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Short abstract:
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3.6 The Mikhailov and Nögel (2004) Model . . . . . . . . . . . . . 41
3.6.1 Characteristic Function . . . . . . . . . . . . . . . . . . 42
3.6.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . 43

4 Greeks and other Sensitivities 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



vi Contents

4.2 The Heston (1993) Model . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Greeks and other Sensitivities . . . . . . . . . . . . . . . 49
4.2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . 50

4.3 The Bates (1996) Model . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Greeks and other Sensitivities . . . . . . . . . . . . . . . 56
4.3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . 58

4.4 The SVJJ (2000) Model . . . . . . . . . . . . . . . . . . . . . . 63
4.4.1 Greeks and other Sensitivities . . . . . . . . . . . . . . . 63
4.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . 65

4.5 The Double Heston (2009) Model . . . . . . . . . . . . . . . . . 72
4.5.1 Greeks and other Sensitivities . . . . . . . . . . . . . . . 72
4.5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . 73
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F Alternative Methodology for Greeks and other sensitivities 101

G Final Presentation 105

Bibliography 107



List of Figures
2.1 Huge differences between O(N2) and O(N log2 N) . . . . . . . 15

3.1 Adjustments, errors and CPU times for Fourier Methods in the
Heston model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Adjustments, errors and CPU times for Fourier Methods in the
Bates model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Adjustments, errors and CPU times for Fourier Methods in the
SVJJ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Adjustments, errors and CPU times for Fourier Methods in the
Double Heston model . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Adjustments, errors and CPU times for Fourier Methods in the
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4.38 CPU times, adjustments and errors for Mikhailov and Nögel Theta 84
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4.43 CPU times, adjustments and errors Mikhailov and Nögel Kappa 88
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Resumé:

The goal of this master thesis is to prove the computational efficiency achieved to
pricing options through the use of Fourier transform theory, instead of traditional
valuation methods, like Monte Carlo or finite differences. Through this master
thesis, an European call option shall be considered, for which we know the
semi-closed solutions for different models and whose results shall serve us to
further check the values obtained by Fourier techniques, finite differences and
Monte Carlo.

The master thesis is divided into four chapters that shall seek to provide the
necessary information for the proper monitoring of the work. In the first, the
basics of Fourier theory shall be presented. Then, in the second chapter, a
brief and concise overview about the methods to be used to option pricing shall
be made. Shall not be until the third chapter, when we offer the first results
obtained using all the above methodology to price an European call option for
Heston model and four of its variants, such as: the Heston model considering
a jump in the stock equation (Bates model), the Bates model allowing jumps
in variance equation (SVJJ model), the double Heston model, which consider
two variance equations and finally the Heston model with time dependent
parameters. The relevant features of these models are also discussed in this
third chapter, previously to the presentation of the results obtained. Finally, in
the fourth chapter it shall be showed that it is possible to use these algorithms
efficiently for calculating greeks and other sensitivities. This fourth chapter with
the third one, are what offer us relevant results regarding the advantages and
disadvantages of using the FFT and FRFT algorithms for option pricing and
parameter sensitivities and they make up the core of this work.

Due to the completion of this work, it has been checked that algorithms based on
Fourier transform are methods more accurate and faster when assessing options
compared with use of any method based on Monte Carlo simulation, coming
to simultaneously provide prices for 211 strikes for an order of magnitude time
similar to a single Monte Carlo simulation, but the problem arises, however,
when we try to evaluate exotic options, for which the Fourier methods can
be much more difficult to perform and even in the worst case, impossible to
implement.



Resumé:

El objetivo de este trabajo de fin de máster, es dejar constancia de la eficiencia
computacional lograda al valorar opciones mediante el empleo de la teoŕıa de
transformadas de Fourier, con respecto de los métodos de valoración tradicionales,
como son Monte Carlo o diferencias finitas. En este trabajo se ha optado por
valorar una opción call europea, para la que conocemos soluciones semicerradas
para los diferentes modelos que estudiaremos y cuyos resultados nos servirán
para comprobar además el grado de ajuste obtenido para cada modelo mediante
los métodos de Fourier y Monte Carlo.

El trabajo está dividido en cuatro caṕıtulos en los que se tratará de proporcionar
la información necesaria para el correcto seguimiento del trabajo. En el primero
de ellos, se expondrán los conceptos básicos sobre la teoŕıa de Fourier. A
continuación, en el segundo capitulo, se hará un breve y conciso repaso acerca
de los métodos que serán empleados en la valoración de opciones. No será hasta
en el capitulo tercero, cuando se ofrecerán los primeros resultados obtenidos
empleando toda la metodoloǵıa anteriormente descrita para valorar una opción
call para el modelo de Heston y cuatro de sus variantes: el modelo de Heston
considerando un salto en el subyacente (modelo de Bates), el modelo de Bates
incluyendo un salto en la parte de la volatilidad, el modelo doble de Heston
y finalmente el modelo de Heston dependiente del tiempo. Las caracteŕısticas
relevantes de todos estos modelos serán también comentadas en este tercer
capitulo, previamente a la exposición de los resultados obtenidos. Finalmente,
el cuarto capitulo mostrará que también es posible emplear estos algoritmos
de forma eficiente para el cálculo de griegas y otras sensibilidades. Este cuarto
capitulo junto con el tercero, son los que ofrecen resultados relevantes en cuanto
a las ventajas e inconvenientes de emplear los algoritmos FFT y FRFT para la
valoración de opciones y cálculo de sensibilidades y forman por tanto, el núcleo
del presente trabajo.

Debido a la realización de este trabajo, se ha podido comprobar que la aplicación
de algoritmos basados en transformadas de Fourier son una metodoloǵıa mucho
más precisa y rápida a la hora de valorar opciones que cualquier otro método
basado en simulaciones de Monte Carlo, llegando a proporcionar de forma
simultánea los precios para 211 strikes para un orden de magnitud temporal
similar al de una sóla simulación Monte Carlo, aunque el problema surge, sin
embargo, cuando tratamos de valorar opciones exóticas, para los cuales la
metodoloǵıa de Fourier puede ser mucho más complicada de aplicar e incluso en
el peor de los casos, imposible de implementar.
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1
Overview of Fourier

Transform in Finance
This chapter provides a brief, but complete discussion about the concepts of
continuous Fourier transforms
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1.3 Gil-Peláez (1951) Inversion Theorem . . . . . . . . . 3
1.4 Carr and Madan (1999) Formulation . . . . . . . . . . 5

1.4.1 The Fourier Transform of an Option Price . . . . . . . 5
1.4.2 Fourier Transform of Out-of-the-Money Option Prices 8



2 1. Overview of Fourier Transform in Finance

1.1 Introduction

The outline of this chapter is as follows. At first, we will present some useful
results of Fourier analysis and after that Gil-Peláez inversion formula will be
presented. These are all the prerequisites needed to face Carr and Madan
[CM99] inversion formula for European options, which it will be presented in
the last section of this chapter.

1.2 The Fourier Transform

Let W be a random variable defined on some probability space (Ω,F ,P). The
Fourier transform of the continuous function f is defined by

f̂(ω) =
∫ ∞
−∞

eiωtf(t) dt <∞ (1.1)

where ω ∈ R. The original f can be recovered as the Fourier transform by
inversion of f and for this reason as much f as f̂ satisfies the same above
conditions

f(t) = 1
2π

∫ ∞
−∞

e−iωtf̂(ω) dω <∞ (1.2)

The sufficient (but not necessary) condition for the existence of Fourier trans-
form and its inverse is that if f : R→ R is in L1, i.e, the space of integrable
functions, then: ∫ ∞

−∞
| f(t) | dt <∞

Characteristic functions (CF) are closely related to Fourier transforms. Then,
a characteristic function φ(ω), with ω ∈ R, is defined as the Fourier transform
of the probability density function P(x)

φ(ω) ≡ F [P(x)] ≡
∫ ∞
−∞

eiωxP(x) dx = E
[
eiωx

]
(1.3)

Probability density function P(x) can be obtained by inverse Fourier transform
of the characteristic function using the equation (1.2)

P(x) = F−1 [φ(ω)] = 1
2π

∫ ∞
−∞

e−iωxφ(ω) dω (1.4)
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These are the basics concepts about continuous Fourier transforms, so we can
already focus on to explain some important applications of these methods to
Finance.

1.3 Gil-Peláez (1951) Inversion Theorem

Gil-Peláez [GP51] published his famous inversion formula1in 1951. The follow-
ing proposition states this inversion formula.

Proposition 1. Gil-Peláez Inversion Formula. Let F (x) be the cumulative
distribution function of some variable X. Furthermore, let

φ(x) =
∫ ∞
−∞

eiωx dF (x)

be the associated characteristic function. Then we have

F (x) = 1
2 −

1
π

∫ ∞
0

Re

[
e−iuxφ(u)

iu

]
du

The proof of this proposition can be found in [GP51] and [Ng05].

Next, let c(K) denotes the price of an European call on a non-dividend paying
stock with spot price St, strike K and time to maturity τ = T − t. Under the
risk neutral measure Q we have

c(K) = e−rτEQ [(ST −K)+]
= e−rτEQ [(ST −K)1(ST>K)

]
= e−rτEQ [ST1(ST>K)

]
−Ke−rτEQ [1(ST>K)

]
(1.5)

where 1 is the indicator function. These probabilities are obtained under
different probability measures. We can write

EQ [1(ST>K)
]

= Q(ST > K) = P2.

On the other hand, evaluating e−rτEQ [1(ST>K)
]

requires changing the orig-
inal measure Q to another measure QS . We employ the Radon-Nykodym
derivative

dQ
dQS

= BT /Bt
ST /St

= EQ[exT ]
exT

(1.6)

1This formula was used by Heston in [Hes93] to derive its model.
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where we define B(t) to be the value of a bank account at time t ≥ 0. We
assume B(0) = 1 and that the bank account evolves according to the following
differential equation:

dB(t) = rB(t) dt, B(0) = 1

where r is the risk-free rate. As a consequence,

Bt = exp

(∫ t

0
r du

)
= ert

Then, we can write e−rτEQ [1(ST>K)
]

as

e−rτEQ [1(ST>K)
]

= StE
Q
[
ST /St
BT /Bt

1(ST>K)

]
= StE

QS
[
ST /St
BT /Bt

1(ST>K)
dQ
dQS

]
= StE

QS [1(ST>K)
]

= StQS(ST > K)
= StP1 (1.7)

with these results, European call options prices can be written as

c(K) = StP1 −Ke−rτP2 (1.8)

The quantities P1 and P2 represent the probability of the option expiring
in-the-money, conditioned to the value of the stock St = ext , where xt = logSt
and on the value vt of the variance of the stock price at time t. Hence

P1 = QS(ST > K) and P2 = Q(ST > K)

Where the measure Q uses the bank account as numeraire, whereas the measure
QS uses the stock price St.

The next proposition can be find in [CM99].

Proposition 2. The probabilities Pj, for j = 1, 2, obtained under different
measures can be written as

Pj = 1
2 + 1

π

∫ ∞
0

Re

[
e−iφ ln kφj(ϕ;x, v)

iϕ

]
dϕ (1.9)

where φj(ϕ;x, v) represents the characteristics functions φ1 and φ2 for the
logarithm of the terminal stock price, xT = lnST .
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It makes sense that two CF φ1 and φ2 be associated with the Heston model,
due to P1 and P2 are obtained under different measures. However, only a
single CF ought to exist, because there is only one underlying stock price in
the model, so we can write the probabilities P1 and P2 in terms of a single CF
φ(ϕ;x, v) as: φ2(ϕ) = φ(ϕ) and φ1(ϕ) = φ(ϕ− i)/φ(−i).

1.4 Carr and Madan (1999) Formulation

The Fourier technique illustrated in this section was proposed by Carr and
Madan [CM99] in (1999). It offers advantages in terms of reduced computation
time and an integrand that decays faster than the integrand of the original
Heston [Hes93] formulation and shows that Fourier transform of an European
option exists once singularities are removed by the inclusion of a damping
factor.

1.4.1 The Fourier Transform of an Option Price

Let ST denote the price at maturity of the underlying asset of an European call
with strike K. Define also, x ≡ logST , whose associated risk neutral density
is given by qT (x). Then, the Fourier transform of qT (x), or equivalently the
characteristic function of S, can be written as

φT (u) =
∫ ∞
−∞

eiuxqT (x) dx

Now, let k ≡ log(K), then risk neutral valuation yields

cT (K) = e−rτE
[
(ST −K)+]

= e−rτE
[
(ex − ek)+]

= e−rτ
∫ ∞
−∞

[
(ex − ek)+] qT (x) dx

= e−rτ
∫ ∞
k

[
(ex − ek)+] qT (x) dx
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Since

lim
K→0)

cT (K) = lim
k→−∞)

cT (ek)

= e−rτ
∫ ∞
k

[
(ex − ek)+] qT (x) dx

= e−rτEQ [ex]− 0
= S0

we have now that cT (ek) does not tend to zero for k → −∞. Thus cT (ek) is not
in L1, the space of integrable functions. For this reason, the Fourier transform
will not exist. Carr & Madan [CM99] rectify this by defining the modified call
price c̃T (k) as

c̃T (k) ≡ eαkcT (ek)

where α > 0. For now, we assume that the Fourier transform of c̃T (k) is
well-defined2, so we have c̃T (k) ∈ L1.

