more welght is attached to i m f than ln f W  

In summary then, In the assumed presence of the high initial structure f 
should be preferable, but for robustness to other structures leading 
approximately to the aforementioned linear combinatron, f* may be 
preferable. In any event the difference 1s negligible for largeN. In the absence 
of any distributional assumptions both predictors are v~able methods for 
havlng something to say about the prediction of future observatlons. 

3. CENSORED DATA 
In many cases especially in survlval or reliabilitity studies the experlment 

1s usually termmated before all of the subjects or unlts have explred or failed. 
Suppose the experlment is such that ford of the observatlons, failure tlmes are 
recorded as X, ,  ..., xa, while the remaining N-d observatlons have survived but 
were censored at values X,,,, .... X,. Hence 



where F(x, p )  1s the distributlon funct~on of X.. For the exponential case, 
clearly 

"where:, = d ~ '  E;xj and p,-, = (N-d)' CN;z, xd+<. From (3.1) and (2.2) we can 
obtaln first the posterlor density of p and then, as previously, the predictive 
denslty for a future observation X,,,, 

where xCd' represents the observatlons whose failure tlmes are recorded and 
x I N  d' the censored observatlons. Further the predictlve expectatlon, to be used 
as the predictive function, is 

Note that for 6 - i and y - 0 we obtaln the usual predictor 
id+ d-'(N-@XN-,. 

Due to censoring there 1s difficulty In approprlately executing the ~redictive 
Sample reuse method. One tentative solutlon is to generate N-d pseudo- 
observations having values xir, ,= I ,  ..., N-d, say. These are the presumed 
failure times for the censored observatlons xdtl, ... ,X,+. We shall take as the 
pseudo value X;+<, the expectatlon of the Dredictlve distributlon of Xd+< given 
Xdti > xdti, the censored value. More precisely the likelihood in (3.1) 1s used 
but with xdti omitted: i.e., based on all the observatlons but xdii. This 1s then 
combined with the prior density of p whence the posterior denslty of p is 
Obtalned and subsequently the predict~ve denslty of X,,; computed. From this 
we then compute the conditional denslty of X,+( glven X,+( > X,+( 

Further com~utation y~elds 

and 

(dx, + ( N - m . d  + ~ ) ~ ( d  + 6) d + 6  
Var(Xd+. 1 X,,, >X,+;) = - - -- f (3.6) 

(d+ ~7-1)~(d+ 6-2) d + 6-2 

the latter hemg Independent of i. 
Now in executing the sample reuse method with predictlve functlon glven 

by (3.3) uslng the actua! observatlons X,, ..., xd and the pseudo observatlons 
X,,,, .... X; glven by (3.5) lt seems sensible to glve the pseudo-observations a 
welght that differs from that asslgned to the uncensored observatlons in 
contradisctlnction to an unwelghted and consequently inadequate solutlon, 
Gelsser (1975b). We note that 

Var(X. (p) = p-2 for I =  I ,  ..., d. (3.7) 

Since p 1s unknown we shall compute 

over the posterlor distribution of p .  This results in 

where f is as defined in (3.3). 
We can define a weighted discrepancy for d > I ,  N-d > I as follows: 

where X,,, and XN.,,, are respectively the sample means of d-l uncensored 
ObServat~OnS omittlng X and the mean of N-I-d censored observations 
omlttlng X,. 

After some algebraic manipulation we obtaln 



The solutlon then for a is obtained by differentiat~ng (3.11) with respect 
to a and setting it equal to zero. This will result m a polynomial in a ,  whose 
roots are stationary polnts. After discarding negatlve and complex roots. the 
positive roots a ,  say, need be compared with D(0) and D(m) to ascertain the 
global minumum for a 2 0. 

For d =  I and N > 2  only the second term in (3.11) obtalns and formal 
minimization in this case y~elds a = m, so that f= N?, the usual predictor in 
this case. 

Fo rd>  I and N = d +  I only the first term in (3.11) obtalns. Min~mization 
then follows in the same manner as In the discussion ford > 1 and N-d > I .  

It IS to be noted that in the weighting we merely used terms that reflected 
vanation. Perhaps a more appropriate welghtlng scheme would also include 
covarlatlon among those values that are correlated. As a step in this direct~on 
we can take cognizance of the covarlance among the pseudo-observations. 

A simple calculat~on reveals that the joint predictive density of X,+< and 
X,,? r f j  = I. ..., N-d conditional onXdai > ~~+~andX, ,>x ,+ ;~s  

(d+6)(d+ 6 + l)@+ (N-@iN., + y)"+' 
f (~,wl  Xd+l>~dii~Xd+! >~d+,) = + (N-d)iN., + z-xd, + W - X , + ~ ~ ~ ' ~  

(3.12) 

whence we calculate 

Use of this alters the second term m (3.11) to 

laid+ l)  + llla(d-l) + 11 

When. as 1s often the case, all of the N-d observations are censored at the 
same value, say X,, then (3.14) slmolifies to 

This term 1s then [a(d+ l )+  l]/[aN+ l] times the second term m (3.11), 
indicating roughly the disminlshed effect of the contribution of the portlon of 
D(a) lnvolvlng the pseudo-ohservatlons by taking into account thelr 
covarlance structure. Of course this further complicates arnvlng at a solution 
for a and it is not clear just how significant the resulting Improvement would 
be. 

The most complex weighting scheme would also attempt to take Into 
account covariation between uncensored observations and pseudo- 
observations. Now for ,= l ,  ..., d. j = d + l ,  ..., N; X/ = X, + 
( ~ a % + g ) / ( a d +  l )  

Aga~n using (3.9) we find that 

Hence we may use as a weighting matrix the Inverse of the NxN 
partitioned matrix 

where J,, IS a matrix all of whose entnes are un~ty. The lnverse of Vcan readily 
be displayed by letting U = f (ad+ l)[a(d-l)+ l ]  'V-' with partitions similar 
to V SO that 

-(d+ 6-1)J., 
U,, = , for I # J 

(d+6-1)(N + 6-1)-d(N-d) 



(S-IlJ22 
U,, = 1 

(d+6-l)Z+ (6-l)(N-d) 

where agaln f, 1s the predictlve expectation f omlttlng the j'" ObSerVatlOn. 
Further, lettlng L!' = (A,, ..., Ad we can now define 

D (a) = A ' V ~ l a  

and mlnlmlze it for a > 0. Agaln evaluation of D (CL) Leads to rather 
complicated algebra which we shall omlt. 

Once a solutlon & 1s rendered we can convert it to obtaln the approxlmate 
predictlve distribution of a future observation or just use as a polnt 
predictor. 

For the second kind of predictlve functlon 

which does not lean as much on the prevlous high structure assumutlons, we 
use as pseudo-observations 

This 1s akin to frequentlst predlct~on slnce usmg X,,., r = 1, ..., N-d as actual 
observatlons in conjunctton with X,, ... ra preserves the frequentlst predictor, 
id + d ' ( ~ - d ) > ~  ., as this 1s the average of both uncensored values and pseudo- 
observatlons. Now (3.22) can also be obtalned by iettlng 6 - I and v - 0 m 
(3.5). 

Here the simplest welghted squared discrepancy measure neglecting 

covarlatlon but not varlances 1s 

I 
l where f;*ls f * as In (3.21) but with X ,  omltted. The welghtlng here 1s agaln 

closer to a frequentlst approach although it also can be obtalned from (3.6) 
and (3.9) by lettlng6 - I .  Letf:= a*h, + (1-a*)gso that 

h, = (d-l)-'(6Xd + (N-d)jc,., -X,) f o r j  = l ,  ..., d (3.24) 

= + d-'[(N-4iN., -X,] f o r j  = d +  I,.. .,N 

l then the m~n~muatron of D (a*) with respect to a *  y~elds 

~ ~- 

for &* < 0. 

(3.25) 

l If one uses a Scheme with no welghtlng at all then 

* 
= 0 i f a *  r 0 

A 

= I i f a  51. 

A slightly different solutlon can be obtalned by alterlng the functlon h. 
Previously h was defined as the sum of all the observatlons censored and 
uncensored, divided by the number of uncensored observatlons. We also 
qOted that h was the mean of the uncensored vaiues and the pseudo- 
OhServat1ons. 
Hence we could change the definltion of h to this mean value which keeps 
lnvarlant the value of the predictlve functlon for glven CL. However h, would 
now be altered to 



The solutlon for a* is now obtalned by substltutlng h,'for h,ln (3.25). 

An unwelghted solutlon in this case is, Ge~sser (1975b), 

where 

However, though very slmple, this does not appear to be a very satlsfactory 
solution to the problem. 

In both (3.24) and (3.27) it is required that d > I and N-d > I .  If d = I 

and N > 2 then the solution for a* is the ratio of the second terms in (3.25) 
utilizing either h; or hlrespect~vely. For d > I ,  N = d +  1,  the solutlon 1s the 
ratio of the first terms. 

4. THE ALTERNATlVE APPROACH-SAMPLE REUSE ALGORITHMS 

The second general approach described in Sectlon I is both concevtually 
easler to apply and more readily facilitates arithmet~c solutions. We now 
apply lt f o  the censored situation of the prevlous sectlon. Uslng (2.9) 

- t Z ( a )  - l 
a =  (4.1) 

N 

where from (3.5) 

(dxd + (N-d)%.,)a + g  
X,' ( a )  = xi + J > d .  (4.2) 

a d +  l 

where Njr = C%, X;.  Let 

where (N-l)sZ = C?=1 ( ~ ~ - 2 ) ~ ;  Now by definition 

Hence substltuting (4.6) in (4.1) and solvlng for a in terms of p;  i.e., 

we obtan a quadratic equatlon in p 

where 

After obtalnlng the SOlUtlOn $ we solve for & from (4.7) and substltutlng 
this m (4.2) we obtan the conditional predictor X(&) and settlng x,=O the 
unconditional predictor. 

This approach can also be applied to the case glven by equations (2.11) 
and (2.12), namelyp = a * i +  ( l -a*)g for0 5 or* 5 I 

where the assumed condit~onal predictor 1s 
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SO tnat 

and 

(N-l)sZ(cu*) = (N-1)s" ddp*2-2dp*d(id-x) 

where 

NO* = (N-d) (Nd-'%a* + (I-@)g) = (N-d) (zd-'a* +g) (4.14) 

or 

zd-'(N-d)u* = No*-(N-d)g 

forz  = NF-dg. 

Hence solutions for a*, say h*, are obtruned from the cubic equatlon 

(N-])(l-a*)(d+(N-@)a*)z2 = N@(N-I +a*)sZ(a*). (4.15) 

Only one value of the cubic will be appropriate for a fixed 2, s2 and g. 
Substltutlon of the approvrlate &* m (4.12) yields the conditional predictor 
X(&*) and settlngxj = 0 y~elds the unconditional predictor. 

We now illustrate this approach with some data obtalned from 
Gnedenko, Belyayev and Solovyev (1969, p. 176). A sample of 100 items are 
tested and time to failure recorded for each up until 500 time unlts have 
elapsed (the actual time unlt 1s not given). It 1s found that dUIlng this per~od 89 
items have survlved and the recoraed failure times for the other 11 are: 31,49, 
90, 135, 161, 249, 323, 353, 383, 436, 477. The total time on test in 
undetermined un~ts, 1s 47,187 (inaccurately given as 47,147 by the authors). 

Figure I remesents a plot of the predicted value of a future tune to failure 
comparing (4.12), Substltutlng &* for a*;  as a functlon of g, an apriorl 
guessed value, with (4.2), substituting h for a ,  which derives from the more 
highly structured predictwe approach. The two curves exhibit s~milar shapes 
excent tnat the interval for disregarding the data is more than twlce as wide for 
the high structured case and the approach to completely disregarding the guess 
IS far slower. FIGURE 1 

29 



Figure 11 demonstrates how the estimated predictive density of a future 
observation varles as a function of g uslng the high structure model. Note that 
values of g from 3,700 throgh 5,000 result in & = 0  and consequently the 
density 1s exDonentla1 while for other values of g the density 1s of the beta , 

form given by (3.2). This accounts for some of the minor perturbatlons. 

cu .-4 0 

0 0 0 

FIGURE 2 

l Table I glves the shortest .9 probability Interval (90th percentile po~nts)  

I 
for a future value of X for varying g from the estimated predictwe 
distribution. 

1 TABLE 1 

90th Percentile Point of F(. lx, g, cl) to Nearest Integer 

Guesses that are widely discrepant with the data such as 60 and 15,000 are 
largely ignored and y~eld percentiles close to  that of g = 4290, a guess 
equivalent to  the data pred~ctor. Reversals m percentile polnts for such values 
as 3.550 and 3,700 are accounted for by the same phenomenon occuring m 
F~gure I and to  a lesser extent to the change in the form of the distribution 
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DISCUSSION 

1. GUTTMAN (Unrverslty of Toronfo): 

Firstly, I would like to congratulate Professor Geisser for his artlcle and 
presentatton -this is a very srlmulatlng plece of work, and 1 am honoured to be asKed to 
discuss this Daper. 

Now 1 have to report that I have gone through several phases slnce acceDtlng the 
lnvttatlon to be a discussant of this DaDer. The first Dhase said -glance through the 
paper, get the flavour, report on the flavour, and then, like all good discussanrs, do the 
fungible thing, talk about my work m the area of reliability, censored aata. etc. The 
Second phase, however, intruded, because as I read the gaper I became more and more 
srlmulated, interested, frustrated. etc. (underline all of these words) by the underlying 
ideas. For example, the Samule Re-Use Method is not Bayes~an and the use of words 
prior and predictive at varlous points In the PaDer are somewhat misleading. (The Domr 
that Sample Re-Use is not Bayesian is indeed admltted by Ge~sser). Indeed, if Getsser 
had glven me Dermisslon (how presumptuous can one be) to construct a title. l would 
perhaps have suggested "Smoothing and Approximations to P r o ~ e r t ~ e s  of Predictwe 
Distribunons". Allow me, in the ensuing tlme to say wny. 

Suppose the po~ulatlon Delng sampled has distribut~on f (.IQ, and that n 
IndeDendent observations from this pooulatlon have been taken, say y '  = (y,,..., y.). 
Then, if additionally we are to observe a (future) observation from this population, the 
conditional distribut~on h of y, glven y, is, uslug the rules of probability, glven by 

where the poster iorp (8 1 Y) 1s such that 

with 

qB Y) = W=,f Lvi 18) and  ic(r)l-' = 1 q(8)p (8 I y)d 8 (3) 
Or0 

Here, of course, q(0) 1s the pnor distribution of 8 and summarizes all the 
lnformatlon available to the exDenmenter urror to the taking of the aata y. Now 
suppose the Dnor q ltself depends on certain constants u ,  i.e., 

Then we should wrlte (1) as 

Now Geisser proceeds as follows: Suppose Indeed that the distributlan function 
q(8la,,a3 1s the  nor" for 8, and that a, is known, bur a ,  is unknown, and thar y n 
observed. Consider the discrepancy function D(y;a,, a,). Select for a, thar value &, 
which i s  such that 

D(r;a,,kJ = m t n D ( ~ ;  a,, a3 (6)  
a 2  

Note tklat 

(For m examDle of D ,  see (2.7) of Section 2 of Geisser's paper). Then, use this to 
construct a functlon 

and needless to say 

where 
hCvly)= I X ~ I O ) P ( ~ I Y : ~ I , ~ ~ ) ~ ~  (8b) 

(The superscript (S) in (Sa) stands for smoothing f(yl0) with ~ ( ~ l y ; u , , & ~ ) .  Now in 
(8b), the Bayes~an and/or his client is us~ng that value of u ,  and u, that anses due to 
prlor lnformatlon about 8, and in general, this cholce will be different than ( a , , & ~  - m 
fact, the &,is themselves may vary according to the different nature of the cholce of D. 
This polnt aside, we are now asked to make the step that regards h"' as an 
approxlmatlon to h, I.e., 

This, it seems tome, must be~ustified. 
Note that we are uslug a "pnor" m (8) which is a function of the aata y, a 

vlolatlon of the cannon of Bayesianlsm which loosely s~eaking says that if we are to be 
coherent then the Drror cannot aeDend on the daio. In fact when we use (S), it seems to 
me that we can ligitimately ask 1s there a better way of smoothingf(y8) than by use of 
p(# lu,,&,)? Incidentally, I gather that the use of the term "Predictive Sample Reuse" 
m the title comes up here because we are uslng the data not only in the functional form 



of (2), but also through the use of (6) to usep(8 l y; m,,& j as the smoothing function in 
h' ', so that even here in the uncom~hcated case of no censored data. all observatlons 
recorded, we have used the data twse. 

But thls 1s com~ounded in the censored case. In thls case the data has a certaln 
structure, VIZ: 

yl = lv,, ..., y. $are recorded (9) 
y, = Cy. ..., y,) 1s such that it 1s Known only that y,>a, where the a,,, 
j = n - d +  1, ..., n are knownconstants. 

Using the suDerscrrpt (c) to denote the Dresence of censored data as in (91, we have 
that the ~redictlve distribution ofy,  glven censored data is 

where here the Dostenor D 1s glven by 

with 

where F i s  the cumulative of the distributronfl. 18). Ge~sser now proceeds as follows. 
Remove a, from the likelihood and let a:" be the (d-l) vector obtalned from a* by dele- 
tmg a, from it. Find h"' @y,,ayl) using the prescnutlon (10) etc. From this, find the 
conditional h i~ '@ly  >au;y,, aj") and obtaln 

the conditional expectatlon of the predict~ve vanable y, glven that y >a,, and where we 
are gwen the structure (9) with (d-l) censored observations etc. 
The set (J.*.~*,, ..., y3' = ytis then used l o n g  with y, m a discrepancy funchon D*, to 
Droduce avalue aFthat is such that 

(An examule of D* is the welghted discrepancy functlon defined at (3.10) of which 
I will have something to say below.) The value rutso obtalned is then used, as before, to 
obtaln (see (10)) 

Note that we are re-umng the data (d+ l + l )  tlmes - d tlmes to  find the set y: 

from (13), one additional time in (14) and of course a further additional tlme in 

~ ( 8  l~i,ya;ff&3. 
To Droceed further with this discussion, allow me to start at the begmmng of 

Genser's DaDer. We are considermg the case of addressmg an exDonentlal Drocess, 
whose distribution is glven by 

We are assumlng that before the taking of sample lnformatlon taken from the 
above (smgle) exponential, the applicable prior of ols such that 

D((T) a l'*') exp[-~/oj ,  o.y,6>0 (17) 

This of course im~lies  that, a- non 

2v/o = X& o r o = 2 ~ / ~ &  

and that the Dnor expectatlon and vanance are 

In Dractlce, the ~ r l o r  comes "armed" with fixed values of y and 6, or g and 6, fi- 
xed by  nor sample lnformatlon or "ex~erimenter's ex~ertlse", and this does touch on 
the ~ rob lem of determining whether (17) is applicable, and if so, how to use urlor infor- 
matlon or ex~erlmenters exDertlse to arrkve at a su~table cholce of @,S) or (y.6) etc. I 
do not go Into this here, but assume that we do  have (17) available and that (?,S) reDre- 
sent the values chosen (w~sely) by the ex~enmenter.  

Note that I use the Darametrlzatlon glven In (16), but of course if we let = I/o, 
we obtaln Geisser's formulation. I  refer uslng o as in (16) slnce EXylo) = o. Note 
agaln that D (a) eXlstS for 6 > 0, E,(o) exists for 6 > 1, and that V,(o) exlsts for 6 > 2. 
Also. we make note of the fact that if 6 and y tend to  zero such that 746-1) tends to g, 
then D (c) tends to D.,(O) which 1s such that 

the so called and much maligned non-lnformatlve pnor (nr) for o. 

Now an lnterestlng and somewhat novel theme of the author intrudes at this ~ o m l ,  
and that is the calculatlon and fitting of the Dredictlve h (y l a:-), based on the Dnor 
alone. where 



which after uslng (16) and (17) ylelds 

h(y l .:L) = 6r6 (Y +Y) Id*'' (21a) 

that is, a pnon, we predict y to behave as a scaled Snedecor-F vanable, i.e., . 
a unon 

Note that the mean and varlance of thls d~str~butlon are 

", 
(i) E,@) = = g = E,(o), 6 > 1 (22) 

6-1 

Note agaln that we may wrlte 

NOW the moments show that fittlng the Parameter (y,6) or (g.6) uslng (21) is associated 
with a distrihutron that is Located at the same piace as the pr lorp (U)  , but has larger 

variance (by a factor 6 : which could be considerable), and the moments of h are 
functions of the parameter of the Dnor. A person who would want to  nail down 
lnformatlon aDOut Drlor Darameters by fittlng his lnformatlon about (74) through h 

(whicn has larger vanance) rather than through the pnor, must believe in ~ u t t l n g  the 
cart before the horse, and notlce too that the ex~erimenter 1s asKed to examlne his 
exDenence and relate II to future y's based on h,  which 1s not based on current 
ex~enmental data- l doubt that many expermenters would do  this. 

Now what 1s golng on can be summarized by the following tableau (We shall let 
6 = (I/o) + i o r e  = (6-I)-'.) 

r Or ,,- lim F-,% 
6 m-m 

Y 26 
EAU) = - lim - = g  

6 m-m 26-2 

y2 
V,(a) = - lim (F.,%) 

m-m 

"2 
V,(o) = L lim V (F m,2a) 

6' m-m 

r2 1 
V"(,,) = - - lim u(m) 

(6-1)2 6-2 m- m 

1 
= g2 - lim u(m) 

6-2 m- m 

where u(m) is such that 

SO that 

lim u(m) = 1 

Now Geaser's method of fittlng usmg h amounts to  saylng revlace lim 
m- m 



u(m) ; which equals 1, by u(2) = 6, while of course, the Bayesian, who is using that 
U (0) given by (17), that is, o a a-urrorr, the scales Inverted Chi-Square vanable glven in 
(18), isusmgu(m) = 1. 

Having advocated the fitting of the no-data predictwe, there IS what amounts to 
some backtracking from this~osition by Geisser, because he now assumes that g = 

E,b) (= E,(v)) is assumed known (i.e. picked by soliciting from the exuer~menter 
information, sample or otherwise, about E*@)) and then. rather than contlnulng with 
the fitting of h. chooses 6 = a + I  by employing the discre~ancy functlon D or D* and 
finally the value of a that minimizes the chosen discre~ancy function. Here D = D(y; 
g, a )  is used it all observatlons retarded, while D* = D* (y,: y$ g, a*) is used if there is 
censored observatlons -see the Drevlous discussion here and Geissers paper, relations 
(2.7) and (3.10). We again note that doing this amount to choosing a value for a 
varameter of the prior which aeoeuds on the data, a cannon of Bayes~anlsm thus being 

v~olated. 
Indeed, what would a "Stnct Bayeslan" do m this ~rohlem? (1 am indebted to 

George Barnard for pointlng out that the definite article "a" instead of "the" should 
be used before the words "Strlct Bayeslan"). We suppose that the Drocess belng 
sampled 1s as given in (IQ, that the approprlate prior based on the exoenmenter's 
experience and knowledge 1s given by (17) with 6 and y fixed. Now suppose n unlts are 
nut on test, and that 

(i) n, observatlons, say yV , j = l ,  ..., n,, unrecorded, but known that 
lifetimes are less than a,, that is, y!" < a,,  r = I ,..., a,; 

(ii) n-n, - n, observations recorded, sayy, ,~ =n,+ l ,  ..., n-n,; (24) 

(iii) n, observations, say y!". f=n-n,+ l ,  ..., n, unrecorded. but known 
that lifetmesare greater than a,, that is, y!" > a,, f =n-n,+ l ...., n 

(in o u ~ p r e v ~ o u s  discuss~on, n, = 0 and y?' > all. where a,, = a,; Ge1sser.s illustrative 
examDle involves the case a,, = a, and that is why I have decide to look at this case at 
this polnt). 

From (24) we have that the likelihood is such that 

P (o/ y,; a,, a 3  sc 11-exp(-a,ia)I"l 

X 0-'--"1-"2~ exp(-flO'/o) X (exp(-a,io)"z (25) 

f'O' = , ~ " I - " z  ,=, yi 1s the sum of the recorded observations. We can thus use all the 
above ingredients and find 

1 Using (26) the results for ultimate calculatlon of the predictive distribut~ons are as 
follows: 

l 

1. Uncensored Case: (n, = n, = 0). 

Using theprevlous definitions we ftnd for this case that: 

l where t = t"' = gy, ,  so that, a Dostenon. 

I 
This in turn lm~lles that 

l 

I that is, the~redlctlve d~stnbutlon is such that 

We find 

'+? - an>+g 
(i) EQ 1 y) = ---- - --- = f (28b) 

n+6-1 n a + l  

n + 6  
(ii) V @ l y ) = f 2  

(n + 6-l)z (n + 6-2) 

and it 1s to be recalled that Gasser assumes g known and picks a to mlnlmlze D given by 
his (2.7), VIZ. 

D (a) = n-' I31 Lf. -y,12 



where j, has the same form as f in (28b), but leavesy, out, that is. 

11. Case of Censoring on the rlght only ( n ,  =O; n, > 0) 

Using prevlous definitions, for this case we find: 

that is, aposterlorl 

Further, the vredictlve distribution h"' is such thar 

(tIo' + n, a, + Y) 
Y =  F, 

n-n, + 6 

Recall that y = g(6-1) = glar. Note too that (y,S) (or (g,&) or (g,a)) is specified at the 
outset by the expenmenter. So a Strlct Bayesian who wants to do some uredicting in 
this situatjon uses (30) which n completely s~ecified. Note too, thar uslng (30) and 
letting a - 0 implies that 

Hence, in uartlcular, we would estlrnate the 90th vercentile of future y ' s ,  say .P.Lo, that 
is, the vomt exceeded with probability. 10 whenusing the predictwe as 



[F,,, ,,,,denotes the point exceeded with probability 0 when uslng the Snedecor Fwith 
(m,& degrees of freedom and X::,, ,  is the Domt exceeded with probability . l0 when 
uslng the Chi-Square distribution with 2 degrees of freedom and is equal to 4.6052.1 

We illustrate the different types of results that emerge using Gelssers data. 
Consulting Ge1sser.s pauer. we find 

n = 100:n, = 89:n-n, = l l ; a ,  = 500: (33) 

n, a, = 89 (500) = 44,500; + n, a, = 47,187; 

MLE = 47,187/11 = 4290. 

Recall that Gasser uses (32) with a replaced by &, and & is obtained by following the 
Drocedure described startlng at (12). The results are g~ven m Table I .  We are assuming 
that a > 0 (so that the mean g emsts) and we have cut off the table at the linen = 1, 

but it could continue rndefinltely in prmcl~le. As the last line. we have Inserted 

Ge1sser.s results. (At this writing Gelsser did not supply the values of 6 found, but of 
course, it 1s easy to see that for his entries for the cases g = 3700, 4280,4290 and 5000 
that his 6 = 0.) 

Note that unlike Gelssers 1 line table, there are no reversals along rows m the m a n  
body of the table. Further, the columns to the rlght of the MLE are decreasing and 
vxeversa. And it is interesting to note agarn that ~ n o r s  do produce the different results 
indicated by the Table, different from the l-line table of Geissers, which after all could 

be very different ltself depending on the type of D* functlon used. Note that if Geisser 
were to use the welghted functlon glven by his (3.10). then a mlnor quarrel could be 

plcked. In our notation, the welghts used are 

for the uncensored variables, where the expectation 1s taken with resuect to the 
~ o s t e n o r  of o glven m (291, and 

for the censored variables (recall these are all censored at a,), where here the variance Is 
taken with respect to the conditional uredict~ve hl"(vy > a,) where the unconditional 
/liii is specified in (30). The minor quarrel is with (i) -in most applications a, -= a, (in 
this example a, = 500) because of a tune constrant, or a gauge calibrated between (0, 
03 only, etc., and realistically then, once we see the data the recorded obseniatlons are 
known to be less than a,. Hence the recommendation would be, not to use (i), but 
lV@y< aJ]-' 

111. Censored observations on the left and rlght (n, > 0, n, > 0). 

For this case It is easy to show that we may wnte the nostenor as 

where 

and K 1s such that 

Using this we may in turn find that the ~redictlve density 1s glven by 

h'@ l ~,~'';y,:yg') = E,:,:, c,qCy:v.;n-n,-n, +6) (35) 

where in general 

q1y;b;c) = t [ ~  + :]-"*".o,~ > o (354 

and where 

To illustrate what happens in this case, we have censored Gelsser's data on the rlght at 
a, = 60,  so that we are pretending that we have the follow~ng samole informatron: 

n. = 2 observatlons less than a, = 60; 

n, = 89 observations greater than a, = 500 (36) 
n-n,-n, = 9 observatlons recorded. and observed to be 90. 135, 161. 
249,323,353,833,436,477. 

Note that 1"' = 2,607. Using the above data m (33,  and dealing with the case where m 
= -5 , that IS, 6 = 3, we find that the 90"' Dercentile of this distribution for varlous 
values of g are as glven m Table 11. 



TABLE I1 90'"ercentile for the ~redictlve denslry (35) based on the data set 
(36), for a = -5 and g as tabled 

g 60 3,550 3700 4280 4290 5000 5150 15.000 

90'" llercentile 8,414 9,666 9720 9927 9930 10,185 10,239 13,782 

A comDanson with the u = - 5  line of Table I yields the (ex~ected!) fact that the 
corresuonding entries are all less than the corresponding entrles of Table 1. (A Drogram 
that tabulates the cumulative of (35) 1s available from the Department of Statistics, 
Un~verslty of Toronto). 

Finally, 1 want to congratulate Geisser agan. His Daper 1s very throught provoking 
and has proven to be very stimulating (to this person at least) ana some very subtle 
Issues are ralsed m this paper. To  the data analyst and to those who worry about 
foundations, this work ralses some profound questions to  which some clear answers are 
deserved. In the meantime, the methods ~roposed by Gelsser are of great interest, and 
he is to be congratulated for the rnventlve Droceanres that he has UeveloDed. 

S.J. PRESS (Un,versilyof Colifornlo, Riverside): 
Professor Ge~sser has ~rovided us with yer another illustratlon of the versatility of 

the ~redictive sample reuse method that he and Professor Mervyn Stone introduced in 
different forms, mdependently, in 1974, in thew now well-known and celebrated DaPers 
that both appeared in England, in Biomeirika, and in JRSS (B), resDectively. Professor 
Gelsser nas now shown us how to apply this methodology to the prediction of future 
observatlons, when some of the sample data are censored. The problem here, of 
course, that makes this application different from his earlier applications is that not all 
of the data are inmediately available as candidates for oeletlon, in the baslc discrepancy 
function, because of the censormg. 

As a solution to this inherent difficulty, the author Droposes that we lntroduce 
pseudo observatlons, obtamed by using the expectation of thepredictlve distribut~on of 
a ce&ored observahon given that the observation (that is, the observed failure time) 
exceeds a preasslgnea value, namely, the censored value. To ob tan  this predicuve 
distribution we must mtroauce substantial structure lnro the uroblem. It seems thar, we 
must have a likelihood funct~on, and a bonafide ~1101 distribut~on on the unknown 
parameters. From this structure we obtaln a Dostenor, and suuseauently, a predictive 
distribution. Taking expectations in the latter yields a "Dseudo observation" 

The author suggests that when Ire turn the sample reuse crank, we should utilize 
the Dseudo observations as well as the uncensored ones, and be suggests two methods 
for doing so. He also suggests that the discrepancy functlon should be formed as a 
weighted average of the individual discrepancies obtaned by deletion of observatlons. 
the weights being assigned according to some soecific suggestions. 

Finally, Professor Geisser has applied his paradigm to  some actual failure time 
data. 

I would like now to make some comments and to  raise some questlons. 
I .  My first question concerns the parametric structure imposed on the problem. 

The recommended approach requires that we make uarametric assumDtlons about both 

the samDle data and about the parameters of the sampling distribution. lf,we must 
impose such structure anyhow, as we would do in a conventional frequentlst approach, 
or in a conventional Bayes~an approach, why should weutilize the sample reusemethod 
at all, in this application? To do  so, we must lntroduce some ad hoctery regarding the 
form of our discrepancy functlon, our predictor funcuon, etc. In other applications, 
we would  res sum ably be trading off some precision of results, as a result of this ad 
hockery, m order to  galn robustness of prediction with r e s ~ e c t - t o  distributlonal 
assumptions. In this case, what do  wegain? 

2. 1 would like now to  questlon the assignment of weights. Isn't the assignment of 
weights to  the discre~ancies qulte arbitrary? Certanly the assignment is no less 
arbitrary that the assumptrons made about the form of the discrepancy functlon, the 
form of the Dredictor functlon, etc. On what basis has the author selected the we~ghts? 
It seems to me that using precisions as weights is motivated by a norma distribution 
assumution. But in the case where the data are more likely to  be some member of a 
family of non-normal waiting-time distributions (ex~onentlal is what Professor Geisser 
used as an illustratlon), why use precision weights? 

3. The author combines subjective ~nformatlon with samvle mformatlon, m a 
more or less Bayes~an way, but violates Bayes' theorem by nsmg sample data to assess 
the Darameters of the Prior distribution. It seems to  me that there has been ample 
precedent m the literature for this kind of approach. called empirical Bayes. But this 
rases the natural questlon, should we use a moment matching assessment techmque 
or perhaps we should use some other method of gettlng at the parameters, and then do 
maximum likelihood estlmatlon of the hyperDarameters by maslmizmg the marginal 
distribution of the data given the hyperparameters? We would of  course need to adorn 
a likelihood functlon to  do  this. Perhaps a smaller risk would be obtained, an 
imuortant consideration for an empirical Bayesian. 

4. MY last questlon Involves the underlying parameters of the Drior distribut~on 
agan. A gamma Pnor is suggested in the Dauer, for the mean of the sam~ling 
distribution of failure time. This is a two parameter ~1101. But the ensuing anaysis 
really lnvolves only the shape parameter and assumes we know the scale parameter. 
Pernaps the analysis could be carried out for both parameters simultaneously? Perhaps 
the mathematics is too intractable. 

In conclusion, I would like to thank Professor Geisser for an extremely stimulating 
and thought provoking paper that clearly extends his earlier research in this area, Into 
new and imvortant fields. But glven the methodology we have heard about today, as it 
relates to censored data, it seems to me thar there is another problem that could 
probably be treated in an analogous way - this is the problem of mrssrng data. We could 
generate pseudo observatlons for the missing data and carry out the analysis in like 
fashion. 

Perhaps Professor Geisser will tell us how to do this m one of his future pavers on 
the subjct. 



REPLY TO THE DISCUSSION 

S. GEISSER (Unrversrty of Minnesota): 

In the introduction to my paper 1 outlined how sample reuse procedures could be 
executed m the Dresence of censored data. Two such Drocedures were suggested,' 
neither requiring distributional assumotions. 

Believing that I. J.  Good is essentially correct m his vlew that most reasonable 
Bayesian applications are inherently compromises with other methods and also that the 
predictive samDle reuse method can be an attractive empirical Bayes procedure - I 
offered such an applicatlon. It was described first for full data sets and then for 
mcomDlete data sets with censorlng as a partlcular application at varylng levels of 
lnferentlal structure running the gamut from Low to high. 

Even in any real subjectwe applicatlon of Bayesian Drocedures, there comes a 
oolnt at some level m me possibly lnfinlte hierarchy of hyperparameters and 
hyperdistributlons where one is no longer willing to  contlnue regressmng. Among the 
several alternatlves are: (a) asslgn Dreclse values to  some final set of hyper~arameters, 
(b) introduce a so-called non-mformatlve distribut~on for them, (c) devlse an emdrical 
Bayes procedure for the11 estimation. Given that certain conditions obtan,  coherence 1s 
guaranteed for (a), problematic for (b), and inevitably vitiated for (c). 

My paoer, in o u t ,  sets forUl a new Drocedure that can be substituted for others 
useful in (c) and one which has the robust quality of slmnlating to  a large degree on the 
available data what it requlres from a predictor. Although orlglnally the predictwe 
samole reuse method was introduced to  provide polnt predictors for low structure 
paradigms, here its effectiveness a amply demonstrated as a useful empirical Baves 
estnnator of a hyperlarameter, an Intermediate step towards   re diction for a high 
structure paradigm. In partlcular, a situat~on is described where it turns out to  be 
easlest and most convenient to apply amongst the usual estimators of this type. For 
example, m the uncensored sltuatlon, we easily ob tan  the marglnal density of X,,. ..X, 

P(N + 6)ya 
f (x  l,..., xMI8.y) = 

r(6)[Ni + 

whereiis the mean of the 0bserva:rons. 
Assuming g = v/@-1) 1s known and transformng to Y, = g-l X,, the marglnal 

density of Y,, ..., Y,is 

Here S = EX, Y, is suffic~ent for 6 and clearly (6 - 1)~ 's  is distributed as &(N,6), a 
beta distribution of the second kind. The method of moments fails because E(S) = N 
and usmg the second moment restricts the range of 6. Hence it would requlre that 8 >2, 
which results m the estnnatlng method imposlng a restriction unassumed by the model. 
The max~mum likelihood estimator is a solutlon to  the unwieldy equatlon 

the number of whose terms Increases with the sample slze. So much for comoetltors m 
terms of ease mgettlng a sensible estrmator. 

Professor Press wonders if the analysls could be carrled out for both g and 6 
unknown. For that case, there 1s no apparent relief for method of moments and 
maxlmum likelihood Drocedures when applied to (1). The PSR method requires solv~ng 
a cubic equatlon in the uncensored case and 1s somwhat more complicated m the 
censored case. When a glven value for g is specified (which 1s much more likely to  be 
s~ecifiable than 6), the PSR solutlon as described m the Daper is exvliclt for the 
uncensored case and easy to achieve In the censored case uslng the recursive algorithms 
of sectlon 4 and has the appealing property of bemg slmilar to a "testimator" 

It IS a rare event Indeed when a discussion comes Derilously close to  exceeding the 
length of the Daper at issue. Even rarer when the discussant begins and ends with the 
same litany of Dralse and yet the author must disagree with most of the views exDressed. 
1 refer, of course, to Professor Guttman's critique. First an exception: 1 applaud his use 
of the term fingible which 1 introduced in an attempt to extend exchangeable. It has 
indicated that a vredict~on made when a colleague exmessed his averslon to such a 
Singularly unattractive word, may yet take hold. Muster~ng my most somber demeanor, 
I Dortentously responded, "It will grow on  you." 

First we address some minor details. Professor Guttman's equatlon (6) n 
meamngless unless a Dredictlve functlon is specified. A aemonstratlon of consistency; 

I.e., that the two sides of (84 approach the same denslty as the samDle srze increases, 
does not Dresent any difficulty. Although 1 already resvonded in  art to the great to-do 
about vlolatlng primordial Bayeslan canons, still Dermlt me to take this opportunltv to 
expose a further serlous transgression on my Dart. To  assume that a prlor deDends on 
the likelihood is, of course, orlginal sin Itself in this theology. Apparently undetected 
by Professor Guttman, wno usually rrerforms yeoman service as a sort of Bayesian 
suverego, was my use of a conjugate Drror denslty - mea c u l ~ a .  Professor Guttman 
admonishes me for a pnor that comes only "one-armed" instead of what he considers 
to be approDnate - the lnvestlgator determlnlng exact values for both hyperDarameters. 
We obviously describe different situations. 

Now to more serlous questions. 1 must take very strong Issue with his horse-cart 
analogy. It denves, 1 believe, from a fundamental misunderstanding of the practlcal 
value of Darametnc lnfuslons Into statlstlcal Daradigms. Parameters are basically 
artifices introduced by the statlstlclan to  lubricate the modeling Drocedure, and of 
course, hyperDarameters even more so. In most instances, they are comDletely alien to  
the exaerlmenter's thinking who works with and thinks about observables. Hence, if 
Drooerly questioned he can res~ond  in those terms directly. If you want to eliclt more 
than just a curious stare, try exvlammg a hyperDarameter to an mvestlgator; it is a sure 
tlcket to non-communlcatlon. Further, the exerclse on predictwe and  nor variances 
which has exerclsea Professor Guttman Invites exorcism. They are Irrelevant 
calculations devoid of purvose and meanlng In regard to the issues. 
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Professor Guttman has taken the trouble to  calculate tables of the 90th percentile 

polnts of the predictwe distribut~on for varying Dut known a and g and clams to have 
uncovered the fatal flaw (certan reversals in the probabilities) In using an em~irical 
Bayes procedure - the fault Delng that i r  is not "Bayes~an." He could have saved 
himself the trouble by discerning from the table and graphs in the orlglnal paDer that 

' 

this had to De the case. On the one nand, these reversals actually demonstrate the fact 
that when the guessed value of g is very far from the exuerlmental data, the samule 
reuse Drocedures wlsely 'discount the value to a greater and greater extent as if g were 
the Droduct of a demented prlor opmlon. On the other hand, when the mean of the 
samule values is within a certaln small interval of g, the Droceaure behaves as if p were 
known to  De g.' from the start. This is the "testlmator" quality of the Drocedure - lt 
makes every effort to temper the r~gidity of coherence with the facts embodied in the 
aata. 

Professor Press comDlalns about my weight funcnons. If he has a better scheme, 1 
would be nappy to entertain it because the plethora I presented com~licate the 
Drocedure far roo much. In fact, the more lnformatlon used, the greater the 
computational complexity. Even if a set of welghts, indisputably appropriate and 
yielding a reasonably computable solution, were adduced, which is unlikely, 1 believe 
the algorithm~c method would still be preferable. This was fully described in sectlon 4 
and illustrated for the aata set. Hence, 1 echo his complant but for different reasons. 

On the other hand, Professor Guttmam insists that welghts De Dased on a uredictl- 
ve variance conditioned on the oDservable Delng less than a glven value when In fact it is 
known that it exceeds that value. This loglcal inversion Indeed makes even a cart-horse 
analogy pale by comparison. 
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Beliefs about beliefs, a theory for Stocbastic 
Assessments of Subjective Probabilities 

J.M. DlCKEY 

Unfversfty College of Wales, Aberystwyth . 

SUMMARY 
Parametertzed families of subiectrve probability disrriburlons can be used to prear 

aavanlage to model beliefs of exilerrs, esvec~ally when such models lncluae dependence on 
concomaant variables. In one such model,  roba abilities of slmpie events can be expressed 
In loglinear form. In another, a gene~alizatlon of the multivar~are r distribution has 
concomiranr variables enterlng linearlv through the tocatton vector. Interactwe lniervlew 
methods for assessing this second model and matrlx exienslons thereof were gwen in 
recenr lolnr work of the author with A.P. Dawid, J.B. Kadane and others. In any such 
verbal assessment method, e i i ~ ~ i e d  quantiles musi be fitted by subjecflve vrobabilitv 
models. The fittlng requires theuse of a furlher ~robabilitv model for errors of eliciratxon. 
This paper gwes new theory relating the foim of the disiriburton of elicitea probabilities 
and elicited quantiles to the foim of the subjectwe probabilitv disrribur~on. The first and 
Second order momenr structures are develoved to vermlt generalized least squares fits. 

Keywords: SUBJECTIVE PROBABILITY: PROBABILITY MODELING, PROBABlLiTY 
ASSESSMENT: PROBABILITY ELICITATION: STOCHASTIC ELICITATIONS. 

1. SUBJECTIVE PROBABILITY MODELS 

M a t h e m a t i c a l l y ,  s u b j e c t i v e  p r o b a b i l i t y  m o d e l s  r e s e m b l e  t h e  more 
f a m i l i a r  sampling t h e o r y  m o d e l s .  The usual Kolmogorov a x l o m s  will b e  

sa t l s f i ed  by a probability mass or density f u n c t ~ o n ,  w h i c h  1s n o n n e g a t l v e ,  

i n t e g r a t e s  to u n l t y  and is otherwise wel l  behaved . '  The d i s t ~ n g u ~ s h i n g  

Present affiliauon: State Univericlv of New York, Albanv 

Some wrlreii on subiecccv~ probabilitv meter lo work cn terms of finilelv additive probabiliiies. This 
distlnctlo" 15 nor mareria1 to the preren, ilaper. 



characteristic of a subjectlve distribution, then, is not some mathematical 
property, but rather its use to describe a person's state of mlnd or subjectlve 
uncertainty concerning particular events or quantities of interest. Although a 
realistic subjectlve probability distribution for a future sample typically has 
the mathematical urouerty of exchangeability, or another weakened version 
of the i.i.d. or related property, my emuhasis here 1s on the distinction 
according to interpretation or use. 

Models in general can be classified as fixed or parametric. A fixed 
probability model is a slngle probability distribution for a scalar or vector 
random quantity, or a slngle distribution-valued function of concomitant 
variables. In the case of subjectlve probability, the distribution would be said 
to be condiflonul on the information in t h e  concomitant varlables. A 
parametric model, on the other hand, is a class of models indexed by one or 
more parameters, whose values serve to specify corresponding fixed models in 
the class. The difference between a concomltant variable and a parameter, for 
subjectlve probability, 1s that a parameter is used to Indicate a class of fixed 
models merely for mathematical convenience. A parameter may fail to have 
any interpretation as real information. We shall refer to the parametric and 
fixed forms of the following subjectlve probability models. 

Model 1. Loglinear odds for an event. A person may be uncertain 

regarding the occurence of a uartlcular event of interest, say for a 
dichotomous variable y = 0.1, the event y = I .  Conditionally on the vector of 
concomitant varlables X, his probability is said to take the loglinear form 

where for X = (xi ,..., X,)' and h = (b, ,.... 6,)' 

Inversely, u = Yn[p/(l-p)]. The corresponding parametric model has the 
vector of parameters b. 

Moael 2. Location-scale denslty for a continuous quantity, with linear 
locatlon and gathered elliptical symmetry. The person may be uncertain 
about a particular continuous quantity y. HIS probability distribution is 
modeled in location-scale form. Suppose it has a densltyp Q), expressible in 
terms of some special standardized density f, 

It IS as if there were a standard random quantity z having density f, for which 

y = m + cz. (1.4) 

The parameters are m and c 

In the uresence of the vector of concomltant varlables X = (X,, ..., X,)' the 
conditional distribution of y has the linear-form locatlon, for h = (b,, ..., 6,)' 

I 
l m = x'b. (1.5) 

Then b would become the parameter, lnstead of m. Of course, c too could 
depend on X (and it will in an important case to be Introduced). 

This model can he usefully extended in various ways. Writing the 
concomitant vector as an arbitrary function of more elementary variables h ,  X 

= x(h), one hasthe notlon of a subjectlve response surface. This comulements 
the theory of objectme response surfaces as traditionally used in the 
optlmlzatlon of industrial processes. The surface ordinate m(h) = x(h)'b 
would represent a subjectlve locatlon for the resuonse y, as opposed to an 
ideal long-term mean response. The locatlon m(h) can serve as a subjective 
point ~redictlon, while the scale uarameter c expresses the amount of 
predictive uncertainty. 

O ~ ~ n i o n  concerning samples in time can be modeled by replacing the 
scalars y, m, z by vectors y, m, z: the scale parameter c becomes a matrix C; 
and if concomltant varlables are present, X should be replaced by a matrix X 
whose row vectors are point values for X: 

Equations (1.3) through (1.5) then hold again as wrltten with the glven 
remacements. Equatlon ( l  .3) for example becomes 

l 

l 
if we assume the matrlx Cis  nonsingular. 

Bruce Hill (1969) and A.P Dawid (1977, 1978) have lnvestlgated the 
property of spherical symmetry, m which the distribution of z is invariant 
under rotations. If Az would have the same dlstrrbution as z for any 



orthogonal matrlx A ,  then the distribution of y = m + Cz depends on the 
scale matrix C only through the product, 

W = CC' 
1 

(1.8) 

An example of such a location-scale model is the multivariate Student family 

where z Stndent,(O, I) means that z can be represented as the product of a 
standard normal vector and the independent random quantity (d/x$)lf2 
Kadane et a1 (1978) have developed such models for subjective probability 
modeling. 

The multivariate Student distributlon (1.9) has the property that the 
density of y depends on y only through the positive definlte quadratic form 
(y-m)' W-'(y-m), and it strlctly decreases in this qnadratlc form. We shall refer 
to any distribution which has these properties as gathered and elliptically 
symmetrrc. Much of the work here will apply with full force to a general 
gathered elliptically symmetric distribution with linear Location. The main 
advantage of such models 1s that they can be maxlmlzed in their coefficients 
vector by the method of generalized least squares. We wrlte for such a model 
in analogy to (1.9), for y = m + Cz, 

where z has the standard distributlon z % F  ( 0 3  

Matrlx-variate extensions of such models are also available for ouinion 
about multivar~ate responses sampled at varlous concomitant polnts (Dawid, 
Dickey and Kadane. 1979). 

Subjectwe probability models, such as the models introduced here, are 
Important for sltuations where there is not alarge amount of proper statistical 
data available and expert oplnions must be used for planning experiments or 
other declsion making. Such models are lndispensible when there is little or no 
Droper data. Expert opinion is already used extensively now without formal 
modeling. The intention is that urobability models can brlng order Into 
expert-opmion processes. The general scientific method urges observatlon and 
experimentation where feasible, and samules can be planned and analyzed 
using subjectwe probability. But these models are also useful m SltUatlonS 
where statistical methods would not be applied. 

Modelling of beliefs has the following types of use: 

I .  Clarification of belief, durlng the modeling or assesment 
process. 

2. Commun~catlon. More precise expression of oplnlon. 

3. Comparison and possible pooling of experts' oplmons. 

4. Dec~slon; e.g. coherent declslon (crlterlon of maximum 
utility). 

5 .  Plannlng of experiments (e.g. criterion of max~mum expected 
value of sample information). 