ψT (v) ≡
∫ ∞
−∞

eivk c̃T (k) dk (1.10)

Inverting this expression gives

c̃T (k) = 1
2π

∫ ∞
−∞

e−ivkψT (v) dv

or

cT (K) = e−α ln(K)

2π

∫ ∞
−∞

e−iv ln(K)ψT (v) dv

= e−α ln(K)

π
Re

[∫ ∞
0

e−iv ln(K)ψT (v) dv
]

(1.11)

where the last equality follows from the observation that∫ ∞
−∞

e−iv ln(K)ψT (v) dv =
∫ ∞

0
e−iv ln(K)ψT (v) dv +

∫ 0

−∞
e−iv ln(K)ψT (v) dv

2A complete study of the dampening factor can be found in [LK06]



1.4. Carr and Madan (1999) Formulation 7

and where the second term on the right hand side can be rewritten as∫ 0

−∞
e−iv ln(K)ψT (v) dv =

∫ ∞
0

eiu ln(K)ψT (−u) du

=
∫ ∞

0

[
e−iu ln(K)ψT (u)

]†
du

=
[∫ ∞

0
e−iv ln(K)ψT (v)

]†
dv

yield the claim. Note that we have a nice closed form for the Fourier transform
of c̃T (k):

ψT (v) =
∫ ∞
−∞

eivk c̃T (k) dk

=
∫ ∞
−∞

eivkeαkcT (ek) dk

=
∫ ∞
−∞

eivkeαk
[
e−rτ

∫ ∞
k

(ex − ek)qT (x) dx
]
dk

= e−rτ
∫ ∞
−∞

qT (x)
[∫ x

−∞
e(iv+α)k(ex − ek) dk

]
dx

= e−rτ
∫ ∞
−∞

qT (x)
[
ex
∫ x

−∞
e(iv+α)k dk −

∫ x

−∞
e(iv+α+1)k dk

]
dx

= e−rτ
∫ ∞
−∞

qT (x)
{
ex
[
e(iv+α)k

iv + α

]s
−∞
−
[
e(iv+α+1)k

iv + α+ 1

]s
−∞

}
dx

since for α > 0

lim
k→−∞

∣∣∣e(iv+α)k
∣∣∣ = lim

k→−∞

∣∣∣e(iv+α+1)k
∣∣∣ = lim

k→−∞
e(iv+α)k = 0

the last expression reduces to

ψT (v) = e−rτ
∫ ∞
−∞

qT (x)
[
e(iv+α+1)x

iv + α
− e(iv+α+1)x

iv + α+ 1

]
dx

= e−rτ
∫ ∞
−∞

qT (x)
[

e(iv+α+1)x

(iv + α)(α+ iv + 1)

]
dx

Taking now the Fourier transform for∫ ∞
−∞

qT (x)e(iv+α+1)x dx =
∫ ∞
−∞

qT (x)ei[v−(α+1)i]x dx
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we get the characteristic function for the risk neutral price process
φT [v − (α+ 1)i].

Finally, we have

ψT (v) = e−rτφT [v − (α+ 1)i]
α2 + α− v2 + i(2α+ 1)v (1.12)

The call price is found through the inverse Fourier transform of ψT (v)

cT (k) = e−αk c̃T (ek)

= e−αk

2π

∫ ∞
−∞

e−ivkψT (v) dv

= e−αk

π

∫ ∞
0

Re
[
e−ivkψT (v)

]
dv (1.13)

1.4.2 Fourier Transform of Out-of-the-Money Option Prices

As it was explained by Carr & Madan [CM99], the equation (1.13) is valid
only for pricing ATM and ITM options. However, for very short maturities,
the call value approaches its intrinsic value (ST −K)+, and this forces to the
integrand in the Fourier inversion equation (1.13) to be highly oscillatory, and
therefore, difficult to integrate numerically. In this section, following the steps
given in [CM99], it will be developed an analytic expression in terms of the
characteristic function of the ln of the terminal stock price for the Fourier
transform of zT (k), which represents the time T maturity price of OTM call or
put option with strike K = ek.

Defining ζT (v) as the Fourier transform of zT (k)

ζT (v) =
∫ ∞
−∞

eivkzT (k) dk (1.14)

The prices of out-of-the-money options are obtained by inverting this trans-
form:

zT (k) = 1
2π

∫ ∞
−∞

e−ivkζT (v) dk (1.15)
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Assuming that S0 = 1, the price is given by

zT (k) = e−rT
∫ ∞
−∞

[(
ek − ex

)
1{x<k,k<0}

]
qT (x) dx

+ e−rT
∫ ∞
−∞

[(
ex − ek

)
1{x>k,k>0}

]
qT (x) dx (1.16)

Now, as it is described in [PK12], applying the Fourier transform to zT (k), we
obtain

ζT (v) =
∫ ∞
−∞

eivkzT (k) dk

=
∫ ∞
−∞

eivke−rT
∫ ∞
−∞

[(
ek − ex

)
1{x<k,k<0}

]
qT (x) dxdk

+
∫ ∞
−∞

eivke−rT
∫ ∞
−∞

[(
ex − ek

)
1{x>k,k>0}

]
qT (x) dxdk

=
∫ 0

−∞
eivke−rT

∫ k

−∞

(
ek − ex

)
qT (x) dxdk

+
∫ ∞

0
eivke−rT

∫ ∞
k

(
ex − ek

)
qT (x) dxdk

=
∫ 0

−∞
e−rT

∫ 0

x

eivk
(
ek − ex

)
qT (x) dxdk

+
∫ ∞

0
e−rT

∫ x

0
eivk

(
ex − ek

)
qT (x) dxdk

= e−rT
[

1
1 + iv

− erT

iv
− ϕ(v − i)
v(v − i)

]
(1.17)

It is important to point out that when k = 0 and T → 0, zT (k) is wide
and oscillatory, as can be checked in [CM99]. For this reason it is useful to
include a dampening factor3 and consider the transform of sinh (αk)zT (k) as
this function vanishes at k = 0. Then

γT (v) =
∫ ∞
−∞

eivk sinh (αk)zT (k) dk

= ζT (v − iα)− ζT (v + iα)
2 (1.18)

and the price of an OTM option is given by

zT (k) = 1
2π sinh (αk)

∫ ∞
0

Re
[
e−ivkγT (v)

]
dv (1.19)

3A complete study of dampening factor can be found in [LK06]





2
Pricing Methods

This chapter introduces four theoretical pricing methods and shows how they
can be applied to option pricing
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2.1 Introduction

Many techniques have been suggested to pricing European options under
different assumptions of the underlying asset’s evolution. For example, one
can attempt to find a solution of a pricing partial differential equation (PDE)
using numerical methods. One can also resort to Monte Carlo techniques to
simulate sample paths of the asset. Averaging a sufficiently large number of
realized payoffs then yields the required price. Another methods are based on
Fourier analysis, which presents the advantage of pricing options for a huge
number of strikes very quickly.

The first method that we will study is based on a direct integration (DI) of the
semi-closed formulas for a Call option, once we have solved the model PDE. The
second one is based on Euler Monte Carlo simulation scheme (EMC) and the
last ones are based in Fourier analysis, being these the Fast Fourier Transform
(FFT) and the Fractional Fast Fourier Transform method (FRFT). We will
present these last two methods using the adaptive Simpson’s and Trapezoidal
rules.

2.2 Direct Integration Method

Pricing European options in each one of the following models usually requires the
evaluation of an integral, for which we have chosen Gauss-Laguerre quadrature
as approximate numerical method, as it is explained in [Rou13]. The goal is to
approximate an integral defined on [a, b] as the (weighted) sum of functional
values evaluated at several discrete points along the integration domain∫ b

a

f(x) dx ≈
N∑
j=1

wjf(xj) .

where the points (x1, . . . , xN ) presesent the abscissas and the points
(w1, . . . , wN ) are the weights.

Gauss-Laguerre quadrature is really relevant for evaluating the integrals for the
studied models, because it is designed for integrals over the integration domain
(0, inf). If we consider N points to apply the Gauss-Laguerre quadrature, we
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have that abscissas (x1, . . . , xN ) are the roots of the Laguerre polynomial LN (x)
of order N, defined as:

LN (x) =
N∑
k=0

(−1)k

k!

(
N

k

)
xk (2.1)

where
(
N
k

)
is the binomial coefficient. There are N roots in all and the weights

are obtained with the derivative of LN (x) evaluated at each abscissa

L′N (xj) =
N∑
k=1

(−1)k

(k − 1)!

(
N

k

)
xk−1
j for j = 1,. . . ,N (2.2)

Then, we can define each weight as follows:

wj = (n!)2exj

xj [L′N (xj)]2
for j = 1,. . . ,N

It is important to notice that although the Laguerre polynomial in equation
(2.1) has N + 1 terms, its derivative (2.2) has N terms.

2.3 Euler Monte Carlo Method

We will examine the stochastic Euler scheme by the simulation of approximating
discrete-time trajectories. In addition, general definitions for discrete-time
approximations will be given, and the strong and weak convergence criteria for
discrete-time approximations introduced. These concepts will all be developed
more extensively in the Monte Carlo simulations of the models.

One of the simplest discrete-time approximations of an Ito process is the Euler
approximation, or the Euler-Mamyama approximation as it is sometimes called.
Explanation of this method can be find in [KP92] and [FR08].

We will consider an Ito process X = {Xt, t0 ≤ t ≤ T} satisfying the scalar
stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt

on t0 ≤ t ≤ T with the initial value

Xt0 = X0.
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For a given discretization t0 = τ0 < τ1 < · · · < τn < · · · < τN = T of the time
interval [t0, T ], an Euler approximation is a continuous time stochastic process
Y = {Y (t), t0 ≤ t ≤ T} satisfying the iterative scheme

Yn+1 = Yn + a(τn, Yn)(τn+1 − τn) + b(τn, Yn)(Wτn+1 −Wτn),

for n = 0, 1, 2, . . . , N − 1 with initial value

Y0 = X0,

where we have written
Yn = Y (τn)

for the value of the approximation at the discretization time τn. We will also
write

∆n = τn+1 − τn

for the nth time increment and call

δ = max
n

∆n

the maximum time step. For much of this chapter we will consider equidistant
discretization times

τn = t0 + nδ

with δ = ∆n ≡ (T − t0)/N for some integer N large enough so that δ ∈ (0, 1).

In this work, we have models driven by a two or three SPDE and for this reason
we will consider Cholesky decomposition to enforce correlation between the
Brownian motions.

2.4 Fast Fourier Transform Method

Carr & Madan [CM99] in 1999, applied this method to speed up the computation
of option prices. In order to illustrate the algorith, it is important to keep
in mind that the Discrete Fourier Transform maps a vector of points (x =
x1, . . . , xN ) to another vector of points (x̂ = x̂1, . . . , x̂N ) via the relationship

x̂ =
N∑
j=1

e−i
2π
N (j−1)(k−1)xj for k = 1,. . . ,N (2.3)
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In DFT we computes these sums independently one of another, hence the
number of arithmetic operations is of order N2, i.e. O(N2). It was 1965
when Cooley and Tukey [CT65] showed that it was possible to have the DFT
evaluated with O(N log2 N) arithmetics operations and computed these sums
simultaneously.

Figure (2.1) illustrates the huge differences between O(N2) and O(N log2 N)
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Figure 2.1: Huge differences between O(N2) and O(N log2 N)

This method is designed for evaluating integrals approximating them using an
integration rule as follows∫ ∞

0
e−ixuψ(u) du ≈

N−1∑
j=0

e−ixuj ψ̂jη (2.4)

Two examples of possible approximations are given by the trapezoidal rule∫ b

a

f(x) dx ≈ h

2 f(x1) + h

N−1∑
j=2

f(xj) + h

2 f(xN ) (2.5)

or by the Simpson’s rule

∫ b

a

f(x) dx ≈ h

3 f(x1) + 4h
3

N/2−1∑
j=1

f(x2j) + 2h
3

N/2∑
j=1

f(x2j−1) + h

3 f(xN ) (2.6)

We saw in equation (1.13), that using the Carr and Madan representation, the
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call price is given by

cT (k) = e−αk

π

∫ ∞
0

Re

{
e−ivk

e−rτφT [v − (α+ 1)i]
α2 + α− v2 + i(2α+ 1)v

}
dv

To implement the FFT algorithm, we must discretize equation (2.4) in strikes
and integration domains. Then, as Carr and Madan explain in [CM99], if we
approximate the call price by the trapezoidal rule over the truncated domain
[a, b] for v and using N discretization points

vj = (j − 1)η for j = 1,. . . ,N (2.7)

where b = Nη, being η the increment, then

c(k) ≈ ηe−αk

π

N∑
j=1

Re
[
e−ivjkψ(vj)

]
wj

where the weight are determined according the integration rule chosen before.
As Carr & Madan point out, we are mainly interested in values c(k), of at-the-
money calls, which correspond to k near 0. The FFT returns N values of k
and we employ a regular spacing of size λ, so that our values for the strike
range, k are given by

ku = −δ + (u− 1)λ+ lnSt for u = 1,. . . ,N (2.8)

This gives us log strike levels ranging from lnSt − δ to lnSt + δ − λ, where
δ = Nλ/2. Substituting (2.7) and (2.8) into (2.4), we obtain that the call price
is given by

c(ku) ≈ ηe−αku

π

N∑
j=1

Re
[
e−iλη(j−1)(u−1)ei(δ−lnSt)vjψ(vj)

]
wj (2.9)

To apply the FFT, we note from equation (2.3) that we have the following
constraint on the increments η and λ

ηλ = 2π
N

being this is an important limitation of the FFT algorithm, since it entails a
trade-off between the grid sizes.
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2.5 Fractional Fast Fourier Transform Method

The Fractional Fast Fourier Transform (FRFT), was applied in Finance by first
time by K. Chourdakis [Cho04] in 2005. Compared with FFT, this method
relaxes the constraint λη = 2π/N on the grid size parameters, so that the term
1/N in the exponent of FFT is replaced with a general term β. The FRFT
algorithm has the advantage of using the characteristic function information in
a more efficient way than the straight FFT. Therefore less function evaluations
are typically needed and substantial savings in computational time can be
made.

x̂u = ηe−αku

π

N∑
j=1

Re[e−i2πβ(j−1)(u−1)xj ] for u = 1,. . . ,N (2.10)

On the other side, the relationship between λ and η becomes λη = 2πβ. Hence,
we can choose the grid size parameters freely, and set

β = λη

2π

To implement the FRFT on a set of points (x1, . . . , xN ), we first define the
vectors y and z, each of dimension 2N.

y =
([
e−iπ(j−1)2βxj

]N
j=1

, [0]Nj=1

)
z =

([
eiπ(j−1)2β

]N
j=1

,
[
eiπ(N−j+1)2β

]N
j=1

)
The next step is take the FFT of y and z to obtain ŷ = D(y) and ẑ = D(z),
taking their product element by element, which produces the vector ĥ of
dimension 2N defined as:

ĥ = ŷ� ẑ = {yjzj}2N
j=1

Now, take the inverse FFT of ĥ to produce the vector h = D−1(ĥ) of dimension
2N. Finally, multiply element by element the resulting vector with the vector e
defined as

e =
([
e−iπ(k−1)2β

]N
k=1

, [0]Nk=1

)
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Therefore, we can write the FRFT in compact form as:

x̂ = e�D−1(ĥ) = e�D−1(ŷ� ẑ)
= e�D−1 [D(y)�D(z)]

We have take only the first N terms of x̂, whereas the next N terms are dis-
carded, as all of them are zeros. If we compare FRFT with FFT, the first
method takes the N-vector x and maps it to the N-vector x̂. However, the
FRFT uses the intermediate 2N-vectors y and z, and requires the computation
of two FFTs in the intermediate steps. Nevertheless, the increase in compu-
tational time required by the two intermediate FFTs is usually offset by the
increase in accuracy due to being able to chosen the strike and integration grid
independently and as small as we wish.



3
The Models

This chapter presents the Heston model and four variants, as well as their
characteristic functions and numerical options prices
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3.1 Introduction

This chapter presents five models, namely, the Heston proposed in [Hes93]
(1993) model and four variants of this model that were presented in Bates
[Bat96] (1996), the SVJJ model proposed in Duffie et al. (2000), the Double
Heston model introduced by Christoffersen et al. [CHJ09] (2009) and a Time-
Dependent Heston model proposed by Mikhailov and Nögel [MN04] (2004).
Each subsection starts showing the SDPEs that define each model and describes
the corresponding parameters. The second part of each section presents the
analytical formula of the characteristic function of the corresponding model
and applies it to pricing options by different methods, direct integration of
semi-closed solution via Gauss-Laguerre quadrature, Fourier algorithms via
Simpson’s and trapezoidal rules, and Monte Carlo simulation.

Finally, it is important to indicate that for a similar temporal magnitude order,
Fourier methods provide at the same time prices for about 211 strikes, while
Monte Carlo simulation, provides only a single strike price. Here is the great
advantage of Fourier methods over Monte Carlo simulations. So the following
analyses represent a valid comparison in the only case that we are interested
in knowing the price for a given strike, since otherwise, Fourier methods are
much more powerful.

3.2 The Heston (1993) Model

The Heston Model [Hes93] is based on two differential stochastic equations for,
respectively, the evolution of the underlying asset price St and its variance
vt:

dSt = rStdt+
√
vtStdW1,t

dvt = κ(θ − vt)dt+ σ
√
vtdW2,t (3.1)

EP [dW1,tdW2,t] = ρdt
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The parameters of the model are:

µ : the drift of the process for the stock
κ > 0 : the mean reversion speed for the variance
θ > 0 : the mean reversion level for the variance
σ > 0 : the volatility of the variance
v0 > 0 : the initial level of the variance

ρ : the correlation between the two Brownian motions W1,t and W2,t

We have here a pure diffusion model, which does not allow for jumps in the
stock price or the variance processes. Unlike the Black-Scholes model, the
volatility in the Heston model is stochastic and follows a mean-reverting square
root process, a process originally proposed by Cox, Ingersoll and Ross [CIJR85]
to model the spot interest rate.

3.2.1 Characteristic Function

Heston [Hes93] postulates that the characteristic function for the logarithm of
the stock price, xT = lnST , has the following log linear form

φj(ϕ;xt, vt) = E [φj(ϕ;xT , vT )|Ft]
= E

[
eiϕ lnST |(xt, vt)

]
(3.2)

= exp [Cj(τ, ϕ) +Dj(τ, ϕ)vt + iϕxt]

where i =
√
−1 and:

Cj = riϕτ + a

σ2

[
(bj − ρσiϕ+ dj)τ − 2 ln

(
1− gjedjτ

1− gj

)]
(3.3)

Dj = bj − ρσiϕ+ dj
σ2

(
1− edjτ

1− gjedjτ

)
(3.4)
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with:

gj = bj − ρσiϕ+ dj
bj − ρσiϕ− dj

dj =
√

(ρσiϕ− bj)2 − σ2 (2ujiϕ− ϕ2)

uj =
{

1
2 , if j = 1;
− 1

2 , if j = 2;

bj =
{
κ+ λ− ρσ, if j = 1;
κ+ λ, if j = 2;

a = κθ

3.2.2 Numerical Results

We present here the results obtained for the Heston model when we employ the
four methods presented before; direct integration of the semi-closed solution
by means of Gauss-Laguerre quadrature, Monte Carlo simulation, Fast Fourier
Transform and Fractional Fast Fourier Transform. The latter two Fourier
methods will be implemented via Trapezoidal and Simpson’s rules.

It is important to point out that all the numerical results have been obtained
by means of laptop with an Intel Core i5 processor of four cores running at
2.27 GHz and with 4.00 GB of RAM memory. Increasing the number of cores
and speed of the CPU would probably allow us to get better results.

For an European Call option, we consider a strikes range of K ∈ [70, 130]
and the values S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9, τ =
0.5, r = 0.05 and q = 0, where q denotes the dividend payment as a continuous
yield. Figure (3.1) shows three graphs that include the adjustments comparing
the Fourier algorithms with the closed solution, the errors in the previous
adjustment and CPU times.
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Figure 3.1: Adjustments, errors and CPU times for Fourier Methods in the Heston
model

The figure (3.1a)1 shows that FFT and FRFT are in accordance to the solution
provided by DI method for the strikes range, as it can be seen in figure (3.1b).
In this last figure we can see that accuracy order for the whole strike range is
approximately 4.8× 10−4% in arithmetic mean for FFT under trapezoidal rule
and approximately 5.4×10−3% in arithmetic mean for FRFT under trapezoidal
rule also2. The most relevant aspect in these errors are that they show an
increasing slope in FFT, which can be explained due to the different algorithm
applied in each case depending on we price ITM or OTM options. On the other
hand, CPU times are showed in figure (3.1c) where it can be seen that FRFT
method is more faster than FFT but losing accuracy, so we necessarily need
make a trade-off between accuracy and CPU time.

Before presenting the tables, we need to point out that we have decided to
prioritize accuracy rather than CPU time to show how the time that Fourier
methods required to reach a fourth order of accuracy in comparison with the
CPU time requires by Monte Carlo methods. For these purposes, we have
chosen the parameters α = 1.75, N = 211 and uplimit = 700 for both Fourier
methods and the exclusive parameters η = 0.1, λ = 0.005 for FRFT whereas,
on the other side, all the Monte Carlo simulations have been implemented out
with 50 time steps.

The next tables provide the results for an European Call option under the
Heston pricing model by applying direct integration of semi-closed solution,
Monte Carlo, and FFT and FRFT methods in their two alternative approxima-
tions under the following conditions aforementioned. We consider three cases
depending on the moneyness of the option.

1This graphs only provide the results for the Fourier techniques implemented via trapezoidal
rule for reason of readability.

2Results under the Simpson’s rule are very similar to those obtained with the trapezoidal
rule and are not presented for the sake of brevity.
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ITM
options

We begin with the ITM options.

ITM

Method Price Error (%) Time (s)

Closed Form 31.9150 0.0000 0.0020
Monte Carlo 10000 paths 32.1107 0.6134 0.0900
Monte Carlo 50000 paths 31.8269 -0.2761 0.2770
Monte Carlo 100000 paths 31.9387 0.0745 0.6320
Monte Carlo 150000 paths 31.9241 0.0287 0.9230
FFT Trapezoidal Rule 31.9150 0.0001 0.2640
FFT Simpson’s Rule 31.9150 0.0001 0.2450
FRFT Trapezoidal Rule 31.9149 -0.0003 0.0100
FRFT Simpson’s Rule 31.9149 -0.0003 0.0090
S0 = 100, K = 70.46, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9

Table 3.1: ITM results for the Heston model.

At first sight, we can see that, with the configuration chosen, Fourier methods
are more accurate than either Monte Carlo method and even less time consuming
than the simulations with at least 50, 000 paths.

It can be seen that effectively FRFT is the fastest method and almost as
accuracy as FFT, being their accuracies of the same order (∼ 10−4%). For this
reason, we should be aware of this limitation and make a trade-off between
CPU time and accuracy required when we use this method for option pricing.

Furthermore, the FFT is the most accurate method, which is due to the
parameters chosen before implementing the model, N and uplimit are the
same that the FRFT method. Different set ups allow us to control the accuracy
and CPU times. However, by far, the FRFT is the most versatile method in
the sense that, modifying its parameters, we can achieve a great adjustment
for CPU time or the accuracy error.

On the other hand, focusing on Fourier methods, there are not any noticeable
differences in accuracy between the trapezoidal or Simpson’s rule but, regarding
times, we can appreciate that CPU times are higher for the trapezoidal rule
than for the Simpson’s rule. A possible explanation for this can be related to
the code vectorization in MATLAB.
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ATM
options

The results for ATM options are provided in the next Table.

ATM

Method Price Error (%) Time (s)

Closed Form 8.0902 0.0000 0.0010
Monte Carlo 10000 paths 8.0589 -0.3866 0.0610
Monte Carlo 50000 paths 8.0247 -0.8090 0.2700
Monte Carlo 100000 paths 8.1616 0.8829 0.5920
Monte Carlo 150000 paths 8.0305 -0.7380 0.9260
FFT Trapezoidal Rule 8.0902 -0.0000 0.3340
FFT Simpson’s Rule 8.0902 -0.0001 0.2820
FRFT Trapezoidal Rule 8.0901 -0.0001 0.0050
FRFT Simpson’s Rule 8.0901 -0.0001 0.0040

S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9

Table 3.2: ATM results for the Heston model.

In this case, the most relevant result is that the FRFT method almost achieves
the same accuracy order than FFT methods, but with a significantly shorter
CPU time (up to eight time less). It can be explained due to the special
circumstances of this table as it shows the ATM options results and, in this
case, the Fourier methods can reach an extraordinary accuracy modifying the
parameters. Again, the FRFT shows the best results as it has been implemented
with the same parameters N and uplimit than the FFT method and has been
enhanced with the choice of parameters η and λ.
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OTM
options

Finally, we present the results for OTM options under this model.

OTM

Method Price Error (%) Time (s)

Closed Form 0.9904 0.0000 0.0010
Monte Carlo 10000 paths 0.9490 -4.1764 0.0720
Monte Carlo 50000 paths 1.0125 2.2300 0.2420
Monte Carlo 100000 paths 0.9880 -0.2401 0.7640
Monte Carlo 150000 paths 0.9779 -1.2569 0.9270
FFT Trapezoidal Rule 0.9904 0.0061 0.2680
FFT Simpson’s Rule 0.9904 0.0058 0.2610
FRFT Trapezoidal Rule 0.9905 0.0118 0.0050
FRFT Simpson’s Rule 0.9905 0.0118 0.0050
S0 = 100, K = 129.73, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9

Table 3.3: OTM results for the Heston model.

Here, we can see that the pricing errors for all the methods increase with respect
to Table (3.2) and for both trapezoidal or Simpson’s rules of integration, being
this the most relevant result for OTM options. Needless to say, the FRFT is
again the fastest method, by construction of its algorithm.

Until now, we have presented the results for the Heston model, for which we can
appreciate some advantages of the Fourier methods for European option pricing,
being these the accuracy order reached and the CPU time required to compute
option prices. We have also seen that the FFT and FRFT algorithms present
a different behavior regarding both aspects, being FFT the most accurate
and FRFT the fastest one. For the Heston model, it may seem that these
algorithms do not provide a great advantage compared with the Monte Carlo
method, but we will see that, for more complicated models as the SVJJ or the
double Heston models, FFT and FRFT are a serious alternative to be taken
into account.

It is also important to keep in mind that Fourier prices for OTM calls in (3.3)
have been calculated by using alternative algorithm proposed by Carr and
Madan [CM99] instead of the algorithm applied for ATM or ITM options. For
this reason we appreciate some significant increments of accuracy losses in
these results.
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3.3 The Bates (1996) Model

This model was proposed in [Bat96] and, compared with the Heston (1993)
model, it considers jumps that are independently and identically distributed
and modeled by a compound Poisson process in the asset price evolution. The
model has the following risk-neutral dynamics:

dSt = (r − ΛµJ)Stdt+
√
vtStdW1,t + JStdÑt

dvt = κ(θ − vt)dt+ σv
√
vtdW2,t (3.5)

EP [dW1,tdW2,t] = ρdt

where the new terms included are:

Λ : annual frequency of jumps
J : random percentage jump conditional on a jump ocurring
Ñ : Poisson counter with intensity lambda

with
1 + J ∼ logN

(
µS , σ

2
S

)
and where the relationship between µS and µJ is the following:

µJ = exp

(
µS + σ2

S

2

)
− 1

3.3.1 Characteristic Function

The characteristic function of Bates model [Bat96] has the same appearance as
that in the Heston model, with the only difference of a jump part.