6. Analysis of experlmental or observational data. Updating of 
o ~ l n l o n  by probability conditioning. 

Given a jolnt probability distributlon for observed data and some 
uncertain quantities of interest, such as future data, opmlon is coherently 
updated to account for the observed data by the usual probability 
condition~ng in the jomt distribution. For example, m the joint distribut~on 
(1.6) for Y =  (Y;, Y ~ ' , P  ( ~ ~ 1 ~ 3  = P  (YI,YZ)/! P (YI,YZ)~YZ. In themultivarlate 
Student case (l.9), 

where 

We have partitioned m and Wconformably to y; Wi, is a generalized inverse; 
and r, = rank W,,. (Of course. what 1s actually meant by this in practice 1s 
conditioning on a small pos~tive-probability Interval for y,.) 

Note that there has been no need to mentlon Bayes' theorem. It is only ln 
the suecial case that p (y) 1s a mlxture of sampling models that Bayes' theorem 
arlses. That IS, i f p  (y) = \p (y 1.9)~ @)dB in terms of an i.i.d. sampling model 
p (y B) with an unknown uarameter B subject to the prior distribut~on p (B), 
then 



where the posterlor distribut~on in the lntegrand 1s Obtained by Bayes' 
theorem, 

A speclal case of our multivar~ate Student model (1.9) can be vlewed as a 
subjectlve average of the familiar normai-linear-regress~on sampling models 

"in which 

If p and U have the usual conjugate prlor distributlon, 

then the corresponding pnor-predictwe distributlon for y 1s lust the 
multivarlate Student distributlon (1.9) with the speclal parameter vames, 

m = Xb, W = s Z ( X ' ~ - ' X +  I). (1.17) 

The usual Bayes~an updatlng equations for oplnlon regard~ng D and o (Ra~ffa 
and Schlalfer, 1961) lead to the same posterlor predictwe distribut~ou as (l . l  l )  
with (1.17). But, of course, our form (1 . l  1) 1s much more general. 

We state agaln, for emphasls, that a mlxture of sampling models Is a 
special case. In the multivarlate Student prevlslon, a speclal form of the 
parameter W is Implied (1.17). special in the sense that W 1s then the sum of a 
scalar matrlx and a matrlx of rank fixed relatlve to the sample sue 
(dimenslonality of y). 

2. THE PROBLEM OF ASSESSMENT 

Just as in any mathemat~cal modeling sltuatlon, a person who w~shes to 
model his beliefs by probability 1s faced with the problem of specifying his 
model. This can be broken down Into the subproblems of determlnlng a 
parametrlc model ancl assesslng a fixed model within a glven parametrlc 
model. We treat the latter type of problem here. In practlce, the full 
specification may proceed by an lteratlon alternating between tasks of the two 
types. 

We assume that the assessor subjectively specifies aspects of the model. 
Aspects may Include: probability values; quantiles; moments; even 
parameters themselves. Typically, he wlll overdetermlne the model by 

assesslng more aspects than are required to fix the model mathematically. 
That IS, his assessed aspects will be logically contradictory under the model, 
and some kind of fit must be performed. The extent to which they contradict 
each other can help Indicate the degree of suitability of the glven 
Parameterlzed model. 

I should like to emphasize here that subjectlve probability modeling 1s 
like any other type of mathematical modeling, in that diagnost~c checks are 
necessary to see whether the chosen parametric model is adequate for the real 
situation belng modeled. Loglinear odds and gathered ellipt~cally symmetric 

models are here claimed to be widely useful, but like any parametrlc model; 
they cannot be universal. (No model is ever exactly true). The main argument 
for consider~ng them is that they are tractable and allow a wide varlety of 
oplnlon structures. 

We envisage the assessment process as an aspect-suecificatlon and fitt~ug 
cycle: 

i .  Specify new aspects 

2. Fit model to specified aspects 

3. Diagnostic checking 

4. Change aspects or change parametrlc model, and 
go to I; or stop. 

Interachve computer programs for such a process for models of our second 
type (1.9), (1.171, are reported in Kadane et a/ (1978) and Dlckey and Prlce 
(1979). This prevlous work, however, 1s mformal, m uslng convenient but 
arb~trary methods for step 2. The present paper attempts to meet the need for 
reasonable formal crlterla and methods for fitt~ng subjectlve proaahllity 
models to specified aspects. 

A question of interpretation may be of partlcular Interest at this polnt. 
The aspect specificatlons and the model almed at are both concelved as 
shbject~ve entltles In the sense of bang merely expressions of personal 
opmlons, rather than propertles of real-world objects or processes. The reader 
may appreciate, however. that much of the development here would also 
apply to sltuatlons where an underlying probability model, which a person 1s 
trylng to assess, 1s considered to have its own object~ve existence (say, the long 
term frequency of failure for a partlcular type of component m an operating 

nuclear power plant). Then the aspect specificatlons could be concelved as 
subjectlve estimates of the object~ve aspects. 

Contexts of the latter sort resemble in many ways the trad~tional 
sampling context In which both the model and the aspect specificatlons are 
obiect~ve. That IS, data drawn from the model are used to form statlstlcs, 



which then estlmate asoects of the model. This resemblance will receive 
further discussion latter. For the present we merely polnt out the logical 
distlnctlon between data concernrng a model and data drawn from a model. 
The former conceot 1s the more general. 

1 STOCHASTIC ASSESSMENT MODELS 

We postulate two models, in general. First, the beliej-tllodel or subjective 
.probability model, denotedp, say a probability mass or density function a (V) 

for the uncertain quantlty y .  This is the underlying true fixed model, the 
object of the assessment. It 1s true in the sense of exactly describing the glven 
exoert's personal belief, and it takes the form of a probability distribution, 
possibly conditional on concomitant variables. Aspects. functions of this 
model, are denoted, 

U,, U* ,..., U.. (3.1) 

Denote thevector U = (U,, ... ,U")' Thenu = U@). 

Strictly soeaking, for the aspects to be functlons. the modelp would need 
to be seen as a member of a class of models, such as the class of all 
distributions for y on the given range. For another example, if the model 1s 
oarameterized by a, then U = u(a). Typically, this functlon 1s invertible on a 
Subrange of n values. For these values, then, the model a would be identified 
(in themathematlcal sense) by U. 

The expert assesses values for the aspects, 

In vector form, wrlte U* = (U; ..., u n '  The second category of model is the 
assesstnenr ,nudel, denoted q. This is a probability mass or density functlon 
q (U*) for the random assessments U* which depends on the true model P. 

' C  Whereas u ,,..., U, concern" p, U: ,..., U: are "drawn from" q. We assume 
that the dependence of q o n p  comes only through U, and hence wrlte for glven 
a. 

This is a new use for the concept of probability. (See, however, Lindley, 
Tversky and Brown, 1979). On the one hand, q models the subjectwe belief of 
the exoert concernlng his own beliefp. On the other hand, a sample U* drawn 
from q is actually available for analysis, and U* can be analysed in any of the 

ways a StatlStlcian would ordinarily work with data drawn from a 
distributlon. The assessment proDability for U* (3.3) depends on U, and hence 
on D. Thus, in the case of a parameterlzed belief model D, the assessment 
likelihood for the belief parameter a can be wrltten 

Conseauently, familiar Bayeslan or likelihood methods can now be used to 
make Inference concernlng p through a.  In particular, one can estlmate the 
belief model a by maxlmizlng the assessment likelihood tQ(a) (3.4). (The 
freuuentlst justifications for maximum likelihood are well known; Bayesians 
might justify it as an approximate oosterlor mode). 

Lindley, Tversky and Brown (1979) postulate a further probability model 
in order to carry out Bayeslan Inference concernlngp. For them a itself would 
be random under a further "onor" distributlon. 

Examale. Assessment likelihood hav~ng linear location and gathered 
elliptical symmetry. Consider the following useful structures for U aild a, 
respectively, in terms of a standard gathered elliotlcally symmetric 

distribution G (0,1), 

I .  u * l u ~ , ~  G(u,V) 

2. U = La. 

The assessment likelihood in this case would be maximized by the generalized- 
least-squares estlmate, 

One usually sees the estlmate (3.5) justified by the Gauss-Markov 
theorem in terms of variance and bias. It was derlved here by maxlmum 
likelihood. This structure would Include the usual normal linear model, to 
which both such "justifications" apply. Variance, bias, and other moments 
may fail to exlst, however, for more general G .  

Note that in the present example very little has yet been stated concerning 
the belief modelp; merely, that some aspects o f p  are hnearly related to some 
Darameters lnp .  Nothing yet has been assumed regarding the lnteroretation of 
U or a. In a special case of some mterest, the object y of the bellef would 
follow a related subjective-orobability model, 



where, for example, F (0,I) 1s the same standard d~stributlon as G @,I). We 
shall discuss later a posslble relevance for taking the matnces Vand W to be 
proportlonal. 

We turn in the follow~ng sectlons to theorerlcal conslderatlons relatlng 
assessment models to the behef models previously glven. Part~cular locatlon 
and scale structures will be motivated for assessment models q, for use of the 
generalized least squares estlmate (3.5). 

1 
4 ASSESSING THE PROBABILITY OF AN EVENT 

For aspects, consider the linear logodds of eauatlon (1.1), u = PR 
(p,/(l -p,)l = x'b, , = I ,..., n. The expert could assess e~ther u or P, ,  but we 
retaln the notation In wh~ch  the logodds are treated as tne aspects. In practice, 

one mlght prefer to assessp, dlrectly and then transform to an assessment of 
U .  Exuandlng aotn the transformatlon and its lnverse about the polnt P = 1 
ylelds 

Both second-order terms vanish, and so the transformatlon 1s approx~mately 
linear for moderate urobabilities. 

Assumlng that assessments U*, p *  are related similarly to U, p, that 1s by 
U* = Pn(p*/(l - U*)), we nave that unbiasedness of p *  1s approximately 

equrvalent to unbiasedness of U* Hence we assume for the first moment of 
U * .  

Assumption 4.1 

Eu* = u 

Cox (1958) uses the somewhat weaker assumptlon of a constant bias for urin 
the context of subjective estlmatlon of objective urobabilitles. 

We discuss the second moment at length. 
It IS clear that very small or very large probabilitles are assessed with \ 

smaller absolute errors than moderate probabilities. We shall argue here for 
the prouortlonality 

Justificat~on (a). A constant coefficient of variation S.D. @*)/E@*) 
would express the Idea that the errors in assessment are uroportlonal, in thelr 
Standard devlatlon, to the true value p. This seems more reasonable than a 

constant standard devlatlon for small probabilitles, but uerhaus overly 
outimlstlc in that such urobabilitles are notorlously difficult to assess. It 
would also be unrealistic for large vrobabilitles in not havlng the standard 
devlatlon there smaller than at moderate vrobabilities. A reasonable 
comvrom~se which meets all of the above uolnts 1s to consider the new ratgo, 

This will be constant under (4.3) for unbiased P* 

Justification (b). If p *  1s Beta distributed under the assessment model, 
then Var@*) a (Eu*)(l -Ep*), which agaln ylelds (4.3) m the unbiased case. 

Justification (c). The varlance within the subjectlve-vrobability model 
Is VarW) = P (1 -p) .  We shall argue, below, for the case of conllnuous y, that 
assessment variance 1s proportlonal to belief variance. By (mere) analogy 
here, Var @*) m Varb)  = p (1 -p). 

Considering now the second moment of U*; we have, 10 first order, 

Hence, Var(u*) = (du~dp) '  Var@*) m (p ( l - ~ ) J - ~ ( p  (1-p)) cc (1-P)j '. bY 
(4.3). This motivates the follow~ng: 

Assumption 4.2. Var(u*) IS proportlonal to Lp (l-p)j-' = e-.' + 2 + er, 

To use the moment structure of ASsumpt~ons 4.1 and 4.2 to fit a loglinear 
odds model to assessed aspects will requlre lteratlon, because the varlance 1s a 
functlon of the mean. Further assumptions would also be needed regarding 
the covar~ances. 

5. ASSESSING QUANTILES OF A LOCATION-SCALE MODEL 

For a continuous random quantity y define the ath quantile (0 < a < 1) 
as the number y, satisfying 

In the problem of assessing a slmple locatlon-scale model (1.3) consider as 
aspects U,, the quantiles y, for glven vrobabilitiy values n., T = I ,  ..., n. A 
linear relatlon nolds between the quantiles of y and the corresuonding 
quantlles of the standard random quantlty E .  
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Hence glven the assessed quantiles yS,, r = l ,  ...A a natural method to use to 
estimate m and c is to fit the stralght line (5.2) to the "data". z,:, y*., 
3 = I ,  .... n. This was proposed by 1.J. Good (1978) as a method of reconciling 

* 

subjective quantiles from several experts in the normal case. 
An appealing fitting method to use here 1s generalized least squares (3.51, 

and a candidate for the required error-covariance structure will be develoDed 
below. Garthwaite and Dickey (1979) study propertles of the "bisect~on" 
method. a speclal case of this method when bisection 1s used for assesslng 
location-scale parameters. In the bisection method, particular quantiles are 
eliclted as medians of distributions conditioned on subintervals. 

In the more general multivariate locatlon-scale model with linear form 
location, m = Xb (1.7), it might seem reasonable to fit this form for b after 
assesslng a single quantile of yi at each polnt X; O, conditional on X = X,), 
where the row vectors X:, I = I ,  ..., n, comprlse the matrlx X. These quantiles 
yWi(xj) would all be assessed for the same nrobability value say a; - 1/2, an 
appealing value to use in the elliptically symmetric model (l.9), for which the 
coordinates of m are the medians of the coordinates of y.  One would fit the 
linear relation, in this case, 

to the "data", X,, yT;, (X,), ! = I ,.... n. Agam, generalized least squares will 
require an error-covanance structure. 

5.1 SamDle quanfiles as esfrrnates ofquanfiles 
Subject~ve assessment of quantiles may be preferrable to the assessment 

of probabilities of intervals or half-lines, because an expert may find it more 
meaningful to welgh against each other quantities having the same unlts as the 
unknown y. relatlve to a fixed probability, rather than comparing candidate 
probability values. But how accurate are such quantile assessments? P e r h a ~ s  
a clue 1s available from the analogous problem of estimating the quantiles of a 
traditional Dopulation by the quantiles of a sample drawn from the 
population. There is, of course, no  necessarv connection between this and our 
uroblem of assessing subject~ve orobability quantiles. 

Denote a Dopulation by p, o r p  W. Denote its nth quantile by y,, and the 
corres~onding quantile of an indenendent sample f r o m p  by y:. Then for large 
samDles, the asyrnptotlc distribution of y: is normal with mean and vanance, 

E M )  = Y, 

Var W )  = U-'n(l - T)/P W,)'; (5.4) 

where v denotes the sample size. Indeed, the joint distribution of the samole 
auantiles y: at several probability values a is asym~totically multivarlate 
normal with the covariance structure, 

for n, c  mostell ell er, 1946). 
So sample quantiles are asymptotically unbiased; and In the case of a 

location-scale family PO = f((y-m)/cJ/c, the vanances and covariances will 
be Drouortional to the squared Dopulation scale parameter, 

That IS, if the distribution belng est~mated has a vanance, the sample quantiles 
will be distributed with an asymptotic variance prouortional to it, 

We shall argue for an analog of this principal in the next section. 

In unpublished work Michael Cain has derived assessment fittlng 
Drocedured for the linear model (l.9), (1.17) u s i q  the moment structure of 
samole quantiles, following a suggestion by J.B. Kadane. 

5.2 Assessed quantiles 
Return~ng to the general notion of assessed quantiles y: havlng a 

distribution q conditional on the quantiles y. of the distribut~onp of  y, define 
the cumulative distribut~on function P for y, a t  any value JP, 

PW) = P r o b l y ~ Y ! =  l pQdy. 
-m (5.8) 

Then, of course, a = P@,). 

Transforming the assessment, define thequantity, 

In Dractice, a* will not be available IU numerical form, depending as it does on 
the model p. But still, a* is a mathematically well defined random auantlty 
and has a distribution induced by the assessment distribut~on q, and we can 
discuss the behavlor of a* relative to the "true" value a. 



A maln idea of this vaper 1s that the lnduced distributlon of a* promlses 
to be lnsensltlve to the modelp: at any rate, less sensltive than the distributlon 
of the assessed quantile yS itself. The quantlty T* represents the amount of 
"true" probability Included to the left of y:. The assessment errors my: could 
be expected to be large if the lntegrandpw of (5.9) 1s small in the vlclnlty of ' 
y,, and small if pQ 1s large there. The less believable a reglon is, the more 
difficult n 1s to assess a quantile within it, and vna-versa. This would have the 
effect of stabilizing the distributlon of a* In its dependence on the local 
behavlor o f p O .  We consider small errors in y:, and hence small errors m a* 

Assumption 5.1. T* is unbiased: 

Now, take the linear expansion of the cumulative, 

which y~elds, together with Assumvtlon 5.i. 

Consequence 5.2. For small assessment errors, y:is unbiased: 

Assumpt~on 5.3. The model p@) 1s parameterlzed as a location-scale 
family, y = m+cz, where z has a known distributlon with denSltY f(z) and 
umtvarlance. Hence, p@,) = f(z,)/[VarO)? (If one makes the aSSumptlOn 
that the assessment model g@:) IS also of location-scale form, then no 
moments need exlst, and one can read locations and squared-scale parameters 
for the means and varlances throughout this section.) 

In splrlt slmilar to Assumptton 5.1, we have, 

Assumption 5.4. Var (a*) 1s constant in m and c 

Consequence 5.5. Proportionality of varlances (scales) 

Under an assumpt~on analogous to the constant modified coefficient of 
varlatlon in the linear log odds problem (4.4), we obtan a more expliclt form 
for the dependence on the quantile probability value a ,  as follows. 

Assumotion 5.6. Constant moments ratlo 

S.D. (n*)/~(Ea*)(l-ET*))" = K (5.14) 

Consequence 5.7. 

This exhibits an even closer resemblance than (5.13) to the varlance of a 
sample quantile (5.4). It 1s temvtmg here to speculate tnat the covarrance of 
assessed quantiles mlght have an analogous resemblance to the covarlance of 
samole quantiles. 

for a l ~ a 2 .  The corresponding correlatlon coefficient would be the same as in 
the sample quantile case, namely [[a,/(l-a,))/[a,/(l-a2)]]' 
This correlatlon approaches unlty as a,-a,-0, and so our stochastlc 
assessment model is "smooth" In the assessment of ne~ghborlng quantiles. 
(For sample quantiles, of course, such a limlting operatlon makes no sense). 

We turn finally to the distributlon of median assessments y?,,(x,) In the 
gathered elliptically symmetr~c location-scale model with linear locatlou y5,(x.) 
= x!b, I =  I ,  ..., n. The essential property for the discuss~on here 1s tnat a set of 
jolntly distributed assessed quantltles y:,(xJ have varlauces uroportlonal to 
the corresponding jolntly distributed observables y; at X.. Denote the vectors 
havlug these two sets of coordinates, resuectlvely, by y& and y. We extend this 
hroperty in the follow~ng, 

Assumptxon 5.8. In the coordinate system of the urmnclpal components of 
Y,  the vectors yg0 and Y agaln have coordinates with proportional varlances: 
Write n = Ay and < = Assume that for some orthogonal matrix A, 
both Var(q) = Diag(r:, ..., T~.) and Var (j-,) = k7; 1 = I ,  ..., n. 

Assumption 5.9. Quantltles uncorrelated in the belief model correspond 
to quant~t~es uncorrelated m the assessment model: Assume Cov(j-,,<,) = 0, 
l # J .  

Clearly then, the matrlces Var(q) = k Var(f), and hence, 

Consequence 5.10. Prouortlonality of covarlance matrlces: 



To use this moments structure for a fit on  the linear locatlon will requlre, 

of course, a separate assessment and fitting procedure for the scale matrlx, or 

an iteration alternating between the scale and the locatlon. 

6. DISCUSSION 

We have argued theoretically for oarticular forms of probability model 

for the behavlor of subject~vely assessed aspects of a probability model of 

belief or  frequency. Such a model of assessment behavlor would be essentially 

descrrpfrve In its mterpretatlon, rather than normatrve as the underlylng belief 

model. As such, its suitability should be investigated expenmentally. Do 

errors in assessing belief behave as advertlzed: or 1s another stochastlc model 

more realist~c: or  can better descriptions be glven m determlnlstic form? 

One difficulty to be met in the experlmental study of assessment models 1s 

that of establishing the underlylng belief model. Assessments are 

measurements on beliefs, and to study the distributlon of assessment errors 

would seem to requlre working In controlled conditions where the "true" 

opinion values are known, that IS, known to  the experimenter but not known 

precisely to the person whose opinlons are belng assessed. This seems hardly 

likely for underlylng subjecfrve probabilities. The subject~ve estimation of 
objectrve probabilities 1s another story, and perhaps experiments on tbis 

problem can be extrapolated in thelr imulications to the former problem. Of 

course, sophisticated statlstlcal methods are also available for  inferring the 

distributlon of errors without knowlng the underlylng "true" values, though 

typ~cally, this will reaulre additional structural assumptions. 

A more fundamental difficulty must, however, be addressed here, and 

that 1s that underlylng belief models may fail t o  exlst in any realistic sense. In 

his 'second philosoohy, following Ramsey, Wittgenstein (1953) dealt 

devastlngly with all kinds of loglcal Constructs invented to describe the human 

mlnd. A mlnd's "perceptions" of its own "mental states" (including beliefs) 

was a favorlte target of his. Such logical constructs seem to exhibit what 

DeFinettl (1974, 13.22) calls "the Inveterate tendency of savages t o  objectivlze 

and mythologize everything; a tendency that, unfortunately, has been, and is, 

favoured by many more philosophers than have struggled to free us from it" 

My puroose in tbis oaper 1s t o  investlgate a framework that may be of use 

In practice, in the sense that the subjective probability models eventually fixed 

by an assessment-and-fittlng cycle will be found useful. The susolclon remalns 

that the model produced many depend strongly on the assessment method 

(Hogarth 1975). A person's oolnions are not coherent (probabilistx) to begin 

with, but only as he makes deliberate use of the normative theory of subject~ve 

probability. Stochastic assessment models may help provide ways of using the 

normative theory. 
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Some History of the Hierarchical 
Bayesian Methodology 

1.J. GOOD 
Virglnla Pofyfechnrc instrfufe and Store Unlversrry 

SUMMARY 
A standard tecnnlque in subjectwe "Baveslan" metnadology is for a subject ("you") 

to maxe juagements of  tne probabilities tnat a pnyslcal piobabilitv lies in various 

mtervals. In  tne hierarchical Bayestan tecnnlque you maKe probability juagernents (of a 
hianer type, order, level, or szage) concerning tnejuagements of lower type. The paper 
will outline some of tne history of this hierarchical tecnmque with empnasls on the 
conrributzons bv i.J. Goad because I havereaa every wora wrltten bv him. 

Keyworas: HIERARCHICAL BAYES; PARTIALLY-ORDERED PROBABILITIES; UPPER AND 
LOWER PROBABILITIES; EMPIRICAL BAYES: SPECIES FREQUENCIES; 
MULTINOMIAL ESTIMATION; PROBABILITY ESTIMATION IN CONTINGENCY 
TABLES; PROBABILITY DENSmY ESTIMATION MAXIMUM ENTROPY, ML/E 
METHOD; TYPE 11 LIKELIHOOD RATIO: INFORMATION INMARGINAL TOTALS; 
KINDS OF PROBABILITY; BAYES/NON-BAYES SYNTHESIS: HYPER-RAZOR OF 
DUNSAND OCKHAM. 

I .  PHILOSOPHY 
In 1947, w h e n  f e w  statlstlclans supported a B a y e s ~ a n  position. 1 had a 

l i o n - m o n e t a r y  bet w i t h  M.S. Bartlett that the predomlnant philoso~hy o f  
stat~stics a c e n t u r y  ahead w o u l d  be B a y e s l a n .  A third o f  a c e n t u r y  h a s  now 
elapsed and the trend s u p p o r t s  me, b u t  I would now m o d i f y  m y  f o r e c a s t .  1 
think the predomlnant philosovhy will be a B a y e s / n o n - B a y e s  synthesls o r  
c o m p r o m l s e ,  and that the B a y e s ~ a n  part wi l l  be m o s t l y  h i e r a r c h i c a l .  B u t  
b e f o r e  d i s c u s s t n g  h i e r a r c h i c a l  methods, let me " p r o v e "  that m y  p h i l o s o p h y  o f  
a B a y e s / n o n - B a y e s  compromlse o r  s y n t h e s l s  1s n e c e s s a r y  f o r  human 
reasonlng, l e a v i n g  aside the arguments f o r  the s p e c i f i c  axloms. 

Proof. A r ~ s t o t e l e a n  log~c 1s i n s u f f i c i e n t  f o r  r e a s o n l n g  in most 
c i r c u m s t a n c e s ,  and probabilities must be i m c o r p o r a t e d .  Y o u  are t h e r e f o r e  
f o r c e d  to make p r o b a b i l i t y  Judgements. T h e s e  s u b j e c t i v e  p r o b a b i l i t i e s  a r e  



more directly involved m your thinking than are physlcal probabilities. This 
would be even more obv~ous if you were an android (and you cannot prove 
you are not). Thus subjective probabilitles are required for reasoning. The 
probabilities cannot be sharp, In general. For it would he only a joke if you . 
were to say that the probability of ram tomorrow (however sharply defined) is 
0.3057876289. Therefore a theory of partially ordered subjective probabilities 
is a necessary ~ngredient of rationality. Such a theory is "a compromise 
between Bayesian and nonBayes~an ideas. For if a probability is judged 
merely to lie between 0 and 1, this 1s equivalent to making no judgment about 
lt at all" (Good, 1976h, p.137). Therefore a Bayes/non-Bayes compromise or 
synthesis is an essential ~ngredient of a theory of rationality. Quod erat 
demonstrandum. 

The notion of a hierarchy of different types, orders, levels, or stages of 
probability is natural (i) in a theory of physlcal (material) probabilities, (ii) In 
a theory of subjective (personal) probabilities. and (iii) in a theory m which 
physical and subjective probabilities are mixed together. I shall not digress to 
discuss the philosophy of kinds of probability. (See, for example, Kemhle. 
1941; Good. 1959; 1965, Chapter 2.) It won't affect what I say whether you 
believe m the real existence of physlcal (material) probability or whether you 
regard it as defined in terms of de Finetti's theorem concerning permutable 
(exchangeable) events. 

I shall first explan the three headings leaving most of the elaboratlons 
and historical comments until later. 

(i) Hierarchies of physical probabilities. T h e  meaning of the first 
heading is made clear merely by mentioning populations. superpopulatlons, 
and ;super-duper-populations, etc. Reichenbach (1934/1949, Chapter 8) 
Introduced hierarchies ofphysical probahilities in terms of random sequences. 
random sequences of random sequences, etc. 

(ii) Hierarchies arising m a subjective theory. Most of the ~ustificatlons 
of the axioms of subjective probability assume sharp probabilities or clear-cut 
decisions, but there is always some vagueness and one way of trying to cope 
with it is to allow for the confidence that you feel in your Judgements and to 
represent this confidence by probabilities of a higher type. 

(iii) Mixed hierarchies. The simplest example of a mixed hierarchy 1s one 
of two levels wherein a subjective or perhaps lo@cal distribution 1s assumed 
for a physlcal probability. But when there are only two levels it 1s somewhat 
misleading to refer to a "hierarchy" 

In case (i), Bayes's theorem is acceptable even to most frequentlsts; see. 
for example, von Mises (1942). He made the point, which now seems obvious, 
that if, in virtue of previous expenence, something is "known" about the 
distribution of a parameter 0,  then Bayes's theorem gives lnformatlon about 

the final probability of a random vanable x whose distribution depends on 8. 
Presumably by "known" he meant "judged uncontroversially". In short he 
emphasized that a "non-Bayeslan" can use Bayes's theorem m some 
circumstances, a polnt that was also Implicit in Re~chenbach's Chapter 8. The 
polnt was worth making m 1942 because statisticians had mostly acqulred the 
habit of uslng Fisherian techniques which nearly always ignore the possibility 
that there might sometimes be uncontroversial approximate prior 
distributions for Darameters. F.N. David (1949, pp. 71 81 72) even said that 
Bayes's theorem "is wholy fallacious except under very restrictive conditions" 
and " ... at the present tune there are few adherents of Bayes' theorem" von 
Mises (1942, p.157) blew it by saylng that the notlon that prlor probabilities 
are non-em~lr~cal "cannot be strongly enough refuted". He certainly failed to 
refute them strongly enough to stem the expansion of modern forms of 
subjectiv~stlc Bayesianism. 

Some people regard the uncontroversral uses of Bayes's theorem, that is, 
those uses acceptable to von Mises, as a case of the empirlcal Bayes method. 
Others, such as R.G. Krutchkoff, use the expression "emp~rlcal Bayes" only 
for the more Subtle cases where the prlor 1s assumed to exlst but drops out of 
the formula for the posterior expectation of 0. It was in this sense that A.M. 
Turmg used the empirlcal Bayes method for a classified application in 1941. 1 
applied his methodwith many elaboratlons in a paper published much later 
(Good, 1953) which dealt with the populatlon frequenc~es of specles of 
anlmals or plants or words. If, In a sample of Nanlmals, there are n, species 
each represented r times, we may call n, the frequency of the frequency r. Of 
course Zrn, = N. Let q, be the populatlon  roba ability of such a species. 
Turlng argued that 

(i.+ l)n,+, 
= 

Nn, 

and I modified this formula to (r+ l)n;+,/(Nn,> where ni, n,, ... , 1s a 
smoothing of n,, n,, ... . and I generalized the argument to give formulae for 
the moments of the posterior distribution of q,. It follows that, in another 
sample of slze N. the total expected frequency of the set of specles that were 
each represented r times (in the first sample) 1s about (r+ l)n;+,, not m,  as 
would be suggested by a nalve application of the method of maxlmum 
likelihood. In particular the probability that the next animal or word that you 
meet will be one that you have not met before 1s approximately n,/Nand not 
the maximum likelihood estlmate which 1s zero. The formula (1) was later 
obtalned by Robbins (1956, P. 159) in relatlon to the almost ident~cal ~roblem 
of sampling a large collection of Polsson distributions. In farness to Robhins 



it should be noted that he had some of the philosophical ideas of the empirical 
Bayes method in Robbins (1951) though he did not name the method at that 
time. 

Perhaps a statistical argument 1s not fully Bayeslan unless it is subjectlve . 
enough to be controversial, even if the controversy is between Bayeslans 
themselves. Any subjective idea is bound to be controversial in spite of the 
expression "de gustibus non disputandum est" (concernmg taste there is no 
dispute). Perhaps most disputes are about taste. We can agree to differ about 
sub]ectlve probabilities but controversles arise when communal decisions have 
to be made. The controversy cannot be avoided, though it may be decreased, 
by using priors that are Intended to reuresent ignorance, as m the theories of 
Jeffreys and of Carnap. (Of course "ignorance" does not here mean 
ignorance about the prior.) All statistical inference is controversial in any of 
its applications, though the controversy can be negligible when samples are 
large enough. Some anti-Bayesians often do not recognize this fact of life. The 
controversy causes difficulties when a Statlstican 1s used as a consultant in a 
legal battle, for few jurymen or magistrates understand the foundations of 
statistics, and perhaps only a small fractlon even of statlstlclans do. 1 think the 
fractlon will be large by 2047 A.D. 

Now consider heading (ii), m which at ieast two of the levels are loglcal or 
subjectlve. This situation arlses naturally out of a theory of partially Ordered 
subjectlve probabilities. In such a theory it is not assumed, grven two 
probabilities D ,  and p,, that either p, 2 p, or p, 2 U,. Of course partial 
ordering requires that probabilities are not necessarily UumeIlCal, but 
numerical probabilities can be introduced by means of random numbers, 
shuffled cards etc., and then the theory comes to the same thing as saying that 
thete are upper and lower probabilities, that is, that a probability lies in some 
lnterval of values. Keynes (1921) emphasized such a theory except that he 
dealt with logical rather than subjective probabilities. Koopman (1940a. b) 
developed axioms for such a theory by making assumptions that seemed 
complex but become rather convincing when you think about them. I think 
the slmDlest possible acceptable theory along these lines was glven by Good 
(1950), and was uretty well justified by C.A.B. Smith (1961). (See also Good, 
1962.) Recently the theory of partlally-ordered probability has often been 
called the theory of qualitative probability, though 1 think the earlier name 
"partlally ordered" 1s clearer. When we use sharp probabilities it 1s for the 
sake of simulicity and provides an examvle of "rationality of type 2" 
(Good, 1971~). 

If you can say confidently that a logical probability lies in an interval 
(a,b) ~t is natural to think it is more likely to be near to the middle of this 
lnterval than to the end of it: or perhaus one should convert to log-odds to 

express a clear preference for the middle. (Taking the middle of the log-odds 
lnterval is an invariant rule under addition of weight of evidence.) At any rate 
this drlves one to contemplate the notion of a higher type of probability for 
describing the first type, even though the first type is not necessarily physical. 
This is why I discuss hierarchies of probabilities in my paper on rational 
decisions, Good (1952). Savage (1954, p.58) brlefly discusses the notlon of 
hierarchies of subjective probabilities, but he denigrates and dismisses them. 
He raises two apparent objections. The first, which he heard from Mm 
Woodbury, 1s that if a prlmary probability has a distribution expressed in 
terms of secondary probabilities, then one can perform an lntegration or 
Summation SO as to evaluate a composlte primary probability. Thus you 
would finish up with a sharp value for the primary urobahility after all. (I 
don't regard this as an ohjectlon.) The second objection that he ralses 1s that 
there 1s no reason to stop at secondary probabilities, and you could in 
princivle be led to an lnfinlte hierarchy that would do you no good. 

In Good, (1950, p. 41) I had said that higher types of probability might 
lead to logical difficulties but in Gooa (1952) I took the point of view that it is 
mentally healthy to think of your subjectlve probahilities as estimates of 
credihilities, that is, of logical probabilities (just as it is healthy for some 
people to believe in the existence of God). Then the primary probabilities 
mlght be loglcal but the secondary ones might be subjectlve, and the 
composite probahility obtained by summation would be subjectlve also. Or 
the secondary ones mlght also be logical but the tertiary ones would be 
subjectlve. This approach does not deny Max Woodbury's pomt; in fact it 
might anticlpate it. 1 regard the use of hierarchical chans as a technique 
helping you to sharpen your subjective probabilities. Of course if the 
subjectlve probabilities at the top of the hierarchy are only partially ordered 
(as they normally would be if your Judgements were made fully explicit), the 
same will be true of the composlte prlmary or type I probabilities after the 
summations or integrations are performed. Another development of the 
Hierarchical approach in my 1952 paper is in relatlon to m~nimax declsion 
functions. Just as these were introduced to try to meet the difficulty of using 
ordinary Bayesian declslons, one can define a minima decislon functlon of 
type 11, to avoid using Bayeslan declsion functions of type 11. (The proposal 
was slightly modified m Good. 1955.) Leonid Hurwlcz (1951) made an 
identical proposal simultaneously and mdependently. I still stand by the 
following two comments in my paper: " ... the higher the type the woollier the 
probabilities ... the higher the type the less the wooliness matters provided 
[that] the calculations do not become too complicated" (The hierarchical 
method must often be robust, otherwise, owing to the wooliness of the higher 
levels, sclentlsts would not agree with one another as often as they do. This is 



why 1 clalmed that the higher wooliness does not matter much.) Isaac Levi 
(1973, p. 23), says "Good is prepared to define second order probability 
distributlons ..., and third order probability distributions over these, etc., until 
he gets t~red" This was funny, but it would be more accurate to say that 
I stop when the guessed expected utility of golng further becomes negatlve if ' 
the cost IS taken Into account. 

Perhaus the commonest hierarchy that deserves the name comes under 
heading (iii). The prlmary probabilities, or probabilities of type I, are 
physical, the secondary ones are more or less loglcal, and the tertiary ones are 
subject~ve. Or the sequence m~ght be: physical, loglcal, logsal, subject~ve. In 
the remainder of my paper 1 shall discuss hierarchies of these kinds. 

2 SMALL PROBABILITIES IN LARGE CONTINGENCY TABLES 

I used a hierarchical Bayes~an argument in Good (1956) (onglnal verslon 
rejected in 1953 I am proud to say) for the estlmatlon of small freauencles m a 
large pure contlngency table with entrles (n,). By a uure table I mean one for 
which there 1s no clear natural orderlng for the rows or for the columns. Let 
the unyssal probabilities corresponding to the cells of the table be denoted by 
p,,, and the marglnals by p, and p,,. Then the amount of lnformatlon 
concerning a row provided by the observatlon of a column can be defined as 
log [P"/@,p.,)] and ~t Seemed worth trylng the assumptlon that this has 
approximately a normal distributlon over the table as a whole. Thls turned out 
to be a readily acceptable hypothesls for two numerical examples that were 
exammed. In other words lt turned out that one could accept the loglinear 
model 

where c has a normal distributlon whose parameters can be est~mated from the 
data. (This was an early example of a loglinear model. Note that if r is 
replaced by r ,  and its distributlon is not specified, then the equation does not 
define a model at all.) If then a frequency n, is observed it can be regarded as 
evidence concerning the value of p,, where p, has a lognormal distribution. 
Then an applicat~on of Bayes's theorem gives a posterior distributlon for pi#, 
even when n, = 0. This seemed to me an interesting example of estlmatlng the 
urobability of an event that had never occurred, but the referee discouraged 
me from saying this, uossibly because it sounded philosophical. As Jimm~e 
Savage once remarked "'Pbilosophy' 1s a dirty ten-lettered word" The 
lognormal distribution was used as a prlor for the parameter U<, and the 
parameters in this distributlon would now-a-days often be called 
hyperparnmeters. Perhaps this whole technique could be regarded as a non- 

controversial use of Bayes,s theorem. Incidentally, if it 1s assumed that 
~,/@.p.,) has a Pearson Type 111 distributlon. the estlmates turn out to be not 
greatly affected, so the method appears to be robust. (The calculation had to 
be lteratlve and was an early example of the EM method as polnted out by 
Dempster et al, 1977, p. 19.) 

2 .  MAXIMUM LIKELlHOOD/ENTROPY FOR ESTIMATION IN 

CONTINGENCY TABLES 

For ordinary and multidimensional population contlngency tables, with 
some marglnal probabilities known, tlie method of maxlmum entropy for 
estimating the probabilities m the individual cells leads to lnterestlng results 
(Good, 1963). [The minclple of maximum entropy was interpreted by Jaynes 
(1957) as a method for selecting prlor distributlons. Good (1963) mterurets it 
as a method for formulating hypotheses: In the application it  ~ c d  to 
hypotheses of vanishing lntcractlons of vanous orders. Barnard menllons that 
an early uroposer of a principle of maximum entropy was Jean Ville in the 
Paris conference on the history and uhilosophy of science in 1949 but I have 
not yet been able to obtaln this reference.1 When there is a sample it is 
suggested in Good (1963, p. 931) that one mlght find the estlmates by 
maxlmizlng a linear combinat~on of the log-likelihood and the entropy, that 
1s. In the two-dimensional case, by maxlmlzlng an expression of the form Z(nj; 
- Xu") logp,,, subject to constraints if the margmal probabilities are assumed. 
[Here (n,) 1s the sample and @,) the population contlngency table.] This 
technique could be adopted by a non-Bayeslan who would think of X as a 
"procedure parameter". A Bayes~an might call it a hyperparameter because 
the ML/E method, as we may call it, 1s equivalent to the maxrmlzation of the 

v 

posterior denslty when the urlor denslty is proportIona1 to I I ~ , - ' ~ "  This 
method has been lnvestlgated by my ex-student Pelz (1977). 1 believe that the 
best way to estlmate the hyperparameter X is by means of the method of cross- 
validation or uredictive sample reuse, a method that could also be used for 
wmparlng the ML/E method with other methods (Good, 1979~). We mend 
to try this approach. 

4. MULTlNOMlAL DISTRIBUTIONS 
Some hierarchical models that have interested me over a long perlod are 

concerned with multinomlals and contingency tables, and these models 
received a lot of attention in my monograph on the estlmatlon of probabilities 
from a Bayesian polnt of vlew (Good. 1965). (See also Good, 1964.) To avoid 
controversy about purely mathematical methods 1 there used the termlnology 
of distributions of types I, I1 and 111, without commlttlng myself about 
whether the urobabilities were uhyslcal, loglcal, or subjective. But, in a 



Bayesian context, it might be easlest to think of these three kinds of 
~robahility as being respectively of the types I, I1 and 111. My next few 
hundred words are based on Good (1965) where more details can be found 
although the present discuss~on also contalns some new polnts. 

The estlmation of a binomial parameter dates back to Bayes and Laplace, 
Laplace's estlmate belng known as "Laplaceis law of success~on" This is the 
estimate (r + 1)/(N + 2), where r is the number of successes and N the sample 
slze. This was the first example of a shrinkage estlmate. It was based On the 
uniform Dnor for the binomlal parameterp. The more general conlugate prlor 
of beta form was proposed by the actuary G.F. Hardy (1889). De Morgan 
(1847) (c~ted by Lidstone, 1920) generalized Laplace's Law of successlon to the 
multinomlal case where the frequencles are (a,) ( i = l ,  2, ..., 1). (1 have 
prevlously attributed this to Lidstone.) De Morgan's estlmate of the i"' 
urobability p, was (n,+l)/(N+ t) which he obtalned from a uniform 
distribut~on of (p,, p,, ...,p,) m the simplex E pi = i by uslng Dinchlet's 
multiule Integral. The estimate 1s the loglcal or subjectwe expectation of p. 
and is also the probability that the next object sampled will belong to the P' 
category. The general Dinchlet prior, proportlonal to npK'-', leaas to tne estlmaie 

( R ,  + k , ) / ( ~  + Ek,) for pi. But if the information concerning the t categories is 
syrnmetrlcal it is adequate, at the first Bayeslan level, to use the prlor 
proportional to npik-' which Leads to the estlmates (ni + k)/(N+tk). In fact 
we can formulate the Duns-Ockham hyper-razor as "What can be done with 
fewer (hyper)parameters lsdone m valn with more". ("Ockham's razor" had 
been emllhaslzed about twenty years before Ockharn ay the famous medieval 
philoso~her John Duns Scotus.) We can regard k both as a flattening Constant 
Or as the hyperuarameter in the symmetrlc Dir~chlet urlor. The Droposal of 
us& a continuous linear combination of Dir~chlet priors, symmetrlc or 
otherwise, occurs m Good (1965, p.25). Var~ous authors had prevlously 
Droposed explicitly or ~m~lici t ly  that a slngle value of k should be used hut I 
am convinced that we need to go up one level. (Barnard tells me he used a 
combination of two beta priors m an unpublished paper presented at a 
conference in Bristol in about 1953 because he wanted a bimodal prlor.) 

The uhilosopher W.E. Johnson (1932) considered the problem of what he 
called "multiple sampling", that is, sampling from a !-letter alphabet. He 
assumed permutability of the N letters of the sample (later called 
"exchangeability" though "permutability" is a slightly better term). Thus he 
was really considenng multmomlal sampling. He further assumed what I call 
his "suffic~entness postulate", namely that the credibility (log~cal probability) 
that the next letter sampled will be of category I depends only on n,, t, and N, 

and does not depend on the ratlos of the other ! - i frequencles. Under these 
assurnptlons he proved that the probability that the next letter sampled will be 

of category iis (n; + k ) / ( ~  + tk), but he gave no rules for determining K. His 
proof was correct when t 2 3. He was presumably unaware of the relat~onship 
of this estlmate to the symmetrlc Dirlchlet pnor. The estimate Uoes not merely 
follow from the symmetric Dirichlet prlor; it also Implies it, m virtue of a 
generalization of de Finetti's theorem. (This. particular generalization follows 
neatly from a purely mathematical theorem due to Hildebrandt and 
Schoenberg; see Good, 1965, p. 22.) De Morgan's estlmate is the case k = 1. 
Max~mum Likelihood estimat~on is equivalent to taking k = 0. The estlmates 
anslng out of the Invariant priors of Jeffreys (1946) and Perks (1947) 
correspond to the f la t t e~ng  constants k'= 1/2 and k = ~ / t .  

Johnson's snffic~entness assumption 1s unconvlnclng because if the 
frequencles n,, n,, ..., n. are far from equal it would be natural to believe that 
p, 1s more likely to be far from i / t  than if n,, n,, ..., n. are nearly equal. Hence 
~t Seemed to me that the "roughness" of the frequency count (nJ should be 
taken lnto account. Since roughness can be measured by a scalar I felt that X 
could be estimated from the sample (and approximately from its roughness), 
or alternatively that a hyperpr~or could be assumed for k,  say with a denslty 
functlnn 45(k). This would be equivalent to assuming a prlor for thep, '~ ,  with 
density 

m F(tk)np,*~'+(k)dk 
S O  Ir(k)lT 

4 
Those who do not want to assume a hyperprlor could instead eshmate ksay by 
Type I1 Maximum Likelihood or by other methods m which the estnnate of k 
1s related to X = ,i E (n;-N/t)'. These methods were also developed by Good 
(1965, 1966, 1967). Good (1967) was manly concerned with the Bayes factor, 
provided by a sample (nJ, agmnst the null hypothes~sp; = i / t  (i = I ,  2, ..., t ) .  
The estlmatlon of the cell ~robabilitiesp~ was also covered. (It seems to me to 
be usually wrong In prlnclple to assume disttnct pnors, glven the non-null 
hypothesls, according as you are dolng estlmatlon or significance testlng, 
except that I believe that more accurate priors are requlred for the latter 
purpose.) The null hypothes~s corresponds to the complete flatten~ng k = m 
and we may denote it by H,. Let H, denote the non-null hypothesls that the 
prlor is the symmetrlc Dirichlet with hyperparameter k. Let F (k) denote the 
Bayes factor In favour of H, as agalnst H,, provided by a sample (nJ. (See 
Good, 1957. p. 862; or 1967, p. 406.) If k has a hyperpmor density 4(k), then 
the Bayes factor Fagamst H ,  is 

m 

F = S ~(k)+(k)dk ; 



+(k) must he a proper denslty, otherwise Fwould reduce to I, m other words 
the evidence would be killed. Tbis 1s an Interesting example where impropriety 
1s a felony. One mlght try to be noncommittal about the value of k and the 
usual way of be~ng noncommittal about a positwe parameter k 1s to use the. 
Jeffreys-Haldane denslty i /k  which is improper. Tbis can be approximated by 
the log-Cauchy denslty which has the further advantage that its quantiles are 
related in a slmple manner to its hyperhyperparameters (Good, 1969, pp. 45- 
46). One can determine the hyperhyperparameters by guessing the upper and 
lower quartiles of the repeat rate Ep?, given the non-null hypOtheSlS, and 
thereby avoid even a misdemeanour. The Bayes factor F is insensitive to 
moderate changes in the quartiles of the log-Cauchy hyperpnor, and the 
estimates of the p 'S are even more robust. If you prefer not to assume a 
hyperprlor then a type I1 or second order or second level Maximum 
Likelihood method is available because F (k) has a unique maximum F,, if 
X > l - I. This was conjectured by Good (1965, p. 37) largely proved by 
Good (1975) and completely proved by Levin and Reeds (1977). Other 
methods of estimating k are proposed by Good (1965, pp. 27. 33, 34) and by 
Bishop, Fienberg and Holland (1975, Chapter 12). When a hyperparameter is 
estimated the latter authors call the method "pseudo-Bayeslan" It 1s an 
example of a Bayeshon-Bayes compromise. 

F,, is an example of a Type I1 (or second order or second level) 
Likelihood Ratio defined in terms of the hyperparametrlc space which is one- 
dimensional. Hence the asymptotic distribution of F,, is proportional to a 
chi-squared witb one degree of freedom. In 1967 the accuracy of this 
approxlmatlon was not known but it was found to be falrly accurate m 
numerous examples in Good and Crook (1974), even down to tail-area 
probabilities as small as 10 '6 We do not know why it should be an adequate 
approxlmatlon m such extreme tails. 

5 INDEPENDENCE IN CONTINGENCY TABLES 

Good (1965) began the extension of the multinomlal methods to the 
problem of testlng Independence of the rows and columns of contingency 
tables, and this work was continued in Good (1976a) where extensions to three 
and more dimensions were also considered. But I shall here consider only 
ordinary (two-dimensional) tables with r rows and s columns. The case r = s 
= 2 is of spec~al interest because 2 X 2 tables occur so frequently In practice. 

As is well known outside Bayeslan statistics, there are three ways of 
sampling a contlngency table, known as sampling Models 1,2 and 3. In Model 
1, sampling is random from the whole population: in Model 2, the row totals 
(or the comumn totals) are fixed in advance by the statlsticlan; and in Model 3 
both the row and column totals are fixed. Model 3 might seem unreasonable 

at first but it can easily anse. Denote the corresponding Bayes factors against 

the null hypothesls H of independence by F,, F,, and F,. But In our latest 
model it turns out that F, = F, because in this model the fixing of the row 
totals alone provides no evidence for or against H. The model also neglects 
any evidence that there might be in the order of rows or of columns; In other 
words we restrict our attention In effect to "pure" contingency tables. This is 
of course, also done w h e n 2  or the likelihood-ratio statlstlc is used. 

The basic assumption in the analysis 1s that, glven the non-null hypothesls 
R, the prior for the physical probabilities p, in the table is a mlxture of 
symmetric Dirshlet's. (Previous literature on contlngency tables had 
discussed symmetric Dirichlet distributions hut not mixtures.) From this 
assumptlon F, and F, can be calculated. We can deduce FRACT (the factor 
against Hprovided by the row and column totals alone, in Model 1) because 
FRACT = Fl/F3. A large number of numerical calculations have been done 
and were reported in Crook and Good (1980). We found that FRACT usually 
lies between and 2% when neither of the two sets of marglnal totals 1s very 
rough and the two sets are not both very flat, and we gave Intuitive reasons for 
these exceptions. We did not report the results for 2 X 2 tables in that paper 
but we have done the calculations for this case with the sample slze N = 20. 
We find, for example, with our assumptions, that FRACT = 1.48 for the 
table witb marglns I5,15:7,13]; FRACT = 2.53 for [10.10:10,101; FRACT = 
2.56for [1,19:2,181;andFRACT = 8.65 fortheextremecasc [1,19;1,19]. 

If the mixture of Dirichlet's 1s replaced by a slngle symmetrical Dirlchlet 
with hyperparameter k, then F, 1s replaced by F,(k), and max, F3(k) is a Type 
I1 Likelihood Rat~o. Its asymptotic distributlon agarn turns out to be fairly 
accurate in the extreme tail of the distributlon, even down to tail-area 
probabilities such as 10-40 The unimodality of F,(k) when 2 > (r - 1) (S - 1) 
has yet to be proved, but 1s well supported by our numerical results. 

I notlced only as recently as May 1978 that the consideration of 
contlngency tables sheds light on the hyperprlor @ for multinomlals. This was 
first reported in Good (1979b). We write Q(1,k) instead of +(k) to Indicate that 
~t might depend on 1 as well as k. The prior for a !-category multinomlal is 
thenD*(l) where 

and where D (1,k) denotes the symmetric Diricblet denslty. Our assumptlon of 
D*(rs), given Hand  Model 1, implies the prior Jr~(r,sk)+(rs,k)dk for the row 
totals. But, if the row totals alone contan no evidence concerning H, this 
must he mathematically independent of s and it can be deduced that +(t,k) 
must be of the form $(tk)/k. Strictly therefore some of the calculat~ons in 



Good and Crook (1974) should be repeated, but of course the distribut~on of 
the Type I1 Likelihood Ratio a unaffected, and we have reason to believe the 
remaining results are robust. This example shows how loglcal arguments can 
help to make subjective probabilities more loglcal. Logical probabilities are an . 
ideal towards which we strive but seldom attain. 

A spin-off from the work on contingency tables has been the light it sheds 
on the classical purely combinator~al problem of the enumeration of 
rectangular arrays of integers (Good and Crook, 1977; Good, 1979a). This 
problem had not previously been treated by statistlca methods as far as I 
know. 

T. ieonard has used hierarchical Bayes~an methods for analyzing 
contingency tables and multinomial distributlons, but since he has attended 
this conference I shall leave it to him to reference his work m the discuss~on of 
the present paper. 

6. PROBABILITY DENSITY ESTIMATION AND BUMP HUNTINO 

Probability density estimation has been a popular activity slnce at least 
the nlneteenth century, but bump-hunting, which 1s closely related to it, is I 
think comparatively recent. There 1s a short discussion of the matter in Good 
(1950, pp. 86-87) where the "bumpiness" of a curve is defined as the number 
of points of inflex~on, though half this number 1s a slightly better definition. 
The number of bumps was proposed as one measure of complexity, and the 
greater the number the smaller the lnltial probability of the density Curve 
ceterisparibus. 

In the 1970 Waterloo conference, Orear and Cassel (1971) said that 
bump-hunting is "one of the major current activities of experimental 
physicists" In the discussion Good (1971a) suggested the idea of chooslng a 
density function f by maxim~z~ng E log f (xJ - PR, that IS, log-likelihood 
minus a roughness penalty proportional to a measure R of roughness of the 
density curve. (Without the penalty term one gets i/iv of a Dirac function at 
each observatlon.) It was pointed out that the problem combines density 

estlmatlon with significance testmg. In Good (1971b) the argument 1s taken 
further and it is mentioned that exp(-PR) can be regarded as the prior density 
off in functlon space. In this Bayesian interpretation P is a hyperparameter. 
(There were 21 mispr~nts in this short article, owing to a British dock strike.) 
The method was developed in considerable detail by Good and Gaskins (1971, 
1972) and applied to two real examples, one relating to high-energy physlcs 
and the other to the analysis of chondrites (a common kind of meteorite 
contain~ng round pellets) by Good and Gaskins (1979). In the latter work, the 
estimation of the hyperparameter was made by means of non-Bayeslan tests 
of goodness of fit so as to avoid controversies arising out of the use of 

hyperpriors. 
Leonard (1978, p. 129) mentlons that he hopes to report a hierarchical 

form of his approach to denslty estimation. Also he applies his method to the 
chondrite data, and he brought this data to my attentlon so that our methods 
could be compared. , 

7. INFERENCE ABOUT NORMAL DISTRIBUTIONS AND LINEAR MODELS 

In 1969 I suggested to my student John M. Rogers that he mlght consider 
analogies of the multinomial work for the estimation of the parameters of 
multivatlate normal distributions. It turned out that even the urnvanate 
problems were complicated and he completed his thesis without considering 
the multivarlate problems. He considered the estimation of a (univar~ate) 
normal mean when the prlor contalns hyperparameters. The prlors were of 
both normal and Cauchy form (Rogers, 1974) and the hyperparameters were 
estimated by type I1 maxlmum hkelihood. 

Meanwhile hierarchical Bayesian models with three or four levels or 
Stages had been introduced for inferences about normal distributlons and 
l~near models by Lindley (1971) and by Lindley and Smith (1972.) A survey of 
these matters could be better prepared by Lindley so I shall say no more about 
them. 
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DISCUSSION 

M.H. DE GROOT ICdmegre-Mellon Unrversrty): 
I am very glad tnat top-notcn statistlclans like Professor Dickey are devoting 

serlous effort to the important problem of assessing subjectwe ~robabilities. As 
Bayes~an theory becomes the prevalent methodology for public decision making, it 1s 
essential that we Learn how to elic~t an expert's ~nformatlon and oplntons m terms of his 
probabilities. 

However, I do have some fundamental questions about the philosophy and 
foundations tnat underly this paper, and some of the otner papers that Professor 
Dickey cltes. It seems to me that there is a fundamental contradict~on in the idea Of 
specifying a probability model for the inconsistencies that are present in the aspects that 
the assessor specifies. If assessors are not consistent in assesslng their subjective 
u~obabilities or aspects, then the axoms of subjective probability are not satisfied and 
probability, as I understand it, does not exlst. How then can we speak of a probability 
model for the assessor's specificat~ons? Must we think of the world as belng divided 
Into consistent fitters (or statisncwns) and inconslstenr assessors? 

What are the underlying "true" subjectrve  roba abilities that the statlstlclan Is 
trnnp to fit? Do we really have to assume that there is a coherent little man or woman 
inside each of us, crying out weakly to  be heard? Or tnat we can split our personality 
and have our coherent self monitor our incoherent self? 

The trend in statrstlcs is distinctly toward the prediction of observables and away 
from the estlmat~on of unknown parameters. Are we not moving backwards when we 
try to estimate unknowable and uerhaps non-exutent true probabilities? 

Professor Dickey states clearly that he is treatlng only one aspect of a complicated, 
recursive assessment process. In its full development this process must necessarily 
Include continuous internal checking and looping backwards to  reconcile the specified 
aspects, not only among themselves. but with a myriad of other related assessments as 
well. 

HOW do we know that the values we reach by follomng such a process have any 
meaning at all? How do  we know that if another statlstlclan had done It all over agaln 
with the same assessor inthe morning Instead of the afternoon, he would have arrived 
at  the same values? What mechanism 1s there to recognize and handle non- 
convergence? A relarea, more technical, questlon is whether any member of the 
particular parametnc family that Professor Dickey uses m a partsular problem fits an 

assessors specificatlons satisfactorily. The answer would seem to  depend on me uses to 
which the assessments are to be put. 

Professor Dickey 1s urobably his own best discussant slnce neis clearly aware of all 
these difficulties. I mention them here not to  mlnlmlze the substantial accomplishments 
of this complex paper, but to emphasize tne long way we still have to go to make 
 roba ability assessments a meaningful reality. 

It is a pleasure for me to take this opportunity to acknowledge and thank 
Professor Good for his creatlve and substantial contributions, not only to the theory of 
hierarchical models, but to so much of Bayesian statistics. I strongly agree with 
Professor Good on the 1mDortance and usefulness of hierarchical modeis. However, I 
do not see any need to consider Dhyslcal, loglcal, and subjectme probabilities as oemg 
different types of mobabilities. Subjectwe probabilities would seem to be enough: they 
unify the theory and are usually convenient to use. 

Even when dealing with "physical" probabilities, lt is not necessary to consider 
Dopulations, superpopulanons, and (super)" uopulatlons. The prototype of a 
hierarchical model is a discrete time M a r ~ o v  process. The probability distribut~on of 
the state X, of the process at a glven tlme (the first-level distribution) depends on the 
state X,., at the prevlous time, and the distribut~on of X,., (the second-level 
distribunon) depends m turn on the statex,.,, etc. 

In this paper, Professor Good emQhasizes the problem of making inferences about 
the first-level ~robabilities, but one reason for uslng a hierarchical model is because we 
are Interested in learning about the higher-level probabilities as well lsee, e.g., 
Lindqvist (1977, 197811. Thus, on the bans of our observation of the current stateX. of 
a Markov process, we mlght very well be ~nterested in making inferences about the 
states of the Process X..,, ..., X.~* at the A Drevlous stages. For example, having 
ODServed my own height. I mlght be ~nterested in making inferences about the helgnts 
of my father, his father, and his grandfather. 

Professor Good states that the higher the level in the hierarchy "the woollier the 
probabilities" and "the less the woolliness matters". l thinK that I agree with these 
statements, but I confess tnat I am not sure what woolly probabilities are. (I suppose 
that Poisson probabilities are woolly because their mean is lambda.) A somewhat 
related suestlon has been considered by Goel and me (1979). In that paper, we are 
interested-in learnlng about the parameters that enter at various levels of a hierarchical 
model. We show that in terms of several different standard measures of uncertalnty 
and lnformatlon, the expected reduction in uncertalnty and expected gain in 
lnformatlon decreases as we move through higher levels of ihe hierarchy away from the 
ObseIvatlOn~ themselves. 

1 have somewhat mixed feeling about the Bayes/non-Bayes compromise that 
Professor Good proposes. I do not believe that i r  ~rovides a sound basis for a 
~hilosophy of statistlcs. It does not yield a unified theory and cannot generate 
fundamental general prmciQles. I do not believe that higher-level pnor distribut~ons are 
more controversial than first-level priors, and I do  not believe that in ~ r i n c ~ p l e  there is 
any reason to estimate hyperparameters by non-Bayeslan methods. On the other hand, 
a Bayesinon-Bayes comDromlse sounds like a reasonable way to proceed m any 
partsular problem. The difficulty lies m trylng to  reach a reasonable and widely 



acce~table compromise m each special case. Thus, if a Bayes/non-Bayes comDromlse 1s 
our destiny, as 11 very well mlght be, then I belleve that we will unfortunarely contlnue 
to see a w~de  gar, between statlstlcal theory and statlstlcal practice. 

M.R. NOVICK (The Unrversrry of Iowa): 

The oapers of 1.1. Good and J.M. Dickey are both heluful contributions to 
Bayesian theory and methodology. They differ, however, m several respects. The Good 
paper 1s offered as a history of the personal contributions of its author to hierarchical 
Bayeslan methodology. In fact. ~t provides a useful histor~cal overview and integration 
m this area. The Dickey pauer uurDorts to offer a theory for stochastlc assessment, but, 
m fact, the contribution Is orimarily mathematical. 

Professor Good beans by letting us peer Into his crystal ball which shows a future 
in which all of statlstical methodology 1s based on methods that are either Bayenan. 
emoirical Bayes~an, or some combinatlon of, or comuromlse between, the two sets of 
techniques. My own crystal ball provides a slmilar urevision. 

This conjectured system of the future apparently makes use of the conceDts of 
freauency probabilities (or oropensities), loglcal probabilities, and subjectwe 
~robabilities. a emphasaes the Bayeslan hierarchical model and interestmgly suggests 
that the varlous kinds of probabilities can find use at a varlery of levels ln the hierarchy. 
I must say that 1 like this prevision and hope that Professor Good and I are correct. 

It would have been nlce to have had some brlef discussion of the relat~onshi~ 
between these various kinds of probabilities, but we ought, I think, to be thankful for 
what Professor Good has glven us. To supplement this 1 think that a reference or two 
might be useful. For my own part, 1 have always found Rudolf Carnau's treatment of 
the two kinds of  roba abilities to be very useful. His distinction between, and indicat~on 
of the relationship between frequency probabilities(or uropensities) and Logical 
urobabilities I find very useful. With resowt to the relat~onship between suhjectlve 
urobabilities and loglcal probabilities, I have always found Jimmy Savage's treatment 
to be very helpful. His slmule descrldlon of the relat~onshi~ of these two was to assert 
that loglcal urobahility was a limiting case of subject~ve probability when so many 
constraints were placed on the system to uermlt the assessor no Judgment m settlng the 
subjective probabilities. I should also like to point to work by D.V. Lindley andmyself 
relating prouensities to subject~ve ~robahilities and each of these to the concept of 
exchangeability which is the central concept of the hierarchical models. 

With resuect to the relat~onshiu between the Bayesran hierarchical models and the 
so-called emuirical Bayes models, I'm not sure that Professor Good's characterlzatlon 
and mme will be ident~cal. Let me offer mlne with the understanding tnat Professor 
Good will have an opportunity to uresent his own. 

Jimmy Savage used to talk about statlstical rhetorlc and often uolntedout the 
gamesmanshiu employed py classlcal statlstimans when they named some of the11 
estimates as unbiased. How, he would say, would it be possible for anyone to use an 
esrlmate that was called biased? Fortunately, we are no  longer bothered by this rhetorlc 
and most of us routinely use "biased" estimates In our worK. I must say, however, that 
1 wish our textbook writers would be more forthright and remove this objectionable 
termmology from statlstical theory. I would also wish that useudo-Bayeslans would 

cease refernng to thelr work as empirical Bayes. There 1s really nothing more empirical 
about their work than any other statistlcal work usmg hierarchical models. In fact, one 
could argue that from a Bayesian pomt of view some empirical Bayes~an methods 
Involve a mild and uossihly very acceptable form of cheatmg, which 1s to say the use of 
a conditional rather than a margmd distribution, conditioning on a statlst~c obtamed 
from the sample at hand. Now we ail know that some robustness arguments can lead us 
to acceut the use of such a conditional distribution Instead of a marginal distribuhon, 
but ir certalnlymnst be judged a bit bold to label this method empirical. 

In saylng this I by no means suggest than these psenao-Bayeslan methods will 
always lead to poor results. Qu~te  the contrary 1s true. Often they will lead to very good 
results and sometlmes they will lead ro better results than are obtalned using fully 
Bayesian methods when, in the latter case, care is not exercised in the cholce of the final 
stage urmr distribut~on. 

One might think that there is a contradict~on here in that using pseudo-Bayesian 
methods leads to good results and uslng proper methods sometlmes leads to Door 
resuns. The reason for this e that strictly Bayesian methods are very difficult to emuloy 
and sometlmes very sensitive because they reQulre the assessment of certakn 
orobabilities tnat are, indeed, very difficult to assess. As a result of this the assessments 
may not be made and so-called flat or indifference type pnor distributions may be used. 
As it turns out this may lead to very poor results. However, when reasonably good 
methods are available for assessing the parameters at the last stage of the Bayesran 
model. we can expect very satisfactory results Indeed. 

Another disadvantage of useudo-Baves~an methods IS that they provide only uoint 
estimates of Darameters or variables and, therefore, lead to a second imprecision that 1s 
typsally found in the application of classlcal methods. 

If we look at the typ~cal introductory book on classical statistics and study the 
section on regression and uredict~on carefully, we see the urocess as one of uornt 
estlmatlon of the lnterce~t,  the regression coefficients and the residual variance. When 
this est~matlon 1s completed the inference,by the reader is that these estimated values 
should be used as the true values of the paiameters and that they should, therefore, be 
inserted in the model and ~redictlons made with the model uslng the estlmated residual 
variance to glve the error of prediction. In fact, this 1s Incorrect and we know that the 
correct urocedure 1s to compute a confidence Interval for an (n+  1)sf observation 

Conditioned on the previously observed (x,y) pars. This y~elds the same uolnt estimate, 

but provides for alarger standard error than the simpler procedure. The same difficulty 
arises with emuincaJ Bayes urocedures. Whereas in a strlctly Bayesian method we 
auromat~cally derive the conditional distribution of the dependent var~ahle given the 
independent var~ables and marglnalized with resuect to the posterior distribut~on on the 
Parameters. If you do Bayes~an statlstlcs carefully you get the rlght answer, but you 
must be more careful than with pseudo-Bayeslan methods. 

My crystal ball shows that we shall be looking for and finding better ways to fit 
Prior distributions for the final level in the hierarchical moclel and when this Droves 
~muossible we shall condition where necessary and, as a last resort, we may condition 
on observed sample values. We will, however, recognize such conditioning for what it is 
and treat our results accordingly. 



The Droblem of assessmg a reasonable Dnor distribut~on for the final stage m a 
hierarchical model is a difficult one, and one tnat typicaly cannot be avoided. I cannot 
offer a method that will work in all situations. but a very slmple method is available m 
some cases. 

Consider the true long run pro~ort ion of correct responses, a , ,  associated with ' 
person i for r = 1,2, ..., m. Let the observations for each person be binomral ( n ,  a3 and 
let the persons be excnangeable to You. Then if I assess your prior distributlon for sj, 
coherence will aemana tnat the mean and variance of your distrihut~on for a; will 
reflect your belief about the mean and vanance of the distributron of tne a i s .  While 
this coherence argument is usually taKen in the opposlte direction, it is equally valid in 
the stated direction and this may be helpful m assessmg a prlor distribut~on at the 
second level of the hierarchy. 

Professor  dickey,^ paper troubles me. It 1s not that I d o  not value his 
contribution. On the contrary, 1 think tnat some of the work may be very useful. But I 
am troubled by the title and by tne ~mplication that the work in this paper somehow 
solves any ~rob lem m the assessment of subjectwe probabilities. It aoes not. What It 
does is to  provide us with some mathematical models and some mathematlcal results 
which should prove very useful in attempting a subjective probability assessment. It, in 
nself, does nothing to provide for that assessment. The same may be said, though with 
slightly less force about the clted paper by Kaaane, DicKey, Winkler, Smith and Peters. 

The origlnal verslon of the Dickey paper contained no lntegratlon with or 
reference to  the psycnologlcal or psychometric literature. The final version aoes not 
correct this error. 1 had hopea for more. Bayes~an s ta t~stss ,  m its complete form, 
Involves the use of pnor probabilities and utilities. The assessment of these beliefs and 
values lnvol~es a L7sychOmetnc process as Important to  Bayesian statlstlcs as any 
mathematlcal work. A rich psycnometnc literature should not be ignored. A recent 
technical report by Gokhale and Press (1979) would seem to set a more useful examDle 
than either the Dickey or Kadane, et. a. papers however 1mDOItant the matnematlcal 
conttibutions may be m the two cases. Both Ravers would De lmproved by more 
accurate titling. 

S. GElSSER (Unrversrry ofMinnesoro): 
I would like to reinforce Professor Good's Domt on usmg predictive sample reuse 

techniques for the estimatkon of hyperparameters. ExamDles of its use in this regard 
appear in Ge~sser (1975a. 1975b). 

It also appears to me tnat there are many more ways than three to  sample a 
contlngency table. Various combinations of cells m a table can lust as easily be fixed. 
For examDle, instead of havlng double binom~als m a 2 X 2 table, one could just as 
easily have double negatlve binomials or combinations there of. This could typically 
occur in t n a s  which were generated squentlally. 

T. LEONARD (Unrvers8ryoJ Worwrck): 
My midnight game of chess with Professor Gooa has, for me, been one of the 
highlights of thrs conference (ranking with some en~oyable discotheque visits) and has 

confirmed my imDresslon that Bayesian~sm 1s fortunate to  possess and adherent with 
such wide-rangmg mtellectual abilities. I would however like to  express the ODInlon that 
the razor dictum discussed by Professor Good may not be comDletely appropnate, in 
the situation he discusses. By reauclng the number of hyperparameters we might even 
ob tah  posterior est~mates with Droperties which are different m spirit to  those which 
we were anticipatmg. To give three examples: 

1.- When estimating multinomiaJ probabilities, Good rightly avoid Johnson.~ 
sufficientness postulate m oraer to allow for possible histogram smoothness. He 
cowever restricts himself to  a slngle hyperDarameter (referred to DY Fienberg and 
Holland as the flattening constant) and thereby flattens the Droportlons rather than 
smoothing them by allowing for the ordering of the cells of the histogram. In a prevlous 
paper (Leonara, 1973) I showed that by using two hyperparameters (one for shrinking 
towards a prlor estimated and one for smoothing) we could obtaln the sorts of 
~roperties which Good was antici~atmng- aunng his discuss~on of Jonnson,~ 
sufficleutness postulate. Formulations like this would of course be difficult usmg the 
Dirichet distribut~on, because of its highly s~ecialised covanance structure. 

2.- Professor Good has contributed a number of interest~ng papers to  the areas of two- 
way and multi-way contlngency tables. However, he usually contents himself with a 
SLngle hyperparameter, and assumes a symmetric Dirichlet Drlor across the whole table. 
This ~mmediately leaas to  posterior estimates which flatten the cell mobabilities 
regardless of such asDects as row and column aepenaence; alternative prior structures 
are discussed by Leonard (1975). 
3.- The p a w  by Good and Gaskins m 1971 provided one of the pioneering 
contributions to the field of density estimation. However, he agaln constrains himself 
to  a slngle hyperparameter which Dlays the role of the flattenlng constant m 
multinomral problems. Since there 1s no further hyperparameter the practlca wabilitv 
of the procedure is agan restricted. Good's estimates again flatten much more than 
they smooth. 

A great deal of interesting work has'been carried out on the comDlex marginal 

likelihood of the hyperparameter under multinom~al-Dirichlet assumntions. It is nice 
that the unimodality Of this likelihood has been proved and that so many of its 
toDologlcal properties are now known. An alternatlve may De obtanea by referring ro 
an approximation to  the marginal distribution of the chi-squared statistic. This ylelds a 
slmDle approximation to the marglnal likelihood of the flattening constant whilst 
preserving its important topological propertreS. Details are described by Leonara 
(1977). 

In my opinlon a formally Bayeslan analys~s of the multinomlal Dirichlet problem 
may be a bit more sensitive to the choice of hyper-~rlor than Professor Gooa mlght 
think. The tails of the marginal likelihood of the flattenlng constant do  not approach 
zero at infinity; they either approach infinity or move downwards towards a positive 
asymptote. Therefore, glven any hypemrlor, an arbitrarily small wiggle taken 
arbitrarily far out In the tails can always be performed in such a way that the 
corres~onding change in the hyperpostenor will substantially affect the posterior 
distribution of the cell probabilities (which involved an integration over the whole 



range of the hyperuosterlor). This difficulty does not seem to be apparent under a 
multivarlate loga/multivanate normal pnor approach (e.g. Leonard 1973.) 

D.V. LINDLEY (Unrvers8ly CollegeLondon): 
Is life as complicated as Good suggests? An alternative vlew is that there 1s only 

one type of urobability, exuressing Your coherent vlew of the world; and One type of 
ratronality, coherence. (Of course. there a chance, as well.) What Good calls subjectrve 
urobability may not be probability at all, if it is what a real subject believes: for a real 
subject is incoherent, that is, does not obey the rules of urobability (see DeGroot's 
oauer.) Similarly, the imoortant hierarchical model of Good's 1s only a way of 
modelling 0ne.s coherent view of the world. As soon as one Introduces uarameters, one 
has moved way from observables: and hypeiuarameters describe uarameters lust as 
Darameters describe observables. There IS a un~ty  here that Good's diversrty seems to 
undermme. Of course, we have to use simple methods - but these should be viewed as 
approximatlons to a fully coherent vlew. 

REPLY TO T H E  DISCUSSION 

J.M. DICKEY (Unlverstry Collegeof Wales, Aberysrwylh): 

In uresentmg this uaper, l asked the audience to forget a few of thelr favounte 
things: 

I. Satnuling models 
2. Likelihoods 
3.  Bayes' theorem 
4. P r ~ o r  and postenor distributions of parameters. 

The idea of statlsteal data was also discarded initially, and later brought back, In 
regard to  elic~ted informat~on concerning expert ouinlons, that is, data about beliefs. 
All these favourite ideas reappear, of course, m the rather special sltuatlon when belief 
1s updated to take formal account of modeled statlstlcal sample data. But the concern 1s 
not merely with helumg Bavesian statlstlclans choose thelr prlor distributions. A whole 
uaradigm has been Urouosed in which subject~ve Bayes~an rnference from modeled 
Statlstlcal data forms just a uart. 

I have recently used the term "subjective-probability modeling" to  emphasize the 
uolnt that  roba ability models, s~milar m some ways to the samuling models used by 
statlsticlans, can be fitted to describe degrees of belief (and not lust belief about 
uarameters). In uarticular, a rnulfivar~afe oumion can be modeled, together with Its 
functional deuendence on concomitant variables. It is this uomt that I would hope to 
make above all. 

One difficulty with the name "subject~ve-probability modeling" 1s that DV 

omlttlng the hyphen, one could mistakenly read the word "subject~ve" as an adjective 
modifving the word "modeling" Whereas, in fact, the modeling process itself is no . - 
more nor no less subjective than other mathematral modeling processes. It Is Just that 
the object which the model is Intended to  reDresent is a uerson's oulnlon. 

Again, as in any mathematlcal modeling, never (or hardly ever) 1s the assumed 

class of models exactly true of the object belng modeled. Therefore, Professor 
DeGroot's Question about the sat~sfactonness of the Dartlcular uarametnc families put 
forth In the pauer would seem to hinge on the question of thelr usefulness as 
exuerienced in future applicat~ons. 

1 see no "fundamental contradiction" in seuaratlng the two conceuts of cohereqce 
of beliefs and coherence of eliclted aspects of beliefs. Coherent beliefs can underlie 
noncoherent elicltatlons, lust as a DhysKal quantity can underlie the measurements of 
it. However. conception 1s one thing, and uractlce another. In uractse, no 
mathematlcal model 1s ever exactly true, and this statement applies as well to the 
mathematical model of coherence. But in Phys~cs, lust because ideal gases do not exlst 
m the world, does not cause us to  discard the conceDt of an ideal gas as useless. (Not 
only are the memuremenfs of volume, pressure, and temuerature subject to error, but 
the underlying real volumes, pressures, and temueratures do  not follow exactly the laws 
for an ideal gas). Neither should we abstain m urobabilists oulnlon-modeling from 
using the conceuts of coherence, and es~eclally slnce the theory is UroDosed as a 
normative theory, rather than a descnutlve one. 

I concur with Professor DeGroot m his concern over the ~otent la l  for a destructive 
deuendence of the fit on the fitting strategy. Again, future exDenence will tell. 

I wonder why Prof. Novlck has chosen to Dretend that I have not DroDosed 
assessment algorithms (as m Kadane e f  a1 1978) nor cntena for fitt~ng (present ~auer ) .  
It would have been better had he reported, from his extensive experience with 
Interactive comuuter urograms, his vlews on specific ways in which the urouosals are or 
are not Dractlcal. For examule, what of my suggestion that errors of elicltatlon be 
treated as havlng vanances UroDortlonal to the varrances m the subjectwe-probability 
model? (1 note that a recent release of Prof. Novick's comuuter program system 
CADA 1mDlements the algorithm of Kadane et ai). 

I aDologlze to  Professor Novlck for not integratlng my uaoer with the 
Dsychologlcal literature. 1 did not feel that the comments 1 had In mlnd on this 
literature were relevant to the Dresent Paper, although the toulc of the Dauer can be 
considered a usychometrlc tovrc. Perhaus. a few words here will go some way toward 
making amends. 

For the most part, the uauers 1 have seen In the Dsychologlcal literature use the 
very simplest of subjectme-urobability models. where the model does not have enough 
Structure to Produce lnterestlng denved statements concermng a slngle exDerts's 
ouinion on a particular occasion. (See, for example, the second half of Slov~c and 
Lichtenstein 1971). This tendency 1s understandable. of course. In the light of 
usychologists' interest in studylng human behavior in simplified laboratory situatlons. 
A second line of study has not involved subjective-urobability models as such, but only 
uieces of models. such as subjective linear uredictors. (See the first half of Slovic and 
Lichtenstein 1971, or Dawes 1971). This would seem to  a r m  from usycholog~sts~ 
Drlmary interest In descrlutlve theorles of overt behavlor, rather than In helumg exDerts 
to exmess thelr oDlnlons more usefully. Psychologists are also not generally familiar 
with the mathematics of Darametenzed or multivarlate urobability disfribufions. 
although they may be conversant with high dimens~onal linear structures and data 
analyses. Garthwalte (1977) glves a review of the psychological literature. 



Finally, I cannot resist commentmg on Professor Nov~ck's discusslon of Professor 
Good's paper, m which he wntes, "the problem of assessing a reasonable Dnor 
distribut~on for the final stage m a hierarchical model is a difficult one". In fact, the 
problem can be solved immediately m prmclple by the methods of Kadane, DicKey, 
Winkler, Smith and Peters (1978). 1 hope to wr~te  a short paper soon on this, but In 
case I do  not get around to lt, 1 shall outline the maln idea here. 

Although presented in the gulse of the problem of assesslng a Bayeslan predictive 
distributlon for the normal regression sampling model, the methods of Kadane et a1 
(1978) are fully general for the assessment of a distribut~on In any glven multivarlate 
locatron-scale family. The predictive distributlon for a hierarchical normal linear model 
with proportional unkown varlance components is multivarlate f, but with speclal 
constra~ned form of locatlon vector and scale matrlx. Need I say more? Since one can 
assess a fully general multivariate t distribut~on, one can surely then take the further 
step of approxlmatlng it mathematically by the nearest distribut~on (in a su~table norm) 
of the hierarchical predict~ve form. Also, the differences between the two distributlons 
can help Indicate whetner the hierarchical structure 1s a realistic model assumDt1on. 

I.J. GOOD (Virgmlo Polyleehnlc Insr!lute ondSfale Untversity): 
1 would like to thanK the discussants both for thelr generous comments and for 

thelr cririques which force me to clarify a few points. 

1 had hoped that my vlews about kinds of probability were well enough Known so 
as not to  have to repeat nluch of them m my art~cle (see, for example, Good 1965, pages 
6 and 7). Dr. Lindley seems to  agree with me that L is a t  least convenient to talk about 
"chances" (physical probabilities) In addition to  subjecr~ve (personal) probabilities, 
whether you believe m the independenr "ex~stence" of physical probabilities Or 
whether you arrlve at thelr "as if" exlstence by using de Finetti's theorem. All I have 
further cla~med is that some people (such as H. Jeffreys, Carnap and Jaynes) find it 
helpful to  assume the exlstence of credibilities or loglcal probabilities (unluue degrees 
of belief of a perfectly rat~onal bemg). 1 agree with Drs. Lindley and DeGroot that 
subject~ve probabilities are the most fundamental and, to  quote the editors of Science 
m thelr heading for Good (1959), "Although there are a t  least five kinds of ~robability, 
we can get along with just one kind". So there doesn't seem to be verv much Daslc 
philosophical difference between my position and Dr. Lindley's. By a "subject~ve 
probability" 1 mean one belonging to  a body of beliefs which you have made some 
attempr to make reasonably coherent. When no such attempt Is made I refer to 
"~ychologlcal probability" There is a continuous gradarlon from psychological 
probabilities to coherent subjectlve probabilities, tne Latter belng something of an ideal 
though a little less so than loglcal probabilities or credibilities. Whether you prefer to 
adopt one ideal or the other or both is a matter of taste. If you wish, you can replace 
"log~cal probabilities" in my exposition by "your true coherent subject~ve probabilities 
tnat are 'struggling to get out"' This substltut~on has no affect at all on the 
hierarchical technique, which 1s Intended to be a psychologlca aid. Surely, we all alm to 
have "ohject~ve~udgments" in some sense. 

At a slightly less fundamentally philoso~hical level my position e perhaps 

different from those of Drs. Lindley and DeGroot (and from de Finetti) in my support 
of a Bayevnon-Bayes ComDromlse or synthesis. I have heard Dr. Lindley Imply, at 
least as far back as 1967, that there 1s no reason to expect any relat~onship between rail- 
area probabilities and Bayes factors. I do expect such an approxlmate relat~onship m 
rnose crrcumsrances where the Bayesran model and the 'fail-areo" (or "Fisher,~n") 
model are 00th sensible: the reason bemg, m my oDlnmn, that the sensible rail-area 
merchant is lm~licitly approximately Bayeslan at the back of his mlnd. He d0esn.t 
usually consider null hypotheses that are highly ~ m ~ r o b a b l e ,  and, when he does, he 
lnslsts on a smaller tail-area ~robability. And he does so inslst also, if he 1s sensible, 
when the losses due to errors dictate such a policy, and also if his sample is extremely 
Large. And he selects slngle-tail or double-tail probabilities depending on some concept 
of the non-null hypothesis. In other words, if he 1s sensible, he 1s something of a 
Bayesian without realizing It or without admlttlng it, or, if he IS me, while admlttlng ir .  

As I have said on several occasions, "To the Bayes~an all things are Bayeslan". For a 
further discusslon of the relatlonshi~ betweem tail-area  roba abilities and Bayes facrors 
see Good (1980a). 

Dr. DeGroot asks in what sense the higher-level probabilities are more woolly. I 

mean that they are more controversial and can be judged less sharply as measured, for 
example, by the rat10 of the upper to the lower odds (where "odds" = d ( l - p ) ,  p belng 
a ~robability). My assertion In Good (1952) that "the higher the type the less the 
woolliness matters" was based on the belief tnat agreement is often reached among 
sclentlsts, all of whom are Bayes~ans at heart without necessarily knowlng it .  

The Dolnt of a Baveslnon-Baves comuromlse 1s to Obtaln greater agreement 
between the Dolarlred camps, not to questlon the essential truth and inev~tability of tne 

neo-Bayeslan ~hilosophy of uartlally-ordered subject~ve wobabilities. (What I say 
fifty tlmes 1s true.) Likew~se the un~ty that this philosophy glves to statatlcs, and to the 
~hilosovhy of sclence, IS not undermined by talking about three kinds of probability. 
Unltanans and tnnltarlans can live in peaceful coexlsrence and do not need to Indulge 
in holy wars. 

Dr. DeGroot Dolnts out that In hierarchical models lnvolvlng phvs~cal probabilities 
we are Interested in the higher-level probabilities as well as those at the lowest level. 
This IS to some extent true also for subject~ve models, for example, m the multinom~al 
(nor histogram) work the marglnal distribut~on of the flattening consrant K 1s of 
lntkrest. esuec~ally its (Type 11) Max~mum Likelihood value. But approxlmate valucs 
are adequate. 

Turnlng now to  Dr. Leonard's lnformat~ve comments in which, for about the first 
tlme in history, a skittles game of chess 1s partly immortalized in onnt, I must begln by 
admlttlng an ambiguity m my use of the term "ro~gh"; and I can see that this 
ambigu~ty has led to  a mlsundersranding. When successwe or close observatrons are 
Initially likely to be highly correlated, as m a conr~nuous denslty curve or histrogram, 
perhaps the term opposlte to smooth (or "ordinally smooth") should be "ordinally 
rough" or "flamboyant" (ln its architectural meaning). The roughness penalty in the 
work on probability denslty estlmatlon refers to this ordinal roughness. But In my work 
on multinom~al distribut~ons and contlngencv tables I have used the term "rough" to 
IrnDlv a dev~atlon from euul~robability; for example, multinom~al Drobabilities o,,p,, 
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more accurate than thoseglven by Good. 1967, p. 415 where there was one mlsurlnt.) 

k,,~", ,044 16.3 6.1 3.3 .39 .64 . I5 
ko .08 17 7.0 3.6 .77 1.1 .24 

k ;  .08 16.4 6.2 3.3 .90 .62 .35 

K i r  .07 15.9 5.7 2.8 .80 .52 .25 

The approxlmatlons k,'and k,, are negligibly different and it is not clear whether 
they are better at estlmatlng k,.,., or k,. The approxlmatlons are better than they iook 
when used for approxlmatlng G. For mstance, in the first examole G = 3.96, while 
taking k.,.. as 1.7 instead of 1.05 glves the approxlmatlon G =  3.80, Likew~se when k,.,.,, 
1s large, the null hypothesis k = m cannot be rejected, so. ~n the seventh examole, the 
estlmates k,'and k,are far better than they look. Oneneeded to do  the theory ProDerly 
to evaluate the approxlmatlons so 1 cannot agree with Dr. Leonard's comment that the 
approxlmatlon "avoids" much of the theory. It mlght avoid rt !n rhe furure but the 
theory had to be done to  justify theapproxlrnarlons. 

Provoked by the goodness of the approxlmatlon and by the considerat~on of Stone 
(1974) and Leonard (1977), 1 wondered whether k,,,.. for contlngency cables could be 
approximated bv u(N-l)(u+ l ) - ' (X-U) '  (or by m when this 1s negat~ve). lHere u = 

(r-l)(s-l).] Calculations by Dr. J.F.Crook Indicate that it leads to good approxlmauons 
to G as comouted uslng the full theory of Good (1976) and of Crook and Good (1980). 
The approxlmatlons are about as good as for the multinomlal oroblem. For more 
details see Good (1980b). It would be Inreresting to know whether the results would be 
even better if we reolaced our mkxture of Dirichlets. glven R, bv the corresoonding 
mlxrure of densities ~roportlonal to ~ l p , , ~ " ~ ' ,  where k,, 1s of [he form an, n,,N.' 
Moreover the approxlmatlon u(N-])(U-+ l ) . ' (Z-u)~ '  for k,,,,,., mlght be good for 
multidimens~onal contlngency tables, where u 1s the number of degrees of freedom. 

When Dr. Leonard says that F m~ght be sensirive to the cholce of hyperoilor lif 
ridiculous hypemrlors are used?] he is saylng something with which I have long been 
familiar (Good, 1967, p. 405). Moreover it does not depend on golng outside the log- 
Cauchy family. As I said, no imorooer hyperorlor can be used, because R k )  - 1 as 
k - m, and therefore of course orooer orlors that are close enough to being ImDrooer 
will glve a resultant Bayes factor Farbitrarily close to I. If this leads anyone to abandon 
the hierarchical Bayes methodology, then he mlght as well abandon Baveslanlsrn ltself 
(because some ridiculous orrors kill any given evidence), and therefore, if he 1s 
consisienr, he should abandon statlstlcs, sclence and rat~onality. 

1 was pleased to recave Dr. Geisser.~ additional historical references which I had 
overlooked. 1 agree entlrelv with his belief in the value of the method of predictive 
samole reuse ( = cross-validation). Regarding his second comment, he is certalnlv rlght 

that one can sanlole a contlngency table m more than three ways. But, from a Bayesian 
oolnt of vlew, the auestlon of significance of deoarture from IndeDendenCe does not 
depend on whether, for exarnole, the row totals are samoled as a negatlve binom~al or 
as an ordinary binomial, because ootlonal stopping does not affect the evidence once 
the samding is done. The way 1 have often exoressed this slnce 1950, in conversations 
with other statisticlans, is that the evidence cannot deoend on whether the statlsticlan 1s 
telling the truth when he says he stopped samuling because he had to catch a t r am If a 
Bayes~an were to check whether there was really a traln due, aL the tlme the other 
statisrlclan clalrned, lr would not be because this would affect the evidence directly. 
Rather it would be to obtaln evidence of whether the other statrstlcian was an honest 
man. If the statlstlclan Ihinks he n cheatlng when he Dretends he has a tram ro carch, 
then he can be convicted of aflemuted cheatlng. A statistlclan who trles to cheat in one 
resoect may very well have succeeded in cheatlng m another resoecr. 

Dr. Novick's general agreement with my vrews 1s encouraging. He rams  the matter 
of the relat~onshio between Bayes~an hierarchical methods and emoirical Bayes 
methods. 1 had described whar I understand by the empirical Bayes method: one 
Inreroretatlon of it 1s the use of objective ohvslcal emoirical frequency-based ortors, as 
by von Mises (1942), and another somewhat different intemretatlon is the one favorea 
by Krutchkoff and exemolified by Turmg's idea of 1941 which I embellished and 
oublished m 1953.. O n  the other hand, In the hierarchical Bayes methods, as 1 
understand them. the use of the hierarchy is a Dsychologlcal aid to a good Bayeslan 
luagement of subject~vlst~c orlors. If the hyperoarameters (or hyperhypervarameters) 
are estlrnated by means of a non-Bayexan method, such as by Type I1 Maxlmum 
Likelihood, then one has a Bayes/non-Bayes comoromise or oseudo-Bayeslan 
orocedure which 1s not emolricat Bayeslan by either of the two definitions just 
mentloned. The essential uomt, as I see it, 1s that the emoirlcal Bayes methods are not 
supposed to involve eolStemoLoglCal orobabilities, but only Dhyslcal orobabilities. They 
are Bayes~an only in the sense of uslng Bayes's theorem and 1 think Dr. Novick would 
agree with this usage. I endorse his wish that oeoole would not call methods empirical 
Bayes when they are oseudo-Bayeslan. 1 agree too that oseudo-Bayeslan methods, as so 
far used, usually orovide oomt estlmates of oarameters and variables, but it seems to 
me that they can be extended in natural ways to orovide Interval estlmates. For an 
Interval esrlmate, obtalned non-Bayeslanly, at the too of a hierarchy, will lead to  
lnterval estlmates lower down. 

Dr. Novlck said 11 would be nlce to have had a discusslon of the relat~onshiv 
between kinds of orobabilitv. Certainly the t o o s  1s closely related to the toolc of my 
oaoer, and it is one of my interests, but, for the sake of brevlty, I did not discuss it. 
There 1s a little discusslon of it in, for examole, Good (1962b. 1965, 1975). For 
discuss~on and classifications of kinds of orobability see Good (1950, 1952, 1959, 1965, 
1966, 1971d. and 1975b), where cltatlons of earlier wrlters are given, including Carnap, 
Po~sson, and Kemble. 
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Nonparametric Bayes Decision Theory 

S.R. DALAL 

Rulgers Unrversny* 

SUMMARY 
A summary of tne Seminar with tne same title is presented. Fergusons fundamenta 

worx on Ule tneory of Dirichlet processes is elucidated and then snorrcornmgs are 
discussed. Some rnodificatlons are also Droposea and illustrated. Some of tne lntrleate 
matnernatlcal issues related to tne definitions and tne proofs are not discussed for tne saKe 
of clarity and brevltv. The devaopment raatea to ummodal Drocesses, orlefly mentioned 

m tne last sectlon, will appear asalolnt worx with Professor W.J. Hall elsewnere. 

Keywords: NONPARAMETRIC BAYES, DIRICHLET PROCESSES, DIRICHLET INVARIANT 
PROCESSES, ESTIMATION OF A SYMMETRIC C D F ,  ESTIMATION OF A 
UNIMODAL DENSITY, ESTIMATION OFA POINT OF SYMMETRY 

I .  INTRODUCTION 

Nonparametrlc theory deals with the problems of inference when the 
underlying distribution 1s not specified in terms of a parametric family. This 
theory can be gainfully employed m many situations as models are seldom 
more than approxlmatlons to reality, and the procedures which are optlmal 
for a glven parametric family (i.e. the 'Idealized Model') may perform poorly 
even for models which are near to the idealized model (e.g. Tukey (1960), 
Huber (1964)). 

However, 'classical' nonparametric tneory disregards much of the 
exlstlng knowledge about the idealized model. Further, evaluations and 
comuansons are usually carried out asymptot~cally at specific parametric 
models. 

To avoid these shortcomitigs, it 1s useful to think that there IS an idealized 
model and that the observed distribution 1s a (possibly random) perturbatton 
of the idealized model. This approach has been used by Huher (1972) and 

l Presentlyat Bell Laos, Murray H111, N 1.07974, U S A 



others to create an elegant theory of robustness. Here, we explore an 
alternative approach of Ferguson (1973), who derlved, and suggested the use 
of Dir~chlet processes as pr~ors for nonparametrlc problems. Specifically, we 
shall review Dirichlet processes (Section 2), note the11 anomalies and 
inadequacies (Section 3), and suggest some modifications. 

2. DIRICHLET PROCESSES 
Let (x,B (X)) be the sample space and P* be the space of probability 

measures on (x,B h)) P*. the parameter space for many nonuarametric 
problems 1s qulte Large and consequently many procedures turn out to be 
minlmax. Hence, the Bayes criterion becomes more relevant. 

For the Bayes framework, it is necessary to consider a class of prlors over 
P*, i.e., a class of random probabilify measures, which 1s a) mathematically 
tractable, b) rlch, and c) easy to parameterrze. Several procedures have been 
suggested toward this end, notably by Dubins and Freedman (1966), Kraft 
and Van Eeden (1964), Rolph (196% Ferguson (1973), Doksum (1974) and 
Sethuraman (1979). In statistical Inference Fergus0n.s priors. Dir~chlet 
processes, have been more often used that the other procedures, because of 
their lntultive Properties and tractability, e.g., Ferguson (1974), Susarla and 
Van Ryz~n (19761, Phadia and Susarla (1979), Berry and Chrlstensen (1979). 

Mixtures of Dirlchlet processes, proposed by Anton~ak (1974), have also 
been used in Bio-assay and regression-type problems. Relatively few 
applicat~ons not related to Dirichlet processes are available. For example, 
Ferguson and Phadia (1979) have dealt with censored data Problems uslng 
D0ksum.s neutral to rrght processes. Also. some new non-Dir~chlet-process 
priors developed by Sethuraman (1979) may prove to be useful. We shall, 
however, follow Fergus0n.s approach with some modificat~on. Before 
delineating the modifications, we define and brlefly state some elementary 
prouerties of Dir~chlet processes below. 

Definition. A random probability P is a Dirichlet process if there exrsts a 
finite, finitely, additive measure, a ,  such that for every measurable partition 
B ,,..., B, of X,  ( P  (B,) ,..., P (B,)) has a Dir~chlet distribut~on with parameters 
(a(B3, ...,a.( BJ). We then write PeDP (a) and denote the corresponding 
random probability measure by P~ 

Elementary properties. Let a. = M-Q, where M is a positive number, and Q 1s 
a probability measure on (~,B(x)). Then P e D (a) ~ m ~ l i e s  that GP = Q. Q, 
thus, can be thought of as ideal distribution. Further, the number M can be 
vlewed as the prlor example slze (e.g. Nov~ck and Hall, 1965). Using these 
properties DP priors can be easily parameterrzed. 

The second des~rable property, Richness, mentioned earlier, has two 
aspects. First, rlchness of support is essentlal to deal with a broad class of 
nonparametrlc problems. Secondly, if one is to restrlct attention to a specified 
class of priors, it 1s essentlal for this class to have members capable of 
approxlmatlng any prlor belief. We call this latter aspect adequacy. Both of 
these issues can be examined by lmposlng a 'natural' topology on P*, the 
space of all probability measures, and P*. the space of all random 
probability measures. 

For a lack of the "natural" topology, varlous topologies can be 
considered (e.g. Ferguson (1973), Dalal (1978), Dalal and Hall (1980)). By 
considering the weak* to~ology on P* obtain by lmbedding P* on the product 
space 10,ll,''i. Ferguson (1973) showed that all a-absolutely continuous 
distribut~ons are In the support of D P  (a). Dalal (1978) showed that this kind 
of lmbedding leads to random probability measures which select finitely 
additive probability measures on (x,B (X)) with probability one. Further, 
although the class of Dir~cblet Processes 1s not adequate in terms of 
approx~mating a glven belief, a convex hull of this class of mlxtures of 
Dirichlet processes (MDP) is adequate m this regard (see Dalal (1978), Dalal 
and Hall (1980)). 

The mathematical tracrability of any class of prlors can only be 
ascerta~ned by examining the ease with which the posterior and various slmple 
exDectatlons are obtalned. With respect to Dir~chlet processes, Ferguson 
showed that, glven a sample X,, ..., X., the posterior is DP (a. + E6,,), where 6, 
1s the unlt mass degenerate at X .  This conjugate prlor property has been 
extens~vely used in applicat~ons. 

2. SHORTCOMINGS AND MODIFICATIONS WITH APPLICATIONS 

First, we discuss an anomaly (discreteness), and.an Inadequacy (to deal 
with lnvarlant problems) of Dirichlet processes. This 1s followed by some 
modificat~ons to overcome these defects. A few illustrat~ve example are also 
w e n .  

3.1. Shortcomings 
i) Discreteness. It is known that DP's are discrete with Probability one 

(e.g. Blackwell (1973), Berk and Savage (1977)). This discreteness 1s more than 
a technlcal aberration. In some applicatlons this has led to non-mtultlve 
answers. Further, the ~ o s t e r ~ o r  changes the masses only at the observed 
samDle polnts. Intuitively, however. it would be appealing to have a nrior 
which increases tile probability of a ne~ghborhood instead. 

ii) Invariance. In nonparametrlc problems, one 1s permitted to have 
nonnarametric beliefs, e.g. symmetry of the underly~ng distribut~on (i.e. In the 



one-sample problem), exchangeability, spherical symmetry, etc. However D P  
and the other prlors defined so far live on the class of all urobability measures. 
It would be useful to also nave prlnrs glvlng probability one to lnvarlant 
(under a group g) probability measures. 