φj(ϕ;xt, vt) = E [φj(ϕ;xT , vT )|Ft]
= E

[
eiϕ lnST |(xt, vt)

]
= exp [Cj(τ, ϕ) +Dj(τ, ϕ)vt + P (ϕ)Λτ + iϕxt] (3.6)
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where the functions Cj(τ, ϕ) and Dj(τ, ϕ) are the same as for the Heston model.
On the other side, P(ϕ) is defined by:

P (ϕ) = −µJ iϕ+
[
(1 + µJ)iϕ eσ

2
S( iϕ2 )(iϕ−1) − 1

]
(3.7)

3.3.2 Numerical Results

We present now the results for the Bates (1996) model. The four numerical
methods mentioned before are used again to price an European call option
with the following parameters: κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ =
0.9, τ = 0.5, r = 0.05, q = 0. The additional parameters needed to implement
this model are Λ = 3, µS = −0.05, σ = 10−4. The parameters chosen to
implement both Fourier methods are α = 1.75, N = 29 and uplimit = 425,
whereas the FRFT exclusive parameters have been η = 0.1 and λ = 0.005. As
it can be observed, the values of N and uplimit are smaller than those used
to implement the Heston (1993) model. The reason is that it can be checked
numerically that any increase of these values does not improve the accuracy
and implies a drastic increment of CPU time.

Figure (3.2) shows the adjustment, errors and CPU times.
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Figure 3.2: Adjustments, errors and CPU times for Fourier Methods in the Bates
model

Figure (3.2a) shows that both Fourier algorithms follow very close the prices
provided by the integration of semi-closed solution via the Gauss-Laguerre
quadrature, despite of the existence of jumps in this model, although they are
small. As can be seen in Figure (3.2b), because of the jumps, the errors in
the Bates model are higher than in the Heston model. In this case, we have
that the behavior of both methods is very close each other, with a remarkable
increased slope along the strikes range. These errors are of the same magnitude
order with a mean value of 10−4%, which it is more accurate than in the Monte
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Carlo method, whit a mean error around 0.4% when we consider n = 50 time
steps and 1.5× 106 paths. CPU times are presented in Figure (3.2c) where we
can see that the FRFT is more than one magnitude order faster than the FFT
algorithm. Looking at Monte Carlo simulations with the fastest simulation
(104 paths), we note that it is approximately seventeen times slower than the
FFT algorithm.

As in the Heston (1993) model, we present now the results for call option prices,
distinguishing by its moneyness.

ITM
options

Table (3.4) shows the results at maturity for ITM options.

ITM

Method Price Error (%) Time (s)

Closed Form 31.6284 0.0000 0.0030
Monte Carlo 10000 paths 32.0012 1.1785 0.4300
Monte Carlo 50000 paths 31.6742 0.1447 1.8040
Monte Carlo 100000 paths 31.6597 0.0987 3.8020
Monte Carlo 150000 paths 31.6780 0.1568 5.6010
FFT Trapezoidal Rule 31.6305 0.0064 0.0940
FFT Simpson’s Rule 31.5869 -0.1315 0.0290
FRFT Trapezoidal Rule 31.6303 0.0058 0.0090
FRFT Simpson’s Rule 31.6303 0.0058 0.0040
S0 = 100, K = 70.46, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = −0.05, σS = 10−4

Table 3.4: ITM results for the Bates model.

This table reflects all the issues discussed previously. For example, in general,
Monte Carlo simulations are less accurate than any other method based on the
Fourier algorithm, except the FFT implemented via Simpson’s rule that provides
the worst accuracy. Focusing on the FFT technique, a quite counterintuitive
result is that the implementation via SR does not fit very accurately the
price compared with TR, although it is more than three times faster than
the alternative based on TR. The reason is that exists a minimum number of
points, N , to calculate the integral via the Simpson’s rule to implementing
the FFT algorithm correctly, and we have calculated the integral under this
limit.

The following tables will not provide this conclusion. In this case, it is clear
that for ITM options is more convenient to price using the FRFT instead of
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any other method, because the best results are obtained implementing this
algorithm. Other relevant aspect is the CPU time, which is abnormally large
in relation to its mean value, as can be seen in figure (3.2c).

ATM
options

Next table, represents the ATM options case.

ATM

Method Price Error (%) Time (s)

Closed Form 8.0733 0.0000 0.0010
Monte Carlo 10000 paths 8.1732 1.2375 0.3690
Monte Carlo 50000 paths 8.1906 1.4523 1.7740
Monte Carlo 100000 paths 8.0925 0.2377 3.5890
Monte Carlo 150000 paths 8.0805 0.0892 5.5430
FFT Trapezoidal Rule 8.1073 0.4209 0.0230
FFT Simpson’s Rule 8.0640 -0.1161 0.0230
FRFT Trapezoidal Rule 8.1071 0.4186 0.0010
FRFT Simpson’s Rule 8.1071 0.4186 0.0020

S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = −0.05, σS = 10−4

Table 3.5: ATM results for the Bates model.

We can see that the FFT algorithm implemented via SR is more accurate than
the alternative based on the TR. We have analyzed again whether Fourier
algorithms are faster than the Monte Carlo technique but, now, while Monte
Carlo prices present a similar error size to that for ITM options, we find that
the price errors from the Fourier algorithms have increased in two magnitude
orders, which was observed when discussing Figure (3.2b). Interestingly, CPU
times have decreased in a significant amount with a much smaller variance.



3.4. The SVJJ (2000) Model 31

OTM
options

We finish this section providing the Table for OTM options.

OTM

Method Price Error (%) Time (s)

Closed Form 0.9268 0.0000 0.0010
Monte Carlo 10000 paths 0.9280 0.1310 0.3760
Monte Carlo 50000 paths 0.9305 0.4008 1.7710
Monte Carlo 100000 paths 0.9501 2.5197 3.5840
Monte Carlo 150000 paths 0.9259 -0.0902 5.4710
FFT Trapezoidal Rule 0.9412 1.5555 0.0220
FFT Simpson’s Rule 0.8981 -3.0889 0.0240
FRFT Trapezoidal Rule 0.9412 1.5553 0.0020
FRFT Simpson’s Rule 0.9412 1.5553 0.0010
S0 = 100, K = 129.73, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = −0.05, σS = 10−4

Table 3.6: OTM results for the Bates model.

As shown in Figure (3.2b), pricing errors from any Fourier algorithm are
increasing as the option goes deep OTM. In the extreme situation represented
in Table 3.6, the accuracy of the Fourier method corresponds to an error in the
units, so it is necessary to adjust the parameters N and uplimit to improve
the accuracy or if the CPU time is not too important, consider Monte Carlo
method as an alternative. In any case, it is worthy to take into account that the
FRFT is more flexible to solve this drawback as it incorporates the parameters
η and λ jointly with the parameters indicated before.

3.4 The SVJJ (2000) Model

This model was proposed by Duffie et al. [DPS00] in (2000) and extends the
Bates (1996) model adding jumps in the variance process. As a result, the
model is based on the following risk-neutral dynamics:

dSt = (r − λµJ)Stdt+
√
vtStdW1,t + JStdÑt

dvt = κ(θ − vt)dt+ σv
√
vtdW2,t + ZdÑt (3.8)

EP [dW1,tdW2,t] = ρdt
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where the jump terms are defined as:

Z ∼ exp(µV )
(1 + J) ∼ LogN

(
µS + ρJZ, σ

2
S

)
with:

µJ =
exp

(
µS + σ2

S

2

)
1− ρJµV

3.4.1 Characteristic Function

The characteristic function of the SVJJ model has the same appearance as that
in the Bates (1996) model, but with a more complicated jump part. Poklewski
[PK12] provides the following closed-form expression:

φj(ϕ;xt, vt) = E [φj(ϕ;xT , vT )|Ft]
= E

[
eiϕ lnST |(xt, vt)

]
= exp [Cj(τ, ϕ) +Dj(τ, ϕ)vt + Pj(τ, ϕ)λ+ iϕxt] (3.9)

where the functions Cj(τ, ϕ) and Dj(τ, ϕ) are the same as for the Heston model.
On the other side, P(τ, ϕ) is defined by:

Pj(τ, ϕ) = −τ (1 + iϕµJ) + exp

[
iϕµS + σ2

S(iϕ)2

2

]
νj (3.10)

where

νj = βj + dj
(β + dj)c− 2µV α

τ + 4µV α
(djc)2 − (2µV α− βjc)2 log (ϑj)

c = 1− iϕρJµV

and

α = − (ϕ2 + iϕ)
2

βj = bj − ρσV iϕ

γ = σ2
V

2

ϑj = 1− (dj − βj)c+ 2µV α
2djc

(
1− edjτ

)
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where bj was defined in the Heston model section.

3.4.2 Numerical Results

This Subsection presents the numerical results for the SVJJ model. As this
model includes jumps in both SPDEs, it is more difficult to pricing options
correctly in this model, so we must consider a lightly jump parameters. As our
goal is to price European call options by using the methods considered in the
previous sections, we consider the following parameters: κ = 2, θ = 0.06, σV =
0.1, v0 = 0.06, ρ = 0.9, Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV =
0.01 and a strikes range of K ∈ [70, 130]. For both Fourier algorithms, we take
α = 1.75, N = 211 and uplimit = 700, while the FRFT is implemented with
its exclusive parameters η = 0.1 and λ = 0.005.

Figure (3.3) shows the adjustment, errors and CPU times.
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Figure 3.3: Adjustments, errors and CPU times for Fourier Methods in the SVJJ
model

Figure (3.3a) represents the adjustment to the exact price of both Fourier
methods under the trapezoidal rule3 to integrate the semi-closed solution via
the Gauss-Laguerre quadrature. At first sight, both algorithms seems to fit
fairly well the prices, but we need to consider the implementation errors. Figure
(3.3b) illustrates that the errors for the SVJJ model show a similar aspect
to those in the Bates model as this Figure is graphically identical to Figure
(3.2b)). As we will see later, pricing errors for OTM options are greater than
those for ITM options. In any case, the errors are around 10−2.

CPU times are different from those in the Bates model although both figures
show the same aspect. Now, the mean CPU time is one order higher than

3Results from the Fourier methods with the Simpson’s rule are very similar, so they are not
presented here.
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CPU times for the Bates model, an expected result taking into account the
complexity of this model. In short, these values for the FFT and for the FRFT
are, respectively, of 10−1s and of 10−2s order while they are much higher for
the Monte Carlo approach.

As in the previous cases, we present the prices for the different degrees of
options moneyness.

ITM
options

Table (3.7) summarizes the results for ITM options.

ITM

Method Price Error (%) Time (s)

Closed Form 31.9142 0.0000 0.0030
Monte Carlo 10000 paths 31.7928 -0.3806 2.2280
Monte Carlo 50000 paths 32.0682 0.4823 10.7900
Monte Carlo 100000 paths 31.9161 0.0058 22.3490
Monte Carlo 150000 paths 32.0178 0.3244 36.3570
FFT Trapezoidal Rule 31.9165 0.0070 0.3440
FFT Simpson’s Rule 31.9165 0.0070 0.2380
FRFT Trapezoidal Rule 31.9164 0.0066 0.0170
FRFT Simpson’s Rule 31.9164 0.0066 0.0100
S0 = 100, K = 70.46, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV = 0.01

Table 3.7: ITM results for the SVJJ model.

This Table shows that CPU times of Monte Carlo methods are much larger
than those in Fourier methods and, moreover, they do not guarantee the same
grade or accuracy than these algorithms. The last figure shows that both
Fourier methods reach the same accuracy order. Clearly, the FRFT is the best
alternative to price ITM options in this model.
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ATM
options

The results for this type of options are summarized in the next Table.

ATM

Method Price Error (%) Time (s)

Closed Form 8.0706 0.0000 0.0010
Monte Carlo 10000 paths 8.5833 6.3529 2.2600
Monte Carlo 50000 paths 8.4273 4.4208 11.4860
Monte Carlo 100000 paths 8.3981 4.0587 23.2030
Monte Carlo 150000 paths 8.4520 4.7259 33.4450
FFT Trapezoidal Rule 8.1102 0.4910 0.2330
FFT Simpson’s Rule 8.1102 0.4909 0.2350
FRFT Trapezoidal Rule 8.1102 0.4909 0.0070
FRFT Simpson’s Rule 8.1102 0.4909 0.0060

S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV = 0.01

Table 3.8: ATM results for the SVJJ model.

All the methods provide now much larger errors, being this increase specially
large in the Fourier algorithms, where they increase two magnitude orders,
whilst the errors in the Monte Carlo method have increased one magnitude
order. Now, CPU times for Fourier algorithms are lower than before while, as
expected, CPU times for the Monte Carlo are similar to those in the previous
Table. Anyway, the FRFT is again the best choice to price European call
options under this model.
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OTM
options

The last case under analysis relates to Deep Out-of-the-Money and is shown in
Table (3.9).

OTM

Method Price Error (%) Time (s)

Closed Form 0.9818 0.0000 0.0010
Monte Carlo 10000 paths 1.0676 8.7409 2.1340
Monte Carlo 50000 paths 1.0943 11.4644 11.1240
Monte Carlo 100000 paths 1.1419 16.3071 22.5510
Monte Carlo 150000 paths 1.1440 16.5278 34.4080
FFT Trapezoidal Rule 0.9990 1.7588 0.2550
FFT Simpson’s Rule 0.9990 1.7584 0.2620
FRFT Trapezoidal Rule 0.9991 1.7645 0.0070
FRFT Simpson’s Rule 0.9991 1.7645 0.0060
S0 = 100, K = 129.73, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV = 0.01

Table 3.9: OTM results for the SVJJ model.

Corroborating Figure (3.3b), the errors have increased even more in comparison
with the last table, but to a lesser extent, being now of one magnitude order.
The same is true for the Monte Carlo algorithm. In both cases, CPU times
are close to its mean, so one more time, the FRFT is the most accurate and
fastest algorithm among all.

3.5 The Double Heston (2009) Model

To match precisely the market implied volatility surface, we can specify a two-
factor structure for the volatility instead of a jump component as considered
before. This approach was proposed in Christoffersen et al. [CHJ09] leading
to a double Heston model. This model considers that the variance of the
underlying asset can be split in two components, each following a stochastic
process of CIR-type:
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For the sake of simplicity, we assume the following correlation structure:

dSt = (r − q)Stdt+√v1,tStdW1,t +√v2,tdW2,t

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdZ1,t (3.11)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdZ2,t

For the sake of simplicity, we assume the following stochastic structure:

E [dW1,tdZ1,t] = ρ1dt

E [dW2,tdZ2,t] = ρ2dt (3.12)
E [dW1,tdW2,t] = E [dZ1,tdZ2,t] = E [dW1,tdZ2,t] = E [dW2,tdZ1,t] = 0.