3.2. Modifrcotrons 

Our approach, slmuly stated, 1s to modify the sample paths of a D P  (i.e. 
the distributlons selected by a DP) to elim~nate these snortcomlngs. The 
modified process, although closely related to the DP, 1s usually more 
complex. However, one can use the updated verslon of the D P  to manrpulate 
the posterior of the modified process. 

3.2. i .  Modificar!ons relotea fo Invorronce 

Let g = (g,, ..., g,\ he a finlte group of measurable transformat~ons on 
( x ,B  (X)) and P be a random probability measure. Define a new random 
urobability measure Q by the mapplng Q (A) = ; E P  (gjA). Clearly Q selects 
g-mnvarlant distributlons with urobability one. Such a scheme can also be used 
with a compact topological group to ohtaln invanant distribnt~ons with 
probability one. When P is a Dirlchlet process with g-mvanant a ,  Q is called 
the Dirlchlet Invarlant process (DIP(a)). These kind of processes have been 
studied in Dalal (1979a). The behavlor of DIPS is snnilar to DPs, e.g. if 
X ,,..., X. IS a sample from QtDIP- then Q / X 1  ,..., X., the poster~or of Q, 1s 
DIP(ci + k-'EQXj).  

Using DIP'S Bayes estlmates of varlous funct~onais can be obtalned. 
Some illustrat~ve applications are considered below. 

i) Estimation of a symmetric c.d.f. Consider the uroblem of 
estlmatmtp a c.d.f., F,, sypmetrlc about a known pnlnt U. Let the loss funct~on 
be L(F,,F) = (F,(I) - ~ ( t ) ) ~ d ~ ( i ) ,  where W is a fin~te prespecified we~ght 
function. For Bayes estimation, consider the prlor DIP(a), where a = M.Q 
and the group g 1s (g,, g,J; g,(x) = 2p-X, g,(x) = X. Let G be the c.d.f. 
corresuonding to Q. The Bayes estlmate then can be shown to be a convex 
linear Acombinatlon of the lnltlal guess G and the p-symmetr~zed emplrlcal 
c.d.f. F. (Dalal, 1979a), r.e. 

As n becomes larger, thePependence on the Initial guess G becomes weaker. 
Also the expression for F, suggests that M can be thought of as the pr~or  
sample slze, as discussed earlier. 

The above Bayes formnlatlon can also be exulolted to get a m~nlmax estl- 
mate, 

A I I 
F" = 

1 + + 6 s - = I  + 6" 
4(1+ Jn) 2(4n + n) 7.u -t w'n) 

Bayes estlmates of F, for U unknown nave also been Obtained in Dalal 
(1979a). 

ii) Estimation of the unknown center of symmetry. Consider the usual 
one sample problem of estlmat~ng the center of symmetry of an arbitrary 
distribut~on F. Specifically, assume the following model Y. = + A; where 
the A; are i.i.d. with an arbitrary distribution, F, symmetric auout 0. For the 
Bayes formulation, Let &DIP (a), a = M.G. and ,U have the non-lnformat~ve 
uniform distgbutlon over the reals. Then the Bayes estlmate usmg squared 
error loss b p ) '  can be found. In the case of the idealized model, G, belng 
standardpormal (density p), and assumlng all dist~nct observatlons the Bayes 
estlmate p IS (Dalal, 1979b) 

p* '  IS a welghted mean of Dalrwlse averages. The welght gtven to the Dalr 
Y.+Y, 

1s inversely urnuortional to the distance between y, and y,, and the " 
L 

distance of y"y' from the rest of observations. Thus, this estlmate is 
2 

robust. Numerical and other lnvest~gatlons on this estlmate are considered in 
Dalal (1979b). 

2.2.2. Mon'ificalrons relarea 10 confrnurly unlmodalily 

In density estimation problems, the usual estlmates are obtalned by 
smoothing out the functlonals of the ernulrlcal c.d.f. This 1s usually 
accomplished by convoluting with different kernels. 



T h i s  k ind  o f  idea  c a n  be used t o  s m o o t h  o u t  the  s ample  ua th s  of  t h e  DP's 
followed by s a m ~ l i n g  f r o m  the smoo thed  process. Some o f  these ideas have  

been considered in a j o l n t  work with Professor  W.J. Ha l l  of  t h e  Unlverslty o f  

Rochester.  U s m g  this,  Bayes est lmates o f  general  densities, u n ~ m o d a l  

densltles. modes ,  etc., can be obtained. Some details  have  been worked ou t  In 

Dalal  and Ha11 (1977). 
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DISCUSSION 
1.1. GOOD (Virglnro Polyleehnrc Insrrlure and Slore Unnerst~y): 

Dr. Dalal discussed the applicat~on o f  the Dirichlet-process orlors ro continuous 
oroblems. In my work on  categorical data, I found it necessary to  use mlxturesof 
Dirichlet onors (Good, 1965, 1967, 1976; Good & Crook, 1974: Crook & Good, 1980). 
In Good (1978) I asked whether it would be useful t o  use mlxtures of Dirichlet 
orocesses for cOntlnuous data, such as for testing IndeDendence In continuous bivarlate 
distributions. Also, can we apply "Ockham's hyperrazor" by  somehow selecting the 
Dirichlet processes so that only one hyperoarameter 1s requ~red? If so, this could be 
given a hyperDrlo1 as m the caregoncal work. 

J.B. KADANE (Cnrnegre-Mellon Unrverwy): 
One of the lnterestlng things In non-parametric statlstlcs 1s the lntervretatlon o f  

varlous lnterestlng quantities as U-statlstss. For examole, Wi1coxon.s statlstrc 1s an  
estlmate of P IX< V. Have the modifications of Dirichlet Drocesses been studied t o  see 
whether Wilcoxon's statistic can be justified as an  estimator from this point of vlew? 

T. LEONARD (Unlversrry of Warwick): 

Professor Dalal's convolution of the Dirichlet orocess seems to  me to  Involve some 
really brilliant ideas. It will be regarded as one a t  the lmoortant contriburions in the 
area of non-oarametnc denslty estlmatron. His generalisation of the Dirichlet process 

avoids the ~ l t f a l l s  faced by Ferguson, for examole the uroblems of soiky oostenor 
estmates and s~eci f ic  pnor covarlance structures. His or101 distributlon is very general 
and slmvlv formulated and leads to  appealingly smooth postenor estlmates. He IS t o  be 
congratulated on  achieving a n  onglnal idea of such beautiful and wide-rangmg 
emoliclty. 

When soecifving his onor  distribunon, I think that  11 would be h e l ~ f u l  if Professor 
Dalal worked in terms of his orior covarlance kernel, as well a sh i s  onor mean value 



funcnon, slnce this would demonstrate precisely how he Intends ro smooth his 
estlmates. This would also highlight the slmilarlty between his approach and that of the 
early work of Whittle, who just suecified the first two-moments of his ~1101. By 
completelv specifying his pnor Dalal achieves the same generality as Whittle, but he 
does not run Into oroblems of negatlve uosterlor estlmates, and he 1s also able to ma'ke 
Dostenor probability statements about the unknown density, as well as urovidingpornt 
estlmates. 

Professor Dalal's Dosterlor estimates are consrralnea to the class of Kernel 
estlmates and I wonder wnetner this is a prouerty of the type of prior distribution 
assumed? My own approach constructs a Dnor In loglt soace where lt seems very 
natural to think In terms of linear relationships and covariance kernels, and my 
estlmates assume a general non-linear form ratner different from kernel estlmates. The 
followng rather undes~rable oro~ertles of kernel estlmates are avoided under my 
approach: 

1) The overspread-out nature of kernel estlmares (the estlmated vanance 1s 

always greater than tne sample vanance) 

2) The deuenaence of bandwidth uoon sample size m order to ach~eve 
asymutotlc consistency, or under Whittle s approach the contractlon to delta 
functions as the sample slze increases. 

3) The problem that wnen there are only a moderate number of observatlons 
kernel estlmates will either oversmooth or Dossess bumus m the tails. 

I think that the great strengnt of a Bayeslan approach t o  nomarametrs aenslty 
esrlmatron lies m tne fact that i r  oermds us to model the denslty vla its pnor estrmare 
whilst avoiding any constrarnt on tne Dostenor estlmate to  belong to a uarametenzea 
family. It for examvie urovides a ~ar teular ly  v~able alternative to  class~cal tests for fit, 
slnce we slmDly need to  lnvestrgate differences between me uosterlor estlmate and the 
$1101 hypothesised estlmate. 

A. O'HAGAN (Unrversiiyqf Worwrck): 
Professor Dalal has shown us a very lnterestlng formulat~on of non~arametnc 

mference. The so-callea nonuarametrlc problems are characterised m his approacn, 
and in the earlier work of Ferguson, by a vast number of parameters. l believe this 
feature is inev~table: even when ~nference centres on some subparameter like the 
median, Professor Dawid has shown In his paDer at this meetlng that nulsance 
parameters cannot be dism~ssed without careful considerat~on. Given tnat tnere really 
are lnfinltely many uaramerers, only a Bayesran approach is feasible. The problem 1s 

underidentified (or overuarametnsed) and no amount of aata will glve sufficient 
lnformatlon to render the unor irrelevant. In partlcular, the way In which the urlor 
relates parameters to each other rnfluences strongly the shaue of uostenor inferences. 
Ferguson's Dirichlet orocess, for examole, ylelds discontmuous nosterror means. It 1s 
not enough that the pnor should look sensible; lt must also glve sensible uosterlor 
~nferences, and it 1s aulre DroDer for Professor Dalal to seek for unors which glve 
uosrerlor ~nferences havmg sensible shaues. 

A.F.M. SMITH (Unrversrry qfNolIinghorn1: 

I hope that all who have enjoyed Professor Dalal's elegant uresentat~on and 
admlred his undoubted matnematrcal ingenuity will forglve me if 1 express the philistme 
sentiment tnat exercrses ~nvolv~ng contemplation of completions of spaces of mlxtures 
of Dirichlet processes nave very little to do  with lnteruretlng aata m tne light of 
uersonal judgment. and, whatever ewe they are,are not Bayenan Statlstlos. 

Instead of seeking a tractable way of re~resent~ng the uncontemulatable (i.e. 
measures havlng large support over glgantlc suaces of distributlons), we should first of 
al! decide what asuects of the uroblem we are able to contemulate and then seek a 
tractable representatlon. 

As an examule of what 1 have In mlna, suppose we want to  make ~nferences about 
locatlon, glven uu to  50 observatlons from an (unknown) member of the (assumed) 
location-scale family. I can contemulate qualitative features that may be relevant -such 
as heavlness of tails, skewness, etc.- and 1 can realize that with samples of this slze there 
1s little point m seeking a Dnor measure with large supporr m the location-scale family. 
(We s~muly cannot distinguish otner than uulte crude qualitative differences between 
distributlons.) Instead, a sufficiently rich mlxture should result from a onor with a 
sensibly chosen reoresentatlve finlte support. One such crude chose which 
~ncoruorates heavy, and light-tailed deuarlures from Normality, together with 
skewness ln both directions, 1s a finlte mlxture model conslstlng of the Normal, 
Uniform, Laulace, Right-Exponential and Left-Exponentlal distributlons. 

This has the added advantage that all the necessary Bayeslan manluulations can be 
carrlea out analytically. (See Spregelhalter, 1978.) 

1 have aways understood "Nonparametnc" to mean "Enormous Parameter 
(Model) Suace" where "enormous" signifies "too big to have to think meamngfully 
about" 1 suggest, therefore, that we should be very circumsuect about any theory 
which couules "Nonparametnc" with the word "Bayeslan" 

S.R. DALAL (Rulgers Unzversrly): 
Professor Good durlng his discuss~on at the conference lnqurred about the 

suitability of symmetrlc Dirichlet distributions and assoclarea processes as priors for 
nonparametric uroblems. Use of these unors m contlngency tables ieads to manageable 
numbers of hyperparameters am some ease m numerical computations (Good, 1976). 
Unfortunately, m many inrerestlng nonparametr~c problems, tne lnterestlng sets are of 
various slzes, and thus, the kind of symmetry lnherent in contlngency tables 1s absenr. 
This rules out the use of symmetric Dirichlet distributrons. However, as Indicated in the 
uauer we can use Dirichlet symmetrlc urocesses whenever some appropriate lnvarlance 
structures can be assumed. Professor Good's comment on the use of "Ockham's 
nyperrazor" needs further lnvest~gatlon. 

Professor Kadane has rased an lnterest~ng and an important Issue related to 
justificatlon of classlca nonparametrlc procedures based on U statlst~cs through the 
nonparametnc Bayes theory. This Line of lnqulry has already been followed m 
Professor Ferguson's fundamental DaDer. He showed tnat m the problem of estlmarlon 
of FdG with a squared error loss, tne Bayes estimate 1s a convex linear combination 
lnvolvrng the Mann-Whitney sratntic. Similar justification can be urovided for several 



other nonuarametrlc procedures. For example, my work with Professor Phadia has 
shown that Kendall's n can also be slmilarlv lnterureted from Baves~an uolnt of view 

Dr. Leonard has been very kind in prasing my work on  denslty esnmation. The 
applicability and usefulness of  my approach can be judged only after exammmg the 
COmuteXlty of the estimates, the large samDle urouertles (e.g. canslstency rates of. 
convergence), etc. In this regard, the references furnished by Dr. Leonard to his work 
(1973), Whittle's work (1958) and Good and Gaskin,s work (1971) will be very useful. 

Dr. Leonard is also qutte correct 1" uomtmg out that the postenor estimates are 
^ constramed to the class of Kernel estlmates because of the nature of the unor.  

However, In the imuortant uroblem of ummodal density estimation this 1s not a 
constraint. Dr. Leonard has also been able to convmce me that it would be heluful to 
work m terms of covarlance kernels. I think this deserves detailed investlgatlon. 

1 do  concur with Dr. O'Hagan's comment on the inevitability of the 
uarametrlratlon by large number of uarameters m Bayes formulatlon of nonDarametnc 
uroblems. This is not to say that m such a formulation no amount of data will glve 
sufficient information to render the unor irrelevant. In fact, 1 think that some sort of  
generalized version of  the theory of urecise measurement would hold and accordingly 
the Dreclse nature of the large number of Daramerers involved would be UnImUortant. 

Professor Smith comments that we would be arcumsuect about any tneorv which 
couples 'Nonuarametnc' with the word 'Bayestan'. I disagree with his logs.  Much 
recent works shows that suchs an alliance is not an  unholy one. This 1s also best 
illustrated in the usual one samule uroblem where observatlons are obtalned as 
differences of o a r s  of  measurements. Here the assumutlon of symmetry 1s easily 
justified and beliefs about the uolnt of symmetry may also be easily DarametrIzed. 
Savage's theory of urecise measurement tells us that the urec1se formulation of beliefs 
about the point of symmetry is immaterial. However. an lncorrect s~ecificatlon of  the 
model does have serious consequences for the Bayeslan (e.g. Berk, 1966). In this 

~nstance, whithout any additional informat~on, the Bayeslan nonDarametnc theory 1s 
certamly a vlable contender to any other form of Bayes analvsls. Also. if Dirichlet 
symmetric urocesses are used as pnors, then a generaliratton of Savage's theory of  
Dreclse measurement suggests that the parameter of the Drocess need not be ureclsei~ 

specified. 
Professor Smith also contends that the results related t o  comuletlon of suaces of 

mlxtures of  Dirichlet Drocesses a is  not Dart of Bayes~an statist~cs. This may be true in a 
narrow sense. However, disregarding its Bayesian lm~l i ca t~ons  will be a m1staKe. The 
result which Professor Smith refers to says that a Bayes~an, in quest for a suitable Prlor 
for a nonDarametric uroblem, need not go beyond the class of mixtures of Dirichle~ 
Drocesses. A Darametrlc counteruart would say that the Bayesian need not go beyond 
the class of  mlxtures of  natural conjugate unors. (Dalal and Hall, 1977). 
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SUMMARY 

The role of the lnductlve modelling process (IMP) seems to  be of vracucd im~ortance 
~ ~ 

m Bayeslan statistics; s is recommended that the statistician should empnasse meaningful 

red-life consideiatlons rather than mare formal aspects such as the auomr of coherence. 
It is argued that whilst axlamatlcs wovide some motlvataon for the Bayman vhiloso~hy, 
the real strength of Bayeslantsm lies m s s  Dractlcal advantages and m 1- elauible 
rmresentatlon of real-life vrocesses. A number of standard urocedures, e.g. validat~on of 
results, ehooslng between different models, predictwe distributrons, the linear model. 
sufficiency, tail area behaviour of sampling distribut~ons, and hierarchical models are 
reconsidered m the light of the IMP ~hilasoDhy, with a varlety of concluaons. For 
example, whilst mathematical theory and Bayeslan methodology are thought to Drove 
~nvatuable techniques a t  many local po~nts tn a statieian's IMP, a global tneoretical 
SOLU~IOII might restnct the statistician's Inductwe thougnt processes. The linear statlstlcal 
model a oven to improvement m a number of medical and Soao-economlc ntuatlons; a 
mmule Bayes~an atternatwe related to  loglstlc dtscnmlnat~on analyss often Leaas to better 
conclusions for the mauctlve modeller. 

Keywords: COHERENCE: INDUCTIVE MODELLlNGi AXIOMS BAYES FACTOR REGRESSION: 
DISCRIMINATION; SKEWED-NORMAL: MULTI-PARAMETER ESTWTlON 

I .  THE ROLE O F  BAYESIANISM IN THE REAL WORLD 

An overwhelming majorlty of p r a c t i c a l  s t a t l s t l ca l  problems fall into a 
particularly g e n e r a l  category. The statistlclan S is f r e q u e n t l y  r e q u l r e d  to 
lnvestlgate a real-life process Rp and to extract some meaningful c o n c l u s t o n s  

from his investlgatlon. He m t g h t  f o r  e x a m p l e  b e  faced with a Large-scale set of 
m e d i c a l  data, and a team of medical experts, and mlght wlsh to assls t  i n  the 
diagnosis of the maln causes of a particular disease. Alternatively, he may b e  
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concerned with aproductlon urocess, e.g. for synthetic fibres, and berequlred 
to either forecast future output or to help detect ways In which the process can 
be Improved. As a third example, he may be working in an educational testlng 
environment, with the task of identifying students who could usefully attend . 
partlcular colleges. 

The Bayes~an uhilosophy provides an excellent conceptual background 
for S's investlgatlon of RP. As each fresh plece of information about Rp 
becomes available to S, he 1s able to use it to refine his overall appreciation of 
R!. Whilst he mlght try to do this m a completely ~ntuitive way, Bayeslanlsm 
will frequently asslst him m crystallis~ng his complex thought processes, and in 
keeptng his ideas on a sensible track. 

It IS one of the main themes of this paper that, whilst mathematlC2.1 
theory and Bayesian methodology play valuable local r8les in helplng to 
clarify S's thought processes at apariety of potnts in his investigation of Rp, 
they should not be expected to i.iFa to a mean~ngful global solution to the 
uroblem of how S should approach his overall investigation of RP. 

Even if it were techn~cally possible to construct a feasible 'global' theory, 
we feel that such a solution would be inevitably restricted by the boundaries of 
~ t s  own assumptions, and could serve to constrict the lnductlve reasonlug 
which 1s so vltal to our understanding of the real world, and which no 
deductlve theory can properly represent. For example, it 1s frequently the 
appearance of something completely unexpected which leads to new 
discover~es and important innovations. If our theory were insufficiently 
lnnovatlve to incorporate the possibility of all unexpected occurences In 
advance, then it might merely serve to disguise the potential discovery In a 
manner contrary to the general princlples of sclence. 

Similarly, if S wishes to develop a mathematlcal model as a devlce for 
extracting real-life conclusions from the data, then theory on its own would 
need to assume an enormously superhuman capaclty to always select an 
lnductlvely sensible model from a set of alternatives specified in advance. By 
examlnlng the data, getting a good feel for its properties and its background, 
and lnteractlng between the data, the client, tentative models and analyses, 
and possible real-life conclusions, S will often he able to use his inductlve 
thought processes to help him to extract rlch and meaningful conclusions 
from the data, which mlght well have remalned undiscovered if he had 
followed amore formal philosophy. 

In this rnductlve modelling process (IMP) which should be viewed as tne 
basis of statlstlcal practlce. Whilst mathematlcal theory and Bayeslan 
methodology will provide invaluable assistance at many local polnts of IMP, a 
more global concentration on these aspects may well lead S to either work in a 
theoretlcal vacuum or to become restr~cted by theoretlcal formalisms. 

2. FORMAL AND INFORMAL JUSTIFICATIONS OF BAYESIANISM 
The statlstlclan S will typically need to convlnce his client of the possible 

benefits of Bayeslan procedures when compared with other e.g. frequentlst 
procedures. How should he seek to do this? It seems to us that S should 
slmply try to convince his client that (a) Bayes~anlsm often leads to a much 
more reasonable conceptual representation of aspects of R. and that (h) when 
applied to local problems, Bayesian methodology frequently leads to superlor 
practical results (e.g. (i) multi-parameter estimat~on, (ii) problems involving 
nulsance parameters). 

A number of authors (e.g. De Groot, 1970, pp. 71-76: Savage, 1954 and 
de Finettl, 1975) have devised m o m  systems which, if acceptable to S, lead to 
the conclusion that he must act like a Bayes~an, e.g. by representing his 
lnformatlon by a probability distribution. Whilst some Bayes~ans mlght view 
such axlom system slmply as a helpful aescriptlon of the Bayexan approach, 
others (e.g. the Lindley-Smith-Dickey-Hill school) view such ‘axioms of 
coherence' as compelling reasons for actlng like a Bayeslan and mlght even he 
tempted to employ such extremely appealing verbal arguments as 'Well, if you 
don't act like a Bayesian then you must be incoherent!' 

Most such axlom system seem acceptable from a formill polnt of vlew 
and it would appear sensible to act like a Bayesian if R were slmple enough to 
permlt this. However, whilst many arguments m favour of Bayesianlsm based 
upon axiomat~cs possess substantive appeal, and whilst it would be pleasant if 
the axlomatlc justificat~ons turned out to possess a firm scientific basis, they 
may provide as convlncing a justification as we mlght have hoped for. 

In discussing ways of Justifying Bayeslanism, it might be useful to 
consider a partlcular set of axloms in detail. The set described by DeGroot 1s 
probably one of the easlest to folloy; ~t 1s not confused by any notlons of 
betting and its assumptions are similar in strengh to those suggested by most 
previous authors. They appear to have been suggested by DeGroot himself 
more as a descrlptlon of the Bayeslan approach then as a justificat~on of it; 
they are related to the work of Villegas (1964). 

The axloms consider a space 61 (which could for example he viewed as the 
space of all possible states of RP) with a sigma-field . of events, where any two 
elements A and B  of .  can he compared uslng the notatlon A < B to indicate 
that S considers B  to ae more likely than A, A %B to Indicate his opinion that 
A and B are equally and A 5 B to indicate that either A > B  or A %B;  For 
the final axlom we requlre the definition 

Df.: A quantity X is a uniformly distributed random varrable on the 
rnterval [0,1] if for any two sub-mterva~s I, and I, of [0,1], 

[X E 111 5 [X E 1,1 if, only if, h (I,) r h (IJ, where h (I)  denotes the length of 
the Interval I. 



The five 'axioms of coherence' are 

Axrom 1: For any A and B, either A <B, orA >B, or A%B. 

Axrom 2: For any A,, A,, B,, and B,, such than A,nA,=B,nB,=@ 
a n d A , r B  for t=i ,2 ,  thenA,UA, r B,UB,. Ifinaddition 
eitherA,<B,orA,<B,thenAIUA,<B,UB,. 

Axrom 3: For any A, @ 5 A. Furthermore+ <Q. 

Axrom 4: If A, > A, > 1s a decreasing sequence of events and B is 
some fixed such that A. 2 B for r = 1.2 ,.... then G A, 2 B. 

Axrom 5: There exists a uniformly distributed random varlahle X on 
~nterval[O,l]. 

The first three of the above axioms would probably seem reasonable to 
statisticians of most philosophies. Attempts should therefore be made to 
sat~sfy them, at least approximately, m local situations where an overemphasis 

would not detract S from the main purpose of his IMP, e.g. to induce real-life 
conclusions from the data. They lead to an approach described by DeGroot as 
'relative likelihood', but do not in themselves give the slightest hint of a 
probability distribution on Q. 

The fourth axiom may be viewed as a regularity condition which ensures 
that the probability distrihution, induced by Axiom 5, is countably additive 
rather than finitely additive. 

The fifth axlom and ns implications are of paramount importance. It 
introduces the notion of an auxiliary expertment (e.g. the spin of a roulette 
wheel) which ylelds an (ohjectlvely) random number X in the 1ntervaJ [0,1]. 
The statlstlcian S is expected to be able to compare events in Q with events on 
[0,1IA DeGroots's theory then Leads to the construction of a unlque probability 
distrihution over Q which represents S's feelings about elements of Q and 
hence provides us with the result that S is actually acting like a Bayesian. 

Impliclt in DeGroot's formulation is the assumption that the first four 
axioms relate to any (measurable) subsets of the unlon of Q and [0,1] as well as 
of Q itself. It seems obvious that it is this Implicit axlom (5a) which is primarily 
responsible for inducing the probability distrihution on Q since it maps subsets 
of Q into the interval [O,1] in a mathematically rigorous way. It also seems that 
axlom 5a is virtually as strong as the final result and that we are therefore very 
nearly saylng "if you want to act like a Bayesian then you must act like a 
Bayestan"!. 

Consequently, whilst axlom 5a and the final result both possess 
considerable inductive appeal for Bayesians, the axioms do not in themselves 
appear to add anything beyond a useful interpretation of Bayesian thinking, 
in terms of an auxiliary expenment. The moms  should certainly never be 

used as a justification for Bayesiamsm or as a devlce for convincing non- 
experts. It would be more reasonable to refer to the justifications discussed in 
(a) and (b) above. 

When S is engaged in his IMP, he may find it useful to employ the ideas 
of coherence as a conceptual background, to help him think upon Bayesian 
lines. If however he stlcks too closely to axiomatics then he may lose sight of 
the prlmary objective of his invesugation e.g. to extract real-life conclusions 
from Ule data. He should not permit coherence to restrict his creatlve and 
innovative ideas and he should concentrate more closely on appreclatlng the 
practical sltuation at hand. A good lnductive appreciation of Rp with a 
background culture of Bayesian coherence is to be preferred to an over rigid 
approximation to coherence and a lack of appreciation of RP. 

The philosophy of coherence may be viewed in similar spirit to the ideas 
of Birnbaum (1962), which probably comprised one of the best single 
contributions to theoretical statistics. Birnhaum proved that the sufficiency 
principle and the conditionality principle together lmply the likelihood 
principle, a far-ieaching result which enables the purlst to disregard many 
frequentist procedures integrating across the sample space. 

The conditionality principle possess slmilar appeal to Axiom 5a described 
above, and whilst acceptable in an idealistic sense, it is primarily responsible 
for Birnbaum's result that statisticians should follow the likelihood principle. 
When S is engaged in his IMP he may find it too restrictive to stick rigidly to 
the conditionality principle. For example, a responsible S would, as a general 
norm, Obtain a good feel for his data before induclng a family of sampling 
distributions for his observations. 

A related practical difficulty assoclated with Birnbaum's approach is that 
it is a conditions philosophy, given the truth of an underlying model for the 
observations. Any debate which conditions on the truth of an underlying 
model may be well wide of the target in the light of the philosophy "AI1 
sampling models are ultimately wrong and should simply be introduced as 
snbjectrve, mathematical devrces, in order to induce real-life conclusions from 
the data", This philosophy 1s an essential ingredient of our whole concept of 
IMP, it seems to provide us with one of the few sensible ways of engaglng m a 
modelling process, and immediately detracts attention from philosophies 
which depend upon the truth of an underlying model. 

3. JUSTIFIFYNO REAL-LIFE CONCLUSIONS 
Once S had induced a real-life conclusion from the data and his 

appreciation of Rp he might w~sh to compile evidence m support of his 
conclusion, SO that he can convince his client and other experts that it 1s both 
vlahle and meaningful. For example, m a paper to be published elsewhere, 



(but discussed in the verbal presentation of this material), Leonard, Low 
Broekhoven (1978) describe a concluston which 1s not m Immediate 
concurrence with ex~stlng medical oplnlon. They have found that, whilst a 
high rlSk of fetal asphyxla m babies does not in fact appear to be noticeably 
assoclated with prematurity it aoes appear to be strongly assoclated with 
babies who possess a much lower birthwaght than mlght be expected, for a 
glven degree of prematunty. 

These are several possibilit~es open to S, for example. 

(a) To test his underly~ng model aganst the data, using a conventional 
s~gnificance test. 

(b) To Informally evaluate his model and concluslons by cnecking them 
out agalnst future observatlons. 

(c) To lnformally check out his real-life conciuslons aga~nst the present 
data set, look for patterns m tne concluslons, and consider their 
status in connection with exlstlng scientific knowledge on related 
topics. 

(d) To discuss his concluslons m detail with his client, to see if they fit In 
sensibly with his ex~stlng vlews, or whether the latter can be sensibly 
mod~fied to accomodate his conclusions. 

(e) To refer to the level of expertise of his own lnductlve judgement. 

I feel that (a) should not be regarded as completely adequate, though 
slgnificance tests may be useful as lntultive devlces. Firstly, sltuatlons could be 
envisaged where the model is madequate, but the specific conc1uslons are still 
v~ahle. For example, a very tentatlve model could be used to stimulate 
plausible creative ideas by S ,  or the real-hfe concluslons mlght only depend 
upon particular aspects of the model. More Importantly, s~gnificance tests do 
not appear to possess too much formal justificat~on. For example, Leonard 
(1979) shows that for large sample slzes, slgnificance levels may be sensibly 
replaced by value depend~ng on the sample slze. For further discuss~ons of 
slgnificance testlng see Leonard and Ord (1976), and Leonard (1977 and 
1978). 

The alternat~ve (b)  appears to provide a useful check. However, the 
number of future observatlons will typically be finlte and probably never 
particularly large. Also, by the tlme they have been collected Rpwill probably 
have evolved into an updated sltuatlon, and the usefulness of any unaerlylng 
model undetermlued. Just as the pract~cal v~ability of the theoretical concept 
of consistency may be critically exposed in the context of the uhilosophy "the 
greater the amount of information the greater the chance of contradict~on (of 

the origmal model)", the usefulness of predict~ve validation seems affected by 
the possible devlatlon of future observations from the situation currently at 
hand, whenever there are enough future observations to provide a case for a 
through validation. 

Whilst (c) and (d )  aiso provide useful checks, we feel that in the last 
analysls S can only refer to (e) and recognise that both Rpand his lnvestigatlon 
of it are basically subjectlve. He can only really attempt to justify his 
concluslons by slmply indicating that he has carried out a subjectlve and 
honest investigation of Rpand that his conclusions appear to be sensible. 

We have thus arrlve at the straightforward proposition that statist~cal 
practlce is a subjective process which is highly dependent upon the expertise, 

honesty, and experience of the statlstic~an, just as the practice of, say, 
medic~ne, law, psychology, economics, and indeed most branches of sclence, 
1s also subjective and highly dependent -upon slmilar qualities of experts m 
those areas. 

In particular, the statlstician will only be able to adequately complete his 
IMP if he possesses the mathematical skills and level of creativity which will 
carry him through the numerous local and innovatwe procedures which IMP's 
typ~cally require. People working from a "cookbook" of recipes will typ~cally 
find difficulty with IMP's and should therefore be discouraged from playlng a 
leading rBle m large-scale mvestlgations. The ultimate success of Bayesian 
statistics will dependupon whether we can bridge the gap between theory and 
practlce and link theoretical innovat~on with practical relevance. 

4 CHOOSING BETWEEN DIFFERENT SAMPLING MODELS 

Dur~ng his IMP, S may wish to use a formal Bayeslan procedure to help 
him to measure his oplnlons about a finite number of sampling models. A 
number of authors (e.g. Dickey 1975, and Harr~son and Stevens, 1976) have 
proposed a general approach to this problem, based upon sharp hypotheses 
and mured models. However, whilst Schwarz (1978) has developed an 
approximate method for large sample slzes, which does not depend upon the 
cholce of prlor distribut~on, the general approacn experiences some technical 
difficulties for smaller sample slzes. When more than two or three models are 
involved in the mlxture it also appears to us to place too much emphasls on the 
search for a 'true sampling model, and to be somewhat overcomplex and 
lnsuffic~ently motivated towards the extraction of meaningful real-life 
concluslons from the data. An informal considerat~on of alternative models m 
me light of real-life aspects may be more appropriate, i.e. we vlew the 
Bayes~an mlxed model approach as often assumlng too much of a global' 
nature to provide an lnductlvely useful servlce for S.  

Suppose that S wlshes to choose between a binom~al sampling model with 



probability 8 and sample slze n for a frequency X and an alternative sampling 
model with probability mass functlon p,(x). For simpliclty, we suppose that 
po(x) 1s completely specified; assume also that whenever the binomtal 
sampling model holds, 8 possesses the betaprlor distributlons. 

Following the general approach referenced above, the pOSteIl01 
probability that modelp, holds, glven that either p, or the binomal sampling 
model holds, 1s then denoted by 

where 4 is the corresponding prlor probability, and R. 1s the 'Bayes factor' 
which satisfies 

Where 

r (n+  l )  r ( a  +p) r @ + ~ )  r@+n-x) 
D(a,ic) = (4) 

r ( x+  l) r(n-X+ 1) r(a+p+n)l'(a)F@) l 
Whilst (2) provides a formal and coherent Bayeslan solution to this 

problem, it is so sensitive to the cholce of prlor distribut~on for B that It would 
be vlkwed as lmpract~cal in many sltuat~ons. Suppose, for example, that a 1s 
moderately large and is Increased by a s~ngle hypothetical pnor observatlon to 
a + l .  Note from (4) that I 

1 

wherep = x/n, $=a/(a  + D), and Q = n/(a +@+a) .  '1 
Therefore under our minor adjustment to the prlor the Bayes factor in (3) 

should be divides by the quantity In (S), which will always lie betweend$ and 
unity. For example, with the proportlonp equal to 9/10 and the prlor mean E 
equal to 1/10, the div~sor could be as high as 9, radically, affectlng the 
posterlor probability m (2). 

Paradoxically the sensitivity is at its greatest at n- m . withp, a, and 0 1 
l 

fixed. so thatp - 1 .  In this case, the Bayes factor m (3) will tend to either zero 
or infinlty irrespective of the pnor, but the rate of convergence will become 
particularly sensitive, as lncreaslng a by unlty 1s equivalent to dividing the 
Bayes factor by the max~mum possible value of p/€. 

The sensitivlty described above 1s not umque to the present special case. 
For example, Lindley (personal commun~catlon) has informed us that there 
are a further sensitivlty problems when lnvestigatlng whether or not to take 
observations to be normally distributed. Other problems concerning this type 
of approach are discussed by Atkinson (1978). 

We are drawn to the vlewpolnt that It may be lnductlvely more sensible to 
choose a sampling model by considering various aspects of Rp, and the data, 
and by generally followng the philosophy outlined in the last paragraph of 
sectlon I rather than by referrlng to a coherent Bayeslan procedure with 
possible misleading conclusions. Note that sensitivlty problems occur very 
generally in a number of other areas of Bayes~an esQmatlon and Inference; 
some of these will be discussed in forthcoming publications by J.Q. Smith and 
J. Kadane. 

5. THE ROLE OF BAYESIAN PREDICTIVE DISTRlBUTIONS 

A number of authors, e.g. Aitchison and Dunsmore (1975) view 
predictive distribution as playlng a leading role in Bayeslan methodology. It is 
our own view that whilst many standard predictive distributions. e.g. based 
upon conjugate prlor distributions, play a role m idealised situations where 
the sampling model and prlor distribution can be preclsely specified, they may 
be of more limited importance when S is engaged in the practical details of his 
IMP. This conclusion 1s primarily based on the following reasons: 

( a ) Many predictive distributions can be as sensitive to the cholce of 
p1101 as the Bayes factors discussed in sectlon 4. For example, if 
(1) provides the posterlor distribution for a probability B, then the 
quantity D(ar,P) in (4) is just the predictwe probability that a 
binomial frequency, with probability 8 and sample slze n, is equal 
to .X. Therefore if a is increased to a + 1, this predictive 
probability will multiplied by a factor of up top/F wherep and g 
now respectively denote the predicted proportion x/n and the 
posterior mean a/(a  +p). 

( b ) The statistician S will typ~cally remarn uncertain about the 
correctness of his sampling model, and many conventlonal 
predictive distributlons fail to take account in this uncertainty. 

Suppose, for example, that we analyse a set of data which appear to be 
roughly normally distributed, that the practical situation (e.g. quality control) 
35 



requires us to predict the probability that a further observation will be 
negative, and that the proportion of negatlve observatlons 1s 0.27. We then 
derive a standard predictive t-distribution under normal and conjugate 
assumptions and find that our predictive probability, conditional on our 
choices of sampling and prior models is 0.15. The latter is however a highly 
conditional probability and it mlght therefore be highly misleading to quote it 
as a useful result. Whilst our intention nught suggest that a better (subjective) 
predictive probability lies between 0.15 and 0.27, many formal procedures for 
luaging it more precisely would also be highly dependent upon any 
assumptions made. 

Our general philosophy that "all sampling models are ultimately wrong" 
(see the last paragraph of section 3) leads us naturally to the philosophy that 
"all predictive distributions based upon partlcular sampling models are 
ultimately wrong" Conclusions based upon them sould be treated with 
caution. 

We vlew many conventional predictlve distribut~ons as a bit on the over- 
formalistic side: Indeed many standard predictme distribut~ons do not 
O ~ V I O U S I ~  lead to any further Inductive understanding of Rp beyond that 
already provided by the sampling distribut~ons from which they are generated. 
Many probabilities calculated from predictive distribut~ons can only be 
considered to lead to reasonable practical predictive probabilities if these fit In 
closely with raw probabilities calcuiated from the data, or if there 1s some 
further lnductlve reason for using them. However, an alternative type of 
predictlve distribut~on ylelding greater scope to the lnductlve modeller will be 
discussed in sectlon 7. 

6.  SOME PRACTICAL ADVICE ON THE LINEAR MODEL 

We now discuss some practlcal aspects of the linear model, and consider 
dependent var~ables y, satlsfylng 

but where, for q s p <  m, X;,, ..., xi, are stat~st~cal observatlons rather than 
fixed constants, and where X;,, ,,..., X, are functions of X i,,..., X,. The yi could 
denote the salaries o f  m individuals, and X,,, ..., X,, could measure soc~o- 
economlc factors relating to these mdividuals. Alternatively, yj  could 
represent blood pressure, with xi,, ..., X,  measuring q different medical 
symptoms. 

It 1s n y  practlcal experience, and the general experlence of colleagues In a 

consulting capacity, that tnere are a large number of practlca situations where 
the underlying assumptions of the linear model seem appropriate, but where a 
modelling procedure of this nature turns out to be rather inadequate. This 1s 
partlcularly true of many socio-economic and medical data sets whenever 
there 1s a large amount of random fluctuation between the vectors 
X; = (X.,, ..., X.,). In such circumstances it 1s often virtually impossible to arrlve 
at any sensible model of the form defined in (6), whatever functlona forms 
are chosen for xi,+,,. ..,x,~, and whatever estimat~on procedures (e.g. least 
squares, we~ghted least squares, or Bayes) is employed. 

The data sets referred to mlght be vlewea as possessing lnsufficlent 
information to present the possibility of useful concius~ons. Alternatively, a 
nonce mlght feel tempted to add more and more explanatory variables m 
attemptlon to obtrun a meaningful model. However, the simple Bayesian 
procedure described in sectlon 7 and relating to loglstic discrimlnatlon 
analysls very frequently leads to useful conclusions which would often be 
mlssed by the linear stat~stical modeller. 

For a number of data set of this type, we have experlenced a residual sum 
of squares which remalns steadfastly close to the total sum of squared for 
virtually any model specification of the type defined in (6). This is because the 
X; vectors are subject to so much random variation that it is almost ~mpossible 
to use any set of fitted values to provide reasonable numerical predictions of 
the dependent var~ables i.e. the information content of the data is not of a 
predictive nature. Whilst inductlve conclus~ons might still he available via the 
linear model. they will frequently be of limited scope owlng to the extreme 
Inadequacy of the model. For example, difficulties (b) involving predictlve 
distributions, as discussed in section 5, will be highlighted in this context. 

Whilst linear models present difficulties when the information content of 
the data 1s not apredictive nature, the same data sets often contain some very 
worthwhile information of aprobabilistrc nature which can be extracted via 
the methodology of sectlon 7. The latter will also be enable S to model terms 
corresponding to X,,,,, ..., X,, m a direct (rather than, say, stepwne) fashion; 
for example it will help him to induce the presence of any complicated 
Interaction effects without needing to engage m a long Search. 

Consider for simplicity the speclal case where q = I and X., = X;. 

Suppose that the polnts @',X.) are plotted on a scatterdiagram for != I ,  ..., m. 
Whilst these points will seldom lie close to any partlcular curve for the type of 
data set under consideration, the frequencies of yis falling in any partlcular 
Intervals will often change In a meaningful way as X Increases, as long as this 
interval is chosen to be wide enough. Therefore, whilst fitted values under any 
linear model mlght give poor numerlca predictions of the y,, it mlght be 
possible to use the data to help predict probabilities for mtervals in which, 



say, a further observation y,,, might lie, so that the data possess a quality of a 
probabilistlc rather than a predictive nature. In other words, knowledge of a 
further explanatory vanable X,,, mlght affect S's probabilities about y,,, but 
not provide him with enough lnformation to be able to numerically predict 
y,,, to any degree of accuracy. 

It 1s my experience that data sets possessing lnformation of this 
probabilistic rather than predictive nature a occur frequently m socio- 

.economic and medical contexts, and that the linear model frequently possesses 
very limited scope for the analysis of such data sets. For example, many 
applications of the linear model to economics, sociology and medic~ne, mlght 
benefit from further considerabon. 

7. A BAYESIAN IMP 

In the situation discussed in the previous section, where the information 
content is of a probabilistic rather than a predictive nature considerable 
headway may often be made upon categorising the dependent variable y. This 
will clearly Lead to some loss of sampling information, but the loss need not be 
at all substantial, (owmg to the highly random nature of the explanatory 
vanables), as long as the dependent variable is categorised in a sensible way. 
For example, in the medical context of Leonard, Low and Broekhoven, three 
categories, referred to as 'low'. 'medium' and 'high', with the boundary 
points based upon further medical considerations, were adequate to permit 
the extraction of some meaningful conclusions from the data. 

If the dependent variable is split into s categories, then the vectors 
X X, are effectively sectioned into s subpopulations A ,,..., A,, where the 
elements of A, are those X'S for which the corres~onding y lies in category J. 

We let n,, ..., n. denote the numbers of xis falling in the respectwe 
subpopulatlons A, ,..., A.. 

Since the xis are themselves vectors of statistical observations, the X'S in 
each sub-population A? may he viewed as comprising a random sample from a 
distribution, say with denslty f ;  (X). The form of this density may be 
inductively modelled by S in the light of the corresponding xis and his 
appreciation of Rt. This provides a vital part of S's IMP in this context; he 
needs to model the s densities f,, ...f,. Suppose now that S wishes to be able to 
predict probabilities for a further dependent var~able y,,,, given a further 
vector of explanatory variables X,,,. Then the probability that y,+, falls into 
thej'kategory, given that X,,, = X 1s glven by 

prob (Aljx) = ?rf , (X) u = l ,  ,..,S) (7) 
EL, rddx)  

absence of knowledge of X, S will frequently be prepared to set. ?rrcn,/m for 
J = l, ..., S, m which case we have 

prob (AjIx) = 
nf,(x) 

Ef=lnJ i (~)  U= I. ..., S) (8) 

The formula in (8) may be applied m a simple way to data sets whose 
informat~on content 1s of a probabilistlc nature; ~t seems to fit in neatly with 
the concept of IMP It provides a standard procedure for many regresslon 
problems which could be used as an alternative to analyses based upon the 
llnear model. 

Note that the expression on the rlght hand side of (8) plays the r61e of a 
regresslon function. We for example have 

log [prob (Allx)/ prob (Akjx)l = log (nl/nJ 

+ lOgfi(x)/f*/(x) (9) 

This result 1s employed m Logistic discrimlnent analysis. For example, 
Anderson (1974) mentions that multivariate normal assumptions for Ule fi 
lead to a quadratic discriminant of regresslon function on the rlght hand side 
of (9). 

Under our general IMP, S is expected to simply lnduce f,, ...is from the 
xis and Rp. Our polnt is that no furtner modelling will then be requlred 
because appropnate substitutions in (8) will complete the specifications of the 
predictive probabilities. Durlng this process. S will need to interact between 
scatterdiagrams of the X'S In the different sub-populations and his other 
experience and he will therefore be able to take full account of the 
prohabilistic-type information content of the data. This inductive modelling 
will enable him to obtaln predictive probabilities via (X), By considering 
graphical plots of the latter against different explanatory variables he is then 
in a position to extract real-life conclusions from the data. 

Note that the above IMPautomatically models the form of the regression 
function and hence the presence of any interaction effects, even if these are of 
a complex nature. As a simple example, multivanate normal assumptions for 
thefi. lead to cross-product terms on the right hand side of (9), which may be 
viewed as the interaction terms in a logistic regression. They now become 
completely determined upon identification of thef,, providing a much more 
straightforward modelling procedure, then, say, standard stepwise procedures 
for the linear model. For non-normal& the interactions can assume a much 
more complex nature, but S has a very straightforward way of inducing them. 

where a, ttenotes the corresponding prior probability, However, in the 



We recommend replaclng any unknown parameters In thef, by sultable 
polnts estimates (e.g. maxlmum likelihood or Bayeslan). This should be 
frequently superlor to the coherent Bayeslan procedure of integrating each2 
In (8) with respect to the corresponding prlor distribut~ons of the parameters, 
slnce the latter will suffer slmilar sensltlvlty problems to those discussed m 
sectlons 4 and 5. 

There are a number of ways of checking the probabilities In (8) agalnst 
the data set. For example, boundarles on x could be determlned for each J 

such that prob (A, 1 I) 1s greater than a specified value. Then the proportions of 
actual X s falling Inside these boundarles could be enumerated, and they will 
all ideally be greater than the specified lower bound for the predicuve 
probabihty. Added credibility will also be glven to the IMP if the curves of 
prob (A,lx) agalnst x evolve m a sensible way for mcreasmngj. 

The above approach has been found to y~eld practical concluslons in a 
varlety of different sltuatlons, than would appear possible under a Standard 
h e a r  model approach. Similar methodology was employed by Leonard, Low 
and Broekhoven in thelr medical context. 

8 THE SKEWED-NORMAL DISTRIBUTION 

The statlstlcal moaeller 1s frequently faced with data with both a positive 
and negatlve tail, and which Indicate a aefinlte skewness. There are 
surprlslngly few probability distribut~ons m the literature for adequately 
m~delling skew data when the latter are scattered on the whole real line. The 
following propertles would however seem to be desirable for a family of two- 
tailed distribut~ons which provide skew alternatives to say, the normal or p- 

distribut~on: 

(i) A meanmgful set of at least tnree parameters, with convenient 
functions of the parameters representing locatlon, spread and 
skewness. 

(ii) A useful symmetric distribut~on as a speclal case. 

(iii) The property tnat whilst the two tails can be different they should 
be 'slmilar m nature', m the sense Ulat different functional forms 
assumed for the tails mlght suggest a difference which was not 
exhibited by the data. 

(iv) The form of the likelihood function, glven n ObServatlOnS, should 
not permlt the observations m one tail to unduly influence the 
estimated thickness of the other tail. 

(v) Straghtforward ad hoc and Bayes~an estlmatlon procedures for 
the parameters. 

(vi) Easily tabulated interval probailities. 

(vii) Reasonable regulanty conditions for the denslty e.g. a continuous 
first derlvatlve at all pomts. 

All the above propertles are satisfied by the skewed-normal disfribufron, 
with parameters p, a:, a$, and denslty 

4 (2/a)(al+ a&'exp[-'/2 U ~ - ~ ( X - ~ ) ~ ]  for xs U 

P (XIP.~:. 8z) = (10) 
4 (2/a) (al + aJ ' exp[-Yz ~ , - ~ ( x - p ) ~ ]  for X 2 p 

This distribut~on possess mode p and probabilities al/(o, + a,) and 
a2/(a1 + aJ either side of the mode. Its technical propertles. Including a 
Bayeslan analysls, will be reported in more detail elsewhere. 

9. SUFFICIENCY, OUTLIERS AND COHERENCE 

In many statutical problems, tne existence of a sufficient statlstlc of small 
dimens~ons Implies m effect that the sampling distributions 1s a member of the 
exponential family. Therefore any discuss~on of the lnductlve reasonability of 
the concept of sufficlency must be closely related to a debate on the adequacy 
of the exponentlal family of distribut~ons. 

The general concept of sufficlency could be criticlsed on the grounds tnat 
a sufficient statistic typ~cally reduces the number of pleces of information we 
can extract from the data, i.e. from the sample size to the dimens~on of the 
suffic~ent stat~st~c. The data are therefore reduced to a form where they can, 
say, only describe one or two aspects of the sampling distribution, e.g. 
locatlon and spread, but may tell us nothing about, or even disguise, other 
Important aspects of the sampling distribut~ons, e.g. possible bimodality or 
thicKer tails than mght be experienced with the exponent~al family. 

Consequently, in sltuatlons Where we mlght wish a form! analysls to tell 
us as much as possible about the sampling distribnt~on, the concepts of 
sufficlency and the exponential family of distributions do not seem to be 
completely adequate. The formal Bayes~an could, for example, be tempted to 
refer to the Interesting approach of O'Hagan (1979) and employ outlier-prone 
and outlier-resistant sampling distribut~ons m an attempt to cope with 
outliers. 

On the other hand, sampling distributlons y~elding sufficient statistics 
typically possess meaningful characteristics and mea~ngfu l  parameters. They 
seem to fit in well with the concept of IMP slnce S should always examine the 
aata carefully and get a good feel for its propertles before lnduclng a sampling 
distribution. He could for example Investigate bimodality and outliers 



Intuitively rather than referring to the formalisms of a more complicated 
sampling model. 

The statistlclan would probably do best to compromise between these two 
extremes. He could start off by referring to meaningful sampling. 
distributions, with simple sufficient statistics, and to practical judgements of 
the data, with the objective of concentrating on the extraction of real-life 
concluslons from the data. However, he will sometimes find that his lnductlon 

. 1s unable to provide him with a clear enough plcture. In this case slightly more 
complicated sampling distribut~ons and an analysls taking formal account of 
further aspects of the data would sometimes be very useful. 

As an example of the above approach, the skewed normal distribution In 
(10) is frequently applicable to (clearly unlmodal) data with two tails. It can be 
employed as a useful devlce for locating the mode of the underlying 

distribution and for Investigating its skewness. Its parameters are meaningful 
m this context; ~t provides a slmple modificat~on of a member of the 
exponential family. For example, when p is known, statistics of the form 

and (xi-l*)' 
,:X; < p  ,:X. > p  

are ]olntly sufficient for U: and U:. 

The skewed-normal distribut~on would clearly be lnferior m a formal 
sense to a distribut~on with 't-type' tails if there we enough outliers in the data 
to suggest that its tails mlght be too thin. However, an adherent of IMPcould 
still start off with the skewed-normal distribut~on and Interact betwen 
tentatlve analysls based upon it, and the data, to see if the outliers affected the 
Important real-life concluslons which could be lnduced from the data. For 
examule, S could firstly try an analysls withouth the outliers, and then 
compare it with a further analysls with outliers present. Only if he convmces 
himself inductively that the outliers actually make a real d~fference should he 
consider a more formal (local) analysis based upon a complicated distribut~on 
with thicker talls. He 1s in this way able to Increase his chances of extracting 
conclusions which m~gnt otherwise become confused by over complicat~ons. 

The procedure outlined above 1s not obv~ously formally coherent, but we 
seem to have described a good example of a sltuatlon where a strlct demand 
for formal coherence would appear to be lnductlvely mapproonate. 

10. MULTI-PARAMETER PROBLEMS AND PRIOR STRUCTURES 

Consider next a general formulat~on where S's n X 1 ObserVatlOn vector X 

is though1 to possess a sampling distribut~on f (X 8 )  depending upon a q X I 

Vector 8 = of unknown parameters. In such multl-parameter 
sltuatlons, S mlght be concerned about Stem-type effects and lack of 
smoothness of tne maxlmum likelihood estimates, and mlght therefore wish to 
employ shrlnkage estlmates for the 8,. (See, for example, a method proposed 
by Leonard, 1973, for smoothing the probabilities m a histogram). 

Following a general procedure discussed by Leonard (1972), Smlght seek 
a q X 1 vector a = (a,, ..., or,)" of transformed parameters such that he 1s 
prepared to take the pnor distribut~on of a to be multivariate normal, say 
with mean vector u and covarlance matrix C. When p and C are known a 
Bayesian shrlnkage estlmate for u is glven by the posterior mode vector a, 
wlch sat~sfies the equatlon 

6 logf(x I a )  
= C-! ( c;- p) (11) 

6 or - 
a = a  

For example, when all the elements of u are equal to a scalar p, and C is a 
scalar multiple of the ident~ty matrix, the elements of u will be a prlori 
exchangeable and (1 1) will roughly speaking provide Steln-type shrinkages of 
thelr maxlmum likelihood estimates towards a common value p. 

However, S is typically faced with the problems of chooslng sultable 
special forms for p and C and evaluatmg any hyperparameters appearing m 
these speclal forms (these forms may be referred to as pnor structures). The 
situation will often be far too complex for S untangle if he confines himself to 
strictly coherent Bayeslan procedures. We recommend that he should instead 
assess his pr~or  structures by interacting between his prior feelings, possible 
special forms for u and C, tentative estlmates obtiuned from (1 l), any real-life 
conclusions he can Induce from these estlmates, his overall experience of Rp, 
and cooperation with his client. 

S will find it difficult to assign specific values to any hyperparameters 
appearmg m his prior structures. A typlcal p r~or  structure may be expressed in 
the form p=&,,) and C=C(XJ, once S has lnduced the dependence of the 
mean vector and covarlance matrlx on hyperparameters h, and X,. For any 
such prior structure under consideration S should estlmate X, and X, from the 
data and any prlor lnformation which mlght be available. We are however 
rather uncertain about the existence of convenient prlor lnformatlon for 
hyperparameters m complex models like this. except in speclal cases or when 
the prior informat~on 1s itself data based. It 1s generally much more 
stralghtforward to avoid complicated and possible confusmg distribut~ons at 
the Second stage of the prlor model, and to slmply estlmate X, and X, from the 
data by maxlmlsing thelr 'marginal likelihood'. 



where the expectation on the right hand side is with respect to a,  given p and 

C. 
In summary, S may induce the functional forms of p0\J and C@J by 

followng the general philosophy of IMP, and may then estimate A, and X, via 

a data-based procedure. Obviously, particular practical considerations might 

Lead to refinements of this scheme. 

Whilst it would be difficult to demonstrate formal coherence of the above 

procedure, it seems likely to often prove useful m a real-life sense when 

compared with more complex coherent procedures. 

11. NON-PARAMETRIC DENSITY ESTIMATION 

The approach described by Leonard (1978) to the non-parametric 

estimation of a density fits with the philosophy of IMP slnce it enables S to 

allow for real-life considerations as part of theoretical local analysis. For 

example, a hypotheslsed density can be introduced as a pnor estimate, then 

the theoretical method can be used to provide a posterior estlmate which can 

be considered inductively ay S, to see where it differs from his null hypothesis, 

and to consider whether these differences are due to real-life aspects. He could 

also try out different hypotheslsed densities as part of his IMP, and generally 

Interact between his prior specification, his posterior results, and possibly 

meaningful conclusions. The approach seems to be more useful than many 

previous frequentist procedures based on kernel functions, since these tend to 

place a bit more emphasls on data-fitting, rather than on the diagnosis of 
meaningful conclusions. 

Note that Leonard uses a prior and posterior likelihood approach rather 

than a strictly Bayeslan approach since this avoids certain technical problems 

over function spaces. We in general see nothing wrong in follow~ng an 

alternative philosophy if it is based upon slmilar prior information and leads 

to slmilar conclusions. 

12. DISCUSSION 

The concept of coherence has played an invaluable theoretical role over 

the years by highlighting the inadequacies of many frequentist procedures. 

However, the Bayes~an philosophy is now firmly established and accepted as 
one of the few viable theoretlcal approaches to Statistics. It should therefore 

now look beyond debates with other philosophies, and theoretlcal discussions 
on the foundations, and emphasise its practical viability in non-tnvlal 

contexts, e.g. large scale data sets where the client provides background 

lnformaticn from his own discipline. When broader considerations are taken 

into account the role of coherence no longer seems paramount, and much 

more emphasis should be place on the IMP aspects of statistics. Whilst 

existing coherent methodology is useful at a variety of local polnts of IMP, 
the theoretical structure should be kept to a level of intellectua complexity 
where it asslsts the statistician to Induce real-life conclusions from the data. 
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Local and regional coherence 
utility assessment procedures 

M.R. NOVICE, D.F. DEKEYREL 

and 

D.T. CHLIANG 

The Unrversrty of Iowa 

SUMMARY 
Novick and Lindley (1978, 1979) nave dealt with the use of utility functions for 

applications m education and have advocated the use af the standard gamble ("on 
Neumann and Morgenstern, 1953) elicitat~on procedure with the addition of coherence 
checking usmg oversveeificat~on and a Least squares fit. In this Drocedure utilities are 
inferred from ~rabability judgements offered bv the assessor. This DaDm describes local 
and reglonal coherence procedures which seek utility coherence m successive resfrrcted 
domalns of the parameter space as preludes to overall Coherence checking. These 
DIOCedUIeS and some others are vlewed as passible ways of avoiding anchorrng and 
CertarntY effect biases found in earlier fixed mobability methods, and  res sum ably present 
m current fixed state Dracedures. 

Keywords: UTILITY ASSESSMENT, COHERENCE 

INTRODUCTION 

Earlier approaches to utility assessment (Mosteller and Nogee, 1951, 
Schlaifer, 1959, 1971: Raiffa and Schlaifer, 1961: Keeney and Raiffa, 1976: 
and so on) have been based on the use of fixed probability (FP) assessment 
procedures in which utilities are elicited directly, through successive bisechons 
of the parameter space. It has been suggested (Mosteller and Nogee, 1951) 
that such procedures are easier to use because subjects are more familiar with 
the quantity for which the utility function is desired than they are with 
probabilities, which they are required to state in the standard fixed state (SFS) 
procedure. 

Although it was orlglnally thought by psychologists that utility theory 
would prove useful as a descnptrve model (Swalm, 1966, etc.), much criticism 
has recently been levied agalnst its use in that capacity. As principal critics, 
Kahneman and Tversky (1978) have proposed an alternative descriptive 



model. The maln basis for thelr criticism is that the phenomenon described by 
Tversky (1977) as the certarnly effect results In preferences that vlolate the 
SUbStitutlOn axiom or expected utility hypothesis of utility theory. This axiom 
(hypothesis) states that preference order 1s invariant over probability mixtures 
and 1s formally equivalent to the assumption tnat there 1s no positive or 
negative utility for the act of gambling itself. Specifically, the cerlarnly effect 
is the phenomenon tnat the utility of an outcome seems greater when it 1s 
rertaln that wnen it 1s uncertan. This effect can be ohserved wnen subjects are 
presented with a cholce between a for-sure and a chance optlon, the choice 
appearing m the Standard gamble, regional coherence, and local coherence 
assessment procedures to be described in tbis paper. 

Utility theory as considered here is used as a normative model rather than 
as a descriptive model; however, it is still important to consider the certanty 
effect because Tversky (1977) has shown tnat even wnen subjects were told 
tnat their preferences violated utility theory, they were not inclined to change 
them (see also Kahneman and Tversky, 1972). This brings Into questlon the 
reliability (coherence) and bias-free character of utililty assessment procedures 
obtalned through both fixed state and fixed probability methods and the value 
of tnose urocedures in helping decision makers he more coherent. However, it 
should be pointed out that the gambles studied by Kahneman and Tversky and 
tnose studied by Novlck and Lindley were somewhat different and that the 
latter authors also provided incoherence resolution procedures. 

In another paper, Tversky and Kahneman (1974) described several 
heurlstlcs used by persons in assess~ng probabilities and the biases to which 
they could lead. Of particular lnterest 1s the anchorrng and adjustment 
heurrslrc, which Spetzler and Stael van Holstein (1975) have Shown can reduce 
the reliability with which the bisection technique used by fixed probability 
models elicit utilities. This heuristic is the phenomenon whereby the most 
readily available piece of information often forms an Initial basrs for 
formulating responses from which subsequent responses are then adjusted. 
Since adjustments from this basls are often insufficient, a central bias results. 
According to Slovic (1972, the anchorrng and adjustment heuristic 1s a natural 
strategy for easing the strain of integrating information. The anchor serves as 
a register in which one stores first ~mpress~ons or the results of earlier 
calculat~ons. Why adjustments from the anchor are usually insufficient, 
though, is unclear. Slovlc advances two hypotheses to explain the insuffic~ent 
adjustment. First, peopie may stop adjusting too soon because they tlre of the 
mental effort invoived in adjusting. Alternatively, the anchor may take on a 
speclal salience, thus causing people to feel that there is less risk in making 
estlmates close to it than In making estlmates tnat devlate far from it. 
Accordinr to Suetzler and Stael von Holstein (1975), experlmentatlon has 

Shown that subjects tend to produce a central bias when, in the fixed 
probability bisection method, they are asked first for the median for an 
uncertain quantity and then for the quartiles. 

Later, In revlewlng the role of man-machine systems m declsion analysis, 

Slovlc, Fischhoff, and Lichtenstein (1977) suggested that human factors such 
as the ways in which variations In lnstructlons or ~nformat~onal displays affect 
people's performance are important and should be studied in more detail. 
Questions of complexity and representativeness of material seem to have 
substantial effect on assessors responses (Fischhoof, Slovlc and Lichtensteln, 
1977; Vkk, 1973). The study of such factors mlght lead to an assessment 
procedure that minim~zes the judgemental basls and heurlstlcs described 
earlier. This position was strengthned by the discussion of Fischhoof, Slovlc 
and Lichtensteln (1979). A consideration of these ideas promoted the 
development of a new format introduced later m this paper. 

Extensive previous work ln tbis area has ralsed more questions 
concerning bias and coherence than it has provided answers. An apparently 
pess~mistlc mood prevails, not inappropriately, given the importance of the 
questions that have been raised (Hogarth, 1975; Slovlc, 1975; and Fischhoff, 
Slovlc and Lichtensteln, 1979). Nevertheless, the very extensiveness of this 
research must itself imply a high assessment for the product of the probability 
of resolving these difficulties and the value of this outcome. The position 
taken here Is that bias and incoherence can be reduced if (1) eliatatlons are 
carefully fashioned in a Computer-Asslsted Data Analysis (CADA) 
environment (NOVIC~,  Hamer, Libby, Chen and Woodworth, 1980), (2) 
assessors are aided in resolving incoherence, and (3) if the assessments concern 
States and actions that are meaningful and important to the assessor at the 
tlme the assessment n made. 

Consider a variable 8 and the utility function U(8) for which assessment IS 

required. In most applications 8 will be a real vanable, such as grade polnt 
average (GPA), but this 1s not necessary. Although the contrary assumption 1s 
somet~mes made, it seems sensible to us to demand that a utility functlon be 
bounded and increaslng. 

There are two Standard approaches to assess~ng a utility function: fixed 
probability and fixed state. In the former, the subject is presented with a 
gamble on two values, or states, 8 ,  and B ,  with a fixed probability-p, say, for 
8 ,  and 1 - P  for 8,  - and is required to choose an intermediate state 0 ,  such that 
he/she 1s indifferent with respect to the gamble and 8 ,  for sure. In 
applications, typically p = 1/2 because this gamble is easlest for assessors 
(subjects) to understand. 

In the fixed-state method, the states a,,  Q,, and 0 ,  are fixed, 8 ,  still be~ng 
intermediate between 8 ,  and B,. The subject 1s required to state a probability, 



p, such that he/she IS Indifferent between 8, for sure and the f0110wing 
gamble: 8, with probability p and 8, with probability I-p. If 8, and 0, have 
utilities of I and 0, respectlvely, the gamble has expected utility p. the 
indifference probability asslgned to 0,. 

In the fixed-state method, let us suppose that a number of states, 
8,, O,, ..., 8,,, are selected. We shall further suppose that these states are 
ordered in the sense that 8, is preferred to d. wheneverj > r ;  In particular 8,, 

. 1s the best and 8, the worst state. Then the utility functlon U(0) will be strlctly 
increasing. 

Without loss of generality, the utility for ON+, can be assigned the value 1 
and that for 8, can be asslgned the value 0, thus placlng bounds on the utility 
values to be asslgned to the various states. We must then find Nsuch values: 
U(B3, U(83, .... U(@,). We first consider adjacent gambles, that IS, a situation 

in which the subject 1s asked to compare the sure outcome O.(l s n  SN) agalnst 
a gamble with possible outcomes 8. , and B.,,, representing, because of the 
orderlng of the states, situatlons respectlvely worse and better than 0,. 
Specifically, after a brief review of the meanlng of probability, the subject 1s 
asked to state the probability p, for On,,, and consequently 1 - p ,  for On.,, that 
makes h i d h e r  Indifferent with respect to the gamble and 8. for sure. Writing 
U(&) = U. (so that U, = 0, U,, = 1) and equatmg the expected utilities for the 
two sltuatlons glves us 

If this done for all n, I s n  s N ,  we have N equations in Nunknowns and aside 
from exceptional cases. the utilities are unlquely determmed. The solution 1s 

for O s n s N ,  where 

Suppose a subject has responded to the  question previously considered 
and, from the answers glven, hidher utilities U,, U,, ..., UN have been 
determmed. Suppose also that he/she is asked to consider a gamble that will 
y~eld either 8.+, or On.,, against v ,  for sure. Then the probability q., associated 
with B.,,, satisfies 

For the fixed state standard gambles procedure the suggestion offered by 
Novick and Lindley 1s that to exploit coherence fully, we must ask for more 
probability assessments than are needed to calculate the utilities and then 
.compare them for coherence. The idea of requiring the expermenter to glve 
more than the mlnimum number of judgments m fitt~ng a personal probability 
distribution has been used by Pratt, Raiffa and Schlaifer (1965) and has been 
exploited systematically both for the assessment of probabilities and utilities 
in the development of the Computer Assisted Data Anaysls Monitor (CADA) 
(Novlck. 1973. 1975). In the context of utility assessments. the idea has been 
used by Becker, DeCroot, and Marschak (1963) with fixed probability 
assessments, and we shall discuss this presently. 

Experience shows us that assessors are almost always incoherent but 
readily attempt to resolve their lncoherences wnen these are brought to thelr 
attention (cf. MacCrimmon, 1965). It may, however, be true that one kind of 
gamble (e.g.. adjacent gambles) may introduce one kind of systematic bias 
and another kind (e.g., extreme gambles) may introduce a second kind of 
bias. Therefore, rather than just asking the subject to revlse some of hidher 
assessments, Novlck and Lindley (1979) suggest assisting the subject by 
providing a least squares fit in the log-odds metric for the N undetermined 
utility values. A computer program has been written to carry out the 
lnterrogatlon of the assessor and to perform the least squares fit and 1s 
available on the CADA Monltor (Novick, et. al., 1980). 

In any comparison of fixed state with fixed probability assessments, the 
role of coherence seems to us to play a dominant role. Although subjects often 
prefer fixed probability assessments, especially when the probability 1s 1/2, 
exploiting coherence in this context' is harder than with the fixed state 
procedure. For example, suppose, as usual, that a subject a asked for the 
certalnty equivalent of a gamble, at even odds, on the best (ON,,) and worst (8,) 
states. Let hidher stated value be 8,, say, havlng u(0,) = 1/2. The subject is 
then asked for the certalnty equivalents for even-odds gambles on (8,,8,) and 
(8,. 8,+3. If these values are denoted by 8, and 8,, respectively, then the 
utilities of 8, and 8, are u(83 = 1/4 and ~ ( 8 ~ )  = 3/4. Finally, he/she 1s asked 
to consider an even-odds gamble on 8, and 8,. But it is rather transparent that 
for coherence the result must be O,, so that the four judgments can scarcely be 
considered mdependent. In this field (as in other measurement fields) 
obtaining independent repetitions of the same assessment is hardly ever 
possible, thus the emphasis ought to be on independent assessments of related 
quantities. This, we feel, is more nearly achieved with the fixed-state 
assessments. The above discussion is taken with some condensation from 
Nov~ck and Lindley (1979). 

The questlon that must now be addressed is whether the incoherence 



resolution of the least squares method described in SFS above avoids the 
certalnty and anchoring effects or whether better methods can be found. The 
remainder of this paper will be devoted to describing a refinement in the least 
squares SFS procedure and in describing three new procedures that more . 
directly address these biasing effects. 

A word concerning ease of response may be in Order. Mosteller was 
certainly correct in saying that FP is easier than FS, and, indeed, without 
interactlve conversational computing facilities an FS assessment procedure 
may well be unbearably difficult. With conversational comuutlng, however, 
an FS procedures is bearable and there is no reason to believe the easler 
method is more bias free. Indeed, the contrary could be true. 

In the current version of the SFS procedure on CADA, subjects are glven 
situations consisting of a for-sure and a chance optlon on grade point averages 
in the range 0-4 and are asked for the probabilities that make them indifferent 
with resuect to the two options in each situation (i.e., thelr Indifference 
probabilities). The indifference probabilities for the fixed state gambles are 
elicited using one of two formats for presenting the gambles. Format two 
request a direct magnltude estimation as illustrated earlier. Format one asks 
for preferences for gambles or sure things forp values . I ,  .9, .2, .8, etc., or .9, 
. l ,  .8, .2, etc., with zerolng in on the indifferent point. 

FORMAT ONE 

3.0 p chance 
2.5 for sure 
2.0 l-p chance 

indifferent = 0 
for sure = I  
chance = 2  
restart = 3 

Which would you prefer if p were .XX 7-. (This questlon 
was repeated using the followingp values . l ,  .9, .2, .8, ... until p was 
found to be between .S and .6, say. Then the questioning procedure 
usedp values of .52, .58, .54. ... until the suhlect's lndifferencep had 
been determined). 

FORMAT TWO 

for gamble p that makes 
sure with prob D with prob I-p you indifferent 
2.5 3.0 2.0 7- 

TABLE 1 Formats for the SFS utility assessment procedure 

Format two, the direct probability assessment format 1s the one used by 
Novlck and Lindley, (1979). Format one, the ends-Inprocedure, has been 
advanced as a method for avoiding anchoring. Since indifference points are 
typically between .2 and .8 any inltlal anchor (.l Or .9) 1s erased before any 
careful judgment must be made. Also, the startlng values alternate between . I  

and .9 thus avoiding any constant orderlng effect. It is our as-yet- 
unsubstantiated belief that this format Is both easler and less subject to 
anchoring than format two. This format Is now used with several assessment 
procedures. 

In order to avoid the documented biases of the certanty effect in utility 
assessment, a new procedure has been considered: the paired binary gambles 
(PBG) procedure. This procedure 1s illustrated in Table 2 bellow. The pared 
gambles in the table can De abbreviated as (1.5 3.0.2.0 2.5). 

Pnlred Binary Gambles 

SITUATION 1 SITUATION 2 

3.0 p 2.5 P 
1.5 l-p 2 .0  1 -P 

TABLE 2 PBG procedure 

The ends-ln format 1s used to eliclt the probability that will make the subject 
Indifferent with respect to the two situations (gambles). A least squares fit of 
the Indifference probabilities can then be made and subjects can proceed as m 
the SFS procedure. 

Although the PBG procedure is considered here as a fixed state 
procedure, it has previously been used in a fixed probability paradigm 
(Kneppreth, Gustafson, Leifer, & JohnSOn, 1974). Suppes and Walsh (1959) 
have considered such gambles strlctly m the sense of determlnlng preferences 
between the two situations, without eliciting either indifference probabilities 
or equivalance pomts. 

The obvious hope 1s that the PBG procedure will avoid the certainty 
effect because the compar~son is between two sets of gambles, and thus does 
not lnvolve the for-sure optlon. We have used PBG in some lnformal 
assessments but have not yet been convinced of its usefulness. First, ~t is 
difficult even for experienced subjects. Fat~gue and boredom are definlte 
problems. We are not sure that there 1s not a bias in that one situation always 



compares two adjacent states while the other always describes two states twlce 
removed. We have not discarded this procedure, but we feel that refinements 
may be necessary if it 1s to be useful. 

Next we define the Regional Coherence (RC procedure). In the RC 
procedure, ~ndifference probabilities are elic~ted separately for two SFS 
gambles using the ends-ln format. Subjects are then presented with a table 
showing the Initial gambles (situations 1 and 2 with then ~ndifference 
probabilit~es) and two additional gambles (situations 3 and 4). They are told 
that thelr initial responses Imply certain specific ~ndifference probabilities for 
the two new gambles. Table 3 illustrates the latter part of this procedure. 

p-chance 1.50 2.00 2.00 2.00 
for sure 1.00 1.50 1 .OO 1.50 
1-p chance 0.50 1.00 0.50 0.50 

p=.53 p=.58 p=.40 p=.75 

TABLE 3 RC Procedure 

Assessors are then glven the opportunity to change the Indifference 
probabilities, two at a tlme, until they are indifferent In all four sltuatlons. 
They choose the two sltuatlons for which they wish to change the indifference 
probabilit~es and the magnitude estimation format 1s then Implemented to 
generate the revised probabilities. 

The final procedure 1s called the local coherence (LC) procedure. This 
procedure presents subjects witb two types of hypothetical choice situations: 
(1) a for-sure and a chance optlon (the standard gamble) and (2) two chance 
opt~ons. The ends-~n format 1s used to elicit an Indifference probability for the 
first situation, after which the subject 1s told that that response Implies that 
he/she should be Indifferent with respect to the two options m sltuatlon 2. 
Note that the subject only specifies the indifference probability for the 
standard gamble. Table 4 below illustrates this procedure. The probabilities 
for the second sltuation are urllquely determined by that specification. 

SITUATION 1 SITUATION 2 

option one optlon two 

4.00 .75 chance . l9 4.00 --- 
3 .OO for sure --- 3.00 .25 
1 .OO .25 chance .81 1 .OO .75 

TABLE 4 LC Procedure 

If the subject 1s not indifferent in both sltuatlons, he/she modifies the 
sltuation 1 ~ndifference probability and then 1s again presented witb a table 
srmilar to Table 4 above. This continues until subject 1s Indifferent witb 
respect to the two sltuatlons. 

In choosing a fixed state assessment procedure we are free to select 
(1) A response format 

a. ends-ln 
b. direct specificat~on 

(2) A comparlson format 

a. standard fixed state 
b. paired binary gambles 
C. reglonal coherence 
d. local coherence 

(3) Overall coherence checking by least squares 

a. yes 
b. no 

The temptatlon for a person trained in both psychology and statistics to 
undertake the experlmental comparlson uslng some subset of a 2 by 4 by 2 
factorial deslgn 1s overpowering. Indeed the tooling-up for this experiment 

has begun including a further comparison with the fixed probability method 
and an lnvestlgatlon of comparative bias for central and extreme values of 0.  
For a Bayes~an statistician, yielding to this temptatlon leads to a compulsion 

to state a pnor distribut~on. In the absence of a precisely stated model this 1s 
not possible, but it is possible to state some general beliefs. I shall now do this 
and also lnvlte you to attend the Psychometric Soc~ety meetings in May of 
1980 where I shall report on the results of these experiments. 

First, I believe that SFS with overall LSQ coherence checking will prove 
to be good but not best. Subjects find it hard to make unaided adjustments. 
As a result, Incoherence will remain high, but overall fits will be tolerably 
good @= .7). However, we are working on improvements that could make 



this procedure more a t t rac t lve .  I bel leve that t h e  ends-m format will b e  

p r e f e r r e d  over direct magnitude e s t ~ m a t l o n  a n d  will reduce the anchoring 

ef fec t  @ = .S). This may not hold for very e x p e r l e n c e d  assessors who may f i n d  

~t tedious. 
I believe that PBG will be u n p o p u l a r  and ineffective un less  we f i n d  some 

s l m p l i f i c a t l o n  @= .9). At present i t  1s d i f f i c u l t  and f a t l g u e t n g  and responses 
tend to b e  l ess  than carefully considered. 

1 believe that r e g l o n a l  and l o c a l  coherence will both b e  use fu l  and b o t h  

will l a rge ly  eliminate ancnonng and adjustment biases @=.X). I believe the 
r e g l o n a l  coherence will be preferred by l n e x p e r ~ e n c e d  users @ = .6) and l o c a l  

coherence b y  e x p e r l e n c e d  users (p=.7 ,  b u t  perhaps o n l y  p r o f e s s ~ o n a l  

s t a t l s t i c ~ a n s ) .  L o c a l  Coherence provides a d i s p l a y  of  t h e  l a r g e  e f f e c t  on 
extreme c o r n p a r l s o n s  of m~nor  adjustment in non-extreme cornpansons. It 1s a 
p o w e r f u l  tool for l o c a t ~ n g  the most desirable p o t n t  m t h e  p r o b a b i l i t y  rangep + 

,025. It IS u n c l e a r  to me w h e t h e r  overall least squares over f i t t lng  will be u s e f u l  

m conjunction with t h e  RC or LC procedures, b u t  my p r l o r  p r o b a b i l i t y  1s .6 
that i t  n. 

Finally, for certa~n p o l n t s  I h a v e  high p e r s o n a l  p r o b a b i l t t y .  Ut i l i ty  

e l l c l t a t ~ o n  p r o c e d u r e s  can c u r r e n t l y  b e  conducted with accuracy a n d  ease on 
CADA. Indeed, they can b e  conducted with suf f i c len t  ease a n d  potentially 
with suf f i c len t  freedom from bias as to m a k e  applications of utility t h e o r y  to 
education e n t l r e l y  feasible when the assessor 1s confronted with a specific 
problem of ~nterest and i m p o r t a n c e ,  and when t h a t  problem 1s p r e s e n t e d  

c l e a r l y  and u n a m b i g u o u s l y .  
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DISCUSSION 
J.M. DICKEY (Unrvecsrly Collegeof WalesAber~stwyth): 

I find the oaper by Dr. Leonard stlmulatmg. Many of us would agree with the 
statement that there is much more to real inferences than 1s modeled by Bayes' 
theorem: for examole, that agiven subjective-probability distribut~on might be usefully 
conditioned on new data at a ~artlcular time, but that to  continue formally updating it 
to a sequence of new data over a long perlod without rethinking the probability model 
would bp foolish. It would even be foolish to  rely on Bayes' theorem on a slngle 
occaslon if one closed one's mlnd regarding the assumptionsused. 

But, of course, it 1s not necessary to  close ones mlnd, nor ones eyes and ears. 
Bayeslan theory does not requlre that, although it may seem so to  some authors 
because of the silence m Bayesian theory on the subject of how to  think up new models. 
The implicat~ons of coherence for the subject of learning from aata have to do  with 
what attitudes to taKe regarding contingent bets, how to  reason now about the 
information in future data. The axroms of coherent potential behaviour do not imply 
that, after the data rs In, one should actually follow the prevlous plan In updahng ones 
oomlons. That IS, probability conditiomng (for example, Bayes' theorem) 1s not 
necessary for real oplnlous, but it provides a point of reference, a ratlonal yardstick, a 
standard relationship between pnor and posterior opinions. If ones oplmons do  not 
obey probability conditioning, then one looks for a reasonable probability model under 
which they do, or which rmplies ooinions that one can reasonably adopt. 

How rhould a Bayeslan statlstioan look at his aata  to see whether he will need to 
think up ne.v models? Karl Popper (1972) imagines scientific research as a conunmng 
process of uslng expenmental data to test the validity of theorles which are then revlsed 

when rejected by tesrs. Popper's nonBayesian conception also suffers from silence on 
the subject of how to think up new models. Also, it inherlts a defect from traditions! 
statistical "data analysis" o n  the subject of how to  decide whether a new model is 
needed. This defect m traditional tests for validity-checking of modeis was Dornted out 
by Berkson (1938). In practice, no model ever tested n exactly true, and any 
presoecified model will be rejected for a large enough (fixed-slze) sample. This makes 
acceptance of models largely a question of the slze of samples taken. (See Kadane and 
Dickey, 1979, for a Bayes~an discuss~on of this problem). Another qnestlon. for which 
a traditional statxstlcian's answers can only be highly subjectme when no aternatwe 
models have been suggested, 1s the more general questlon of which validity tests to 
perform. Which exuerrment t o  perform also remwns largely subjectwe. 

So traditional theom and Baveslan theorv are both lim~ted in the scone of the11 
application. I think it is a mistale, though. to say that coherence lmplies ComDlexlty or 
that coherence misleads. Do the rules of logic or arithmetic mislead? Nor does IMP to 
my mind "oppose" coherence, unless Dr. Leonard insists on tylng IMP to the Freudian 
notlon of Id. I agree that IMP seems complex, but I call on Dr. Leonard and Others to 
develop theory to shed light on  its mysteries. 

Dr. Leonard reminds us of the old questlon of discr~m~nat~on methods versus 
regression analysis. It 1s really simpler for the statlstlclan to specify p (XI A) than 
D ~ I x ) ?  1 note that he suggest the use of estlmated samding probabilities to 
approximate predictwe probabilities, while Aitchison and Dunsmore (1975) 
recommend the use of predictive probabilities to estlmate sampling probabilities. 

Finally, it is clamed that the Bayes factor 1s sensitive to the cholce of conditional 
prior denslty, and increasingly so for lncreaslng sample slze. Of course, in oractlce the 
Bayes factor goes to zero or to  infinity as sample size increases. A very small or very 
large Bayes factor is strong evidence for or agwnst the more complicated model, 
respectively. So it remalns to  be snown'that the "sensitivity" happens before the 
evidence becomes too strong to  be refuted by the changes in the Bayes factor wrought 
by reasonable perturbations In the Drlor density. 

My comments on Professor Nov~ck's paper jolnt with Dekeyrel and Chuang 
would seen to apply with equal force had the paper been concerned with probability 
assessments. rather than utility assessments. (Utilities are equlvaent to probabilities m 
technlcal senses, and this equivalence is exploited in then assessment methods). 
Therefore, I should like the authors t o  consider my comments with an eye to  the 
possibility that I have failed t o  appreciate urooerties inherent only to utilities. Perhaps 
they would bnng out the Important differences in thelr reply to this discuss~on. 

The methods glven are ingenrous and rather elegant. A person wishing to use them 
to  assess his own utilities would, I feel sure. need to  spend apprec~able time and effort 
learmng to use them as effectlve tools. The worry, of course, is that in so dolng the 
person may acquire bad habits or "biases" that would connect UD his different uses of 
the tool, rather than connecting together the tool and his underlying utilities. 

Instead of a  erso son", the authors refer to a "subject" This latter term has been 
reserved in the osychological literature to  mean the same as "object", m the spirit of 
conceiving persons other than oneself as machines. One trouble with this conception 
that it just does not work well, except a t  a mere physiolog~cal level. Persons do not 



behave predictably without reference to context, including the histories of thelr 
personal attitudes and social settings (Kelly, 1955). Exper~ments tend to  be almea at 
discovenng slmple universal context-free laws of behanor, such as, lawsthat would 
favour this assessment tool over that one. What 1s it that justifies our thinking that 
isolated laboratory experiments will yield psychological findings of any importance in 
real-world applicat~ons? 

In spite of the doubts expressed here, I should like to urge the authors to  carry out 
th.e experiments envisaged, preferably In real applications. 

W.H. DUMOUCHEL (Mossoenusetislnstrfule of Temofogy):  
Professor Leonard's emphasrs on the necessity to  develop workable proceaures, 

and to  show our colleagues that they do  work, is well put, in my opmlon. More focus is 
needed on what we can do, rather than too much concentration on the loglcal 
lnconslstencles of classical statistics. Strlct conmstency n often unattainable m the real 
world. For example, we all know tnat pnor distributions cannot logically depend on the 
data. Yet Professor Leonard rlghtly points out that most responsible statlsticlans, 
Bayes~an or not. will try to obtan a "feel" for the data with plots, etc., before maucing 
a likelihood functlon or even deciding on a parameter space. However, I am not so 
Desslmlstlc as to rule out a useful Bayeman approach to  many "global" problems. 
Often a mlxture of two or three models can anlte well cauture the essentials of even a 
fairly complicated situation, and thus help derive real-life conc~us~ons from the aata. 
The binomial example of sectlon 4 does not seem convincing to me. The s~tuatlon is 
that of chooslng between H,  and H, based on the observatlons of n exchangeable 
observations of 0 or I ,  whosesum 1s X 

The supposed paradox is that postenor odds ratko of H, vs H, depends 
Importantly on a and 0 even as n - m. es~ecially if x/n is far from a / (a  +B). But the 
fact of n belng large here does not reasonably Imply that the sample lnformatlon should 
"swamp" me prtor mformatlon. When alternative H, is true and n is large, tne 
varlatlon In B = x /n  1s negligible conditional on 8, so tnat the relevant comparison is 

Thus the problem 1s more like that of deciding whether a single observatlon could 
have a Dartlcular beta distributlon, and naturally the parameters of that beta 
distributron would play an important role in the decision. 

On another point, in splte of my own liking for logit probability models, 1 suspect 
they are be:ng oversold in section 7. The author's dishnction between a probabilistlc 
and a predictive model eludes me. Two possible lnter~retatlons are: (1) the full 
lnformatlon versus conditional information approach to contingency tables, or (2) the 

errors in vanables problem of regression. But the further dlscusslon a0esn.t seem 
relevant to  either mterpretation. The author seems to Imply that multivariate densty 
estlmatlon is simpler and more reliable than more common procedures such as stepwlse 
regression. I would guess that use of one of the varlous robust regression techniques 
now widely available would be more frultful than abanaonlne the ordinar structure of - 
the response variable in favor of a purely categor~cal-data approach. 

Finally, as an argument aganst constructing unnecessarily complicated models, 
the author states m sectlon 8 that modeling a thick-tailed distributlon is unnecessary if, 
even with a normal model. the real-life conclusions are the same with and without 
lncluslon of the outliers m the analysis. This cannot be true m general, as the following 
example shows. Suppose that a sample of size n = 100 has mean 0 and standard 
devlatlon I ,  with one or two outliers near the value X = 4. Suppose further that the 
red-life vroblem is to  decide whether Prob (X>4)<.001. Then a normal model 
including the outliers would estlmate Prob (X>4) <10-'; while excluding the outliers 
would result In a smaller sample standard devlatlon and an even smaller estimate for 
Prob(X>4). Yet fitting the data to most families of thicktailed distributions would 
estimate Prob(X>4) to be near the sample DroDortlon, namely 0.01. 

Professor Novick and his co-authors are to be cornmended for continuing to 
explore a toplc so vital to  the practical functioning of the Bayeslan method. Until we 
can show how Drlor oplnlon can be elicited m a workable fashion, the subjectwe 
Bayesian mewpoint can hardly proliferate. The present paper considers with care and 
sophistication a slmple problem involving a slngle, ordered attribute, and makes us 
very conscious of how much harder a more realistic eiiclratlon lnvolvlng several 
dimensions and a complex aata set would be. The work of Kadane ef.al. (1979) 
combined with the present paper provide a start toward computerizing this process. 

The author's references to  the work of Amos Tversky and his associates are 
werome. Certainty bias and anchoring bias are present not only m elicitatlon 
problems, and overcoming them can be used as a theme for data analysls In general. 
Whenever we tell our elementary statistics classes to be more conscious of vanation, we 
are fightlng the certanty bias, and when we teach proper methods of estlmatlon we 
counter the anchoring bias. But Bayenan methodology is ~eculiarly affected, on a 
Second level, by these tendencies. A stronger potential barner to solutlon of the 
elicltatlon problem 1s ralsed by the work of Shafer (1976) who argues that human 
oplnlons are too complicated to be represented by slmple probability distributions or 
utility functions. I would be Interested to Know if experiments such as the present 
authors are performing could be designed to  test this or slmilar propositions. 

In any event, the "local": "reg~onal", and "ends m" proceaures presented here 
seem reasonable and clever and I am looking forward to the results of the authors' 
future experiments. There are just a few more specific auesbons that come to mind: 

a )  What if the orderlng of the states is not prescribed? Would your methods 
change? 

b ) Although elicitatlon of probabilities is formally identical with the elicltatlon of 
utilities, the ~sychological reactlons of subjects may differ for the two tasks. Is 
there any evidence of this? 



c ) What evidence 1s there that the regression on the log odds scale is optimal for the 
coherence checking algorithm? Might some welghted regresslon be better? Is the 
Standard error of the residuals a useful number? 

c ) How much real tlme do these elicltatlons take? How long for a novice to elicit all 
the factors for the mobabilities In a 2x2 table, and what fractlon 0f.them show 
noticable fatigue and/or boredom before finishing? 

1 hope that these questions will help shmulate the authors to cont~nue thelr 
interesting work. 

J.M. BERNARDO (Unlnrversrly of Volencro): 
I certainly believe tnat the idea used by Professor Nov~ck of requiring the decision 

maker to give more than the mnlmum number of judgments In fittlng a Dersonal 
mobability distribution or utility function is Important and very useful. 1 wonder 
however what is the coherent justification for using least squares m order to force 
coherence among those judgments 

S. F-NCH (Unrversrly ofMancnester): 
Firstly, perhaDs Dr. Leonard will forgive my Domting to an unfortunate omrsslon 

in his paper. In quotlng DeGroot's m o m  system for subjective Drobability, he omlts 
the CP axlom (DeGroot (1970). Chapter 6). It is the CP avlom that introduces the 
not1011 of conditional probability and hence justifies the use of Bayes Theorem. 
Without the CP m o m  this system does not pretend to justify Bayesian inference. If 
Dr. Leonard wishes to criticise the use of m o m  systems, he really should clte a whole 
system. 

Turning now to the Daper of Novick, Dekevrel and Chuang, I have two questions 
that 1 should like to ask. First, in the fixed $ate method of assessment the values U(&) 
= 0, U(&) - 1 are fixed. The values of U(0.) for intermediate n are deterrmned by 
relations of the form 

Now, since the paper's very essence is to admit Incoherence on the part of the 
decision maker's statements, it must be admitted that thep. are "in error". Does this 
error transmit ltself evenly to the determlnatlon of U(BJ or does the error on the U(83 
rise steadily from 0 on U(&) to a mmmum on U(BN,J before falling away to 0 agam on 
U@,)? There is a relevant passage in S~etzler (1968) in which ne discusses the relatlve 
merlts of three different methods of measurmg utility. 

My second question concerns the decision makers' role in the resolutlon of 
mcoherence. For me one of the basic alms of decision analysis is to bring 
understanding. In uartrcular the process of lntrospect~on is not Slmply one of 
measuring utilities and subjectwe probabilities. Rather it 1s a process that helps the 
decision maker exulore his Dreference belief structure, discover ~nconsistencles, think 
about them and then resolve them. It seems Imperatwe to me that of method of 
construntlng a declslon makers utility function should always refer back to him any 
discovered inconsistency so that he may reconsider his preferences. Only when all the 

Inconsistencies are of such a slight nature that lt is beyond the decision maker's powers 
of discr~rmnatlon to resclve them, should an automatic resolutlon process be Invoked. 
Do I understand that the authors' procedure does m fact do this, namely only use least 
squares with coherence constra~nts as a tidylng UD devlce having left all the major 
IeSOutlOn of inconslstenc~ to the decision maker? 

J.B. KADANE (Cornegre-Mdon Unrverstty): 
In the discussion, both Dennis Lindley and Bruce Hill strongly critic~zed Tom 

Leonard's DaDer for not being sufficiently Bayeslan. In doing so, I think that they have 
overreacted. When a Bayes~an does statistical modelling and data analysis, 
compromses are often necessary to keeD control of the analysis, to separate what is 
Important from what 1s not. 

To assoclate Tom Leonard's position in this Daper with Glenn Shafer's, as did 
Bruce Hill, 1s to rmx two very different positions. I think. As I understand Shafer.s 
ideas, he rejects Bayes Theorem and the Bayes~an uaradigm as a theory. This seems to 
me very different from Leonard's ~osition, which keeps Bayeslan theory as essential 
background for dolng statlstss. To assoaate these ~ositions does an injustice to both 
Leonard's and Shafer's positions. 

D.V. LINDLEY (Unrverslty CollegeLondon): 
I find myself in almost total disagreement with the views expressed in Leonard's 

Daper. Coherence becomes more important the bigger the situation, not less. If only 
one uncertain event is assessed, then coherence does nothing more than assert that the 
descnptive number lies between Oand 1. With two events, A and B, coherence begins to 
Dlay a more lmportant role: for example, p(AB) = p(A)p(BIA). The more events, the 
more opportunity there 1s to exploit coherence and the more necessary it becomes t o  d o  
SO. 

Perhags it 1s this fallacious view that leads to Leonard attaching importance to 
Axlom 5. All this axlom does is to tie probability to a numbering system: the 
multinlication and addition rules, the rules of coherence, are really contamed in the 
earlier, imDortant m o m s  and his omltted axiom of called-off bets. Probability 1s not 
just a number between 0 and I: ~t 1s a number obeying two important rules of 
combination. 

A. O'HAGAN, (Unzverstry of Warwick): 

Dr. Leonard's IMPS are of course an over-com~licatlon, providing no real inslght 
Into the processes of practical Statistics. But if we regard them as merely a thin excuse 
for presenting a mrscellany of ideas - his sections 4 to 12 then there is much food for 
thought in his paper. I would like to examlne just a few of the snaDshots ln Dr. 
Leonard's album. 

His skewed-normal distribut~on of section 8 is ingenious, but 1 wonder if some of 
his cnteria (i) to (vii) were chosen a Dosterlorr. I commend to him the skew distribution 
denved in O'Hagan and Leonard (19761, for which 1 think we could draw UD an equally 
impressive list of cntena. For instanceit 1s more tractable than the skewed-normal. 



The sensitivity of the Bayes factor (4.3) to the pnor hyperparameter o m his 
binorma example of sectlon 4 could be quite worrymg. Some insight is obtained 
initially by lgnorlng 8. Since D (a,@) is emply the pnor (margmal) probability of the 
frequency X under the binomial moael, we are lust comparing the two simple 
hypotheses glven by the distributionsp, (X) andp,(x) = D (a$). The observed value of 
X discr~mlnates strongly between the hypotheses if the ratio R. = p, (x)/p,(x) is very 
large or very small. Dr. Leonard introduces a third hypothesis, that X has distributlon 
&(X) = D (m + i,@) and observes that it may be possible to fina an X wKlch does not 
discrim~nate strongly betweenp. andp,  but does discriminate strongly betweenpo and 
p,. He does this by showing that the ratio (4.5) can give an X tnat discriminates strongly 
between p, and pz. His thesls is that this odd because p, and p, are very similar. But 
with most parametric families of distributlons we can fina observations discrinunat~ng 
strongly between any two members of the family, however close their parameter values 
may be. Consider for example the distributions N(0,l) and N(c, 1): however small 
I r 1 > O  is, as X tends to infin~ty the likelihooa rat10 

exp [-Mx2+ M ( X - E ) ~ ~  = exp (xc + Me') 

tends either to zero or to infimty. Almost all the parametric families in common use 
have monotone likelihood ratios (see Lenmann (1959)) and in most cases the likelihood 
rat10 1s unbounded. In fact, since Dr. Leonard's beta-binomlal has a bounded 
likelihood ratio (for given sample size), he has chosen one of the less convincing 
examples of "sensitivity". Other examples may be constructed similarly "-p,(x)"- 
is formed from a prior distribution for a scalar parameter 0 indexed by a prior 
hyperparameter 4, and a sampling distribution for X given 8. Whenever these two 
distributions nave monotone likelihooa ratios, e.g. any two exponential-family 
distributlons (Lehmann, p. 70), thenp,(x) will have a monotone likelihood ratio In + 
(Lehmann, p. 343 problem 7). 

Therefore, Dr. Leonard's sensitivity problem anses whenever we deal only in 
exponentlal families. Having seen the "problem" in the above terms I feel that it 1s not 
as unrcasonablc a\ nc ~mplies, our 1 ao  lhinh tnat 11 is Imporrani lorccogn~sc tnai nearly 
all conlrnonlv urea di,tribut~ons will leaa 10 this kind of  hcnav~our and lnar radically 
different behaviour 1s possible using distributions with non-monotone likelihood 
ratios. In O'Hagan (1979), ana more explicitly in a follow-up paper submitted to the 
Annals of Stat~stics, 1 have made this point in connection with a different kind of 
behaviour which always results from using distributions with monotone likelihood 
ratios, ana not otherwise. In his section 9, Dr. Leonara criticises exponentlal families 
on even more fnnaamenta grounds. It e time that we IooKed very seriously beyond the 
convenient, tractable exponential families because they are severely limiting the kinds 
of inference that we can make. 

A.F.M. SMITH (Unrversrry ofNotfmgnam): 
Leonara seems to be making two rather strong attacks on the axioms. If 1 

understand him correctly, he states that: 

(i) the stralghtforward clams set our In 20) and 26) are much more directly 
compelling to clients than are the axloms: and, In any case, they are more 
honest: 

(ii) the axloms are tautologous 

Let us first consider (i), and recall that statement 20) invokes the phrases "much 
more reasonable", while statement 2b) refers to " su~enor  practical results" Does 
Tom Leonard really believe that these particular phrases can (honestly) command 
general acceDtance as having directly obvious meanings that require no further 
analysis? And if someone refuses to accevt these as primitive terms of reference. I 
think I know where Tom Leonara would eventually end up m attempting an 
unambiguous ex~lication of "reasonable" and "superior" - back at this axiom 
system!. 

The critic~sm in (ii) seems most ~eculiari. Theorems deduced from the axioms are, 
of course, "contamed in" them in the sense Tom Leonara presumably intends. But, 
surely, the (for us) rather Drofound methodological implications - the likelihooa 
Dnnclple, the need to Integrate Out nuisance Darameten - are m no way obviously 
''contamed in" the axioms in the sense that they are directly intuited (or guessed, even) 
by someone who contemplates tne axloms? 

T.W.F. STROUD (Queen's Universrty Canada): 

Leonard's artlcle presents a refreshing relief from doctrinare approaches which 
begln with a statement of the statlstlc1an.s model and his unor beliefs about the 
parameters of the model. In fact, the stat~stlclan always has to begln with a real-life 
process and, nence, any model concermng this process (and, consequently, any prior 
distributlon on the parameters of such amodel) must be regarded as very tentative. 