Furthermore, the probabilities P1 and P2 for the Double Heston model, obtained
under different measures, are different from probabilities given for (1.9), which
are valid only for Heston, Bates, SVJJ and Mikhailov and Nögel models. In
[Rou13] we can find the following proposition.

Proposition 3. The probabilities P1 and P2 for the Double Heston model can
be written as

P1 = 1
2 + 1

π

∫ ∞
0

Re

[
e−iϕ ln kφ(ϕ− i;xt, v1t, v2t)

iϕSte(r−q)τ

]
dϕ (3.13)

P2 = 1
2 + 1

π

∫ ∞
0

Re

[
e−iϕ ln kφ(ϕ;xt, v1t, v2t)

iϕ

]
dϕ (3.14)

where φ(ϕ;xt, v1t, v2t) represents the characteristics function for the logarithm
of the terminal stock price, xT = lnST .

3.5.1 Characteristic Function

Just as the standard Heston model, the Double Heston model belongs to the
larger class of affine models, for which the computation of the characteristic
function is rather straightforward. Duffie et al. [DPS00], found that the
characteristic function for ϕ = (ϕ0, ϕ1, ϕ2) and (xT , v1,T , v2,T ) has the following
linear form

φ(ϕ;xt, v1,t, v2,t) = E [exp(iϕ0xT + iϕ1v1,T + iϕ2v2,T )]
= exp [A(τ) +B0(τ)xt +B1(τ)v1,t +B2(τ)v2,t] (3.15)
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where

A(τ, ϕ) = (r − q)ϕiτ +
2∑
j=1

κjθj
σ2
j

[
(κj − ρjσjϕi+ dj)τ − 2 ln

(
1− gjedjτ

1− gj

)]

Bj(τ, ϕ) = κj − ρjσjϕi+ dj
σ2
j

(
1− edjτ

1− gjedjτ

)
and

gj = κj − ρjσjϕi+ dj
κj − ρjσjϕi− dj

dj =
√

(κj − ρjσjϕi)2 + σ2
jφ (ϕ+ i)

3.5.2 Numerical Results

We present the numerical results for the Double Heston model. Similarly to the
previous models, we price European call options considering a range of strikes
in [70, 130] with the following parameters: S0 = 100, κ1 = 2, θ1 = 0.005, σ1 =
0.2, v01 = 0.04, ρ1 = 0.6, κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 =
−0.6, τ = 0.5, r = 0.03 and q = 0. Additionally, Fourier algorithms are based
on the parameters α = 1.75, N = 211 and uplimit = 700. Finally, the FRFT
is implemented with η = 0.1 and λ = 0.005, since this configuration is the most
suitable for our purposes.

Figure (3.4) shows the results obtained.
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Figure 3.4: Adjustments, errors and CPU times for Fourier Methods in the Double
Heston model

Figure (3.4a) illustrates that both Fourier methods implemented via the trape-
zoidal rule adjust correctly option prices computed by integrating the semi-
closed solution via the Gauss-Laguerre quadrature. Figure (3.4b) shows the
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pricing errors, with mean values of 1.6× 10−3% and 6.8× 10−3% for the FFT
and FRFT, respectively. For the same values of N and uplimit, the FRFT
performs worse than the FFT algorithm; then, we should modify these param-
eters or, alternatively, modify the (FRFT) parameters η and λ, but without
taking CPU times away, since although FFT shows lower errors than FRFT,
both are of same magnitude order, whereas whereas its mean CPU time are
two orders of magnitude less than those for the FRFT times.

ITM
options

Table (3.10) shows the results for ITM options.

ITM

Method Price Error (%) Time (s)

Closed Form 31.8860 0.0000 0.0050
Monte Carlo 5000 paths 32.1318 0.7708 8.7860
Monte Carlo 10000 paths 31.7058 -0.5653 17.6370
Monte Carlo 50000 paths 31.8424 -0.1370 88.3170
Monte Carlo 100000 paths 31.8438 -0.1326 176.2970
FFT Trapezoidal Rule 31.8861 0.0002 0.3740
FFT Simpson’s Rule 31.8861 0.0002 0.2880
FRFT Trapezoidal Rule 31.8860 -0.0001 0.0180
FRFT Simpson’s Rule 31.8860 -0.0001 0.0100
S0 = 100, K = 70.46, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6

κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6

Table 3.10: ITM results for the Double Heston model.

Two issues in this Table can be emphasized. First, we consider a smaller number
of paths in the Monte Carlo simulations than in the previous models. This
choice is motivated as, now, Monte Carlo simulations are very time consuming
and considering the same number of paths than before does not make sense
as this method never reaches the levels of accuracy and CPU times of the
competing methods. Second, CPU times in the Monte Carlo simulation are
much higher than those provided by other models and could not be decreased
in any of the alternatives under analysis.

We can see that both Fourier algorithms provide a very fine adjustment, whereas
the FRFT algorithm is more than thirty times faster than the FFT in some
cases. Once again, the Simpson’s rule is as accurate as the trapezoidal one but
faster that it.
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ATM
options

Table (3.11) summarizes the results for ATM options.

ATM

Method Price Error (%) Time (s)

Closed Form 8.0508 0.0000 0.0020
Monte Carlo 5000 paths 7.9245 -1.5691 8.7800
Monte Carlo 10000 paths 7.9322 -1.4736 17.7200
Monte Carlo 50000 paths 7.9636 -1.0841 88.5260
Monte Carlo 100000 paths 7.9988 -0.6464 176.9310
FFT Trapezoidal Rule 8.0508 -0.0004 0.2750
FFT Simpson’s Rule 8.0508 -0.0005 0.2390
FRFT Trapezoidal Rule 8.0508 -0.0006 0.0080
FRFT Simpson’s Rule 8.0508 -0.0006 0.0070

S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6

κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6

Table 3.11: ATM results for the Double Heston model.

The qualitative conclusions equate those for ITM options: the Monte Carlo
approach provides larger pricing errors and much higher CPU times than
the Fourier methods. Both Fourier methods provide similar errors and the
implementation with the Simpson’s rule is faster than that with the trapezoidal
one.
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OTM
options

The next Table provides the results for this type of options.

OTM

Method Price Error (%) Time (s)

Closed Form 0.9553 0.0000 0.0020
Monte Carlo 5000 paths 0.8696 -8.9658 8.8160
Monte Carlo 10000 paths 0.8754 -8.3643 17.6770
Monte Carlo 50000 paths 0.8888 -6.9583 88.2400
Monte Carlo 100000 paths 0.8978 -6.0122 176.0430
FFT Trapezoidal Rule 0.9552 -0.0017 0.2670
FFT Simpson’s Rule 0.9552 -0.0021 0.2420
FRFT Trapezoidal Rule 0.9553 0.0039 0.0080
FRFT Simpson’s Rule 0.9553 0.0039 0.0080
S0 = 100, K = 129.73, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6

κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6

Table 3.12: OTM results for the Double Heston model.

In this case, all the methods present a worse adjustment than in the previous
moneyness cases. For all the methods, the errors increase one order of magnitude
while mean CPU times are practically the same as before. As previously, the
Monte Carlo method is the least accurate and with the largest CPU times.
The FRFT is the best choice due to its calculation speed, whereas the FFT
becomes the most accurate method.

3.6 The Mikhailov and Nögel (2004) Model

Another alternative to adjust the market implied volatilities for short maturi-
ties is based on allowing the parameters to be time-dependent, as proposed
in Mikhailov and Nögel [MN04]. This time-dependent model has the same
appearance as the Heston model presented earlier but with time-dependent
parameters in the process of the asset variance and in the correlation between
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Brownian motions:

dSt = rStdt+
√
vtStdW1,t

dvt = κt(θt − vt)dt+ σt
√
vtdW2,t (3.16)

EP [dW1,tdW2,t] = ρtdt

3.6.1 Characteristic Function

We start presenting the characteristic function of the time-dependent Heston
model. This function is obtained by applying a recursive method, as shown in
Rouah [Rou13]. The outline of this method is as follows.

Consider the time interval [0, TN ] and the partition T0 = 0 < T1 <

· · · < TN < ∞. The size of this partition is given by the increments
τk = Tk−Tk−1, k = 1, . . . , N . We will compute C̃j(ϕ, τk; Θk) and D̃j(ϕ, τk; Θk)
recursively, where Θk =

[
κ(k−1), θ(k−1), σ(k−1), v

(k−1)
0 , ρ(k−1)

]
denotes the set

of parameter estimates in each stage for k = 1, . . . , N . For the first matu-
rity τ1, we obtain C̃j(ϕ, τ1; Θ1) and D̃j(ϕ, τ1; Θ1) using the initial conditions
C0
j = D0

j = 0, exactly as in the Heston model. We then build the characteristic
functions, obtain the prices and estimate Θ1. In the subsequent steps, the
estimation is modified since we are using general non-negative values Ckj and
Dk
j . Now, in the second step, replace Θ1 into the expressions for C̃j and D̃j

to produce the second set of initial conditions C1
j and D1

j . Then construct
C̃j(ϕ, τ2; Θ2) and D̃j(ϕ, τ2; Θ2), obtain the prices and estimates the set Θ2.
And so on.

In summary, the characteristic function is given by the following expressions

φj(ϕ;x, v,Θk) = exp
[
C̃j(ϕ, τk; Θk) + D̃j(ϕ, τk; Θk)vk0 + iϕx

]
(3.17)

where

C̃j(ϕ, τk; Θk) = (r − q)iϕτk + a

σ2

[
$jτk − 2 ln

(
1− g̃jedjτk

1− g̃j

)]
+ Ck−1

j

D̃j(ϕ, τk; Θk) =
{
ζj , if k = 1;
χj , if k ≥ 2;
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with:

$j = bj − ρσiϕ+ dj

ζj = bj − ρσiϕ+ dj
σ2

(
1− edjτ

1− gjedjτ

)
χj = (bj − ρσiϕ+ dj)− (bj − ρσiϕ− dj)g̃jexp(djτk)

σ2(1− g̃jexp(djτk))

and where

gj =
bj − ρσiϕ+ dj −Dk−1

j σ2

bj − ρσiϕ+ dj −Dk−1
j σ2

dj =
√

(ρσiϕ− bj)2 − σ2 (2ujiϕ− ϕ2)

uj =
{

1
2 , if j = 1;
− 1

2 , if j = 2;

bj =
{
κ+ λ− ρσ, if j = 1;
κ+ λ, if j = 2;

a = κθ

3.6.2 Numerical Results

Prices for European call option are computed considering strikes in the interval
[70, 130]. The remaining parameters are S0 = 100, θ = 0.1, σ = 0.2, v0 = 0.1,
and ρ = −0.3. Moreover, κ = 1, 2, 4 in the three periods, which we assume to
have the same length and maturity is τ = 5. Finally, as in Table 1 in Mikhailov
and Nögel [MN04], the model is implemented considering r = 0.

Both Fourier algorithms have been implemented considering α = 1.75 while
we consider N = 210 and uplimit = 550 for the FFT and N = 29 and
uplimit = 450 for the FRFT. Moreover, the FRFT uses η = 0.1 and λ = 0.005.
As we will see later, this choice allows the FRFT to be much more efficient
than the FFT, leading to a decrease in the number of integration points in one
magnitude order. Figure (3.5) shows that the numerical results for this model
are very accurate.
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Figure 3.5: Adjustments, errors and CPU times for Fourier Methods in the Mikhailov
and Nögel model

Figure (3.5b) shows that the mean pricing errors in both Fourier methods are
around 10−4%, a really small value. It can also be noted that these errors are
higher than in the previous ITM and ATM options. The mean CPU times are,
respectively, around 10−2s and 103s for the FFT and FRFT alternatives.

ITM
options

Table (3.13) shows the results for ITM options.

ITM

Method Price Error (%) Time (s)

Closed Form 41.5156 0.0000 0.0170
Monte Carlo 5000 paths 41.8804 0.8786 0.1190
Monte Carlo 10000 paths 40.6857 -1.9991 0.2130
Monte Carlo 50000 paths 41.1471 -0.8878 0.8120
Monte Carlo 100000 paths 41.5893 0.1774 1.8630
FFT Trapezoidal Rule 41.5156 -0.0000 0.1410
FFT Simpson’s Rule 41.5144 -0.0029 0.0950
FRFT Trapezoidal Rule 41.5156 -0.0000 0.0140
FRFT Simpson’s Rule 41.5156 -0.0000 0.0100
S0 = 100, K = 70.46, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6

κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6

Table 3.13: ITM results for the Mikhailov and Nögel model.

We can highlight several interesting results. First, the FRFT offers a price
that is accurate up to the fourth decimal, whereas this algorithm is the fastest
method and is even faster than the integration of semi-closed solution via the
Gauss-Laguerre quadrature. The FFT algorithm is almost as accurate than
the FRFT but it much slower, up to ten times in some cases. Monte Carlo
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simulations provide accurate results although far from the efficiency achieved
by the Fourier algorithms.

ATM
options

The next table summarizes the results for ATM options.

ATM

Method Price Error (%) Time (s)

Closed Form 27.3676 0.0000 0.0140
Monte Carlo 5000 paths 27.7069 1.2399 0.1150
Monte Carlo 10000 paths 27.3054 -0.2271 0.2080
Monte Carlo 50000 paths 27.1933 -0.6369 0.8950
Monte Carlo 100000 paths 27.3169 -0.1852 1.6290
FFT Trapezoidal Rule 27.3676 0.0000 0.0710
FFT Simpson’s Rule 27.3664 -0.0043 0.0860
FRFT Trapezoidal Rule 27.3676 0.0000 0.0060
FRFT Simpson’s Rule 27.3676 0.0000 0.0060

S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6

κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6

Table 3.14: ATM results for the Mikhailov and Nögel model.