Sections 4 and 5 focus on some important facts often overlooked by Bayeslan 
statisticians. In Section 4 it 1s Dolnted out that probabilities associated with chooslng 
between models may be quite sensitive to the choice of prior distributions within 
models. Because Inference within a model is insensitive to   nor information when 
samples are large. it is easy to think that m Large samDles the Dnor doesn't matter. But 
the thing which mates the  nor not matter is the likelihood, which is comDletely 
model-based. The example presented in Sectlon 4 shows that, in situations where the 
prlor mean within the binomlal moael E is very different from the sample meanp, the 
information in the data which is ancillary to the binomla model (which is what we need 
for resting the model) may not swamp out the Prlor in moderately large SamDles. 

In Section 10, which deals with problems lnvolvlng hyperparameters, the method 
of maxlnuzing the marglnal likelihood is advocated as an alternative to specifying 
"com~licated ana ~ossibly confunng" prior distribuuons on tne hyperparameters. 
Whereas in many problems maximizing the marginal likelihooa gives v~rtually the same 
answer as mtegratmg over a locally uninformative Drlor on the nyperparameters, no 
justification has been glven that the former Droceaure e anything but a convenient 
approxlmatlon to the latter. In some cases, the approximation may be Door. For 
CxamDle, in the normal one-way classification shrunken estlmates of the group means 



toward the grand mean may be obtaned by pnthng a conjugate prior on the 
exchangeable group means and estnnating the hyperparameters ln this pnor by 
m m m u m  likelihood (Stroud, 1980). But if the number of groups is small (say 3 or 41, 
this procedure shrinks too much toward the grand mean because the'likelihood 
function of the between-within variance ratlo is skewed, causing Ule mode to . 
underestimate this vanance ratio. A srmilar problem exlsts if one uses a prior on the 
hyperparameters but then resorts to substituting the posterior modal values of 
hyperparameters, rather than integratlng over them. In such cases where skewness 
causes a problem one should either integrate out the hyperparameters or devise a 
technique for suitably adjusting the modal estimates in the direchon of the skewness. 

REPLY TO THE DISCUSSION 

T. LEONARD (Unzverstryof Warwick): 
Many thanks to the discussants for their helpful contributions which seem to 

~rov ide  a good representation of current Bayeslan thought about the area of Statistics. 
Since the conference Dennis Lindley and I have corresponded in detail abont the 
moms,  and this has helpedns to clarity our ideas in this area. 

A positive contribution of this CorresDondence was an indicahon that my Axiom 
50 1s not needed m the very strictest mathematical sense, as De Groot utilizes the 
mathematlcal Droverties of random variables to their fullest extent (they are A- 
measurable functions from the parameter space to the real line). However, if the 
outcomes of the auxiliary expenment were simply regarded as nnmencal values, then 
my Axlom 5a would be needed to link the auxiliary expenment with the parameter 
space: it is this Interpretation which the probability assessor would utilize when actually 
carr\lng out ihc sugge,tro procedure. hloreo~er. my axlom, C 3na 50 are equlva.cn1 
m3lnemaliiallv to I ~ I C  combin3lton of De Groat's ~\x!om 5 ,  and hi, assumplion of A- 
measurability of the random vanable. Therefore my comments are relevant whichever 
interpretat~on u used; ~t B my firm understanding that the combination of the first four 
axioms with the assumpt~ons surrounding the fifth axiom should be viewed in an 
~nductive sense as virtually as strong as the final result. I would however like to thank 
Dennls for indicating the desrrability of clarification of this mathematlcal Dolnt. 

It still seems com~letely obvious to me that the axioms are not redly proving 
much, but slmply describing a way of thinking. During my correspondence with Dennis 
he suggested various sensible changes to the awoms. but desplte about half-a-dozen 
Intuitively appealing suggestions at least one of the axloms always turned out upon 
close scrutlny to be similar in strength to De Groot's fifth m o m .  It is interesting that 
whilst recently teaching utility theory, I decided to play the role of a formal Bayesian, 
but this approach was quickly shown to be deficient by a serles of slmDle and 
unprompted questions from my students; these were much on the same lines as the 
polnts I have raised here about subjective probability. 

Dennls seems to have dodged the real issue -my m a n  point is that coherence is less 
lmportant and even constrlctlve in pracucal situations where the objective is to extract 
real-life cocclusions from a data set. Probably we Bayesians should leave our ivory 

towers once In a while and work m a Statlstlcal Laboratory analyzing real data. We 
might then learn that modelling is the really important part of statistics; analyses which 
proceed conditionally upon the cholce of model are enjoyable but do not provide the 
complete answer. 

I would like to thank Tony O'Hagan for his comments. I don't think that my 
IMP'S are an over-theoretlsatlon - m fact there're not really a theoretisatlon at all! 
They are just a way of thinking, or DerhaDs a term to describe what most of us have 
been doing anyway. My point e that thinking about the problem in order to extract a 
model or a concluslon is much more Important than trying to be formally coherent. 
Tony3 comments on the sensitivity Droblem are helpful and interestlng. His work on 
outlier behaviour would be useful if it were ~ossible to find families of distributions 
with thick tails which are both meamngful and analvt~cally tractable, for example, m 
multivariate situations. 

I'm a bit confused by Simon French's comments. I didn't use the conditional 
probability axlom because I was just discuss~ng straight-forward probability. I think 
however that my m a n  polnts would extend to ibis situation. 

Tom Stroud's thinking seems to be on similar lines to my own - we should 
probably form a clique of pragmatic Bayesians (this may be a good time to announce 
the foundation of the Bayeslan-Fisherian school of statistics!). It is possible to justify 
estimating hyperparameters by therr marginal likelihood estimates when the number of 
first-stage parameters is greater than about ten, because the estimates will then 
approximate the Bayes estimates under a wide range of loss functions. When the 
dimensions are smaller the esumates are less precise but still fairly sensible. A more 
sophisticated estimation procedure would in this case probably not be justified in view 
of the small amount of information available abont the hyperparameters. 

Bill DuMouchel's comments are very helpful and I'm glad that he supports the 
main theme of my paper. I remain a bit pesslmlstic about a mlxed model approach srnce 
it would not be particularly meaningful or easy to check out each of the candidate 
models against the data or to think in a lucid way about the complicated analysis 
employed. It 1s interesting that he indicates that the binomlal hypotbesls testing 
~rob lem 1s similar to deciding whether a single observation could have a particular beta 
distribution - this really supports my argument since it tells us that the standard 
Bayesian procedure for this situation can't properly distinguish between the two 
hypotheses. 

My dishnction between probabilistrc and predicuve models is a practical one. For 
many data sets the exolanatory vanables are extremely nolsy so that it 1s virtually 
impossible to find a least squares model via standard procedures like stepwlse 
regression, and therefore difficult to get reasonable numerical ~reredictions of further 
dependent vanables. However the data may still be rich m a content of a probabilistic 
nature, m the sense that they indicate how much the statlstician should adjust his 
Drobabilities about the dependent vanables, in the light of knowledge of the 
explanatory vanables. In such circumstances, where we just can't find a reasonable 
least squares model, we can often still arrive at useful conclusions by modelling the 
distribuoons of the lmportant explanatory vanables. 

I am not argmng comDletely agalnst the use of thick-tailed distributlons, but 
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SimDly saying that if we look at the data and think about the problem then we can 
sometimes avoid this extra comnlication. In the examnle Bill discusses. I euess that , 

most of us would prefer a much smaller value for prob(X>4) than 0.01. 
Adrian Smith feels that my implication that the axloms of coherence are 

tautologous is most peculiar..This is  roba ably because, like Dennis, he is thinking 
deductively rather than inductively - if we constran ourselves to Bayeslan formalism 
then statements by more open and lnductlve thinkers will very often appear to be 

peculiar. As I see it, if we look at the axloms and judge intuitively the strength of what 
is belng assumed, and next look inductively at the strength of the fins result, then 
the two appraisals will be extremely slmilar. Therefore the fact that the axloms 
deductively Imply the final result does not really give us much - it would be inductively 
speaking just as reasonable to assume the final result to start off with. It's a plty that 
neither Denn~s nor Adrian have taken this opportunity to look deeply enough at the 
problem to be able to glve adefinitive answer to this point. 

I can't see how the likelihood principle follows from the axloms unless coherence 
1s also assumed across an n-dimens~onal sample space ln order to justify the existence of 
a sampling distribution - an extremely complicated assumption (don't the sufficiency 
pr~nc~ple and the very complex conditionality pnnclple come ~ n t o  it as well?). The 
assumPtlon tnat we can marglnalise subjective distributions is barely stronger than the 
axioms that might be used to justify this procedure. 

Further anayses are of course needed to justify statements like “superior practical 
results"; but I think that this has already been done - see for example the work by 
Adrian and others on multi-parameter estimation, tlme series analys~s, and caregorlcal 
data. I personally think that the Bayeslan approach is "mnch more reasonable" 
because it 1s extremely natural to think in terms of probability distributions when 
u~aa t lng  information about quantities of interest. 

My thanks to Jim Dickey and Jay Kadane for thelr contributlons. On the question 
of discrim~nation methods versus regression analysis it is indeed much simpler in many 
sltuatiqns to model the distributions of the explanatory variables. Of course, one 
should always choose the method which best suits the practical sltuatlon at hand. 

I would finally like to say how mnch 1 enjoyed glnng apaver in the same session as 
Mel Novick. His practical implementation on CADA of my early marginalizat~on work 
on categorical data fits in well with tne things 1 have been trylng to say. 

M.R. NOVICK (Untversrty oflowo): 
The commentary provided by Professors Bernardo, Dickey, Du Mouchel and 

Frencn, are useful in themselves, but to me they have tne added value of opening up for 
discuss~on some touics that I might have covered in my onginal presentat~on, had tlme 
and foresight permitted. 

Professor Bernardo notes, with bated foil, that there may be no "coherent 
justifications for usrng least-squares in order to force coherence among ... judgments" 
He is, of course, correct. The only reply is that coherence, like virtue, can be absolute 
only in contemplation and is more likely to be compelling as we examine the actlons of 
others rather tnan ourselves. Wisdom must guide us in knowing when small defic~encies 
In coherence (and virtue) can he tolerated. 

The essence of Professor Dickey's critique of our paper is summarized in his 
questlon: "What is it that justifies our thinking tnat Isolated laboratory experiments 
will yield findings of any importance m real-world applicatlons?" Feelings of 
Inadequacy m my ability ro contribute anything new to the discussion of thar questlon 
compel me to refer Professor Dickey to his biologist, chemlst, physic~st, psychologist, 
et. al. friends, some of whom may be willing to take the tlme to Instruct him on the 
general decline in acceptance of the Kantian new of sclence and the acceptance smce 
the end of the Dark Ages of the value of laboratory expenmentation. For my own part 
I shall borrow Professor Bernardo's bated foil and ask Professor Dickey, "What 1s i r  
that justifies his thinking that the mathematical derivations he presents us without any 
empirical investlgatlon of relevance, will provide us with useful methods of assessmg 
pnor probabilities?" Pernaps Professor Dickey and I are both guilty of demanding a 
higher level of virtue and coherence of others than of ourselves. For my part I speculate 
that Professor Dickeys work will be very useful but question the appropriateness of his 
presupposition. 

Professor Dickey, however, is not entirely off the mark. We have found that our 
methods are "successful" only when we go to great lengths. In our laboratory, to 
simulate practical decision problems. People do not carry around utility funct~ons in 
their neads and we ought not to view the assessment process simply as a psychological 
measurement (psychometric) problem. However, we have also found that the nature of 
the graphic display has significant influence on assessors responses and that the 
anchorrng effect can be reduced by the methods we Propose. We also believe that 
further refinements will be useful. 

Professor Du Mouchel's comments are more penetratmg and require more 
detailed response. It is true that human opinions can be very complicated. Part of that 
Com~Iication is due to incoherence which, it is hoDed, can be reduced through 
computer interaction. It e a s o  true that humans attempt to uncomplicate thelr 
opinions and decision processes by the use of s~mplifying heurlstlcs. Unfortunately 
these neuristlcs typrcally introduce bias. Our goal is to nncom~licate human opinion by 
providing alternative neunstlcs tnat avoid major biasing effects. This is not a srmple 
task and we make no clam of "com~lete" success. But if, in education, I had to choose 
between decis~on-making with or without the Dnor probability, utility assessment, and 
decision-making Procedures now available on the Computer-Assisted Data Analysis 
(CADA) Monitor 1 would cer tady opt to use CADA. 

With respect to Professor Du Mouchel's Question as to wnether expenments could 
he aeslgned to rest whether human op~nrons are too complicated to be represented by 
slmple probability distributions or utility functions, I would respond that I think rather 
different expenments are necessary. I personally accept the notion that human oplmon 
1s too complicated to be so modelled. The point, however, is that what we seek is not a 
descriptive modelling of what human opinlon is, but a normatwe modelling of what a 
Particular human being's ODinion "ought" to be. The word "ought" here has a special 

meaning that must be made Precise. A human being's opinlon "ought" to be internally 
conerent and ought to be conslstent with contemplated benavior. If contemplated 
hehavlor is lncons~stent no formal modelling with a probability distribution or utility 
function is possible. Thus probability and utility assessment procedures do not Involve 



descrlptlve modelling. They Involve a process that changes oumlons in some way that 
results In internal coherence without changing those asDects of contemplated behavior 
that most clearly represent the Derson's opimons regarding the real world. 

1 now resuond to Professor Du Mouchel's suecific questions a) to d): 

a) If states are not ordered we Degln by ordenng them. 

b) All of our elicltatlon procedures require probability ludgements 
(fixed state as opposed to fixed probability). We believe that the direct 
elicltat~on of utilities 1s deceptnvely easy but subject to a high degree of 
artifactual bias. 

C) We have our ~ntuition and some informed observation to suggest 
benefit from the log-odds scale for the regresslon of urobabilities. 1 have 
very high uersonal urobability that this 1s very much better than least- 
squares in the origlnal metrrc. However, 1 would think that somewhat less 
weight on the extreme values mlght be useful. Denn~s, Lindley and I have 
often debated the relatlve benefits of log-odds and root inverse slne 
transformations. 

d) For most problems that we have adressed to date elicltatlons are 
handled qulckly, with perhaps 10% of subjects showing boredom. 
fatigue, or uncorrectable incoherence. (For some this result may be 
endemlc to the laboratory context which remans somewhat artificial 
despite our best efforts). The key to  success with such methods is the 
moderate realism of the established scenario and the smoothness of the 
uerson/machine interaction. But our degree of success does also vary with ! 
the comulexlty of the model. A nlne uolnt unidimenslonal utility l 
assessment is comfortable. A bivarlate utility assessment is more difficult. 
Higher dimenaonal assessment 1s currently beyond our ability. (We have 
not been impressed by the mathemat~cally convenient but largely 

~ 
1 

unrealistic assumptrons that others have chosen to make). The 
interrogation urocedure for multiple linear regresslon onglnally 
urogrammed following the Kadane et. al. suggestions uroved inadequate. i ! 
However, Dr. James Chen of my staff has now produced an acceutable 
urogram which 1s tolerated by Keen lnvestlgators, but is still wearlsome 
for most users. Further imurovements willneed to be made. I 

Finally, let me adress Professor French's useful quenes. Professor Lindley and I 
showed in our orlginal paper that the value of P. effected U(%,,) most with decreasing 
effect for more distant values of 8.. This is, 1 thinK, a desirable urouerty, though 
Indeuenaence for I t n would be ureferable. 

Professor French's second query gets to the heart of our methods and I am 
grateful to  him for raising the Issue because I neglected this vltal uolnt in my 
oresentatlon. (I really ought not assume that everyone 1s familiar with our CADA 
Drolect). If 1 may borrow Professor French's words, the unmary functlon of elicltatlon 1 
urocedures on CADA is to help the "decision maker exulore his preference belief l 

l 

sIructure, discover mconslstencles, think about them and then resolve them" We 
belleve that this urocess is facilitated by conversatlonal language comuuter lnteract~on 
Descr~pt~ons of CADA are contained in my article on CADA m the Infernafronal 
Stafrstrcal Revrew, 1973, my artlcle in the Amerrcan Statrslrcran In 1975 and a second 
article m the Amerrcan Sfafrsfrcran to appear m November, 1979. 
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Posterior Odds Ratios for Selected 
Regression Hypotheses 

A. ZELLNER and A. SIOW 
Untversrty of Chicago 

SUMMARY 
Bareslan Dostenor odds ratlos for freauentlv encountered nypotneres about 

Daramerers of the normal linear multiple regresslan model are derived and discussed. Far 
the  ~arucular Drior distributions utilize*, rr 1s found that the posrerior odds ratlos can be 
well appronlmated by funcrlons that are monaronic in usual sam~ling theorv Fstat~stlcs. 
Some lmplicatlons of this finding and tne relatlon of our work ro the Dloneenng work of 
Jeffreva and others are considered. Tabulations of odds ratLos are ~rovided and discussea 

Keywords: BAYESIAN ODDS RATIOS: HYPOTHESIS TESTING: REOfiESSlON HYPOTHESES; 
REORESSiON MODEL. 

I .  INTRODUCTION 
In this paper we derlve posterior odds ratios for selected sharp hypotheses 

which are freauently encountered in regresslon analysrs', Our approach 
involves use of generalized forms of Jeffreys's prlor distributions that he 
regards as appropriate when there 1s little previous Information, that is " ...m 
the early stages of a subject ...." Jeffreys (1967, D. 252). Of course if more 
~nformatlon 1s available, more informative prior distributions can of course 
be emDloyed as has been done by Dickey (1971, 1975. 1977), Learner (1978), 
Zellner (1971, p. 307 ff.) and others. Herein, we shall em~has lze  the situation 
In which little is known and, as will be seen resulting posterior odds can be 
expressed in terms of usual t o r  Fstatistlcs and degrees of freedom. Thus the 

1 .  See Jaynes (1976) for raluable analyses of a number of irnuortant pracncal emmules 
iilustiarlng tne neea for care m formularing relevant nypotneses and uslng appropriate 

tecnnlquer m order to obtmn sensible results. 



results to be presented urovide a direct small-sample link between Bayes~an 
postenor odds ratios and non-Bayesian test statlstlcs as in the urevlous work 
of Jeffreys (1957, 1967, 1978), Lindley (1957) and others. Also, some large 
Sample connectlons between Bayeslan posterlor odds ratlos and non-Bayes~an 
large samule test statistics are developed which are suecial cases of the general 
results of Lindley (1961) and Schwarz(1978). 

Several, Including Thornber (1966), Gelsel (1970), Geisel and Gaver 
(1974), Leamer (1978), and Lempers (1971) have considered posterior odds 
ra t~os  for regression hypotheses when little Information 1s available. Our 
approach differs from those utilized In these works m that we employ urlor 
distribut~ons different from those employed in these works. 

Since our approach is an extension of that or~ginally uresented by 
Jeffreys (1967, Ch.V.), we present a brlef review of  Jeffreyss related results 
In Sectlon 2. In Sectlon 3 posterlor odds ratlos for several imuortant 
regression nypotheses are derlved. Sect~on 4 presents some numer~cal 
evaluatlons of the posterior odds ratlos derlved in Sectlon 3 while a summary 
of results and some concluding remarks are glven in Sect~on 5. 

2. REVIEW OF JEFFREYS'S RESULTS 

Jeffreys (1967, Ch.V) has derlved posterior odds ratlos for a number of 
lmportant testing problems m which little prior informat~on 1s available and 
the lssue 1s whether a parameter's value IS equal to zero, a sharp null 
hypothesis. A sharp null hypothesis of ''no effect" is frequently encountered 
and thus it is Important to have an analysis of it. Jeffreys refers to such an 
analysls as "significance testmg" and contrasts it with an estlmatlon approach 
In which,no swclal value of the parameter, for example zero 1s singled out for 
special attention. Also, he (1967, p. 251) polnts out that his estimation prior 
probability density function (pdo-for representing "knowlng little", for 
examwle a uniform prior pdf is inappropriate for a significance test~ng 
sltuatlon in which little 1s known about a parameter's value2~ 

T o  be specific, consider Jeffreyss (1967, p. 268 ff.) analysls of the 
normal mean problem, 

where the y;s are observations and the u.'s are unobserved errors assumed 
lndeuendently drawn from a normal pouulatlon with zero mean and standard 

2. In regression analysis wnen we delim~t the number af regressors to ue fimte, we are ouvlously 
using snarl, null hypotheses about the values of the coefficients of omittea variables. 

devlatlon o. 0 < o < m which has an unknown value. The two hypotheses 
which Jeffreys considers are: 

As regards prlor pdj's, under H, Jeffreys utilizes 

Under H,, Jeffreys (1961, p. 268) remarks that, "From considerat~on of 
similarity it Ithe prlor udf for h under H,] must depend on o, slnce there, is 
nothing In the uroblem except o to glve a scale for X". His unor under H, is 

where l", f(X/a) A / o  = I .  Then with p r~or  odds 1:1, the posterlor odds ratlo, 
K,, is: 

j ro  L exp(-n('y2+ d2)/?+02]do 
= (2.5) 

1: j;F(h/o) o-.'-Z e~p(-n[(X-y)~ + ~21/20ZldaA 

where y = Z;.,y,/n and nkZ = E:, ( , ~ ~ - y ) ~ .  
From detailed considerat~on of (2.5) in the case n = J in which no declslon 

regarding H, and H, can be made (K,, = l), Jeffreys finds "that the 
considerat~on that one observation shall glve an lndecislve result IS satisfied if 
AV) lwith v = h/o] is any even functlon with integral 1." (p. 269). Further, the 
condition that K,,=O for n 2 2  when $ = o  and y t O  requlres that the 
denominator of (2.5) diverge. This will occur if and only if Jrflv)v"~'dv 
diverges (p.269). As Jeffreys notes, "the slmplest functlon satisfying this 
condition for n > I  and also sat~sfylng (3) [\p", f(v)dv = 11 1s f(v) = 
~ / a ( l  + vZ)." Thus his form for f(X/o) IS 

a udf in the unlvarlate Cauchy form centered at zero. With respect to this 
polnt, Jeffreys (1967, p.251) states, "We must. .. say that the mere fact that It 
has been suggested that h 1s zero corresponds to some presumption that lt 1s 
fairly small". After uolnting to unsatisfactory features of a normal prlor udf 



for A,: he wrltes, "The chief advantage of the form [(2.6)] what we have 
chosen is that in any s~gnificance test it leads to the conclusion that if the null 
hypothesls [X=O] has a small posterior probability, the uostenor probability 
of the parameters 1s nearly the same as in the estimat~on problem. Some 
difference remalns but n is only a trace". (p. 273). 

When (2.6) 1s substituted in (2.5) and the lntegratlons are uerformed, 
approxlmately in terms of thedenominator, Jeffreys obtains (1967, p. 272): 

where v = n-l and i = Jn y /s ,  with sZ = E;, (y; -y)2/v and the error of the 
approx~mation "is of the order of l /n of the whole expression". Also Jeffreys 
(p.274) provides an  exact exmesslon for K,,. Shown below are values of K,, 
for Selected values of u and t2 taken from Jeffreys's table (p.439): 

From Table 2.1, it is seen that when v = 20, K,, = I when tZ = 4.0 while 
for v = 5,000, K,, = I when t2 = 9. It is thus seen that as W Increasesinvalue. 
a larger value of !, is requlred for indifference (K,, = 1) between H, and H,. 
This correswonds to a sampling theorist's usual lowerlng of the significance 
level as u grows in value and also bears a direct relatlonshiu to Lindley's 
Paradox (1957). Also note that in contrast to DeGroot's (1973) result, the tail 
area or "p-value" associated with the ,-value 1s not equal to the uosrerlor 
probability on the null hypothesls4. For examwle, with u = 20 and t = 2.0, the 
"U-value" is approxlmately .025 and yet K,, = I or  the posterlor probability 
on H ,  . X = 0 is %. Finally, as  Jeffreys (1967, p. 272) remarks, the variation 
of K,, with t is much more lmuortant than its varlatlon with U. For moderately 
large v ,  K,, i ( a ~ / 2 ) " ~ e x ~ ( - t ~ / 2 ) ,  from which thedependence of K,, on u and 
t 1s clearly seen. 

In a brlef treatment of regression, Jeffreys (1967, pp. 324-326) remarks 
that "...The whole of the tests related to the normal law of error can be 
adapted immediately to tests concerning the introduction of a new functlon to 

3 .  Jeffrevs (1967,p.273) pomts out tnar if  the prlor ~ d f  for v = h / o  werep(") sr expl-cv21, where 
c a some glven positive constant, the Dostenor odds ratso for h = 0 and At 0 " ... would never 
be less than some positive functlon of n lthe sample stzel however closely the observations 

agreed among themselves". Also, on this same page he pomrs out a second defect of this 
normal form for theprlor pdf, 

4. it appears that DeGroot (1973) obtams his result that the  rail area assoclated vith a sarnding 
theory rest statistlcss value is equal to the posrerlor probability on the null hypothesls by use 
of a very special prmr pdf on his parameter 9. His prlor probabilities on B's possible values are 
fined even though a gwen departure of B from rts null value of zero lmplies diffenng 
departures of the underlying locarlon parameter's value from zero as n: the sample slze 
changes. 

TABLE 2.1 

Values of tZ Associated with Corresponding 
Values of K,, and v=n- l  from (2.7) 

represent a serles of measures". (p. 325). He considers tne lmwortant special 
case for which the hypothesis is that an added term's coefficient is equal to 
zero and polnts out that (2.7) 1s the approxlmare posterlor odds ratio for this 
problem where I 1s the usual t-statistic relating to the added term's coefficient 
and v 1s the degrees of freedom assoclated with the t-sratlsiic. Below it will be 
seen that Jeffreys's result is lncluded in our general results as a sueclal case. 

:. POSTERIOR ODDS RATIOS FOR SELECTED REGRESSION HYPOTHESES 
Let our regress~on model for the nxl observation vector y be: 

* For v = 9, Jeffreys has used his eracl result for K, ,  10 CornDuIe the following l'values: 3.8 for 
K j l  = 1. 7.7 for K,> = 101'2, and 13.1 for K,, = 10'. I t  is seen that theenaci results are in good 
agreement with the  approxlmare results even though u = 9 1s small. Jeffrevs (1967, p. 439) 
tabulates exact values far v = 1.2,: ,..., 9. 



where i 1s an nxl vector wlth all elements equal to one, a and p are a scalar 
uarameter and a kxl vector of parameters w ~ t h  unknown values, ( r : X )  1s an 
nx(k+ 1) glven matrlx of rank K+ I and U 1s an n + I vector of error terms. It 1s 
assumed that the variables In Xare  measured In terms of devlatlons from therr 
resuectlve sample means and thus , ' X  = 0 '  Further, the elements of u are 
assumed Independently drawn from a normal uouulatlon wlth zero mean and 
flnlte variance oZ w ~ t h  unknown value. 

We lnltlally consider the followlug two hypotheses: 

The likelihood funct~ons under tnese two hypotheses are glven by: 

wnere the urouortlonality constant 1s (2a)"'"n each case, 

Y = X:'=lY./n, ",S: = XL,@y)'; v ,  = n-I 

i = (X'X)-'X'y, v $ $  = ( y y l - ~ i ) ' ( y y i - ~ i ) ,  and v ,  = n-k-l 

The follow~ng prlor assumptions will be utilized in obtalnrng a uostenor 
odds ratlo. First we place equal prior probabilit~es of '/2 on both hypotheses 
and thus the prlor odds ratlo is I:I. Second, under H ,  we employ a diffuse 
prlor distribution for a and o, that is, 

Under H ,  we utilize the follow~ng pnorpdf 

l where c = r [(k+ 1)/2]/a'k""Z~ 

In (3.6) and (3.7.3) the factors of proport~onality are assumed the same. 
Further, in (3.7b) ~t has been assumed that the prlorpdf for P glven o 1s In the 
form of a K-dimensional multlvarlate Cauchy probability denslty functlon 
with zero locatlon vector and matrlx X'X /n ,  a matrlx suggested by the form 
of the information matnx. 

The poster101 odds ratlo, K,, for H, and H, with the prlor odds rat10 l:I, 
1s: 

I Explicitly, the lntegratlon in the numerator of (3.8) 1s performed as follows. 

I The lntegral to be evaluated is: 
l 

l Uslng propert~es of the un~varlate normalpdf, lutegrate with respect to a to 
l 
I 

obtaln: 

where the lntegratlon over o was performed by utilizing well-known propertles 
of the Inverted gammapdf -see, e.g. Zellner (1971, p. 371)- 

The lntegral in the denomlnator of (3.8), denoted by I, will be evaluated 
as follows: 

1 with f (p 1 a) gglven in (3.7b). First integrate over a. uslng properties of the unl- 
varlate normalpdf to obtaln: 

with 



O n  lnsertlng f ( p ]  o,Hz) from (3.7a) and performing the lntegratlon with res- 
pect to  the elements of p approx~mate ly ,~  

Then,  

where the lntegratlon over a has beeen performed approximately. 

Usrng the results in (3.9a) and (3.9b), the approxlmate posterior odds rat10 
forH,vs .  H, 1s glven by: 

with a = T ~ ' ~ / F [ ( ~ +  1)/2], slnce v&+ ~'x 'x$ = vls21. Alternatively, K,, m 
(3.10) can be expressed as: 

K,, = a(~~/2)* '~( l -R~)"z- ' "~  (3.12) 

where F,.., = $'x'x$/~sz, and RZ = $'x'x$/(~#$+$'x'x$), the usual 
"F-statnttcs" and the squared sample rnultipiple correlation coeffictent, 
respectlvely. Further, a large sample approxlmatlon to  -2fnKlz 1s glven by: 

5. This appronmate rntegratlon can be vlewed as finding the mean of fvlo, HJ a bounded 
funcrmn of 0. Cramer (1946, p. 353 ff.) indicates that the  error of the approxlmarlan is O(n-') 
I" line with Jeffrevss remark etled in Sectlon 11. Thus if  the posterior odds ratio K,,=I,/I, 
and if the lnregral I ,  ss evaluated exactly and I,=I',+ Q("-'), where I', is the approxlmate value 
of I,, ~,,=l,/[I*,t~ln- ')l  or 112 = K,,[I+O(n-71 and tnus the error m uslng I,/I, is 

K,,.Oln+), as volnted out above bv Jeffrevs. 

n n 
where xf = p'x 'p/~Z,.~ 

We now consider a hypothesis relatlng t o  a subvector of 0 In (3.1). 
Rewr~te  (3.1) as 

where X = (X1:XJ wlth X, and X2 k1x1 a n d  k$l vectors, respectlvely and 
k,+k,=k. All Other assumutlons made m connection with (3.1) apply t o  
(3.14). For  convenlence, we shall reparametrlze (3.14) a s  follows: 

where V = [I-X,(X;Xl)-'XJXz a n d  q = pl+(X;XJ-'X;Xfi,. Note that  
x;v = 0 

A posterlor odds rat10 relatlng t o  the following two hypotheses will be 
denved: 

and 

with a, the elements of q and a unrestricted under both hypotheses. 
The likelihood functions under these two hypotheses are glven by: 

and 

where 

6. To obtaln (3.13), wrlte (3.11) as K,, = a(u,/Z)'" exp(vz-1)/2 Yn I1 +(k/vZ)F,,,JI and expand 
the logarithmic factor In the exDonentia1 as fn(l + X )  * X .  The result is K , , ~ ~ ( U J Z ) " ~  
expi-kFkF,/Zi. Then -ZPnK,, = X: - khu,, where X :  = kF,,., and terms not dcvending on P, 
have been dropped in this large-P, approumatlon. Further, under 8=0 the approxlmate 
sampling pdf for -2?nK,, can be obtamed from that of X:. Also, agam under B = 0 tne 
approxlmate cumulative sampling pdf for K,, in (3.11) can be obtalned from that of F*,.>. 
That IS, slnce K,,s a one-to-one monotonlc funcrlon of F,,,a for fixed kand D,, Pr(F,,? > X I  

= Pr(K,, < X ' ) ,  wherex' is the vaue of K,,assoclared withF,,.? = X .  



r = E:=,Y~/~, $ = ( ~ 3 , ) - ~ x ; Y ,  U,SZ= ( Y - ~ c  -x,$),(Y-~L -X,$), 

v,  = n-kl-i, b2= (V' I'-lV'y, v& = ( y - j ~  - X ~ $ - V $ ~ ) ' ( ~ - ~ ~ - X $ - V ~ J  

and v,  = n-kl-k,-I. 
Under H,, we employ the followlng diffuse prlorpdf for the parameters: 

while under H, the pr~orpdf is: 

with 

In (3.20) and (3.21a) the factor of prouort~onality 1s taken to be the same. 
In (3.21b), the prlor pdf for 8, glven o 1s the form of a k2-dimensional 
multluarlate Cauchy pdf with zero locatlon vector and matrlx V'V/n, a 
matrix suggested by the form of the lnformatlon matrlx. 

The posterlor odds ratlo, KAB for HA and H, with the prlor odds ratlo I:: 
1s: 

JP(Y I ~ , u , ~ , H A ) P A ( ~ ~ ~ , v  IH~)dadadv 
K,, = (3.22) 

IP(Y l a.o,q,Pz,H,lpD(a,o,n,p2 lH~)dad~dwfO~ 

On applying integration technlques slmilar to those employed above (see 
Appendix), the followlng approxlmate expression for K,, 1s obtalned: 

K,, = b ( ~ , / 2 ) ~ z ~ z ( ~ , s ~ / ~ , ~ : ) ( ~ ~ - ~ ~ l ~  

where b = ~ " ~ / r [ ( k ~ +  1)/2], R: and X: are the squared sample multiule 
correlation coefficientes under H, and H, and F,,., = $;V 'V$~/~~: ,  the 
usual "F-statlstlc" Also, if U, 1s large, the following approxlmate result 1s 
available: 

A 2 with = b;v' vpz/s, 

We now consider the follow~ng four hypotheses relatlng to P, and P, m 
(3.14), each assumed to have the same urlor probability: 

and 
H,: R, # Oandp, = 0, (3.25~) 

H,:& = Oandp, t 0, (3.25d) 

The posterlor odds rat10 for HI and H,, K,,, glven in (3.11) is: 

K,, = ~(v~ /2 )* /~ / [1  + ( ~ / Y ~ ) F L ~ J ( " Z - ~ ' ~ ~  (3.26) 

where a = ~ ~ / ~ / r [ ( k +  1)/2] and U, = n-k-l. This odds ratlo has been derived 
employing the prlor assumptions in (3.6) and (3.7), the latter lnvolvlng a 
multivarlate Cauchy prlorpdf for B, and 0, glven a. The posterlor odds ratlo 
for H, and H,, K,, 1s ident~cal to K,, ln (3.23), namely 

where b = ~ " ~ / r [ ( k ,  + 1)/2] and v, = v,  = n-k-l. K,, also can be obtalned by 
using the conditional prlor pdf for 0, given 0, = 0 and o associated with the 
multlvarlate Cauchy pdf in (3.7b) under H, along with uniform Independent 
prlors for a and log U. Similarly, the poster101 odds rat10 for H, and H,,K4, 
can be obtalned and is: 

where q = ~ ~ ' ~ / l ? [ ( k ~ +  1)/2]. Last, from (3.27) and (3.28), the posterlor odds 
ratlo for H, and H,,K,,ls: 



where g = r [ ( k ,  + 1)/21/f [(k,+ 1)/2]. 
The posterior odds ratios in (3.26)-(3.29) can be helpful in screening sets 

of variables, X ,  and X ,  for lncluslon a in regression in sltuatlons in which 
there is little wrior information and the lnltial presumption 1s that neither set 
6f variables probably belongs in the regression. A special case of the above 
analysis 1s one in which X, and X ,  are vectors and thus p, and 0, are scalars. In 
this case, we are screening individual variables por possible inclusslon in the 
regression. Further, elaboration of the hypotheses in (3.25) to relate 
individual coefficients 1s possible and would lead to posterior odds ratlos 
useful in determining which individual variables to include in a regresslon. 

To gain greater familiarity with the odds ratlos derlved above, we now 
turn to consider some numerical evaluations of them. 

4. NUMERICAL EVALUATION OF SELECTED ODDS RATIOS 
In this Sectlon, we provide some numerical evaluations of the odds ratios 

derived in Section 111. First, note that when k = I ,  the posterior odds ratio K,, 
In (3.1 1 )  for the hypotheses P = 0 and P t 0 reduces to K,, -- ( ~ u , / 2 ~ ' ~ / ( 1  + 
!Z/u2)"2-1i'2, with vZ = n - 2 which is exactly In the form of Jeffreys,~ odds 
ratio m (2.7). Thus the numerical results in Table 2.1 apply directly to the case 
of simple regresslon. From Table 2.1, it is seen that for u, = 20, K,, = 1 when 
tZ  = 4.0 where t2 = i3zz(xi - i ) ~ / s z  is the square of the usual t-statistic. Since 
9 = !'/(v2 + t2), a value of rZ = 1/6 corresponds to t2 = 4.0 and K,, -- 1 for 
v ,  = 20. For v ,  = 5.000 and P = 9.0 (or 9 = .0018), K,, = 1. Thus 
indiffefence. (K,, = 1) is achieved for a larger value of !, (or a lower value of 
9) with U, = 5,000 as compared with v, = 20. For v, = 20, K,, = 1/100, that 
1s the odds are 100:l agrunst p = 0 when !' = 18.9 or 9 = .486. For v, = 
5,000, K,, = 1/100 when tZ = 18.2 or 9 = ,00377. Thus with v, = 5,000. a 
value of f Z  = 18.2 (or equivalently, 9 = ,00377) strongly favors the 
hypotheses 13 t 0. Since values of v,  In the vicinity of several thousand are 
frequently encountered in analyses of cross-section or survey data, these 
results are relevant for applied work. In particular, they polnt (a) the need for 
absolutely larger *-values for indifference (K,, = 1) as v, increases and (b) 
recognition that for large values of v,, small values of rz can be consistent with 
strong evidence agarnst P = 0. These results, it must be emphasized, apply m 
situations in which we have little prlor information about p's value under the 
hypotheses l3 t 0. If more information 1s available, sultable prlor pdf s 
reflectlng it would have to be introduced, as polnted out by Jeffreys (1967, p. 
252). 

TABLE 4.1 
Values of RZ and F,,., Assoclated with 

Part~cular Values of K,, and k in 
(3.12) for v, = 20 and v, = loo* 

A. v2 = 20 

Value K12 .01 and .05 Critsal 
k of: 1 1 O U Z  10 ' 10 10-2 Values of F and 

Assoclated R2's 
.01 .05 

I RZ .l6 .26 .35 .42 .49 .29 .l8 
Fi,zo 4.0 7.0 10.6 14.5 18.9 8.10 4.35 

2 RZ .27 .35 .43 .49 .55 .37 .26 
Fmo 3.7 5.5 7.5 9.7 12.3 5.85 3.49 

3 RZ .35 .42 .48 .54 .60 .43 .32 
F3920 3.5 4.8 6.3 8.0 9.9 4.94 3.10 

4 RZ  .40 .47 .53 .58 .63 .47 .36 
F4220 3.4 4.4 5.7 7.0 8.6 4.43 2.87 

5 R2 .45 .51 .57 .61 .66 .51 .40 
FS-ZO 3.2 4.2 5.2 6.4 7.7 4.10 2.71 

6 RZ .48 .54 .59 .64 .68 .54 .44 
F6,zo 3.1 3.9 4.9 5.9 7.1 3.87 2.60 

B. v, = 100 

I RZ ,050 ,072 ,093 .l1 .l3 .065 ,038 
FI,IOO 5.2 7.7 10.3 12.8 15.5 6.90 3.94 

2 R Z  ,089 .l1 .l3 .l5 .l7 ,088 ,058 
F2,100 4.9 6.2 7.5 8.8 10.3 4.82 3.09 

3 R Z  .l2 .l4 .l6 .l8 .20 .l1 ,075 
F3,ioo 4.6 5.5 6.4 7.4 8.3 3.98 2.70 

4 RZ  .l5 .l7 .l9 .21 .23 .l2 ,090 
F ~ , I O O  4.4 5.1 5.9 6.6 7.3 3.51 2.46 

5 R Z  .l8 .20 .21 .23 .25 .l4 .l0 
Fs,loo 4.3 4.9 5.5 6.1 6.7 3.20 2.30 

6 R Z  .20 .22 .24 .25 .27 .l5 .l2 
F~,ioo 4.2 4.7 5.2 5.7 6.2 2.99 2.19 

-Note thatFe,., = (v,/k)R2/(1-Rz), wlth v, = n-K-l 





cost, a numerical integration approach. suggested by Dickey (1971) could be 
applied to obtaln slightly more accurate results. 

In line with Jeffreys's, Lindley's and some others's previous results, we 
have found that sampling theorists's usual .05 crit~cal values of test statistics . 
can be far from a Bayes~an postenor odds indifference value of one under a 
variety of circumstances. Whether this finding is interpreted as a systematic 

flaw in samuling theory Dractice is of course critically dependent on the nature 
of the usually impliclt loss structure used in sampling theory testing. Cases in 
which sampling theorists mechanically employ a 5% significance level no 
matter what the sample size and/or the number of parameters are interpreted 
as flawed analyses. If sampling theorists and Bayesians carefully consider the 
underlying loss structure in choosing between or among hypotheses, the above 
analysis indicates that there can be a compatibility between Bayesian and 
sampling theory results in testing but, of course their Interpretations will 
differ radically. 

While, as polnted out above there can be some degree of compatibility 
between Bayes~an and sampling theory testing results, the direct interpretation 
of samule evidence, as reflected in F statistics or RZ values in terms of 
posterlor odds ratios stands In marked contrast to sampling theorists's and 
others's unclear interpretations of sample evidence in terms of "p-values", 
and/or values of RZ or of RZ. the adjusted coefficient of determination. As 
mentioned above, ap-value associated with the value of a test statistic is not at 
all an accurate measure of the uosterior probability associated with a null 
hypothesis. However, it should be noted that most of the posterior odds ratlos 
derived above are monotonlcally Increasing functions of the p-values 
associated with t or F statistics involved in the posterior odds ratios. Thus 
there'is some rationale for consideringp-values: however, slnce posterlor odds 
ratios have a direct interpretation and explicitly reflect the prior information 
employed, their use 1s preferable to the use of p-values. Also, posterior odds 
ratlos on alternative hypotheses can be employed, as described below to 
average estimates (and predictions) over alternative hypotheses when 
posterlor odds ratlos do not yield a clear-cut choice of a particular hypothesis. 

In terms of the hypotheses considered above, it is possible to use their 
associated posterior odds ratios to obtain optimal (relative to quadratic loss) 
Bayesian "pre-test" point estimates --see Zellner and Vandaele (1974, pp. 
640-641). For example with respect to the hypotheses H, ; p = 0 and H, ; 
R t 0,  the polnt estimate that is optimal relative to quadratic loss 1s a = P,O 
+ (1-FJ$ = (1-PJ$ = (1 +K,,)-'E where P, is the posterior probability for 
H,, K,, = P,/(l-P,) is the posterlor odds ratio for H, and H,, and $is the 
uosterior mean for p under H,. With the pnor pdf (3.7) which we have 
employed under H,, $will be close to the least-squares estimate. Thus B = 

* 
(1 +K,J ' p  where K,, glveu in (3.1 1) is a function of the usual Fstatlst~c. ~l~~ 

note that the "shrinkage factor" (1 +K,&' is between zero and one with a 
value near zero when K,, is Large and a value near one when K,, 1s small. This 
shrinkage fact01 can be compared with others which have appeared in the 
sampling theory literature -see Zellner and Vandaele (1975, p. 639). 

Finally, it would be interesting to compare the posterior odds ra t~os  
derlved above with others based on more lnformatlve urlor distributions. 

APPENDIX 

Herein we evaluate the integrals appearlng in equation (3.22) of the text. 
The integral in the numerator, denoted by I, is: 

where v,, S$, j and have been defined in the text in connection with (3.18). 
We can integrate over a and the k,  elements of n using properties of unlvariate 
and multivariate normalpdys, respectively to obtain: 

Using properties of the inverted gamma odf, the integral in (A.2) can be 
evaluated to yield: 

The integral in the denominator of (3.22) in the text, denoted by I, is: 

n A 
where h ( p ,  l U) is given in (3.21b) of the text and v,, S;, 7,  p ,  and V have been 
defined in connection with (3.19). The integration over a and ?I can be 
performed exactly using properties of normal distribut~ons to y~eld: 



T h e  ln tegra t lon  over 0,  can be  done app rox lma te ly  by no t l ng  t h a t  1s 11 

equivalent to obta ln lng  t h e  expectation of t h e  bounded  func t l on  N (P2Iu). 
Following J e f f r e y s ' s  a p p r o a c h  a n d  a l s o  Cramer s (1946,  p .  353) 
app rox lma t lon  results, we have  on mtegra t lng  app rox lma te ly  wl th  respect to . 
t h e  k, e lements  of 0 ,  

Large values of t h e  s econd  t w o  f ac to r s  In t h e  l n t eg rand  of this last  expresslon 

are near usg /n .  If ,  as Jef f reys  (1967, p. 272) does ,  we substitute oZ = vs!e/n 
I n  t h e  f irst ,  s lowly varyrng  f ac to r  of t h e  ln tegrand ,  and t h e n  Integrate with 

respect  to U ,  t h e  result  is: 

T h e n ,  us lng  (A.3)  and (A.6)  

In I - K,, = - - ( l  + $ 2 r  V' v$~/v&)'~z+~"'  (A.7)  
I D  c, 

Now c,, t h e  normalizing constant i n  (3.21b) i s  

wlth b = ?i1'2/I'[(kz+ l)/21 and whe re  i n  g o l n g  from (A.7)  to (A.8)  (n/2)Lziz 
has  been  rep laced  by  (u,/2)'ziz which  to t h e  o r d e r  of t h e  app rox lma t lon  1s 

equrvalent .  (A.8)  1s exactly t h e  expresslon i n  (3.23) m t h e  text. Fu r the r ,  on 
subs t l tu t lng  udi/u,si = ( l -Ri ) / ( l -R%) ln (A?), t h& second line of (3.23) 1s 

gb t a lne2 .  Finally, f r o m  v,si = v& + 0P;V'VP2, uAsi/ud!e = 1 + 
&'V'V&/ud$ = I + (k2/v,)Fky,, whicn w h e n  utilized i n  (A.8)  glves t h e  

th i rd  l ine  of (3.23). 

ACKNOWLEDGEMENTS 

Research  f inanced  b y  l n c o m e  from t h e  H.G.B. Alexande r  E n d o w m e n t  

F u n d ,  Grbluate Schoo l  o f  Buslness, U. of Ch icago  and by  N a t ~ o n a l  Sclence 

F o u n d a t ~ o n  Grant, SOC 77-15662. 

REFERENCES 

CRAMER, H. (1946) Matnemailcai Mefhofls OfStofmilcs. Princeton: Princeton Unlveislry press. 

DEGROOT, M.H. (1973) Dolng What Comes Natuiallv: Inter~retmg a Tail Area as a Poster~ar 
Probability or as a Likelihood Ratlo, J .  Amer. Slalut. Assoc. 68,966-969. 

DICKEY, J.M. (1971) The Weighted Likelihood Raiio, Linear Hypotneses on Normal Location 
Parameters Ann. Moth. Stoltst. 42,204-223. 

- (1975) Bayeslan Alteinarlves to the F-test and Least-Squares Estimates in tne Normal 
Linear Model. In Studies m Bayesron Econometrrcs and Storrsrrcs m Honor ofLeonard J .  
Savage, (S.E. Fienberg and A. Zellner eaa.), 515-554Amsteidam: Norm-Holland. 

11977) Is tne Tail Area Useful as an Approximate Bayes factor? J.  Amer. Sloiisl. Assoc. 
72, 138-142. 

GAYER, K.M. and M.S. GEISEL (1974) Discr~mlnarlng Among Alternative Models: Baseslan and 
Non-Bayesian Metnoas, m Ei.ontrers qf Econometrrcs, (P. Zarembka ed.1 New Yora: 
Academic Press. 

OEISEL. M.S. (1970) Comparmg and Chooslng Among Parametric Stat~stlcal Models: A Base- 
sun Analysrs with Macroeconom~c Application. Ph. D. Thesls. Unlvers~tyaf Chicago. 

JAYNES, E.T. (1976) Confidence Intervals Vs. Bayeslan Intervals, In Founflol!ons OfProdobili- 
ry. Theory, Starrsr,col Inference, end Stalrstreai Theones of Science, (W.L. Harper and 
C.A. Hookereds.) 175-213. Dordrecnt-Holland: D. Reidel. 

JEEEREYS, H. (1957). Scientific Inference (2na ed.) Camoridge: Unlversltv Press. 

- (1967) Theory qfPmDabiiity (3rarev. ed.), Oxford: Unlverslty Press. 

(1980) "Same General Polnts I" Probability Theorv". an Boyesran Anoiysrs m 
Econometrrcs ond Storrsrrcs, Essays m Honor ofHnrold Jeffreys (A. Zellner ed.) 451-453. 
Amsterdam: Noitn-Holland. 

LEAMER, E.E. (1978) Specificairan Seorcnes, New Yorn: Wilev 

LEMPERS. F.B. (1971). PostenorProuobilifies qt AlternalrveLineorModeIs, Rotteraam: Unlver- 
sltv Press. 

LINDLEY. D.V. (1957)A StatlstlcalParaaox, Biometrika44,187-192. 

- (1961) The Use of Pdor Pro~ability Distributions m Statlstlcai Inference and Decisions, in 
Proe. Fourtn Ber~eley Symfl. (l. Neyman, ed.) 453-468. Berneley: Unlverslty of 
Caiifornla Press. 

SCHWARZ, G. (1978)Esttmatlng the Dimension of aModel, Ann. Storrsl. 6,461-464. 

THORNBER, E.H. (1966) Applicatlon~ of Decision Theorv ro Econometncs. Ph. D. tnesls, Unr- 
versltv of Chicago. 

ZELLNER, A. (1971). An Irztrofluct~on 10 Boyeslon Inference rn Econornerrrcs, New York: Wiley 

ana W. VANDAELE (1975) Bayes-Stern EsOmators for a-means, Regresston and 
Simultaneous Equatton Models, I" Studies ~1 Boyeszon Economelrres and Stolrstrcs m 
Honar afieonora J. Sovoge (S.E. Fienberg and A. Zellner em.) 627-653 Amsterdam: 
Noitn-Holland. 



A Bayesian analysis of classical hypothesis testing 

JOSE M. BERNARDO 
Unlversidod de Valenela 

SUMMARY 
The Drocedure of rnaxlmizing the rnlsslng mformat~on is applied to derlve reference 
posrerlor probabilities for null hypotheses. The results shed further light on Lindleys 
varadon and suggest that a Ba~eslan mterDreratlon of classlcal hypothesls testlng is 
possible by providing a one-to-one approxrmate relationship between significance levels 
and Dostenor vrobabilities. 

Keywords: BAYESlAN INFERENCE: HYPOTHESIS TESTING: LNFORMATlON MEASURES; 
L I N D L E Y ' S  PARADOX: NON-INFORMATIVE P R I O R S ;  REFERENCE 
DISTRIBUTIONS. 

1. THE PROBLEM 

The Bayeslan approach to the class~cal problem of hypothesls testing 
seems to be clear in pr~nciple. Indeed, if one does not have a specific declslon 
problem in mlnd, to test a null hypothesis H, glven some data D, I.e. to check 
whether the data D  are compatible with H,, may well be done by quoting the 
corresponding posterlor probabilityp(H, D )  and checking whether or not this 
1s very small. 

To produce a posterlor probability one needs a pnor. If one 1s interested 
In an answer which only depends on the data and the model, so that a 
compar~son with classlcal results 1s possible, one is bound to use some sort of 
"non-mformative' or reference pnor. When both the null hypothesls H, and 
its alternative H, have the same dimension, e.g. when both are simple or both 
composite, a solutlon is easily obtained. Thus, if both hypotheses, are simple, 
the widely accepted reference  nor 1s a(H,) = a(H,) = 1/2 and the 
corresponding reference posterlor probability of the null hypothesis is simply 



This seems to behave uroperly. If both hypotheses are composlte, so that 
the distribution of the datap(D 1.9) may be Indexed by some unknown Ore and 
H, is a prouer subset of 9 with non-zero measure, one may use a reference 
Drlor a(#) for 8 to obtaln 

Agam, for a sensible cholce of a(#), this seems to behave properly. Both (1) 
(2) were proposed by Jeffreys (1939/67), who also sugested 

where i(8) = -Jp(DIO)[aZ(log p(D10))/a82]dD, as the appropriate cholce for 
a(@. Maximizing the mlssing lnformatlon (see Bernardo, 1979b) provides a 
general method to derlve reference distributions which reduce to (1) and (2) m 
these cases, and produces Jeffrey's prlor under regularity conditions. 

It is easy to snow; however, that the posterior probability of the null 
hypothesls p(H,ID) may be very misleading when H, 1s simple and H, 
composlte unless one is very careful with the prior specification. To see tbis, 
let D = (X,, X,, ..., X,) be a random sample from a normal distribution of mean 
p and known variance oz. let the prior probability that &=p,, the value of the 
null hypothesls, be p t O ;  tbis is necessary to obtain a non-zero posterior 
probability for H,. Suppose that the remlnder of the prior probability 1s 
normally distributed with mean p, and varlance of so that 

the arithmetic mean of the observatlonxls obv~ously sufficient and we that 

where 

so that (3) becomes 

d / n  \ 1 2  exp(@-pJ2/(2a/n)) 
l 

(a: + oZ/n) / exp(fi-pJ2/(20f +20Z/n)] 

It 1s easily checked that for any fixed? andp,  the right hand side of (4) tends 
to one as o: Increases. Thus, for any fixed prior p(H,J=p, the posterlor 
probability of the null bypotnesls can be made as close to one as desired, 
whatever the data for a sufficiently large prior varlance ol2 This 1s rather 
disturbing, for a large prlor variance has been traditionally accepted as a 
descrlptlon of vague lnitial knowledge. 

A similar behaviour was found by Bartlett (1957) In his reply to Lindley s 
(1957) statlstlcal paradox, and was later mentioned by Dempster (1971) In the 
Waterloo Symposium. They polnted out that, if a uniform distribution over a 
finite interval is chosen a s p  (J~H,), thenp (H,ID) tends to one, whatever the 
data, as the slze of the Interval increases. It 1s clear that the same type of result 
will hold with any other distributional assumption forp (J IH,). 

To us, tbis suggests that to obtaln a sensible reference posterlor 
probability for H,, the value o f p  cannot be fixed and it 1s bound to depend on 
the form of phlH,). In the next Sectlon, the method of maxlmlzing the 
mlssing lnformatlon 1s used to derive the reference posterlor probability of a 
slmple null hypothesls when the alternatlve 1s composlte, and the precise form 
of tbis dependence 1s obtalned. In Sect~on 3, Lindley s paradox and the 
normal example are discussed m detail. In Sectlon 4 asymptotic results are 
obtaned for well-behaved probability models and finally, m Sectlon 5, the 
maln conclusions are revlewed and discussed. 

2. A SOLUTION 

Let 6 be an experiment which produces some data D, the lomt 
distribution of whicnp (D 8 )  1s indexed by some unknown parameter Ore. Let 
H, be the slmple null hypothesls that B=8,. There 1s no posterlor probability 
for H, without a mlxed prlor which allocates a positive amount of probability 
to H,. Let this prlor be 

For fixedp (8) andp,  the amount of missing information (Bernardo, 1979b), 
about 8, i.e. the max~mum amount of informatlon that r may possibly supply 



about B is defined to be 

where H@) = - plog p - (l-p) log (1-p) 1s the entropy of the prlor marglnal 
distributlon of H,, and 

is the amount of information about B that, glven H,, one may expect from the 
experiment e. 

Here, and in the rest of the oaper, we use the word information in the 
preclse sense of Shannon (1948) and Lindley (1956). A decision-theoretic 
argument for the use of such a measure of informatlon in sc~entific inference 
may be found in Bernardo (1979a). 

Expression (6) has a slmple mtuitlve interpretation: the maxlmum 
Etmount of information that, glven the mixed prlor distribntlon (9 ,  the 
experiment 6 may possibly be expected to supply, conslsts of the knowledge of 
whether H, 1s or 1s not true, which provides an amount of informat~on H@), 
olus the amount of informatlon about B that 6 may be expected to provide if 
H, 1s true, times the prlor probability of H,. 

Taking in (6) derivatives with respect t o p  and equatlng to zero we find 

so that; for fixedp (B), the prior probability a which maxlmlzes the amount of 
mlsslng lnformat~on about B is such that 

On the other hand, glven the prlor specification (S) ,  the posterior probability 
of the null hypothesls IS, using Bayes theorem, 

so that, using (7), we obtan that for fixed p@), the reference posterior 

orobability of the null hypothes~sis 

To see how this works, consider agan the normal example discussed before, 
so that D = (X,, ..., x.1 1s a random Sample from a normal distributlon 
~ ( x p , o ~ ) ,  the null hypothes~s 1s p = po, and the prior distribut~on of p under 
H I ~ s P ~ )  = NGcll*,,~~!. 

It is easily found that, In this case, 

o,Z + oZ/n 
1" l r , ~  Gc)J = $log 

u2/n 

so that, uslng (7) 

1-7 
- = e x ~ [ ~ l e , p  b)ll = 

a 

and, substltutlng into (4), one has 

which does not tend to one as a,Z increases. To study the behavlor of (9) let us 
define y. and yl such that 

SO that r, and y, measure respectively, m standard un~ts. how far the sample 
and the prlor mean are from the null hypothesls. 

Snbstltutlon Into (9) yields 

which, when either oI2 or n Increases, tends to 

or, in terms of odds, 
39 



We belleve this 1s a very reasonable result. It says essentially that the only 
Important features are the distances in standard unlts, y, and y, from the 
sample and from the DrlOr mean to the null hypothes S. Under the null 
hypothesls, y, will be moderate, (yZ2-ylZ) will not be too large, r[H,lD] will 
never be too close to zero, and we shall not relect H,. Under the alternatlve 
hypothesls, y, will increase as 3, (-y?-y,2) will Increase as n, a ( H o D )  will 
tend to zero and we shall eventually reject the false null. 

3 LINDLEY'S PARADOX 

To comuare our results with those obtalned by class~cal hypothesls testlng 
one has to use a non-lnformatlve' or reference prlor for p (B I H,) and not lust 
for p(H,). Maxlmlzing the mlsslng ~nformation given H, glves, under 
regularity conditions, (see Bernardo, 1979b) Jeffreys' pnor, I.e. 

i (B)"Z 
r(0 I HJ = a(8) = (12) 

I ei(0)"z dB 
where, if necessary, B has been restricted to a set of fin~te measure for the 
lntegral in (12) to exlst. 

In the normal example discussed earlier, i (p)"Z = ~ / a  so that, uslng (12), 
if pei-A,A[, 

With this Drlor, if r, (H,) = p, the posterior probability of H,ls 

which, for fixedp, tends to one asA increases. However, 

n 
= jlog -- + log 2A 

27reo2 

so that, uslng (7) 

1-a - -  - exp [I* [e,r(p)]] = 

r 

and substltutlng Into (13) 

which does not depend on the arbitrary constant A .  If y, IS defined such that 
Z = po+y,o/Jn, the last eqnatlon may be rewrlten as 

or, in terms of odds, 

This establishes a one-to-one relat~onship between a slgnificance Level and 
a reference posterior probability for the null hypothesis. Thus, a result 
s~gnificant at 0.05 level. ~mplies y, = 1.96 and therefore, uslng (17), odds of 
about 4 to I agalnst the null hypothesls. In Table 1, the preclse equlvalences 
are glven for a number of commonly used slgnificance levels. 

TABLE 1 

The expected value yzz = n/aZ under the null hypothesis 1s one. 
Thus, under the null hypothesis. a(H,ID) will tena to 1/2 as n increases. 

P-PO Under the alternatlve hypothesls, the expected value of y,2 is I + n 
a 



and thus n(HoID) will tend to 0 as n increases. This 1s precisely the sort of 
behavlour one could expect: one can never prove the null hypothesis to he true 
but one may reject it when rt 1s false. This is illustrated in Figure 1, where the 
value of a(H,ID) = n(p = 0 x,,x,, ..., X.) glven by (15) IS plotted as a function 
of the sample size n for a sequence of data simulated from (i) ~ (x lO, l ) ,  (ii) 
N(XI 1,l)  and (iii) ~ (x13 , l ) .  As expected. the reference posterior (i) oscillate 
around 0.5 while those of (ii) and (iii) tend to zero, that of (iii) much more 
 rapidly than that of (ii). 

DIP = P ~ I X ~ , .  ,X"\ 

Random sarnllle used from N(x/ 0,l) 
0.42.2.75,-1.55.0.08,-0.52.0.85,-0.98 
-0.43, -0.03,0.70,-0.19.0.79,-0.56, 1.89 

n 
0 

10 15 
FIGURE 1 

This results seems to clarify Lindley's (1957) paradox. In his analysis. 

Lindley does not Introduce the Constant 2A. Although he acknowledges that 
this 1s done by mistake in his reply to Bartlett's comments, this is a step in the 
rlght direction, for this effectively means to choose (1-p)/p = 2A. However, 
he does not Introduce the factor fi in (14) which is necessary, from an 
~nformation-theoretical uomt of view. to compensate for the different 
dimenslonalities of H, and H,. This mlsslng factor 3 1s responsible for wide 
discrepancy he finds between the classical approach and his solution. Indeed, 
if 2 1s found significant at say, 5%. then y. = 1.96 and we find for H, a 
reference posterlor probability 0.195 independent of n. Lindley, on the other 
hand, finds that his posterior probability of H,, for fixed y,, increases with n 
and tends to one as n tends to infinity. 

If our analysis is correct, 7, is indeed sufficient to decide whether one has 
strong evidence agalnst the null hypothesis and (16) may he used to translate 
significance levels lnto posterlor probabilities. 

4 ASYMPTOTIC RESULTS 

The exact value of P lt,p(0)], which according to (7) 1s needed to obtaln 
the reference prlor for H,, 1s often difficult to obtain. Good approximations 

are available however when the data set D produced by r 1s large. 
Indeed, ~f D=(x,,x, ,..., x8,J, and n is large, one has (Stone, 1958: 

Ibraglmov 81 Hasmlnsky, 1973), that 

n 
p l r , ~  (8)) = i log - + jp (8) log - i(")"z do + ~ ( l )  

2ne P (0) 

and therefore if, uslng (16), ~ ( 0 )  = i(8)1'Z/lei(%)"Zd0. 

so that, using (7) 

On the other hand, the posterior wrobability of 0 = 8, with mlxed prlor 
structure such as (5) IS 

POSTERIOR PROBABILITY OF THE NULL HYPOTEHSLS p =)10 FOR SIMULATED DATA FROM 
(ilN(xIO,I), (ii)N(xII,l), (iiilN(x13,l) 



n 
For large n, the maxlmum likelihood estlmate of 0, 0, will he sufficient and 
may replace D. Moreover, 

SO that 

Using (18) Into (19) one oatans 

Finally, if y, is aefined such that 

one has 

or, in terms of odds, 

which has, of course, the same qualitative behaviour as the equations (10) and 
(17) of the exact normal case. 

Consider, for instance, that the observation of n  hinomm tna s  have 
produced r succeses and we want to test whether 0 =Oo. It 1s easily verified that 
In this case I (0) = (O(1-@)l.' so that the odds agalnst the null hypothesis will 
approximately be, uslng (21), 

n 
where 0 = r /n .  In Table 2, the values of a(HllD)/n(HoID) and those of 
T(H, ID) are glven when O,= 0.2 and n = 1000 for different values of r .  

TABLE 2 
REFERENCE PROBABILITIES FOR THE NULL HYPOTHESIS R = 0.2 WHEN 

n = 1000, FOR DIFFERENT VALUES OF r 

It is easy to check that these results are consistent with those of Table I 

uslng the fact that, under the null hypothesls, the standard deviation or r 1s 
about 20. As one would expect from the sltuatlon of the null hypothesls withln 
the Interval (0,1), devlatlons to the rlght of 0, provide more evidence agalnst 
H, than devlatlons of the same slze to the left of 0,. 

In the Soal and Bateman (1954) experiment to test the telepathic powers 
of Mrs Stewart, mentioned by Lindley (1957), the null hypothesls (no 
telephatlc powers) 1s 0,=0.2, and 9410 succeses where Obtained out of 37100 
trials. The posterlor probability of the null hypothesls results to bep(H,ID) 
10 tne evidence for Mrs Stewart telepathic powers 1s rather strong. 
Indeed, we find, about 45.000 times stronger than Lindley suggested. 

5 .  DISCUSSION 

We mentioned m Sect~on one, that derlvatlon of reference posterlor 
probabilities for the null hypotbesls does not present problems if tne null and 
the alternatlve have the same dimens~on. It may ae argued that these are the 
only lnterestlng cases and that a slmple null versus a composite alternatlve 1s a 
mathematical abstraction. We believe however that the uroblem 1s worthy of 



investigation. Indeed, (i) a sc~entific theory may Imply a preclse value for a 
glven magnitude: to check whether the data are compatible with the theory is 
precisely to test this null hypothesis, (ii) even if one is really only interested in 
whether or not 8 belongs to a small nelghbourghood of B,, testing 8 = 80 gives a 
reasonable approximate answer and indicates, through the reference posterior 
distribution glven H,,r(B I H,,D)ap(DI 8)n(8) and Indication of possible 
alternative values of B if 8,1s rejected. 

On the other hand, scientists find often natural to frame their research in 
terms of cheking whether the data observed falsify or not, in statistical terms, 
a particular theory. Moreover, they have been doing so for years, rather 
~ ~ ~ ~ e s s f u l l y ,  uslng classlcal hypothesls testing. It is natural to enqnlre whether 
an explanation may be glven from a Bayesian point of vlew. If the procedures 
developed here are accepted, classical hypothesis testtng mlght not be too 
bad,provided that no confidence meanlng 1s attached to the slgnificance Level. 
Our approach establishes a correspondance, for each particular problem, 
between slgnificance levels and reference posterior probabilities. It also 
implies that the ubiquituous 0.05 slgnificance level only suggests evidence of 
about 4 to I against the null when, in most applications, a larger amount of 
evidence agalnst the null would he required before rejection. 

The main results of our approach are that (i) one can 'reject' a null 
hypothesls, i.e. n(H,jD) may approach zero, but one cannot 'prove' it, i.e. 
a(Ho ID) never approaches one, and (ii) the possible evidence agalnst the null 
. . 

hypothesis is roughly summarized in the standarized distance y, between the 
null value and the likelihood estimate of the parameter. 

Both (i) and (ii) have been traditionally accepted in practice, and also 
make sense intuitively from a Bayesian viewpoint. A foundations type 
argument for (i) has been given by Popper (1958,ch.lO). Another argument 
for (ii) may be given; different authors, Dempster (1971) for instance, has 
suggested looking at the tails of the posterior distribution of 8 defined by 8, m 
order to 'test' the nuU. It easy to see that those tails approxlmately depend on 
the data, only through the standarized distance y,= J(ni(Bo)](B-O~. 

The reference posterior for the null given by $20) provides the 
relatlons4ip between y, and a(Ho ID) for large samples. If 8 is close to 8,, the 
factor (i(8)/i(80)1"2 will be close to one; if not, y, will be large and that factor 
will be dominated by the exponential. Thus, the simple relation 

will approxlmately be true for large samples of any model. The results 
obtalned are 

We nave used a particular definition of informatlon and a rather specific 
way of handling this in order to obtmn our reference postenors. From a 
theoretical polnt of vlew, the cholce of a logarithm~c measure of informatlon 
may be axiomat~cally defended (Good, 1966; Bernardo 1979a) and its 
properties seem to be adequate (Lindley 1956). Moreover, the procedure of 
maxlmlzlng the mlsslng lnformatlon has been proved capable of unify~ng 
prevlous results on 'non-~nformatlve' prlors and has been shown to produce 
sensible results to some controversial problems (Bernardo, 1979b). Finally, 
any argument on the foundations of a procedure should take account of the 
results it aves rise. We find that our results are intuitively reasonable and that 
they provide a Bayesian lnterpretatlon of classlcal hypothesis test~ng. Whether 
or not this vlew may be shared by others will shortly become apparent m the 
discussion. 
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DlSCUSSlON 

E.T. JAYNES (U'oshington Unlversrty): 
It is always rnterestlng to recall the arguments that Jeffreys used to findpnors. The 

case recounted by Zellner is a typical example where it appears at first glance that we 
have nothing to go on; yet by thinking more deeply, Jeffreys finds something. He 
shows an uncanny ability to see intuitively the right thing to do, although the 
rationalization he offers is sometimes, as Laplace said of Bayes' argument, "fine et tres 
ingenieuse, quoiqu'un Peu embarrassee" It was from studying these flashes of 
intuition m Jeffreys that I become convinced that there must exist a general formal 
theory of determination of Dnors by logical analysis of the prlor information-and that 
to develop it is today the top Dnonty research Droblem of Bayesian theory. 

Pragmatically, the actual results of the Jeffreys-Zellner-Siow and Bernardo tests 
seem aulte reasonable: without considerable analysls one could hardly say how or 
whether we should want them any different. Likewise. there is little to say about the 
mathematics, Slnce once the premises are accepted, all else seems to follow In a rather 
stra~ghtforward and inevitable way. So let us concentrate on the premises: more 
specifically, on the technical problems encountered in both woms, caused by putting 
that lump of pnor probability on a single point A =O. 

i. The problem 
In' most Bayeslan calculations the same prior appears in numerator and 

denominator, and any normalization constant cancels out. Usually, passage to the limit 
of an "uninformat~ve" improper p r ~ o r  is thenuneventful; I.e.. our conclusions are very 
robust with respect to the exact prior range. But in Jeffreys, significance test this 
robustness is lost, since K=p(DH.)/p(DIHd contains in the denominator an 
uncancelled factor which is essent~ally the prior density ~ ( k )  at X = i .  Then in the limit 
of an Improper prlor we nave K- m independently of the data D ,  a result given by 
Jeffreys (1939, p. 194, Eq. 10), and slnce rediscovered many tlmes. Note that the 
difficulty is not due solely to the different dimensionality of the parameter spaces; it 
would appear in any problem where we think of H. as specifying a definitive, fixed 
pnor range, but fail to do the same for H,. 

Jeffreys (1961) dealt with this and other vroblems by using a Cauchy pnor n(Xlo) 
scaled on o in the significance test, although he would have used a uniform pnor 
n(X) = I in the same model H, had he been estlmatlng A. But then a question of pnnciple 
rears up. To paraphrase Lindley's rhetorical question: Why should our pnor 
knowledge, or ignorance, of X depeno on the question we are asking about it? Even 

more puzzling: why should it depend on another parameter a, which 1s itself unknown? 
One feels the need for a clearer rat~onalization. 

Furthermore, the difficulty was not really removed, but only concealed from mew, 
by Jeffreys procedure. All his stated conditions on the prlor would have been met 
equally well had he chosen a Cauchy distribution with interquartile span 40 msteaa of 
o: but then all his K-values would have been quadrupled, leading to indifference at a 
very different value of the t-statistic lsee Eq. (5-13) belowl. We do not argue that 
Jeffreys made a bad cholce; quite the contrary. Our point 1s rather that in his cholce 
there were elements of arbitrariness, arising from a still unresolved question of 
pnnciple. Pending that resolution, one is not in a position to say much about the 
"un~queness" or "objectiviry" of the test beyond the admitted virtue of yielding 
results that seem reasonable. 

Bernardo comes up aganst just the same problem, but deals with it more 
forthrightly. Finding agam that the posterior probability P. of the null hypothesis H. 
increases with the pnor valance o, m a disconcerting way, he takes what I should 
describe as a meat-axe approach to the difficulty, and simply chops away at its prior 
probability p until P. =pK/(pk + I-p) is reduced to what he considers reasonable (from 
the Jeffreys-Zellner-Siow standpoint he chops a bit too much, since his P, tends only to 
1/2 on prolonged sampling when H, is true). This approach has one great virtue: 
whereas the Jeffreys results tended to be analyt~cally messy, calling for tedious 
approximations, Bemardo emerges triumphantly (in the linut of large 0,) with a 
beautifully neat expression (Eq. (1 1)) which has also, intuitively, a clear ring of truth to 
~ t .  

But for this nice result, Bernardo pays a terrible prlce in unBayesian~ty. He gets it 
only by makingp vary with the sample size n, calling for another obvlons paraphrase of 
Lindley. This elastic quality of his prior 1s rationalized by an informatlon-theoretic 
argument: ~t rs, in a sense, the pnor for which one would expect (before seeing the data) 
to learn tnemost from the experiment. But is this the property one wants? 

If a prior e to incorporate the Drror rnformaiion we had about k before the sample 
was observed, it cannot depend on the sample. The difficulty 1s particularly acute if the 
test is conauctea sequentially; must we go back t o  the besnning and revlse our pnor as 
each new data point comes m? Yet after all criticisims I like the general tone of 
Bernardo,~ result, and deplore only his method of deriving rt. 

The common plot of these two scenarios is: we (1) start to apply Bayes' theorem in 
what seems a straightforward way; (2) discover that the result has an unexpected 
dependence on the prlor: (3) patch things up by tampering with the prior until the 
expected kind of result emerges. The Jeffreys and Bernardo tamperings are similar in 
effect, although they offer very different ratlonalizatlons for what they do. But in both 
cases the tampenng has a mathematical awkwardness and the rationalization a certain 
contrlvea quality, tnat leads one to asK whether some important point has been mlssed. 

Now, why should that first result have been unexpected? If, according to H,, we 
Know initially only that A is in some very wide range 20,, and we then receive data 
showng that it is actually within %/fi of the value medicted by H., -as aphysiclst 
would put it, "the data agree with H, t o  within experimental error". tnat is maeed very 
strong evidence in favor of H.. Such data ought to yield a likelihood ratlo K = Jiio,/o 



lncreaslng with U,, just as Bernardo finds. This first result is clearly the correct answer 
to the auestlon Q, that was being asked. 

If we find that answer disconcerrmg, 11 can be only because we had'in the back of 
our mlnds a different, unenunclated questlon Q,. On this view, the tampering IS seen as 
a mutilat~on of equat~ons or~gmally deslgned to answer Q,, so as to  force them to - 
answer lnstead Q,. 

The higher-level questlon: "Which suestlon should we ask?" does not seem to 
have been studied ex~licitly in statlsncs, but from the way it arlses here, one may 
SUSDect that the answer Is part of the necessary "software" requlred for Droper use of 
Bayesian theory. That IS, just as a computer stands ready to   erf form any calculanon we 
ask of it, our Dresent theory of Bayesian ~nference stands ready to answer any question 
we ~ u t  to it. In both cases, the machine needs to be Drogrammed to tell it which task to 
Derform. So let us digress with some general remarks on question-choosmg. 

2. Logrc of Quesfrons 
For man7 Years I have called attentlon to  the work on foundat~ons of Drobability 

theory bv R.T. Cox (1946,1961) which m my vlew Drovides the most fundamental and 
elegant basls for Bayes~an theory. We are familiar with the Ar~stotelian deductwe log~c 
of ~rouositions: two ~ r o ~ o s i t i o n s  are equivalent if they say the same thing, from a 
given set of them one can constructnew pro~ositions by conjunctlon, disjunction, etc. 
The Drobability theory of Bernouilli and Laplace Included Ar~stotelian loglc as a 
limiting form, but was a mathematical extension to the ~ntermediate reglon (O<p<l) 
between vroof and disproof where, of necessity, virtually all our actual reasoning takes 
Dlace. While orthodox doctnne was rejecting this as arbitrary, Cox Droved that it is the 
only consistent extension of logic in which degrees of plausibility are represented by 
real numbers. 

Now we have a new work by Cox (1978) which may prove to  be of even more 
fundamental ImDortance for statlst~cal theory. Felix Kle~n (1939) suggested that 
auestlons, like ~ropositions, mlght be used as logical elements. Cox shows that in fact 
there 1s i n  exactly ~aral le l  logic of questlons: two questlons are equivalent if they ask 
the same thing, from a glven set of them one can construct new auestlons by 
conjunctlon (ask both), disjuncrlon (ask either), etc. All the "Boolean algebra" of 
~ r o ~ o s i t i o n s  may be taken over mto a new symbolic algebra of questlons. Every 
theorem of log~c about the "truth value" of D I O D O S ~ ~ ~ O ~ S  has a dual theorem about the 
"asking value" of questions. 

Presumably, then, besides our present Bayesian statlstlcs -a formal theory of 
o ~ t l m a l  inference telling us which uro~ositions are most plausible- there should exlst a 
~arallel  formal theory of oDtimal inqmry, telling us which questions are most 
lnformatlve. Cox makes a start m this direction, showing that a grven qnestlon may be 
defined in many ways by the set of its Dossible answers, but the questlon Dossesses an 
entropy 1ndeDendent of its definlng set, and the entropies of different questlons obey 
algebraic rules of combinatlon much like those obeyed by the probabilities of 
oropositions. 

The 1mDortance of such a theory, further developed, for the deslgn of experiments 
and the chooslng of Drocedures for mference, is clear. For over a century we have 

argued over which ad hoc statlstlcal procedures ought to be used, not on grounds of 
any demonstrable properties, but from nothing more than ideological comrmttments to 
various Dreconcelved ~ositions. There 1s still a great deal of this in my exchanges with 
Margaret Maxfield and Oscar Kempthorne in Jaynes (1976), and even a little In the 
exchange with Dawid, Stone, and Zidek over margmalizatlon In Jaynes (1980). A 
formal theory of o ~ t l m a l  inqnlry mlght resolve differences of opinion in a way that 
Wald-type decision theory and Shannon-type lnformatlon theory have not 
accom~lished. 

Our Dresent problem Involves a speclal case of this. If, seelng the answer to 
auestlon Q, we are unhappy with it, what alternative questlon Q, did we have, 
unconsciously, m the back of our m~nds? Is there a question Q, that 1s the optlmal one 
ro ask for the purDose at hand? Since the conjectured formal theory of inquiry is still 
largely undeveloped, we try to guess some of its eventuaJ features by studying this 
example. 

Note that the Issue 1s not which questlon 1s "correct" We are free to ask of the 
Bayes~an formalism any quesuon we please, and it will always glve us the best answer it 
can. based on the informatlon we have put lnto it. But still. we are m somewhat the 
position of a lawyer at a courtroom tnal. Even when he has on the stand a wltness who 
knows all the facts of the case and is sworn to  tell the truth, the lnformatlon he can 
actually elicit from this wltness still depends on his adroitness In asking the rlght 
auestlons. 

If his wltness 1s unfriendly, he will not extract any informatlon at all unless he 
knows the rlght questlons to  force it out, phraslng them as sham leading questlons and 
demanding unequivocal "yes" or "no" answers. But if a wltness is friendly and 
mtelligent. one can get all the lnformatlon demred more auickly by asking simply, 
"Please tell us m your own words what you know about the case?" Indeed, this may 
brlng our unexDected new facts for whicti one could not have formulated any s~ecific 
questlon. 

Significance tests which specify a sharuly defined hypothesls and Dreassigned 
significance level, and demand to know whether the hypothesis does or does not Dass at 
that level, therefore in effect treat probability theory as an unfriendly witness and 
automat~cally Dreclude any ~ossibility of gettlng more lnformarlon than that one bit 
demanded. 

Suppose we try lnstead the opposlte ractlc, and regard Baycslan formalism as a 
friendly wltness, ready and willing to glve us all the oertlnent informarion 111 our 
problem even ~nformatlon that we had not realized was vertincnt if we only allow if the 
freedom to do so. Instead of demanding the Dostenor probability of some sharoly 
formulated null hypothesls H,, suppose we ask of it only, "Please tell us In your own 
words what you know about X?" Perhaus by asking a less sharp and restnctlve 
questlon, we shall eliclt more mformatlon. 

3. Informatron from quesrrons 
Evidently, to  deal with such problems one ought to be an lnformatlon theonst, 

and not only In the narrow sense of One-Who-Uses-Entropy. In the present Droblem 
we are concerned not only with the range of ~ossible answers, as measured by the 



entropy of a question, but also with the specific kind information that the questlon can 
elicit. In the following we use tne word "informat~on" in this semantlc sense rather 
than the entropy sense. 

All statlstsal procedures are m the last analysis prescript~ons for information 
processing: what information have we ~ u t  lnto our mathematlcal machine, and what 
informatlou are we trying to  get out of it? In these terms, wnat is the difference -if any- 
between s~gnificance testing and estimation? Having put certain informatlon (model, 
pnor, and data) Into our hopper, we may carry out either, by asking different 
questions. But tne answers to  different questions do  not necessarily convey different 
~nformation. 

The tests considered by Zellner and Bernarao sought mformatlon that can help us 
decide whether to aaopt a new hypothesis H, with a value of X different from its 
currently supposed value h=O. Presumably, any proceaure which yields the same 
mformation would be equally acceptable for this purpose, even though current 
Deaagogy mignt not call it a "significance test" 

Now this information cntenon establishes an ordering of different procedures, or 
"tests", rather like the notion of admissibility. If test B (which answers question Qe) 
always glves us the same lnformation as test A, and sometimes more, then B may be 
said to dominate A in the sense of information yield, or questlon Q. dominates Q, in 
"asking power"; and if B requires no more computation, on wnat grounds could one 
ever prefer A? 

In my work of 1976 (p. 185 and p. 219), 1 showed tnat the onginal Bayesian 
sigificance test of Laplace, which asks for the posterior probability P, of a one-sided 
alternative hypothesls, aominates the traditional orthodox l-test and F-test m just this 
sense. That IS, glven P, we Know what tne verdict would be, at any significance level, 
for all three of the corres~ondiug orthodox tests (one equal-tails and two one-sidea; but 
the veredict of anv one orthodox test is far from determinine P.. Thanks to Cox. we - .  
have now a much broader view of this pnenomenon. 

Let us call a questlon srmple if its answer is a slngle real number; or in Cox's 
terminology, if its ~rreducible defining set is a set of real numbers. For example: "What 
IS the probability that h, or  some function of h,  lies in a certain region R?" 

In any problem involving a single parameter A for which there is a slngle sufficient 
statlstic U, then glven any slmple questlon Q* about h, the answer will be, necessarily, 
some function a@). Given any two such questions a, Q, ana any fixed prior 
information, the answers a@), b(u), being functions of a single variable U, must obev 
some functional relation a=f(b). Ifflb) is single-valued, then the answer to Qs tells us 
everything that the answer to  Q, does. As Cox puts it, "An assertion answering a 
question answers every implicate of that question". If the inverse function b=f~'(a) is 
not single-valued, then Qa dominates Q,. 

In the case of a smgle sufficient statistic, then, any slmple question whose answer is 
a strlct monotomc function of U, ylelds all the information that we can elicit about h, 
whatever question we ask; and it aomlnates any srmple question whose answer is not a 
stnct monotomc function of U. But this is just the case discussea by Bernarao; he 
considers o known, and consequently? is sufficient statlstic for X. Since his odds ratio 
K(?) 1s not a strlct monotonlc functlon of i, we know at once that Bernardo's test is 

--, 
and consequently there are two JOlntlY sufficient statistics (?,S). Given two smple 

quesuons QA,Qa with answers a(i,s), b(?,s), the condition that they ask essentrally the 
same thing, leading t o  a functlonal relatlon a=f(b), n that the Jacobian 
J = a(a.b)/d(lx,s) should vanish. If J*O, then neither questions can dominate the other . ~ .  .~ 
ana no simple questlon can dormnate both. But any two simple questions for which 
(2,s) are umquely recoverable as slngle-valued functions %a,b), s(a,b) will jointly elicit 
all the lnformatlon tnat any questlon can yield, and thus tha r  conjunction aomnates 
any slmple question. 

We may, tnerefore, conclude the followmg. Since Jeffreysi rest asks a slmpie 
question, wnose answer is the odds ratio KG,s), it can be aominated by a compound 
question, the conluctlon of two slmple questions. Inaeed, since K depends only on the 
magnitude of the statistic i, it is clear that Jeffreys' question is dommated by any one 
simple question whose answer is a strlct monotonlc function of l. 
These properties generalize effortlessly to higher dimensions ana arbitrary sets. 
Whenever sufficlent statlshcs exlsi, the most searching questlons for any statlstsal 
proceaure, -whatever current pedagogy may call ir- are those (simple or compound) 
from whose answers the sufficlent statlstlcs may be recovered: and all such questlons 
elicit just the same lnformatlon from the data. 

As soon as I realized this, it strucK me that this is exactly the kind of result that 
Fisher would have considered intuitively obvious from the start; however, a search of 
his collected works failed to locate any Dassage where sucn an ideais stated. Perhaps 
others may recall instances where he made similar remarks in pnvate conversation; it is 
difficult to believe that he was unaware of it. 

With these things in mlna, let us re-examlne the rationale of the Jeffreys-Zellner- 
Siow and Bernarao tests. 

4. What IS our raironale? 
In pondering this -trying to see where we have confused two different questions 

ana what the questlon Q, 1s- I was struck by the constrast between the reasonlng used in 
the Droposed tests and the reasoning that ~hysicists use. m everyday vractlce, to decide 
sucn matters. We clte one case history; recent memory would yield a dozen equally 
gooa, which make the same ~ o i n t .  

In 1958, Cocconi and Salveter proposed a new theory H, of gravitatlon, which 
predicted that the inertial mass of a body is a tensor. That is, instead of Newton's 
F = M a ,  one had F =  EMj,aj. For terrestnal mechanics the principal axes of this tensor 
would be determined by the distribution of mass m our galaxy, such that with thex-axis 
directed toward the galactlc center, M,/M,=M,/M,,=(l+X). From the 
approxrmately known galactic mass and size, one could estimate (Weissko~f. 1961) a 
value h 10-8 

Such a small effect would not have been noticed before. but when the new 
hypOtheSLS H, was brougnt forth it became a kina of challenge to experimental 

.physlmsts: devise an experiment to detecr this effect, if it exnts, with the greatest 
possible sensitivity. Fortunately, tne newly discovered Mossbauer effect provided a test 



with sensitivrty far beyond o n e s  wildest dreams. The expenmentd verdict (Sherwm, 
er.ol, 1960) was that A, if it emsts, cannot be greater than j A )  <10~'? So we forgot 
about H, and retamed our null hypothesis: H.=Einstein's theory of gravitation. in 
whichX=O. 

From this and other case histories in which other conclus~ons were drawn, we can 
summarize the procedure of the physlcisi's significance test as follows: (A) Assume the 
alternatlve H,, which contains a new parameterk, true as a working hypothesls. (B) On 
this bans, devise an experiment which can measure h with the greatest possible 
orecision. (C) Do the exoeriment. (D) Analyze the data as a Dure estimation problem- 
Bayes~an. orthodox, or still more mformal. but in any event leading to a final "best" 
estimate and a statement of the accuracy claimed: @),,=X'-%X. It 1s considered good 
form to clalm an accuracy GX corres~onding to at least two, preferably three, standard 
devlatlons. (E) Let A, be the correct v l u e  according to the null hypothesls H. (we 
supposed X.= 0 above, but it is now best to bring it ex~licitly into vlew), and define the 
"statistic" f (A-A,)/GX. Then there are three ~ossible outcomes: 

If l tl < i, retainH., STATUS QUO 

If / t (  > > l ,  accept H,, AWARD NOBEL PRIZES 

If 1 < I tl < 3 ,  withhold judgment SEEK BETTER EXPERIMENTS 
Thai is, to within the usual Doetic license, the reasoning format m which the 

progress of ~aysics  takes place. 
You see why I like the actud results reDorted here by Zellner and Bernardo, 

although I find their ratlonalizat~ons puzzling. They did indeed find, as thecntenon for 
acce~tlng H,, that the estlmated deviation /A'-h,\ should be large ComDared to the 
accuracy of the measurement, considered known (o/.\in) in Bemardo's ~rohlem, and 
estlmated from the dataln the usual way (s/Jn) in Zel~ner's. 

It is in the cntenon for retammg H. that we seem to differ: contrast the physicist's 
rationale with that usually advanced by statistlclans. Bayesian or otherwse. When we 
retan tile null hypothesis, our reason 1s not that it has emerged from the test with a 
high posterior ~robability, or even that it has accounted well for the data. H.is retaned 
for the totallv different reason that if the most sensitive available test fails to detect its 
existence, the new effect (A-X.) can have no observable conseauences. That is. we are 
still free to adout the alternatlve H, if we wish to; but then we shall be obliged to use a 
value of X so close to the Drevious A. that all our resulting predictive distributrons will he 
mdistinguishahle from those based on H.. 

In short, our rationale is not urobabilist~c at all, but s~mpiy Dragmat~c: having 
nothing to g a n  m uredictlve Dower by switching to the more complicated hypothesis 
H,, we emulate Ockham. Note that the force of this argument would be In no way 
diminished even if H. had emerged from some significance test with an extremely low 
postenor ~robability; we would still have nothing to gain by swtching. Our acceptance 
of H, when 1 tl > > I  does. however, have a probabilistic basls, as we shall see 
presently. 

Today, most ohyslclsts have never heard the term "significance test" 
Nevertheless, the Drocedure just described derives historically from the ongmal tests 
dev~sed by Laulace in the 18'th Century, to decide whether observational data mdicate 

the emstence of new systematic effects. Indeed, the need for such tests in astronomy 
was the reason why the young Pierre Simon develoued an interest In probability theory, 
forty-five years before he became the Marquis de Laulace. This ~ roh lem is therefore 
the origmal one, out of which "Bayesian statistics" grew. 

As noted also by E.C. Molina (1963) in mtroducing the photographic reproduchon 
of Bayes' Daper, even the result that we call today "Bayes' theorem" was actually given 
not by Bayes but by LaDlace (the only valid reason I have found for calling it "Bayes' 
theorem" was provided at this meetlng; "There's n o  theorem like Laolace's theorem" 
does not set well to Irviny Berlin's mus~c). Molina also offers some oenetratine remarks - " 

about Boole's work, showing that those who have quoted Boole in support of their 
critic~sms of Bayes and Laplace may have mistaxen Boole's mtentlon. 

Now. although Laolace's tests were thoroughly "Bayeman" in the sense just 
elucidated. they encountered no such difficulty as those found by Jeffreys and 
Bernardo; he always got clear-cut decisions from uniform unors without tam~enng.  To 
see how this was managed. let us examme the simDlest of all La~lacian significance 
tests. 

As soon as fairlv extensive birth records were kept, it was notlced that there were 
almost always slightly more boys than girls, the rat10 for large smDles lylng usually in 
the range 1.04<(n,/n8)<1.06. Today we should, presumably, reduce this to some 
hypothesis about a difference In uroperties of X a n d  Ychromosomes (for exmule, the 
smaller Ychromosome, leading to a boy, would be expected to nugrate more raoidly). 
But for Laplace. knowing nothing of such things, the problem was much simpler. 

Making no reference to any causd mechanism, he took the model of Bernoulli tnds  
with Datameter A = urobability of a boy. 

His problem was then: given specific data D =  (n,,n.), do these data Indicate the 
existence of some systematic cause favoring boys? Always direct and stra~ghtforward in 
his thinking, for him the prouer questlon to ask of the theory was nmply: 
Q,="Conditional on the data, wnat is the probability that h>(l-X)?" With uniform 
Dnor, answer was 

+ l)! j:.h.b(l-X)".~ P, = ------ 
n,! n.! 

with n = n, + n,, A. = 1/2. In this EssaiPhilosophique Laplace reports many results from 
this, and in the Theone Analytique (Vol. 2, Chap. 6) he gives the details of his rather 
tedious methods for numerical evaluaflon. 

Needless to say, Laplace was familiar with the normal approximation t o p ( h I D ) ,  
the Inverse of the de Mowre-Laplace limit theorem. But Laplace also realized that the 
normal approximation is valid only within a few standard devlations of the Deak, and 
when the numbers n,,n, become very large, it can lead easily to errors of a factor of 
10loO in PL/(l-P,); hence his tedious methods. 

Bernardo's example of Mrs. Stewart's telepathic powers, where the null hypothem 
value X.= 0.2 is about 24 standard devlatlons out, is another lnstance where the normal 
approximation leads to enormous numerical errors In K (many millions. by my 
estlmate). 
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But pragmatically, once it 1s estimated that an odds ratlo is about 10'30",t hardly 
matters if the exact value is really only 10120 Once lt is clear that the evidence is 
overwhelmingly in favor of HI, nobody cares precisely how overwhelmng it 1s. After 
La~lace's tlme, phys~cists lost interest m his accurate but tedious evaluations of P,; for 

the cnterlon that we have overwhelmlng evidence in favor of a positive effect (X > X.), . 
1s just that the overwhelmingly greater part of the mass of the posterior distributlon 
p(dhlD) shall lie to the right of h.. In the above example. the Deak and standard 
devlation of u(dhID) are X '  = %in, 6X = IX'(I-A')/n]112 and this cntenon reduces to 
the aforementioned f =(h'Xe)/6X > > I ,  of the modern physlclst's slgnificance test- 
lust the same crlterrou that Jeffrevs and Bernarao arrlve at m their different wavs. 

We have noted above tnat the orthodox 1-test and F-test are domlnated by 
Laplace's, and argued that the Ieffreys and Bernarao tests must also be dom~nated by 
some other. Let us now compare thelr s~ecific tests with the ones Laplace would have 
used in thelr problems. 

5. Comuarlsons with Laulace 
In Bernara0.s problem we have a normal sampling distributlon u(dx1 h,o) ^uNO\,o) 

with o Known. Hypothesis H. specifies X = A., H, a normal Drior s(dh jH3 ^uNk,,oJ, 
leading to a normal poster~or distributionp(dh ID,HJ ^uNO\',SA) where 

LaDlace, asking for the urobability of apositive effect, would calculate 

where *( l )  is the cumulat~ve normal distributlon, and as always, c -- (A'-X.)/6X. 
Bernardo (Eq. 9) finds for the ~osterior odds rat10 

where 

But by algeurarc rearrangement, we find this is equal to  

where W - h,-A.)/o, 1s independent of the data and drops out if p ,  = A. or if o, - m 
Bernardo uould then find for tne Dosterlor probability of the null hypothesis 

P,, = u(H.lD) = lexp(P/2) + 11.' (5.7) 

and comparing with (5.3) we nave, as antrapated. a functional relatlan P, = APJ. To 
see the form of it, I plotted P, agamst P, and was surprised to  find a qu~te  accurate 
semlclrcle, almost as good as one could make with a compass. To all the accuracy one 
could use m a real problem. the functional relatlon is slmply 

The error m (5.8) vanishes at five points (0 r P, S I). 
Since P, = f(P,) 1s slngle-valued while the lnverse functlon is not, we have the 

result that Laplace's orlglnal slgnificance test does, Indeed, dominate Bernaraos. As 
stressed in Jaynes (1976), one-sided tests always domlnate two-sided ones; glves P, we 
Know everything that Bernarao's K or P, can tell us; and if l f l  > > l  we know In 
addition whether h>A. or X <A., which P, does not give. 

Of course, in this case one can determine that extra bit of information from a 
glance a t  the data; so the mere fact of dormnatlon 1s hardly a strong selling point. What 
1s Important is that Laplace's method achieves this without any elements of 
arbitrariness or unBayeslanity. 

In Jeffreys, uroblem we have the same sampling distributlon, with the standard 
likelihood funct~onLO\,o) = o ~ n  expl-ns2Q2(X)/202], where 

H, and H, asslgn common prlors do/o, but H. s~eclfies h = A., while H, asslgns the 
Cauchy pnorp(dhlo,H,) = a(X 1 c)& wlth the density 

scaied on o (Jeffreys taxes a = I,  A. = 0, but we define the problem thus to bring out 
some Polnts noted in Sec. 1). To analyze thelmDort of the data. Jeffrevs then calculates 

I the likelihood ratlo 

I 

l 
while La~lace  (if he used the same pnor) would calculate instead the probability of a 
pantive effect, g~venH,: 

i These expressions have a common denominator M, equal to the Integral in (5.12) with 

I X. = -m; 

It is stra~ghtforward but lengthy to  verify that Jeffreys and Laplace do  not asK 



exactly the same auestlon; i.e., J -- a(K,,P,)/a(i,s) t 0. However, they are not very 
different, as we see on making the same approximation (large n) that Jeffreys makes. 
Do~ng the v-mtegratlon in (5.12) approx~mately, the other integrals may be done 
exactly, leading to the approximate form 

where Q -- filas). This reduces to Jeffreys' result [Zellner.~ Eq. (2.7) in this volume1 
when a = 1, X, = 0. In the same approx~matlon, L a ~ l a c e s  result is the tail area of a f- 

distribution with n-2 degrees of freedom: 

where A. is a normalization constant. Of course, if Laplace used a uniform urlor for A, 
he would find instead the usual "Student" result with (n-l) degrees of freedom. 

In the limit of an imuroDer pnor (a-m), K, diverges as noted m Sec. 1, the 
original motlvatlon for both the Jeffreys and Bernardo tampenngs; but the arbitrary 
Darameter a cancels out entlrely from Laplace's leading term, appearing only in higher 
terms of relatlve order n-' 

Had we been estlmatlng h instead, we should find the result @),,=X' 'SA, where 
h' = X, 6X = S/&. But Laplace's result (5.14) is a functlon only of the statictic t = fi' 
X.)/Sh, and Jeffreys' (5.13) e too for all Dractical uuruose? (exactly so if X=0, as 
Jeffreys assumes). Therefore, while considering o unknown has considerably 
comulicated the mathematics, it does not lead to any real difference in the conclusions. 
Agan. La~lace's test yields the same information as that of Jeffreys, and in addition 
tells us the sign of (h-h.). In all cases -Jeffreys, Bernardo, Laulace, and the modern 
physic~~t 's test- the condition that the data ~ndicate the ex~dence of a real effect is that 
It1 > > l .  

6.  Where does this leave Q,? 
In summary it should not, in my view, De considered "wrong" to ask the onglnal 

suestlon Q, = "What is the relatlve status of H. and H, in the light of the data?" But 
the correct answer to that questlon deuends crucially on the prior range of h according 
to H,; and so the questlon appears In the retrospect awKward. 

Now the orlglnal motlvatlon for asking Q,, stated very explicitly by Jeffreys, was 
to  Drovide a urobabilistic justification for the process of inductnon m science, whereby 
sharply defined Laws are accepted as universally valid. But as both 3effreys and 
Bernardo note, H. can never attam a positive postenor   rob ability unless it is given 
some to  start with; hence that "pump-unmmg" l u m ~  of ~ r i o r  probability on a slngle 
polnt h=O. It seems usually assumed that this step is the cause of the difficulty. 

However, the auestlon Q, 1s awkward in another, and I think more baac, resuect. 
The exwnment cannot distmguish differences In h smaller than its "reso~ving power" 
GX=s/dn. Yet Q, asks for a decision between H. and H, even when 1 h-h.1 <6h. On the 
other hand, the exuerlment is easily cauable of telling us wnether h rs probably greater 

or less than h. (Laplace's questron), but Q, does not ask this. In short, Q, asks for 
something which the experiment is fundamentally mcauable of giving: and fails to  ask 
for something tnat the experiment can glve. 