The results are similar to the previous ones: the FRFT is the fastest algorithm,
including the Gauss-Laguerre quadrature. Once again, the Simpson’s rule for
the FFT method seems to be less accurate than the other Fourier methods.
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OTM
options

Finally, table (3.15) shows the results for Deep Out-of-the money options.

OTM

Method Price Error (%) Time (s)

Closed Form 0.9553 0.0000 0.0020
Monte Carlo 5000 paths 0.8696 -8.9658 8.8160
Monte Carlo 10000 paths 0.8754 -8.3643 17.6770
Monte Carlo 50000 paths 0.8888 -6.9583 88.2400
Monte Carlo 100000 paths 0.8978 -6.0122 176.0430
FFT Trapezoidal Rule 0.9552 -0.0017 0.2670
FFT Simpson’s Rule 0.9552 -0.0021 0.2420
FRFT Trapezoidal Rule 0.9553 0.0039 0.0080
FRFT Simpson’s Rule 0.9553 0.0039 0.0080
S0 = 100, K = 129.73, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6

κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6

Table 3.15: OTM results for the Mikhailov and Nögel model.

Now, the FRFT is four times slower than the Gauss-Laguerre quadrature.
Moreover, for all the methods, the errors have increased with respect to ATM
options. The worst case corresponds to the Monte Carlo method with errors
of 10% order, whereas the accuracy of the Fourier methods is around 10−3%.
Note that the FFT via the Simpon’s rule is even more accurate than any FRFT
algorithm.



4
Greeks and other

Sensitivities
This chapter computes Greeks and other sensitivities for all the option pricing
models presented in the previous chapters
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4.1 Introduction

In this chapter, Greeks and other sensitivities will be computed under the five
option pricing models presented previously. These measures will be computed
numerically by four alternative techniques: direct integration through Gauss-
Laguerre quadrature, finite differences approximation and by FFT and FRT
methods. Our main goal is to show that both Fourier methods are valid in this
context and analyze their efficiency with respect to the elapsed time involved
in the calculation.

Through this chapter, it is important to keep in mind that, under the models
presented earlier, the prices of European calls admit a semi-closed form expres-
sion and, hence, it is also possible to obtain analytical formulas for the Greeks.
Recall that the call price is given as

c(K) = Ste
−qτP1 −Ke−rτP2 (4.1)

where P1 and P2 are the probabilities calculated in the previous chapters.

4.2 The Heston (1993) Model

In the first part of this section, Greeks for the Heston model will be showed
in their analytic formula. Other sensitivities as regards as parameters like
kappa, sigma and theta are also having into account, but only the sensitivity
as regards as theta will be calculated. The remaining sensitivities have been
calculated symbolically by means of MATLAB.

The goal of the second part of this section is to compare the results obtained
when we compute the Greeks and other sensitivities for the Heston model by
means of methods as finite differences or Fourier algorithms. We will compare
them in relation with the results provided by Direct Integration of semi-closed
solution via Gauss-Laguerre quadrature.
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4.2.1 Greeks and other Sensitivities

Differentiating equation (4.1) and considering equation (1.9), Delta, Gamma,
Rho and Theta are given respectively by

∆H = ∂c

∂S
= e−qτP1 (4.2)

ΓH = ∂2c

∂S2 = e−qτ
∂P1

∂S
= e−qτ

πSt

∫ ∞
0

Re
[
e−iϕ lnKφ1(ϕ;xt, vt)

]
dϕ (4.3)

ρH = ∂2c

∂r
= Kτe−rτP2 (4.4)

ΘH = − ∂c
∂τ

= −Ste−qτ
(
−qP1 + ∂P1

∂τ

)
+Ke−rτ

(
−rP2 + ∂P2

∂τ

)
(4.5)

Being
∂Pj
∂τ

= 1
π

∫ ∞
0

Re

[
∂φj
∂τ
× e−iϕ lnK

iϕ

]
dϕ

where
∂φj
∂τ

= exp(Cj +Djvt + iϕxt)
(
∂Cj
∂τ

+ ∂Dj

∂τ
vt

)
and

∂Cj
∂τ

= (r − q)ϕi+ κθ

σ2

[
bj − ρσϕi+ dj + 2gjdjedjτ

1− gjedjτ

]
∂Dj

∂τ
= bj − ρσϕi+ dj

σ2

[
(gj − 1)djedjτ

(1− gjedjτ )2

]
On the other hand, taking into account the two measures for the variance
explained by Zhu in [Zhu09], we have two Vegas, one based on v = √v0 and
the other based on ω =

√
θ. With these definitions, we have that the Vegas

are

V1H = ∂c

∂v
= ∂c

∂v0
2
√
v0

V2H = ∂c

∂ω
= ∂c

∂θ
2
√
θ

Being the first Vega

V1H = Se−qτ
∂P1

∂v0
2
√
v0 −Ke−rτ

∂P2

∂v0
2
√
v0 (4.6)
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where
∂Pj
∂v0

= 1
π

∫ ∞
0

Re

[
e−iϕ lnKφj(ϕ;xt, vt)Dj(τ, ϕ)

iϕ

]
dϕ.

and being the second Vega

V2H = Se−qτ
∂P1

∂θ
2
√
θ −Ke−rτ ∂P2

∂θ
2
√
θ (4.7)

where
∂Pj
∂θ

= 1
π

∫ ∞
0

Re

[
e−iϕ lnKφj(ϕ;xt, vt)∂Cj/∂θ)

iϕ

]
dϕ.

and
∂Cj
∂θ

= κ

σ2

[
(bj − ρσϕi+ dj)τ − 2 ln

(
1− gjedjτ

1− gj

)]

4.2.2 Numerical Results

The goal of this section is to compare the results obtained when we compute
the Greeks and other sensitivities for the Heston model by means of methods
as finite differences and the Fourier methods. We will compare them in relation
with the result provided by Direct Integration of semi-closed solution. In
this case, we will see as the Fourier methods continues offering a reduced
computation times, although they are not so small as the traditional methods
when we compute the most simplest Greeks. They offer also an accurate
results.

All the graphics and results that we will present, corresponding to an European
call option with the following conditions: K = 100, κ = 2, θ = 0.06, σ = 0.1,
v0 = 0.06, ρ = 0.9 τ = 0.5 1, r = 0.05, q = 0 and for a spot range of S0 ∈
[70, 130]. Furthermore, we implemented the Fourier algorithms with α = 1.75,
N = 29 integration points and an upper integration limit of uplimit = 600 for
FFT, while we have chosen N = 29, uplimit = 100, η = 0.1 and λ = 0.005 for
FRFT. We have chosen these values to show one more time, the flexibility of
FRFT method in comparison with FFT and we will see that FRFT will be
faster and more accurate than FFT only with a fine choice of η and λ. We
want to point out, that all the tridimensional figures showed in this chapter,
contain two representation of the Greek or sensibility, corresponding each of
them to the cases in which correlation is ρ = 0.9 or ρ = −0.9.

1For 3D graphics, the maturity range is τ ∈ [0.01, 0.5], while the value of τ = 0.5 refers only
to bidimensional cuts
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We begin show the results for Delta Greek, which it can be seen in figure
(4.1).

(a) Delta
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Figure 4.1: 3D Visualization, adjustments and errors for Heston Delta

At first sight, we can see in figure (4.1b), that the adjustment for Fourier
methods via trapezoidal integration rule is near close to direct integration of
semi-closed solution. but if we see in deep, we can see in figure (4.1c), that
the error of the adjustment of both Fourier methods via trapezoidal rule is in
arithmetic mean 0.74% for FFT and 4.80× 10−3% for FRFT, which it is really
a great adjustment in both cases. Times will not be presented here graphically,
but it will be discussed in the tables later.

In the next paragraphs, we will comment only three tables relatives to two
Greeks and the sensitivity of another parameter of the model, instead of
commenting all the tables for all the Greeks and other parameters for reasons
of space and readability of the document. Furthermore, all results showed in
this chapter corresponding for ATM options, because it has been proved that
the other cases do not provide any relevant result.

In the same way in which results for option pricing were presented in chapter
3, we show here the results for Greeks and other sensitivities under the model
conditions indicated before. Again, numerical results are obtained with same
laptop as we indicated previously.

Therefore, we begin with the results for Delta Greek and show them in the
next table
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Heston Delta

Method Value Error (%) Time (s)

Closed Form 0.5726 0.0000 0.0010
Finite Differences 0.5726 0.0102 0.0020
FFT Trapezoidal Rule 0.5727 0.0017 0.0160
FFT Simpson’s Rule 0.5727 0.0017 0.0220
FRFT Trapezoidal Rule 0.5726 -0.0000 0.0010
FRFT Simpson’s Rule 0.5726 -0.0000 0.0020

S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9

Table 4.1: Results for Heston Delta.

FFT and FRFT algorithms have been executed considering the same integration
grid with N9 points, but with different uplimit and it is this, together with the
choice of η and λ, which give us a negligible error in the results obtained with
FRFT method in comparison with FFT algorithm. Other relevant aspect in
table (4.1) is that Trapezoidal rule is faster but equally accurate than Simpson’s
rule for Fourier algorithms. The speed in the calculation is a reasonable result,
because Simpson’s rule requires a greater number of allocation of weights.
However, for FFT case, it is important notice that the error in accuracy, even
though it may seem significant, is an error in the third decimal. Throughout
FRFT algorithm, we get a great accurate order, which is greater than Finite
Differences methods and less CPU time consuming.

Next, figure (4.2) shows the results for Gamma Greek.
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Figure 4.2: 3D Visualization, adjustments and errors for Heston Gamma

Again, we can see in figure (4.2c), that the adjustment for Fourier methods
is in arithmetic mean, around 0.13% for FFT and 5.80 × 10−3% for FRFT,
which are of the same order than the means for Delta Greek and equally both
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algorithms offer us an higher reliability. Figures (4.2a) and (4.2b) show the
appearance of Gamma Greek.

We will analyze now the table of results for ATM options.

Heston Gamma

Method Value Error (%) Time (s)

Closed Form 0.0228 0.0000 0.0010
Finite Differences 0.0228 0.0244 0.0030
FFT Trapezoidal Rule 0.0228 -0.0002 0.0220
FFT Simpson’s Rule 0.0228 -0.0002 0.0150
FRFT Trapezoidal Rule 0.0228 -0.0002 0.0010
FRFT Simpson’s Rule 0.0228 -0.0002 0.0020

S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9

Table 4.2: Results for Heston Gamma.

In this table, we can se that results showed are very similar with those of table
(4.1) and anew, they are much better in accuracy order than FD method and
in the FRFT case, even thought more faster than it.

We continue with other important Greek, Vega 1, for which we present the
results obtained in figure (4.3)

(a) Vega 1
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(c) Errors

Figure 4.3: 3D Visualization, adjustments and errors for Heston Vega 1

Here, we can see in figure (4.3c), that the adjustment for Fourier methods is in
arithmetic mean, around 0.02% for FFT and 4.70× 10−3% for FRFT, which
offer us an higher reliability. Figures (4.3a) and (4.3b) show the appearance of
Vega 1 Greek.

The results for ATM options are showed in the next table



54 4. Greeks and other Sensitivities

Heston Vega 1

Method Value Error (%) Time (s)

Closed Form 17.5660 0.0000 0.0030
Finite Differences 17.5660 -0.0000 0.0020
FFT Trapezoidal Rule 17.5659 -0.0008 0.0210
FFT Simpson’s Rule 17.5659 -0.0008 0.0190
FRFT Trapezoidal Rule 17.5659 -0.0008 0.0010
FRFT Simpson’s Rule 17.5659 -0.0008 0.0010

S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9

Table 4.3: Results for Heston Vega 1.

In this table, there are not any remarkable result, being as we can observed
here the same situations commented before.

Here, we present here the figures for remaining Greeks Rho and Theta, which
no present any relevant aspect.

(a) Rho
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(c) Errors

Figure 4.4: 3D Visualization, adjustments and errors for Heston Rho

(a) Theta
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(c) Errors

Figure 4.5: 3D Visualization, adjustments and errors for Heston Theta

To finish this section, we present here the figures for parameters kappa, sigma
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and Vega 2, whose more relevant aspects will be commented in briefly. Kappa
will be the first of them

(a) Kappa
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Figure 4.6: 3D Visualization, adjustments and errors for Heston Kappa

As it can be seen in figure (4.6c), the adjustment error for Kappa is greater
than the other Greeks showed before. It can be explained due to the derivatives
for Kappa have been calculated symbolically throughout MATLAB due to its
complexity, and for this reason the results showed are less accurate and more
CPU time consuming in Fourier cases.

(a) Sigma
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Figure 4.7: 3D Visualization, adjustments and errors for Heston Sigma

From the same form as we indicated in the last paragraph for Kappa, Sigma
has been evaluated symbolically and presents the same inconveniences that we
commented previously.

Last, Vega 2 has been calculated in closed form and it does not present the
problems previously indicated, as you can see in figure (4.8)



56 4. Greeks and other Sensitivities

(a) Vega 2
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Figure 4.8: 3D Visualization, adjustments and errors for Heston Vega 2

4.3 The Bates (1996) Model

In the first part of this section, Greeks for the Bates model will be derived
in their analytic formula. Other sensitivities as regards as parameters like
kappa, sigma and theta are also having into account, but only the sensitivity
as regards as theta will be derived. The remaining sensitivities have been
calculated symbolically by means of MATLAB.

The goal of the second part of this section is to compare the results obtained
when we compute the Greeks and other sensitivities for the Bates model by
means of methods as finite differences or Fourier algorithms. We will compare
them in relation with the results provided by Direct Integration of semi-closed
solution via Gauss-Laguerre quadrature.

4.3.1 Greeks and other Sensitivities

Differentiating equation (4.1) and considering equation (1.9), we have that
Delta, Gamma, Rho and Vegas are the same that obtained before for the
Heston model. However, Theta acquires a different shape, as we will see in the
thorough this section.

∆B = ∂c

∂S
= e−qτP1 (4.8)

ΓB = ∂2c

∂S2 = e−qτ
∂P1

∂S
= e−qτ

πSt

∫ ∞
0

Re
[
e−iϕ lnKφ11(ϕ;xt, vt)

]
dϕ (4.9)

ρB = ∂2c

∂r
= Kτe−rτP2 (4.10)
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while Theta is given by

ΘB = − ∂c
∂τ

= −Ste−qτ
(
−qP1 + ∂P1

∂τ

)
+Ke−rτ

(
−rP2 + ∂P2

∂τ

)
(4.11)

Being
∂Pj
∂τ

= 1
π

∫ ∞
0

Re

[
∂φj
∂τ
× e−iϕ lnK

iϕ

]
dϕ

where

∂φj
∂τ

= exp(Cj +Djvt + P (ϕ)Λτ + iϕxt)
(
∂Cj
∂τ

+ ∂Dj

∂τ
vt + P (ϕ)λ

)
(4.12)

and

∂Cj
∂τ

= (r − q)ϕi+ κθ

σ2

[
bj − ρσϕi+ dj + 2gjdjedjτ

1− gjedjτ

]
∂Dj

∂τ
= bj − ρσϕi+ dj

σ2

[
(gj − 1)djedjτ

(1− gjedjτ )2

]
Finally, Vegas are given by

V1B = ∂c

∂v
= ∂c

∂v0
2
√
v0

V2B = ∂c

∂ω
= ∂c

∂θ
2
√
θ

Being the first Vega

V1B = Se−qτ
∂P1

∂v0
2
√
v0 −Ke−rτ

∂P2

∂v0
2
√
v0 (4.13)

where
∂Pj
∂v0

= 1
π

∫ ∞
0

Re

[
e−iϕ lnKφj(ϕ;xt, vt)Dj(τ, ϕ)

iϕ

]
dϕ.

and being the second Vega

V2B = Se−qτ
∂P1

∂θ
2
√
θ −Ke−rτ ∂P2

∂θ
2
√
θ (4.14)

where
∂Pj
∂θ

= 1
π

∫ ∞
0

Re

[
e−iϕ lnKφj(ϕ;xt, vt)∂Cj/∂θ)

iϕ

]
dϕ.

and
∂Cj
∂θ

= κ

σ2

[
(bj − ρσϕi+ dj)τ − 2 ln

(
1− gjedjτ

1− gj

)]
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4.3.2 Numerical Results

As we did before for the Heston model, we present here the numerical results
for Greeks and other sensitivities for the Bates model employing the same
methods. The peculiarity of this model, is that it includes jumps in the stock
price and for this reason the results will not be so accurate as what we obtained
for the previous model, unless we consider a restrained size of jumps and it is
what we did.

In this case, all the graphics and results showed in this section, corresponding
to an European call option with the following conditions: K = 100, κ = 2,
θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9, τ = 0.5, r = 0.05, q = 0 and the new
parameters needed to implement this model; Λ = 3, µS = −0.05, σ = 10−4.
We consider again, the same spot range of S0 ∈ [70, 130]. In relation to Fourier
algorithms, we have implemented them considering α = 1.75, a grid of N = 29

integration points an upper limit of integration of uplimit = 200 for both
Fourier methods, while we implemented FRFT with a fine adjustment of its
parameters, taking η = 0.1 and λ = 0.005.

As novelty for this model, we show the table of results for Delta, Theta and
Kappa only, whereas the remainder Greeks and other sensitivities will be
showed graphically.

We begin this section, showed the results for Gamma Greek, which it is presented
in figure (4.9)
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Figure 4.9: 3D Visualization, adjustments and errors for Bates Gamma

The inclusion of jumps give us a worse adjustment of Gamma than we obtained
for the Heston model, as we can see in figure (4.9c). In this case, the error
in adjustment is in arithmetic mean 0.25% in FFT case and 0.08% for FRFT
algorithm, but in any case, Fourier algorithms continuously being an alternative
due to they offer us a minimal error compared with FD method and competitive
CPU times, specially in FRFT case, as we see in the next table.
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Bates Gamma

Method Value Error (%) Time (s)

Closed Form 0.0227 0.0000 0.0010
Finite Differences 0.0228 -0.4922 0.0040
FFT Trapezoidal Rule 0.0227 -0.0101 0.0150
FFT Simpson’s Rule 0.0227 -0.0101 0.0200
FRFT Trapezoidal Rule 0.0227 -0.0101 0.0020
FRFT Simpson’s Rule 0.0227 -0.0101 0.0010

S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = −0.05, σS = 10−4

Table 4.4: Results for Bates Gamma.

As we commented in the previous paragraph and you can see in table (4.4),
FRFT algorithm computes Gamma Greek so faster than the direct integration
of semi-closed solution via Gauss-Laguerre quadrature and it can be at least
until four times more faster than FD method when we compute this Greek for
ATM options, allowing reach an error of 10−2%, while FD method is slower
than FRFT and presents an error in first decimal place. FFT is so accurate
than FRFT, but it is more slower in its two version, trapezoidal and Simpson’s
rules.

The next Greek that we will comment is Theta. It is showed in figure (4.10).

(a) Theta
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Figure 4.10: 3D Visualization, adjustments and errors for Bates Theta
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Bates Theta

Method Value Error (%) Time (s)

Closed Form -9.1909 0.0000 0.0050
Finite Differences -9.1912 -0.0038 0.0030
FFT Trapezoidal Rule -9.2236 0.3564 0.0150
FFT Simpson’s Rule -9.2236 0.3564 0.0220
FRFT Trapezoidal Rule -9.2236 0.3564 0.0020
FRFT Simpson’s Rule -9.2236 0.3564 0.0020

S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = −0.05, σS = 10−4

Table 4.5: Results for Bates Theta.

To finish with Greeks, we show the remaining figures for Delta, Rho and Vega
1 in this order.

(a) Delta
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Figure 4.11: 3D Visualization, adjustments and errors for Bates Delta

It can be thought that Delta Greek in the Bates model should be calculated
more precisely than Gamma, due to Delta is a first order Greek, whereas
Gamma implies a second order derivative, but numerical results do not reflect
this fact, being them, very similar in appearance. In any case, the error in
adjustment is in arithmetic mean about 0.23% for FFT and 0.07% for FRFT,
which they are some lightly lower than Gamma errors.

Figure (4.12), shows the Rho Greek.
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(a) Rho
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Figure 4.12: 3D Visualization, adjustments and errors for Bates Rho

For this Greek, we can observe in figure (4.12c) an accurate adjustment, being
the errors in arithmetic mean of 0.18% for FFT and 4.7× 10−3% for FRFT.
Furthermore, CPU times are shorter than FD method.

Next figure shows the results for the last Greek, Vega 1.

(a) Vega 1
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Figure 4.13: 3D Visualization, adjustments and errors for Bates Vega 1

Vega 1 reflects the fact that both Fourier methods offer us a similar adjustment;
0.65% and 0.42% for FFT and FRFT algorithms respectively, having increased
FRFT mean error as regards to the other cases.

We continuously now with other sensitivities. We begin analyze Kappa in first
place.

(a) Kappa
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Figure 4.14: 3D Visualization, adjustments and errors for Bates Kappa



62 4. Greeks and other Sensitivities

As we will see later when we have presented Kappa and Sigma show large
errors in compare with other Greeks presented here, as it can be seen in figures
(4.14) and (4.15) respectively, which it is due to it has been gathered here
the jumps in stock price SDE with the fact that these derivatives for both
parameters have been calculated symbolically. For Kappa, its errors in the
adjustment through Fourier algorithms are in arithmetic mean: 1.48% for FFT
and 1.04% for FRFT. The adjustment of Kappa is the worst among all done
for this model. On the other hand, it can be noticed in table (4.6), where we
can find moreover, that CPU times have been increased for all the methods
except FD, which it is independent of any symbolic derivative.

Bates Kappa

Method Value Error (%) Time (s)

Closed Form 0.0052 0.0000 0.0270
Finite Differences 0.0052 0.0001 0.0030
FFT Trapezoidal Rule 0.0052 -1.3846 0.0380
FFT Simpson’s Rule 0.0052 -1.3846 0.0340
FRFT Trapezoidal Rule 0.0052 -1.3846 0.0190
FRFT Simpson’s Rule 0.0052 -1.3846 0.0180

S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = −0.05, σS = 10−4

Table 4.6: Results for Bates Kappa.

Sigma is showed in the next figure.

(a) Sigma
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Figure 4.15: 3D Visualization, adjustments and errors for Bates Sigma

Here, we can observed the same problems that we found in Kappa. Arithmetical
mean errors are 1.51% and 0.97% for FFT and FRFT respectively.

We finish with Vega 2, which is presented in figure (4.16).
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(a) Vega 2
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Figure 4.16: 3D Visualization, adjustments and errors for Bates Vega 2

In this case, the adjustment and CPU times are very similar from Vega 1.
Errors are 0.64% for FFT and 0.42% for FRFT.

4.4 The SVJJ (2000) Model

In the first part of this section, Greeks for the SVJJ model will be derived
in their analytic formula. Other sensitivities as regards as parameters like
kappa, sigma and theta are also having into account, but only the sensitivity
as regards as theta will be derived. The remaining sensitivities have been
calculated symbolically by means of MATLAB.

The goal of the second part of this section is to compare the results obtained
when we compute the Greeks and other sensitivities for the SVJJ model by
means of methods as finite differences or Fourier algorithms. We will compare
them in relation with the results provided by Direct Integration of semi-closed
solution via Gauss-Laguerre quadrature.

4.4.1 Greeks and other Sensitivities

Differentiating equation (4.1) and considering equation (1.9), we have that
Delta, Gamma, Rho and Vegas are the same that obtained before for the Heston
model. However, Theta acquires a different shape, as we will see through this
section.

∆SV JJ = ∂c

∂S
= e−qτP1 (4.15)

ΓSV JJ = ∂2c

∂S2 = e−qτ
∂P1

∂S
= e−qτ

πSt

∫ ∞
0

Re
[
e−iϕ lnKφ1(ϕ;xt, vt)

]
dϕ (4.16)
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ρSV JJ = ∂2c

∂r
= Kτe−rτP2 (4.17)

while Theta is given by

ΘSV JJ = − ∂c
∂τ

= −Ste−qτ
(
−qP1 + ∂P1

∂τ

)
+Ke−rτ

(
−rP2 + ∂P2

∂τ

)
(4.18)

Being
∂Pj
∂τ

= 1
π

∫ ∞
0

Re

[
∂φj
∂τ
× e−iϕ lnK

iϕ

]
dϕ

where

∂φj
∂τ

= exp(Cj +Djvt + P̃jλ+ iϕxt)
(
∂Cj
∂τ

+ ∂Dj

∂τ
vt + ∂P̃j

∂τ
λ

)
and

∂Cj
∂τ

= (r − q)ϕi+ κθ

σ2

[
bj − ρσϕi+ dj + 2gjdjedjτ

1− gjedjτ

]
∂Dj

∂τ
= bj − ρσϕi+ dj

σ2

[
(gj − 1)djedjτ

(1− gjedjτ )2

]
∂P̃j
∂τ

= −(1 + iϕµJ) + exp

[
iϕµS + σ2

S(iϕ)2

2

]
(δj + χjξj)

where

δj = βj + dj
(βj + dj)c− 2µV α

χj = 4µV α
(djc)2 − (2µV α− βjc)2

ξj = [(dj − βj)c+ 2µV α] ce−djτ

2djc− [(dj − βj)c+ 2µV α] (1− e−djτ )

and

α = − (ϕ2 + iϕ)
2

βj = bj − ρσV iϕ

γ = σ2
V

2

where bj was defined in the Heston model section.
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Finally, Vegas are given by

V1
SV JJ = ∂c

∂v
= ∂c

∂v0
2
√
v0

V2
SV JJ = ∂c

∂ω
= ∂c

∂θ
2
√
θ

Being the first Vega

V1
SV JJ = Se−qτ

∂P1

∂v0
2
√
v0 −Ke−rτ

∂P2

∂v0
2
√
v0 (4.19)

where
∂Pj
∂v0

= 1
π

∫ ∞
0

Re

[
e−iϕ lnKφj(ϕ;xt, vt)Dj(τ, ϕ)

iϕ

]
dϕ.

and being the second Vega

V2
SV JJ = Se−qτ

∂P1

∂θ
2
√
θ −Ke−rτ ∂P2

∂θ
2
√
θ (4.20)

where
∂Pj
∂θ

= 1
π

∫ ∞
0

Re

[
e−iϕ lnKφj(ϕ;xt, vt)∂Cj/∂θ)

iϕ

]
dϕ.

and
∂Cj
∂θ

= κ

σ2

[
(bj − ρσϕi+ dj)τ − 2 ln

(
1− gjedjτ

1− gj

)]

4.4.2 Numerical Results

It will be presented here, the numerical results for the SVJJ model. Unlike of
Bates model, this model includes jumps in variance SDE and of course, in the
stock price equation. Due to these jumps, the accurate in values obtained will
be lowered depending on the jumps parameters that has been considered. For
this reason, it has been chosen a jump parameters that are not too large in the
variance SDE, whereas jump parameters in stock price SDE, are the same that
it has been employed in Bates model.

For this model, all the graphics and results showed in this section, corresponding
to an European call option with the following conditions: K = 100, κ = 2,
θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9, Λ = 3, µS = 0.014, σS = 10−4,
ρJ = −0.4, µV = 0.01 and it has been considered again, the same spot range
of S0 ∈ [70, 130]. In relation to Fourier algorithms, we have implemented
FFT considering α = 1.75, a grid of N = 210 integration points and an
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upper limit of integration of uplimit = 400, whilst FRFT algorithm has been
implemented considering N = 28 integration points an upper limit of integration
of uplimit = 200. As it can see here, the number of integration points has
been increased for FFT algorithm in one magnitude order, as well as the upper
limit of integration, that it has been increased from 200 to 400. It is due to
the fact that this model is a model that include jumps in both SPDE and
for this reason, it is more difficult to get a better results in Greeks and other
sensitivities if N and uplimit are not increased. On the other hand, it has
been taken the same parameters η = 0.1 and λ = 0.005 for FRFT algorithm.
The reason for what it has been decided increased uplimit to N in FRFT is
due to the CPU times and errors are faster and accurate respectively than any
other combination.