Ilncidentally, a "reference pnor" based on the Fisher informatlon i(A) is basically 
a descnutlan of this resolving power 6h of the expenment. That is, the reference Dnor 
could be defined equally well as the one which asslgns equal probabilities to  the 
"eaually distinguishable" subregions of the parameter space, of slze SA. This property 
1s qmte distrnct from that of belng "unmformatlve", although they happen to co~ncide 
m the case of s~ngle location and scale parametersi. 

But what we noted in Sec. 4 above suggests a different view of this. Why does 
lnductlon need a ~robabilistlc justification if it has already a more comuelling 
uragmatlc one? It is for the departures from the Drevlous line of induction (i.e., 
sw~tching to H,) that we need -and Laulace gave- a ~robabilists]ustificat~on. Bernardo 
seems to have sensed this also, m belng content with the fact that his u(H.D) tends 
only to 1/2 whenH. is true. Once we see that mantenance of thestafus quo requlres no 
probabilistlc lustificat~on, the ongrnal reason for asking Q, disappears. 

7 .  Conclusron 
What both the Jeffreys and Bernardo tamvenngs achieved is that they managed to 

extricate themselves from an awkward start and, m the end, succeeded in extracting the 
same lnformat~on from the data (hut for the sign of X-h.) that Laplace's questlon QL = 

"What is the probability that there 1s a real, positive effect?" eliclted much more easily. 
What, then, was that elusrve question Q;! It was not ident~cal with QL, and Derhaus 
does not need to be stated explicitly at all; but in Cox's terminology we may take Q, as 
any rrnulicote ofLaplaceSquesfron whose answerrsastrrcf ,nonoton!c funcfron of I f 1 .  

We have seen how the answers to seemingly very different questions may In fact 
convey the same ~nformation. Lau1ace.s onglnal test eliclts all the informatlon that can 
be read off from Jeffreys, K,(X,s) or Bernardo's KXa. And for all purposes that are 
useful in real problems, La~lace's P, may m turnbe reulaced by the h'  and SA of a pure 
estlmatlon problem. Because of this. I suggest that the distlnctlon between significance 
testlng and estlmatlon is artificial and of doubtful value m statlstlcs-mdeed, negatlve 
value if it leads to needless duulicatlon of effort in the belief that one is solvlng two 
different urohlems. 

D.J. SPlEoELHALTER (Unr~ersrr.~ of Noftrngham): 
The uapers by Professors Zellner and Siow and Bernardo both suggest reference or 

'non-mformative' pnors for use in Bayes factors, bur they Droduce fundamentally 
different results. I shall begln by comparing these results, and then discuss the 
~ndividual ments of the two urouosals. 

Consider the simDle case x%N&,oZ/n), H.:&=$., H,:p;tp.. Let y,=Jn(x-+.)/U in 
the notatlon of Bernardo, who suggests a Bayes factor (17) m favour of the null of 
e~p[ - (~-1) /21 ,  which has behavlor slmilar to that of a significance test. In the case of 
unknown vanance, Zellner proposes the Jeffrevs form (2.7) which for n fairly Large 1s 
approximately equal to (rrn/2)1'z exp(-rY2). For large n, values of y, which would lead 
Bernardo to  just reject H,, would suggest accepting H. to Zellner. 



This 1s the Lindley paradox, and investigators of Bayes factors have been divided 
In thelr support for this phenomenon. Pro-paradox are Zellner (1971), Lindley (1961), 
Jeffreys (1961), Dickey (e.g. 1971) and Schwarz (1978), while antl-paradox are Akaike 
(19781, Atkinson (19781, Box and Kanemasu.(1973) for 'post data' Bayes factors, and 
presumably we should lnclude all users of slgnificance tests. Professor Bernardo . 
Suggests that a slgnificance test procedure 1s approprlate In checking a scientific theory. 
I would be grateful to both authors for some comments on the appropnate practral 
sltuatlons for these two approaches. 

The paradox will cause Professor Zellner's Bayes factor wrongly to accept H,, if 
the likelihood is concentrated around the true parameter value lylng O(n.ll') fromH.. A 
Bayesian with a true  nor under H, would, however, consider this event a przorl 
extremely unlikely to occur for large n. Moreover, even if this erroneous chn~ce of H. 
did occur, for predictive purposes at least, the error 1s irrelevant slnce the true model is 
only a negligible distance from the null. These arguments for the practical use of 'pro- 
paradox" Bayes factors are formalised in Smith and Sp~egelhalter (1980). 

It remalns to examine whether the proposals of Zellner and Bernarao are 
approunate cndces of non-lnformatlve prior, within thelr respectwe schools of 
thought on Bayes factors. 

Professor Zellner'spaper 
It has been said at this meetlng tnat <everything 1s ln Jeffreys.. Perhaps this is an 

exaggeration, but this paper gives the imvresslon that this WorK would have been in 
Jeffreys, if only Jeffreys had got round to extending his work to linear models. I trust 
the authors will taKe this comment as a compliment of their worK, as it e intended. 

I have, however, some reservations about the presence of the xTX matnx In the 
prlor specification (3.7b). Changlng a prior according to the sampling deslgn would 
seem somewhat strange. Consider the exampie of one-way analysls of vanance, m 
whicn there are 1 groups with nze n,, ..A,, and let N=En.. The null hypothesis is of 
equal group means H.:&,= ... =p,=& agalnst ageneral alternatlve. Then (3.12) provides 
the  ayei if actor. 

Consider a pnor that does not depend on the sampling aeslgn. Considerat~ons of 
lnvarlance suggest D& l o,HJ a c-'g&, l o,HJ sc o ' and p(aJ =U-' as non-mformatlve 
Dnors, which lead to a Bayes factor 

where C. e some constant of proport~onal~ty to be specified. We may adopt the 'devlce 
of lmaglnary results (Good, 1950) to suggest a ~lauslble vaIue for C.. Say we observe 
R 2 = 0  (eq lal group sample means), then we would presumably expect B,,>] whicn 
lmplies C?;rN/nn. A lower bound is glven when n,=2,n = I ,  t=2,  ... I, leading to C? 
2 (I+ 1)/2. Assunung this lower bound for illnstratrve purlloses provides a Bayes 

factor 

B,, = [(I + l)nn,/2M"2(1-R2)~Nf2 

To compare the aehavlor ofK,, and B,,, let I = 5 ,  n,= n,n,= ... =%=m.  Then 

K,, = 1/3 (N-5)2(1-R2)-'N-6)/2 

B,, = m231fzln/(n+4m)"z(1-R3N'2 

If the aeslgn 1s unbalanced, n belng large compared with m, then K,, wlll favour H. 
much more than the Bayes factor based on a prlor that does not depend on the 
sam~lmg aeslgn. T h ~ s  dependence would appear to be quite Important and, as 
Drevlously mentlonea, rather allen to the usual methods of pnor s~eclflcatlon. 

Professor Bernardo'spaper 
1 should first congratulate Professor Bernarao for an lngenlous extension of his 

theory of reference pnors to the area of Bayes factors. However, I find the definition 
(6) of missing lnformatlon a little forced. I f 8  has a mixed pnor, denoted p'(%), should 
we not seek to maxlmlse le$,p'(0)) with respect top? 

By changlng p with n, the author wishes to avoid the sltuatlon described by 
equation (13), m which one accepts H. as the spread of the prlor under the aternatme 
Increases. If this pnor actually expressed ones  beliefs, this benavlour seems quire 
reasonable. So the objection arises from an lnappropriare use of a locally uniform 
pnor, whose ordinate at the likelihood is allowed to go to zero. The problem becomes 
that of cnooslng an appropnate ordinate for a Locally uniform distiibutlon. 

Professor Bernardo's wish to avoid h e  Lindley paradox would seem appropnate 
In two contexts at least; when there was a large loss on false rejection of the null, even 
though the alternatlve is very close, or when we have strong belief a urron in 
alternatives close to the null. if the latter 1s true, then this should be modelled in our 
pnor. It can be shown (Smith and Spiegelhalter, 1980) that if the prlor shnnKs around 
the null at the same rate as the likelihood concentrates, then one ootans a Bayes factor 
B,, which approxlmately satisfied 

-2l0g.B~~ = X-(3/2)@,-p.) 

wherep, 1s the number Of parameters In H;, h 1s the standard likelihood ratlostatlstr, 
and Xx~gi,,underH.. The multiplier 3/2 compares with the use of 2 by Akaike (19781, 
I by Box and Kanemasu (1973), and log.@-~pJ by Professor Zellner in expression 
(3.24): 

The example discussed by the author 1s equ~valent to usmg a multiplier of i. I am 
not sure whether the lnformatlon theoretlc argument is to be extended to the general 
linear model. If so, one should note tnat the use of a multiplier 1 may lead to a rather 
strong preference for complex models, slnce m this case El-2 logBo,l =O and so the 
probability that the Bayes factor prefers H,, glven H. 1s true, 1s approxlmately .5 



whatever the comoiexity of the allernallve. I suggest a sliglllly larger multi~lier is more 
approDriate. 

H. AKAIKE ( Insr~rule ofSlafrsricaiMaine~iior~er, Tokvo): 

We are often told that the Bayesian approach 1s develo~ed for each varll~.ular sel . 
of data. This means that the sample slze 1s always eaual to I .  I see ,l's, the samille sizes, 
in both Professor Zellner's and Professor Bernardos OaDers. Any aspects within tllese 
Davers which essentially deoend on n may not then be ~arllcuiarly Bayes~an. 

In the examole of Secrion 1 of Professor Bernardo's oaDer, we thus assulne H =  1. 
This reduces the ~ rob lem to the cholce of D=u~H,,I  in relatlon 10 the slre 01' of, !lie 
iaariance of the orior distribuuon of the mean u. For s~n~pliclty we assume J I ,=J I .=O 
and get o(xlH,,)=N(x0,03) and ~(xlH,)=N(xlO. 02+o?). To keen the nredi~.~ne 
distriburion u(x) = uN/xO,oZ)+(I-p)N(xjO,oz+o:) Imoarual to both u(r H,.) and 
o ( x H , )  m terms of entropy, we have to assume l p ( x ~ H , , ) l o g W ( . ~ ) ~ ~ ( ~ -  H.,))d.r 
= Ip(xIH,) logl,p(x)/u(xH,)) dx. When oi - m this will hold only will1 11-0.5. For 
this cholce of D = 0.5, the crilical value of x where the Doslerlor Drobahillly of H 
attalns 0.5 is almbsl equal to 2o for o.=8r and increases to 30 ior o, = IOOii. I his seems 
10 suggest that ordinary cholce of slgnificance level sucll as 5 %  or l Qiu 1s Pairly 
reasonable. The fixed choice of the level may furlher be ouestlooed. Bur 11 i s  tnow 
obvious that the rail0 o,/ocontrols thechoice. 

A.P. DEMPSTER (Xarvard Unrversrt~): 
Both papers are concerned with Bayes~an tests of slgnificance. A standard 

~arametric soecification depending on parameters (O,q5) 1s assumed, and the null 
hypothesis 1s that R takes a ~ res~ec i f i ed  "sharp null" value R., whiled is unconstraned. 
Both vapers start from the "paradox" of Lindley (1957) who shows that Bayes~an 
testing and tail area testing produce very different judgments when a diffuse pnor 
distribution is asslgnea to  B glven the alternatlve hypothesa. As sample slzes mcrease, 
the diffuse vrior lmplies that the data tend to  add much more credence to  the null 
hypothesis relatlve to standard tail area tests. Both papers develoD alternatives to 
diffuse pnors which bring the Bayes~an results Into relatively close conformity with tail 
area results. The oaoers are worthy contribut~ons to  theoretical statlstss, but m my 
Vlew Irrelevant to StatlstlcaJ Practice. 

What rs orobability? Probability does not fall Into distinct categories such as 
subject~ve, logical, and ohysical. Any probability model worth using to assess real 
world uncertainty must command belief, must result from a chiun of reasoning, and 
must not be m clear conflict with known empirical facts. Bernardo appeals to an 
mformat~on-theoretic principle to  denve a pnor distribution, while Zellner and Siow 
appeal to plausible Dostulates origlnatmg with Jeffreys. The reasoning behind these 
denvations is interesung, but there 1s no way I can commlt belief to the resulting pnor 
distributions, slnce my Prlor would then depend on the accident of sample size. Also, 
there is an em~irical "how does it work" component to each paper conastmg of 
comDanso1 s with tail area results, and suggesting that the disparity between the 
Bayesian techniques and standard non-Bayesian practice 1s rather mild. But, nnce tail 

area tests are not supposed to  be Bayes~an, the mildness of the disparity 1s a logical 
CUIIOSI~Y rather than evidence that the Bayeman models are credible. 

What are stgnjficance tests for? The procedures called Bayeslan slgnificance 
testing and tail-area significance tesung answer logically different questlbns, so that the 
use of the term significance tesung for both creates semantic confusion reather Ulan 
suostantlve controvery. 

In connectron with his parable of King Hiero's crown, Savage (1962, pp, 29-33) 
clearly illustrated the need for Bayeslan procedures which provide rational cholces 
between sharp null hypothesis and higher dimensional alternatlves. I agree with the 
Bayeslan oosition which says that the advocates of Neyman-Pearson testlng theory are 
in error when they see& to apply thelr theory to  operational decision-making, as in 
Pearson (1962). The Neyman-Pearson theory makes probabilistic sense only as a theory 
about tail area tests, and is at that an inadequate theory because if fails to  come to grlps 
with the mysteries of conditional testmg. 

The positive aspect of tail-area tests is that they address real questions which come 
up m the process of developing a formal model to  be used either for OurDoses of 
sc~entific lnsight or ODeratlOnal decision-making. S~ecifically, they orovide one way to  
as6 whether a nominated model appears to conform to the outside world of fact. Tail- 
area tests ought to be indis~ensable to Bayeslan statisticians wishing to avoid criticism 
of their models from two direct~ons. Tail area tests which relect can provide slgnals .. 
that modellers, including Bayeslans who have already had the11 prlor model eliclted, 
should go bacK to the drawlng board, because the test shows that the data are trying to  
say something about ohenomena not yet captured in the eliclted model. In this case, 
introsoectlon is not enough, an a further look at the real world may be advisable. Tail 
area tests which accept can serve to  point to possible eventualities whose prior 
orobabilities are influenced only mlnlmally by the data, whiie these same Drobabilities 
may exert a serious influence on later Bayesian conclusions or decisions. In this case, 
tntrosDectlon may be all there n, and should be given extra effort. For example. I may 
not have enough data to  detect a slgnificant relatlon between a chemlcal agent and a 
human cancer. but once having raised the questlon I will not lightly brush off the need 
to out numbers on prlor probabilities of small effects. 

In summary, Bayesian statisticians who reject tail area testing are correct when 
they attack its mrsuse for decision-making, but are in danger of mismng the benefits of 
correct use in the11 zeal for things Bayesian. "Significance testlng" should be exclsea 
from Bayeslans have enough good things to  do without Invading neighhonng rerritory. 

What does it mean to "test agaznst an alternattve hypothesis'"' George Barnard 
argued at the conference, and 1 supported him, that significance tests can be valid and 
important when only the null hypothesis is formulated, as in the Daniel Bernouilli 
examDle. Fisher rejected the Neyman-Pearson theory which stressed alternative 
hypotheses because the theory was couched in terms of long m n  frequencies, whereas 
In his mmd. as in Daniel Bernouilli's, the ourpose of stgnificance testlng was to  
Interpret a part~cular data set. Fisher did not use the formal term alternative 
hypotheses, but he could scarcely have relected the concept smce the very word "null" 
suggests that significance testing is a backward way to  get at alternative hypotheses. 

When a slgnificance test gets to be repeatedly used, appears in "how to do  it" 



~OOKS, and becomes distorted by tne term "procedure: then there generally 1s a 
reasonably well defined set of arternatwe hypotheses which are substituted for the null 
hypothesls when the test produces a significant outcome. It is then sensible, I believe, to 
use the term "testing a null hypothesis agatnstan alternatlve hypothesis". I believe also 
that tail area testlng is a clumsy mechanism for the pumose. But I have rejected . 
Bayeslan "significance testmg" as the answer, so what 1s left? 

The obvlous answer m the case of SImule null and slmple alternatlve hypotheses Is 
to look ar the likelihood ratlo In favor of the alternatlve. If the rat10 is 99 to i then the 
null hypothesls can be "rejected" with sslmilar loglc to rejectron basea on a tail area of 
.01. When the hypotheses are not simple, my suggestlon (1973) is to use the posterior 

distribut~on of the likelihood ra t~o ,  i.e., the Dostenor distribution which my Bayesian 
self would use if I adopted the alternatlve hypothes~s, and to reject the null hypothesls 
if I am reasonably sure, say 60% sure, that tne likelihood rat10 1s at least 99 to 1. This 
approach produces judgments s~milar to tail area tests, ana so produces uractlcal 
answers in the same general range as those of Bernardo and of Zellner and Siow. 

These papers resolve the Lindley paradox by producmg Bayes~an urocedures 
where the paradox largely goes away. I prefer to say there never was a uaraaox largely 
because the procedures Lindley contrasts were not comparable m the first place. My 
worK (1973) exhibits alternatives to tail area testlng which area genuine significance 
tests, but are likelihood basea. They do not reqmre the contrived priors of Bernarao or 
Zellner and Siow. but do have a Bayeslan element which 1s relatively lnsensirive to the 
cnoxe of pnor. 

J.M. DICKEY (Un~versrgv College Woles Abegvstwyth): 
Professor Zellner In his paper seems to remain true to Jeffreys concewlon when 

extending Jeffreys' Bayes factors to the general linear model. I should like to uolnt out 
some disagreeable aspects of the method in Jeffreys' slmple context, which extend to 
the general context. Denote the unKnown mean and variance for a slmple normal 
samule, y ,,..., y., by p and oz. One deslres to compare the two models. 

H:rc=O, versus F: p + 0 

As usual, familiar maglc words like "knowlng little" are used to lntroauce a 
particular prlor distribution as bemgworth one's special attention. The ideaseems to be 
to uroauce an automatic procedure which will be umversally accepted. Under W, the 
jolnt aenslty proposed is 

where 

(1 have rntroduced a multiplicative constant K here and wrltten an approximate 

equality, relatlve to the likelihood functlon, m the sense of Savages "prec~se 
measurement"). 

I assume that the first bracketed factor m (1) represents the conditional pnor 
information concernlng p given C,  

(One could argue that my aSSUmUtlOn 1s unwarranted. But an alternatlve factorlratlon 
would need to be gmen, rather than mere maglc words). Thus, the second factor would 
be the marginal prior denslty for o under E. 

MY first complaint 1s tnat the Integrable conditional density (2) is very special. I 
have heard it said that the cholce of scale 1.o 1s made "for convenlence". But why not 
100 o "for convenlence" or (.00l)o, or (11,682.49) o? Cleany, the cholce should 
depend on the actual ouinmn nn each apphcatlon. Should one act against one s oplnions 
and, instead, report a Bayes factor tnat represents no person's conerent change of 
oplmon? 

One may find it difficult thus to specify ones cond~tional oplnlon concernlng the 
LOCatlOn conditional on the unknown scale. But what about the marglnal OunIlon 
concerning& under H'? Working directly from thejolnt denslty (l), we obtan 

Again, for my second comulamt, this 1s a very special form and may fail to 
approx~mate well ones actual Dnor opmmn concernlng p unar H', even locally relatlve 
to the likelihood functlon, even with the constant Kopen to choice. 

Under the hypothesls H, the corresponding prlor aensltv which was prouosed for o 

IS 

p(o 1 H )  = K/o  ( 5 )  

This consrrasts with the conditional denslty obtlned from (1) and (4), 

which has the asymptotic form near H, 

Note, however, that for the new varlable n = p/o ,  n and o are unor independent 



under H'according to (2), and hence for any value of q, 

In oartlcular, (5) and (8) agree for n = 0, thereby sahsfying Savage's condition 
contlnulty. (See my discussion to the Daper by Professor Smith m these Proceedings). 
Note that anv other Dolnt hypothesis, p = p., could not be reexpressed in terms of a 
Dolnt hypothesis on q ,  slnce p =&.means q =p . /o .  

In my paver ~n press, Dickey (1978), conven~ent Bayes factors are provided for the 
normal linear model together with operat~onal methods for use in cases where the 
likelihood functlon 1s more lnformatlve than the prlor densities. I also treat lntersectlng 
hypotheses, as well as nested and unrelated hypotheses. 

S. GEISSER(Untversrtyof Minnesolo): 
In most statistical Droblems In which one 1s dealing with a linear regression, the 

regression arises not from some "true" ohysrcal process but largely from a 
comhinat~on of convenlence and an adeauate fit of the data In hand. The reasons are 
twofold , first the so-called "true" DrOCess governing the data 1s often very comulex 
and unknown. Secondly, the Interest in the data emanates from a need to vredict new 
values rather than to select a "true" DhvSlcai model. With this new m mlnd. W. Eddy 
and I (1979) devlsed a selectlon scheme (useful for a varlety of sltuatlons ~ncluding 
linear regress~on) which IS geared to prediction and derlves from a Bayes-Non-Bayes 
methodological comuromlse. One of its Dropertles, which superficially appears to be 
unfavorable, is that asymptotically with non-zero probability 1t can choose a "wrong" 
higher dimens~onal model as opposed to a "true" lower dimensional model. However, 
it turns out that it 1s approx~mately eaulvalent to a Bayes~an procedure with penalties 
(costs or prlor welghts) that depend on the sample slze and the kind of selectlon error 
~ncurred. What this lm~lies 1s that even if one chooses the higher dimens~onal model 
when the' lower one 1s "true", asymDtotically there is no  loss Incurred for predicuve 
purposes. 1 believe that such Drocedures are more useful for most problems that occur 
m statistics than those that are geared only to selecting the true model, because of 
prlmary mtet-est In predict~on and the fact that our net hasn't really been cast over the 
"true" alternative. 

1.J. GOOD (V~rpmroPolylechnreondSlnle Unlversrly): 
In accordance with a theorem of Abraham Wald, a mlnlmax Drocedure 

correSDondS to a Bayes~an Drocedure with the 'least favorahle" prror. I pointed out In 
Good (1x9)  that if expected welght of evidence 1s taken as the utility (or quasl-utility) 
measure, then Wald's theorem leads to the Jeffreys rnvarlant Dnor. (1 believe this Is 
eau~valent to what Dr. Bernardo describes m terms of manmmng the mlssmg 
~nformatlon). It glves an exolanatlon of why the reference prlor 1s lnvarlant with 
respect to mere changes of notatlon, and also exDlalns why it cannot be entlrely 
sat~sfactoq: because mmlmax methods never are entlrely satisfactory exceut possibly 
agarnst an ~ntell~gent opponent. Nature 1s neither intelligent. nor an opponent. 
although llfe 1s a lonng game. 

Regarding "Good's paradox"; see my contribut~on to the discusslon of Dr. 
Zellners paoer. 

Dr. Bernardo's Table I ,  reiat~ng tail-area probabilities to Bayes factors, is 
remarkably consistent with my rough-and-ready rule that a Bayes factor usually lies 
between 1/(30P) and 3/(10P) (Good, 1957, p. 863). But, in varlous applications this 
formula can be Improved: for example, Good and Crook (1974, U. 7151, where N"' 
comes Into the formula. 

D.V. LlNDLEY (Unrversify CollegeLondon): 
These two papers bother me. They are extremely thoughtful papers, rich with 

ideas, yet they fail to adhere to de Finetti's aphor~sm, "Think: about things". If we 
have a pracucal ~ r o b l e m  of data analysis, the quantities have a phyncal meamng and 
the ScIentlSt Knows something about them. He should therefore be encouraged to think 
about them. or the parameters, and not adopt Drobability distribut~ons that merely 
conform to some patterns of ignorance or some formal model. What does he know 
about O? Is it really Cauchy? I do not wish to denigrate these papers, for they both help 
us enormously to understand the way probabilities behave, and are partlcularly well- 
wntten. But, as this conference comes to an end, it aoes appear to me that we have 
discussed technicalities too much and that we should balance this necessary actlvlty 
with some thinking about thereal world, not Greek letters. 

A. O'HAGAN (Unrversr[y of Warwick): 

Would Professor Bernardo please explaln why he chooses the Dartlcular limiting 
orocess he used in sectlon 2 to obtan equatlon (Il)? If we amDly let 0,' - m In (g), 
holding all other quantities fixed, we will obtaln posterior odds 

a(H, ID) - exp(1/2~:)  
l D) 

Eauat~on (11) 1s a consequence of holding y, fixed, so that p, Increases with 0,. In 
the next sectlon he uses yet another limiting process to reach equatlon (17). All three 
limiting processes end with a uniform Dnor on (-m,-). All three Dostenor odds 
expresslons have the same qualitative large-sample behaviour that Professor Bernardo 
likes. Yet they will give numerically qulte different posterior inferences m oractrce. 
How are we to choose between them? 

A. ZELLNER (Unzverszly of Chicago): 
At the 1976 Fontanebleau Conference on Bayes~an Methods, 1 Domtea out that 

Bernardo's procedure for generating pnor distribut~ons makes the form of the prlor 
dependent on the likelihood Iunctlonis form, that 1s on the deslgn of the experlment. 
This pomt, apparently unrecognlzed by Bernardo, was partlcularly disturbing to 
Bernaruo and Lindley. In Lindley's discusslon of Harold Jeffreys's presentation at the 
Econometr~c Society's World Congress meeting m 1970, he termed such a dependence 
to be incoherent. Jeffreys's, Box and Tiao,s and my Drocedures for generating prlors 



also involve a dependence of a pnor's form on the form of the likelihood about which 1 
wrote, Zellner (1977, P. 231) "Since the purpose of a MDIP lmaxlmal data lnformatlon 
~ r l o r l  1s to allow the lnformatlon provided by an expenment t o  be fktured [in the 
posterior distribntioni, it seems natural that this form of aMDIPpdf that accomplishes 
this objective be dependent on the deslgn of an expenment". It would be interesting t o  
learn about Bernarao's and Lindley's current position on this issue. 

While I do not enloy raising disturbing points, it should W pomted out that 
Bernarao's odds ratio in equatlon (17), r(H,/D)/a(H,ID) = exp ( l ~ ( ~ f - l ) l ,  where 
r,=4n(x-&,)/o has a fixed (independent of n )  lower bound of e-'lZ =0.606. This 
appears unsatisfactory and is not a characterlstlc of, for example, Jeffreys's postenor 
odds ratlo for the normal mean problem. 

REPLY TO THE DISCUSSION 

A. ZELLNER (Unzverslfy of Chicago): 
One marn objectlve of Jeffreys's and our work 1s to provide a coherent framework 

within which it is possible to ratlonalize and criticlze em~irical practrce in comparing 

and choosing between or among hypotheses, for example in the normal mean case, h = 

0 and X e 0. In this case Jeffreys.(l979) states that "...astronomers had a rough rule 
that discrepancies up to f2o were likely to disappear with more information. aild those 
beyond xZ I was glad t o  find that these lresultsl were usually about what my 
significance tests gave. At least they showed that the rough rule ConeSDOnded fairly 
well to a Mnnected theory". Also, see Jeffreys (1967, p. 273) for another statement of 
this rough rule, a form of which Jaynes cltes approvmgly in his comments. Proauc~ng a 
"connected theory" to rationalize sensible rules and to criticlze absurd rules for 
significance testmg 1s one Of Jeffreys's and our m a n  objectives which we deem 
lmvortant and inhmately related t o  "real world" significance testing problems, a po~nt  
which Lindley fails to appreciate in his comments. That slgnificance teshng procedures 
(and other.;tatatlcal procedures) in physics, astronomy, economlcs and other sclences 
are In need of improvement 1s apparent to many statistrc~ans. 

AS regards sharp hull hypotheses, for which Demvster and Savage, among others 
see a need and slgnificance tests, Jeffreys (1963) wrltes, "Every quantltatlve law in 
Dhyslcs implies a serles of slgnificance tests that nave rejected numerous possible 
modificat~ons of the law" (p. 409). Similarly in biology, economics and other sclences, 
slgnificance testing lnvolvlng sharp null hypotheses plays an lmvortant role. Thus, 
Good's suggestion to "roll together slgnificance testlng and estlmatlon Into a slngle 
~rocess" is misguided in our Oplnion and contradicts Jeffreys's, Dempster's, Savage's 
and other's stated "need for Bayes~an procedures whicn provide rational cholces 
between sharp null hyyotheses and higner dimensional alternat~ves," as Dempster puts 
~t m his comments. 

On Jeffreys's and Our Use of partlcular Cauchy priors upon which most of our 
discussant! have commented, some of them have apparently mlssed the ~ o m t  that one 
of tne reascns for the11 use IS that posterlor odds ratlos based on tnem ratlonalize the 
rough rules used by phymc~sts, astronomers and others in testmg. They can represent 
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: prlor VleWS itl a number of cases and serve as a useful reference pri01 m others. As 
Jaynes notes, thelr use has "the aamltted vlrtue of ylelding results that seem 

i reasonable" Thus. In response to Akaike's tnoughtful comment, then use Leads t o  
Bayes~an results which are applicable to many sets of data --a general objectlve of 
theorizing m manY areas Including statlstlcs. Eurtner, as Jeffreys (1967, p. 272) and We 
stated on the first page of our paper, more informative and/or different pnors can, and 

! should be employed if the particular Caucny puors are deemed inadequate to represent 
the available prror mformatlon. However, we believe that the Cauchy priors which we 
employed will be found useful m many applications and do serve as a basis to 
ratlonalize and criticlze much current practice. For example, in our frameworkp-values 
are glven an interpretation and the implications of a cnoice of usual critical values for a 

i 
tesr statlstlc can be appra~sed. In addition, Jeffreys (1967, p. 275) pomts out that tne 
value of the invariant (divergence) measure. 

for the normal mean problem where P refers to the normal distributlon with X = 0 and 
l 0 < o < m and P' to the normal distrihutlon with X + 0 and 0 < o < m 1s J = X2/o'~ 

He notes that taking a uniform vror  on 8 = arc tan @/m), - n/2  < 8 < a/2 yields 
exactly the particular Caucny prlor for Alo whicn he employs in the normal mean 
uroblem. 

We now turn to Jaynes.s comments. First, we find no "techmcal problems" 
caused by puttlng a "lump of prlor probability on a slngle Dolnt X = 0". Second, on 
the questlon, "Why snould our prlor knowledge or Ignorance, of X depend on the 
questlon we are asking about it?". Jaynes does not recognize that often when a 
hypothesis X = 0 has been suggested, the value 0 is viewed differently from other 
possible values. Call this unor ~nformatlon I* If the value X = 0 1s not mewed 
differently from other values, call this prior ~nformatlon I,. Then for these frequently 
encounrerea clrcumstances there is good reason for the prlor distribnuons p,% (I,) and 
pAX I , )  to be different, a fact appreaated by many including Lindley (1965, p. 58 ff.) in 
his work on testlng proceaures when prior lnformatlon 1s of type I,. 

With respect to the new work of Cox on the loglc of questlons, we have some 
doubts about the adequacy of the entropy concept to Judge the value of questlons. Be 
that as it may, m our recent work, Zellner and Siow (1979) on the normal mean 
problem with CS value unknown, we consider tnree hypotheses, H,: h = 0. H,: X > 0 
and H,: A < 0, with pnor probabilities n, = 1/2, a, = a, = 1/4 and Caucny pnors 
such as used in our past work, defined over nalf line X > 0 for H, and X < 0 for HP The 
approxrmate posterlor odds ratlos are: 

l 
K,, = g(f,v)/F(f), K,, g(f,~)/F(-f) and K,, = F (f)/F(-f) wnere f = n'IZ ?/S, 

g(t,v) = (TV/?.)"'/(~ + t2/v) '-lf2; which 1s Jeffreys's odds ratio glven m (2.7) of our 
paper under discussion and F (.) 1s the cumulative normal distributlon function. It 1s 
then the case that the posterlor odus ratlo for X = 0 and X .f 0 (the union ofH,and H,) 



is just g(f,u), Jeffreys's Dostenor odds ratlo. Thus. as Jaynes ingeniously suggested, 
consideration of two questions A = 0 vs. A > 0 and X = 0 vs. X < 0 will yield Jeffreys's 
result under the specral pnor probabilities given above. However. the practical 
differences are negligible in this case. Also, the expressron for K,, above is very close to 
the result yielded by what Jaynes calls the Laplacian approach. Therefore, when we 
apply Jeffreys's approach to the three hypotheses, it produces the Laplaclan result K,,, 
os well as K,,, K,, and posterior distribut~ons for parameters under all three 
hypotheses. However, for one-sided alternatives in practae, it 1s often unreasonable to 
assume that n, = n,. Our recent work ~ndicates that taking m, = .5, n, = .4 and n, = 

. I  yields results close to non-Bayesian "one-tailed" tesOng results in terms of 
Indifference values off for this normal mean problem when the sample size a about 20. 

On predictive distribut~ons and testmg, which Jaynes mentions, it e well known 
that the postenor odds ratio with prlor odds ratlo equal to  one is equal to  a ratio of 
~redictlve densities and thus a posterior odds rat10 of about one indicates close 
agreement of the predictive densities under the two hypotheses. Also. Jaynes's 
consideration of values of 1 f / in appraslng hypotheses fails to  take adequate account 
of the role of sirmple size m evauatlng hypotheses. Further, when / f 1 < I, the 
important result is that the simpler model (e.g. A = 0) can be retained. This 1s 
Important slnce It s well known that use of models with redundant or unneeded 
parameters results in inflation of the mean square error of prediction. Thus, m 
disagreement with Jaynes, there is obviously something valuable to g a n  in switching to 
a simpler model when warranted. 

Jaynes remarKs that Laplace got "clear-cut decisions from uniform pnors" 
Jeffreyss (1967, p. 128 ff.) discuss~on of Broad's application of Laplace's rule of 
succession 1s relevant. In this case. a uniform prlor led to  unsatisfactory results in avery 
baslc problem. Jeffreys (1967) comments that, "We really had the slmplest possible 
s~gnificance test in our modification of Laplace's theory of sampling, where we found 
that to get results in accordance with ordinary thought we had to suppose an extra 
fracnon, of the lnitial probability, independent of the slze of the class, to  be 
concentrated in the extreme values". (p. 247). See also Geisser's (1978) discuss~on of 
this ~roblem.  Thus for Jeffreys to  get sensible results, lt was necessary to  use "lumps of 
probability" on extreme values. Finally, rt is surprising to us that Jaynes and Good are 
apparently in disagreement with Jeffreys and many other scientists and stat~stic~ans on 
the need to distinguish significance tesung and estimation. 

Splegelhalter aligns researchers with respect to  Lindley s "paradox" This appears 
to us to be a mlstake nnce there is little paradomcal about Lindley's results. As the 
samole slze increases, good sampling theorists will adjust their agnificance level in an 
obvrous direct~on, as pointed out m Zellner (1971, p. 304, fn.) and hence no paradox. 
Good Bayeslans will be familiar with Jeffreyss cogent reasons for and analysis of the 
dependence of odds ratlos on  the sample slze and agarn, no paradox. Further. 
Spiegelhalter requests examples of the use of significance tests in checking scientific 
thsones. The hypothesls of no effect, mentloned m our paper is encountered so 
frequently that there is no need to publish a list of cases. Also, some theones. for 
example ikilton Friedman's theory of the consumption functlon predict that 
parameters will assume Dartrcular values and they have been tested extensively In the 

literature. many times using lnadeauate testing methodology. For example, 
much confusion about what significance level to employ when the sample 
say about 5.000 as in survey data. With such large samples. empirica 
that everything looks significantly different from zero at the 5 percentlevel. 
them know that they should not be usmg the 5 percent level but do not know how tn ~~. .. .- 
adjust it. Some resort to use ofp-values which they find hard to interpret. A poster~or 
odds rat10 approach provides a clear-cut solutlon to these problems given that the pnor 
assumDtlons employed are deemed satisfactory and other subject matter comdicatlons 
are not present -see Jeffreys (1967, pp. 435.436). 

With respect to  S~~egelhalter's ~ o i n t  regarding acceptkng H, when the likelihood is 
concentrated around the true parameter value lying O(K"~) fromH,, we agree with him 
that for large n "the error 1s Irrelevant" and thus quesuon his charge of "to wrongly 
accept". Also, as many of our discussants and we noted, our prior distribut~ons under 
alternatlve hypotheses are informatlve, not uninformat~ve as stated by Spiegelhalter. 
They do, however have the Drouerty that if the sample evidence violently conflicts with 
the null hypothes~s, posterior distribut~ons for the parameter or parameters under the 
alternatlve hypothesis will be very close to what 1s obt lned with a diffuse pnor In 
estlmahon, a dove-tailing of Jeffreys's testing and estlmatlon results. 

On the dependence of our Drlor on the sample design, this is not unusual. It is also 
a feature of the Jeffreys, Box-Tiao, Lindley-Bernardo, Zellner and some other priors. 
Since lnformatlon in designing an exDerlment may not be Independent of information 
about Darameterss values, such dependence is reasonable. Also, as Box mentloned at 
this conference sesslon. uniformatwe and informatlve are relatlve terms, relatlve to the 
expenment belng considered and thus a dependence between Dnor and design is not 
unreasonable. In the case of our multivarlate Cauchy Dnor, it can be interpreted as a 

andard multivarlate Cauchy distribut~on for standardized regression coefficlents 
uch like usual beta coefficlents. In the case of one independent vanahle In a 
resslon, the standardized regression coefficient is Drecisely the unitless quant~ty 
o, where S, 1s the sample standard deviation of the lndependent var~able, 
~ a t i b l e  with and a slight generalization of Jefreys's use of A/o in the normal mean 

In connection with S~legelhalter's means problem, since the null hypothes~s 1s 
equality of means, perhaps reflecnng prior information that they may not be far 
different. lt 1s sur~rising to see that his Drlor under the alternatlve has the means 
uniformly (over the entlre real line?) and independently distributed. This pnor rmplies 
qulte strongly that the means may have widely different values and could help to 
exulaln Splegelhalter's ~roblem.  In any event. we did not analyze this problem in our 
paper. For a sensible analysls of the hypothesls of equality of two means with unequal 
numbers of observations on each, based on Cauchy pnors under the alternattve 
hypothesls and with an application to real data. see Jeffreys (1967, P. 278 ff.). 

On the lssue of the multiplier for D ,  -p,, as Table 2.1 in our paper referring to  the 
casep, -P, = l shows, the multiplier I n  (n-l) behaves very reasonably for large n. 
Also, on cholce of models in relatlon to a loss structure, it is somet~mes appropriate to 
have the loss structure depend on n ,  as Geisser points out m his comments and this will 
necessttate a broadened discussion of "the" appropriate multiplier. 



In his comments, Geisser describes a frequently encountered circumstance in 
which Investigators are emdrically fitting relations with no laws and little or no subject 
matter theory available. The importance of laws and subject matter theory in science 
cannot be doubted. But what is one to do in the case described by Geisser? A "starting 
point" suggested by Jeffreys and others is to consider all variation random until shown ' 

otherwise. The hypothesis of "no effect" is thus central as for example in attemptlug to 
use a vanable to predict stock price changes or gold pnce changes or in testlng a new 
drug's possible effect. An odds ratio approach seems very appropriate for important 
problems like these. As regards the Geisser-Eddy predictive scheme, that it provides 
results that are approximately equivalent to a Bayesian Drocednre with "penalties (costs 
or Dnor weights) that depend on the sample size and the kina of selection error 
mcurred" 1s very interestmg. The afore-mentioned intimate relation of postenor odds 
ratios ana predictive densities, well known to Geisser helps to explaln this result. In 
small samples, however adding too many predictor variables can certainly be harmful 
In predicnon. As the sample size grows, there is a danger that because there is no secure 
scientific basis for the relationship, it may not be stable. Thus we are back to the 
desirability of usmg subject matter theory and laws. On the problem of selecting 
variables in regression, we have applied the analysis in our paper to the Hald data. also 
analyzed in the clted Ge~sser-Eddy paper. We obtained an ordering of models not far 
different from that of Geisser and Eddy and that based on the residual mean square 
error cntenon. Our results include posterior probabilities for each of the 15 possible 
models and associated odd rauos. As mentionea at the ena of our paper, posterior 
probabilities have a clear-cut interpretation and can be used to average predictions 
from alternative models, which may be useful in certan cases and can rationalize ad 
noc schemes for combinine forecasts from alternative models which have appeared in - . . 
the literature. 

With respect to Dickey's remarKs, we are at a loss to understand his emphasis on 
"maglc words" and on "automatic proceaures which will be nn~versally accepted" in 
view of our statements regarding prior distributions made on the first page of our 
paper. Above, we have explaned the rationale for the use of our Dartlcular Cauchy 
priors ana thus no fur the^ comment is needed. Since Jeffreys and we parametrized the 
normal mean problem in terms of = p/o and o (in Dickeys notation), his equation 
(8) is relevant and indicates no conlfict between the ~1101s for U under the null and 
alternanve hypotheses. With respect to other point hypotheses, e.g. s = p., at the end 
of our paper we suggested implicitly that it is possible to wnte, H,: W ,  = e, and H*: W, 
= X + c i ,  where W ;  -- yi-p. and to proceed to compute the posterior odds ratio for h = 0 
vs. A F 0.using Jeffreys's results without difficulty. 

Dempster rejects the use of mechanical tail area testing procedures as we do too. 
He suggests the use of likelihood ratlos. For two simple hypotheses, it is well known 
that the Bayes factor is equal to the likelihood ratio, while for non-slmple hypotheses it 
is equal to a ratio of averaged likelihood functions. Dempster suggests use of the 
posterior distribution of the likelihood ratio in testing without providing a clear-cut 
rationale f<'r his procedure. Is the posterior distribution of the likelihood ratio more 
fundamentaiy linked to relative degrees of confidence in compering hypotheses than is 
the postenor odds ratlo? We believe that it 1s not even though we find the Dostenor 

distribution of the likelihood ratlo interestmg. 
We agree with Good that his "Devse of Imaginary Results" is very important. 

we noted, Jeffreys used it, without namlng it, in the normal mean problem (and many 
others) to aeauce surprising results aSSOClated with the possible use of a normal prior 
for h. On "Good's Paraaox", lt is our ODinlon that it is reflected in Jeffreys.~ (1967, p. 
255) work. 

In closing, we thank the discussants for their comments and hope that our 
responses help to provide a better understanding of the issues which they have rased. 

J.M. BERNARDO (Unrversidad de Valencia): 
I am most grateful to all discussants for their thought provoking comments. In the 

following I shall try to answer the11 qnenes. 
I certainly agree with Professor Jaynes in considenng the deternunation of 

reference priors a top ~ r i o n t y  research problem of Bayesian Statistics, and I am 
obvlou~ly flattered that a physicist with a througll understanding of statistkcs finds my 
result 'a beautifully neat expression with a clear nng of truth to it'. l object however to 
his description of my derivation as 'chopping away the pnor probability of the null 
until is reduced to what I consider reasonable'. Indeed this is a mathematical 
consequence of the procedure: but this is obtained from a well defined general theory 
on reference distributions which has been shown to work in very different situations. I 
do not need to invent any ad hoc procedures, (like Jeffreys-Zellner-Siow do when they 
arbitrarily choose a Cauchy pnor), but I determine the Dnor which describes the 
situation m which most remains to be learned from the expenment, and clam that this 
is a sensible reference point for scientific inference. 

This reference pnor is no1 a description of the scientist's beliefs, but a description 
of the situation m which the experiment could conceivably provide more information 
on the quantity of interest; no wonder that this might depend on the design of the 
expenment. 

Similarly, 1 do nor think the procedure consists of a 'mutilation of equations 

orlglnally deslgned to answer Q,, so as to force them to answer instead Q,'. Indeed, one 
must specify what it is considered to be the Interesting questlon, i.e., the quanhty of 
interest m my own terminology. If E were the quantlty of interest I would obtaln a 
reference posterlor denslty a(ElD) for E. If the questlon of interest is whether O=Bo or 
not. I would obtain a reference posterlor probability for H, : B =O,. 1 dealt with the first 
question in Bernarao (1979b) and I have tried here to solve the second. 

A 

I was very ~nterested in the nearly one-to-one relationship (but for the sign of E) 
between my reference posterior probability and Laplace's tail area. Indeed, I agree that 
often the questlon of interest is whether 0 > 8 ,  or not; the corresponding refernce 
posterior probability 1s provided in equaUon (2); see also Bernardo (1979b) In reply to 
Dawid. However, I do not think that this is the only lnterestlng question. I feel it is 
often convenient in applied work to be able to give a probabilistic description of the 
plausibility of a sharp null. Confidence levels do no1 have such an interpretation, but 
reference posterior probabilities do. 

Dr. Spiegelhater wonders what are the appropriate practical situations in which 1 
would use this approach. We all know of those consulting situations in which you are 



suecifically asked to help some ueoDle to uerform some or other classlcd test. As a 
matter of p r inc~~le ,  1 refuse to do such a thing, but often do not have the tlme to  go on 
a lengthy full Bayesian analysis. I would then give these DeoDle the reference posterior 
 roba ability of the hypothesls they wanted to  test. 

About Definition 6 .  I do not think it is a little forced: fo rd  1s a consequence of the 
fact that, in the present context. the quantity of interest is no1 8 but, say, 
defined as * = $o if 8 = 8, and $ = p, if 8 # 8 ,  and, thus, we want to ma%imize the missing 
lnformatlon about p, no! that about 8. 

" 
I have not yet had tlme to extend these results to the general linear model. I would 

very much like however to  see the details of Smith & Solegelhalter method applied to  
the particular example I discuss. Informal discussion with Professor Smith suggests 
that both results are numerically very close. 

I certalnly agree with Professor Ge~sser that the questlon of interest is often 
uredictlon. If this 1s the case, one could obtain the appropriate reference ~redictive 
distribut~on: see Bernardo (1979b) in reply to  D.J. Bartholomew; no need, 1 believe, 
for Bayes-non Bayes compromises. 1 do not think however that prediction is the only 
uossible questlon of interest. As in the example given by Professor Jaynes, Science 
often finds it convenient to work m terms of the statist~cal falsification of new 'simule' 
working hypothesls. 

Professor Dempster finds it difficult to commit belief to a "prior" distribution 
derrved from an lnformatlon-theoretic pnnclDle; we are not arguing however that one 
should do  so. Indeed, we only consider reference unors as technlcd tools to  produce 
Dostenors which are as little affected as ~ossible,  in an informat~on-theoretical sense, 
by urior ouinions. On the other hand, we believe that the mildness of the disuanty 
between those Bayeslan techniaues and some standard non-Bayeslan Dractlce is more 
than a lomcal curiosity: indeed, some of those classical tecnnlques have been 
succesfully used in practice, and we would like to understand why, from a coherent, 
unifed vlew~omt. 

Professor Dempster recognizes the need for Bayeaan urocedures which provide 
rational cholces between sharu nulls and higher dimens~onal dternatlves and its m a n  
use as warmng slgnals for modellers; he urovides no argument however agamst the use 
of reference postenor Drobabilities with such Durpose. 

It has been said in this Conference that everything is m Jeffreys. Maybe we have to  
add 'and/or in Good'. Indeed, I am flattered to discover that the numerical outcome of 
my well-defined Drocedure is consistent with the rough and ready rule suggested by 
Professor Good's remarkable intuition. 

I d o  not think it IS sensible to  assume n = 1 as Professor Akaike does. By so domg 
he misses the maln uomt of the discussion, namely the behavlour of the proposed 
Drocedures as n increases. One may certalnly take n =  l if one chooses to  call x the 
vector x = [X,, ..., x,l but then, of course, his argument does not follow. Alternatively 
one could study the result of using seauent~ally Akaike's pnor: 1 Dresume you end up 
agan with Lindley's (or Good's) paradox. 

Professor Lindley is certalnly rlght when he mentlons the need to think about the 
real world il. order to assess Droper unor distributions allowing a subjectwe Bayesian 
analysls. I am convinced however that such an analysls is difficult to accept by the 

scientific community unless it is accomDanled by some reference result, conditional 
only to model and data, with which it could be compared. I have trled to provide such a 
reference for standard problems of hypothesis tesDng. 

Dr. O'Hagan wonders how would one choose among the different limiting 
uroce5ses one can imagine in (9); 1 think this 1s bound to depend on the sort of 
approxlmatlon One is interested in. For, (9) 1s an m c f  expression, which gives the 

reference uostenor urobability of the null when D @ I H J = N  IP1,03. The status of 
eauation (17) is however very different from that of (1 1); while (I l )  is obtained from an 
approxlmatron to the exact exuresslon (91, valid under certan conditions, (17) is 
another exacr expression, which glves the reference postenor urobability of the null 
when no distributional assumDtlons under the alternatrve are made. 

Professor Zellner mentlons once more -the deDendence of the reference unor on 
the form of the likelihood function, a feature which is common to  most approaches to 
the ~roblem,  including his own. I certalnly agree with him on the inev~tability of this 
dependence. Professor Lindley's ~os i t ion  was recently made exulicit in his contribution 
ro the discussion of Bernardo (1979b). 

On Professor Zellner's second point, I certalnly do not regard as disturbing the 
fact that s(H,lD) has an upper limit. Indeed. I agree with Professor Jaynes when he 
questions the need for a probabilistic lustificatlon for the maintenance of the status 
quo. l'he mathematical exuression of the fact that, in the absence of evidence agamst 
the null, the sclentlst does not reject H,, but he 1s no1 Dreuared to swear it is true, 1s the 
oscillation of n(H,ID) about 1/2, which we ob tan  under those conditions. I find this 
far more reasonable than to exuect a convergence to one of n(H,lD). 
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