In this model, we show the table of results for Delta, Rho and Sigma only,
whereas the remainder Greeks and other sensitivities will be showed graphically.
As always, 3D visualizations have been obtained considering the extreme
correlations of 0.9 and −0.9, being each of them represented by means of
different shaded graphics. Bidimensional cuts have been taken at maturity for
the parameters indicated in before.

We begin this section showing the results for Delta Greek, which it is presented
in figure (4.17)
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Figure 4.17: 3D Visualization, adjustments and errors for SVJJ Delta

As it can seen in figure (4.17c), errors in the adjustment of Delta Greek are
similar to the Bates model, despite of having two SDJE. If we analyze errors in
arithmetic mean, we have that 0.11% is the error for FFT method, whilst 0.09%
is the error for FRFT algorithm, which reflects the fact that both methods get
a fine adjustment even in double jump conditions. However, CPU times are
greater than Bates model, as it can see in table (4.7)
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SVJJ Delta

Method Value Error (%) Time (s)

Closed Form 0.5723 0.0000 0.0010
Finite Differences 0.5725 -0.0380 0.0030
FFT Trapezoidal Rule 0.5727 0.0704 0.0550
FFT Simpson’s Rule 0.5727 0.0703 0.0800
FRFT Trapezoidal Rule 0.5727 0.0707 0.0010
FRFT Simpson’s Rule 0.5727 0.0707 0.0010

S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV = 0.01

Table 4.7: Results for SVJJ Delta.

All Fourier methods reach the same accuracy order when Delta Greek is
computed for ATM options, but FRFT algorithm is the most faster among
them, up to fifty-five times faster than FFT and even so faster than closed
form integration. CPU times are logically greater for FFT than FRFT due
to the fact that FFT has been implemented with a greater N and uplimit

than FRFT, but both methods have been compared to reflect the fact that
for reaching the same accuracy order, FRFT is with difference, the fastest
algorithm.

We continue our analysis with Rho Greek.
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Figure 4.18: 3D Visualization, adjustments and errors for SVJJ Rho

By its mathematical definition, Rho is a Greek that always have been well
implemented by Fourier methods in all previous models and the SVJJ is not
an exception. Error in the adjustment are very small, as it can seen in figure
(4.18c), being 4.7× 10−2% and 7.5× 10−3% the error in arithmetic mean for
FFT and FRFT respectively. Neither other Greek for this model is calculated
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with an accuracy order so fine as Rho. Table (4.8) summarizes the results for
ATM options.

SVJJ Rho

Method Value Error (%) Time (s)

Closed Form 24.5811 0.0000 0.0010
Finite Differences 24.5948 -0.0558 0.0030
FFT Trapezoidal Rule 24.5814 0.0014 0.0790
FFT Simpson’s Rule 24.5814 0.0014 0.0560
FRFT Trapezoidal Rule 24.5815 0.0018 0.0010
FRFT Simpson’s Rule 24.5815 0.0018 0.0010

S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV = 0.01

Table 4.8: Results for SVJJ Rho.

It can be observed here, how for the same accuracy order, FRFT continues
offering us the best CPU times among Fourier methods and the configura-
tion chosen for this algorithm, make it so fast as Gauss-Laguerre quadrature
implemented in closed form and three times faster than FD method.

The remaining Greeks calculated will be commented briefly in the next para-
graphs.
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Figure 4.19: 3D Visualization, adjustments and errors for SVJJ Gamma

The error in the adjustment for Gamma Greek is in arithmetic mean 0.12%
for FFT and 0.09% for FRFT, showing both Fourier algorithms a similar
behaviour in this case. CPU times are similar to Delta Greek with any relevant
increment.
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(a) Theta
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Figure 4.20: 3D Visualization, adjustments and errors for SVJJ Theta

For Theta, the errors in arithmetic mean are 0.74% in both cases, as we can
check in figure (4.20), where it be can observed that the adjustments are very
close as regards to each other.
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Figure 4.21: 3D Visualization, adjustments and errors for SVJJ Vega 1

Vega 1 is the last Greek under study and it is a good example of FRFT is an
enhanced version of FFT algorithm. It can be observed in figure (4.21), that
both methods offer us errors that in arithmetic mean they are 0.55% for FFT
and 0.49% FRFT, but where CPU times are up to seventy times more faster
for FRFT than FFT algorithm, as it has been checked.

This section will be finished with an analysis of other sensitivities. We analyze
Sigma in first place, whose results can been observed in figure (4.22)
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Figure 4.22: 3D Visualization, adjustments and errors for SVJJ Sigma
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In the same way as it was commented for the last Greek, Vega 1, errors for
Sigma are also very close for each other for both Fourier methods, as can be
seen in figure (4.22c). However, it is important to point out that for first time
in all analysis made so far, error are very large in this case, being them of
1.41% and 1.28% in arithmetic mean for FFT and FRFT respectively. As it
was explained in other sections, it is manly due to the way in derivatives have
been calculated2, as well as the presence of jumps in both SPDE. Accordingly,
CPU times have been increased for Sigma Greek for all the methods, as it can
be observed in table (4.9)

SVJJ Sigma

Method Value Error (%) Time (s)

Closed Form -0.4404 0.0000 0.0120
Finite Differences -0.4403 0.0163 0.0030
FFT Trapezoidal Rule -0.4320 -1.8962 0.1170
FFT Simpson’s Rule -0.4320 -1.8962 0.1030
FRFT Trapezoidal Rule -0.4323 -1.8305 0.0150
FRFT Simpson’s Rule -0.4323 -1.8324 0.0160

S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9

Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV = 0.01

Table 4.9: Results for SVJJ Sigma.

In this case, Finite Differences is the best choice when we calculated derivatives
in symbolic form, being it up to five times faster than FRFT algorithm and
four times more faster than the integration of closed form via Gauss-Laguerre
quadrature. FD is also the most accurate method, up to two magnitude orders
compared with any Fourier method.

Next, it will be seen in figure (4.23), as Kappa shows a similar behaviour that
Sigma.

2Derivatives for Kappa and Sigma have been calculated numerically by means of MATLAB.
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(a) Kappa
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Figure 4.23: 3D Visualization, adjustments and errors for SVJJ Kappa

If figure (4.23c) is observed, and we remember the values of errors in arithmetic
mean for Sigma, it can be seen that errors for Kappa; 1.43% for FFT and
1.25% for FRFT are very close to the Sigma errors, which it can be explained,
one more time, for the same reasons that it was commented before. It can
be checked that CPU times are also very similar for Kappa. In any case,
both Fourier methods are a reasonable approximation when we are trying to
calculated other sensitivities, although FD is the most accurate and faster
method of all.

This section finish with the graphics for Vega 2, summarizes in figure (4.24)
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Figure 4.24: 3D Visualization, adjustments and errors for SVJJ Vega 2

Vega 2 is calculated in a similar way as Vega 1, so errors are very close to
the last one in this case, being them, 0.54% and 0.49% for FFT and FRFT
respectively. In relation to CPU times, they are also very close to the times for
Vega 1 Greek in both cases.
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4.5 The Double Heston (2009) Model

In the first part of this section, Greeks for the Double Heston model will be
showed in their analytic formula. Other sensitivities as regards as parameters
like kappa, sigma and theta are also having into account, but only the sensitivity
as regards as theta will be calculated. The remaining sensitivities have been
calculated symbolically by means of MATLAB.

The goal of the second part of this section is to compare the results obtained
when we compute the Greeks and other sensitivities for the Double Heston
model by means of methods as finite differences or Fourier algorithms. We will
compare them in relation with the results provided by Direct Integration of
semi-closed solution via Gauss-Laguerre quadrature.

4.5.1 Greeks and other Sensitivities

Differentiating equation (4.1) and considering equations (3.13), we have that
Delta, Gamma, Rho and Vegas are the same that obtained before for the
Heston model. However, Theta acquires a different aspect, as we will see later.
Delta and Gamma are respectively

∆DH = ∂c

∂S
= e−qτP1 (4.21)

ΓDH = ∂2c

∂S2

= e−qτ

π

∫ ∞
0

Re

[
e−iϕ lnKf(ϕ− i;xt, v1,t, v2,t)

S2
t e

(r−q)τ

]
dϕ (4.22)

whereas Rho is
ρDH = ∂2c

∂r
= Kτe−rτP2 (4.23)

while Theta is given by

ΘDH = − ∂c
∂τ

= −Ste−qτ
(
−qP1 + ∂P1

∂τ

)
+Ke−rτ

(
−rP2 + ∂P2

∂τ

)
(4.24)



4.5. The Double Heston (2009) Model 73

where

∂P1

∂τ
= 1
π

∫ ∞
0

Re

{
e−iϕ lnK

iϕSte(r−q)τ

[
∂f

∂τ
− (r − q)f

]}
dϕ

∂P2

∂τ
= 1
π

∫ ∞
0

Re

[
e−iϕ lnK

iϕ

(
∂f

∂τ

)]
dϕ

and

∂f

∂τ
= exp (A+ iϕxt +B1v1,t +B2v2,t)

(
∂A

∂τ
+ ∂B1

∂τ
v1,t + ∂B2

∂τ
v2,t

)
Where A and B were defined in equation (3.16). Finally, the two Vegas are
defined by

V1j
DH = Se−qτ

∂P1

∂v0j
2√v0j −Ke−rτ

∂P2

∂v0j
2√v0j (4.25)

for j = 1, 2. and considering that as V11
DH

3 is based on v1 = √v01 and V12
DH is

based on v2 = √v02, then

∂P1

∂v0j
= 1
π

∫ ∞
0

Re

[
e−iϕ lnK

iϕSte(r−q)τ f (ϕ− i;xt, v1,t, v2,t)Bj(τ, ϕ− i)
]
dϕ

∂P2

∂v0j
= 1
π

∫ ∞
0

Re

[
e−iϕ lnK

iϕ
f (ϕ;xt, v1,t, v2,t)Bj(τ, ϕ)

]
dϕ

4.5.2 Numerical Results

It will be presented here, the numerical results for the Double Heston model.
Unlike of all previous model, in this section it has been more difficult make the
trade-off between accuracy and CPU times choosing suitably the parameters N
and uplimit for Fourier methods, so it has been considered include two different
alternatives for FRFT algorithm for the purpose to prove the fine adjustment
that it can be made with this method. These analysis will be collected with
the inclusion of another function in error figures and the inclusion of two more
lines of results in the tables.

For this model, all the graphics and results showed in this section, corresponding
to an European call option with the following conditions: K = 100, κ1 = 2,
θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6, κ2 = 1.5, θ2 = 0.006, σ2 = 0.25,
v02 = 0.03, ρ2 = −0.6 and it has been considered again, the same spot range of

3It is important to point out that in this model, we have not consider Vegas that involving
derivatives as regards to θ
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S0 ∈ [70, 130]. On the other hand, Fourier algorithms have been implemented
considering a dampening factor of α = 1.75 and N = 28 and N = 29 integration
points for FFT and FRFT algorithms respectively, whilst the upper limit of
integration is 100 for both methods. Along this section, it will be checked
that FRFT method with N = 29 will be the most accurate algorithm, while
FRFT method with N = 28 will be faster than direct integration of semi-closed
solution via Gauss-Laguerre quadrature4.

In the next pages, it will be showed the table of results for Theta, Vega 11
and Vega 22 only, whereas the remainder Greeks and other sensitivities will be
showed graphically. As always, 3D visualizations have been obtained considering
the extreme correlations of 0.9 and −0.9, being each of them represented by
means of different shaded graphics. Bidimensional cuts have been taken at
maturity for the parameters previously indicated.

We begin this section showing the results for Theta Greek, which it is presented
in figure (4.25)
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Figure 4.25: 3D Visualization, adjustments and errors for Double Heston Theta

The new element in relation with other figures analyzed before is the inclusion
of blue function in figure (4.25c), which represents the error in the adjustment
when FRFT algorithm has been implemented considering N = 29 integration
points. It can be seen here that with this configuration, error adjustment
decreased in arithmetic mean from 2.9 × 10−2% for FRFT algorithm with
N = 28 to 5.3× 10−3%, which represents one magnitude order. On the other
and, error for FFT is approximately about 0.17%. In relation to CPU times, it
can been checked that this magnitude order acquired for FRFT9 algorithm, is
accompanied by an increment of 45.71% of CPU time in arithmetic mean as
regards to FRFT8 algorithm, so it is clear here, that trade-off between accuracy
and CPU time requires a very fine adjustment of Fourier parameters.

Table (4.10) summarizes the results for Theta Greek for ATM options.
4From this moment, we refer to FRFT algorithm implemented with N = 29 as FRFT9 and

to FRFT algorithm implemented with N = 28 as FRFT8.



4.5. The Double Heston (2009) Model 75

Double Heston Theta

Method Value Error (%) Time (s)

Closed Form -5.5090 0.0000 0.0060
Finite Differences -5.5094 -0.0088 0.0040
FFT Trapezoidal Rule -5.5091 0.0022 0.0680
FFT Simpson’s Rule -5.5091 0.0022 0.0690
FRFT8 TR -5.5077 -0.0233 0.0020
FRFT9 TR -5.5091 0.0022 0.0020
FRFT8 SR -5.5077 -0.0227 0.0020
FRFT9 SR -5.5091 0.0022 0.0030
S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6

κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6

Table 4.10: Results for Double Heston Theta.

This table summarizes all previous comments for Theta Greek. In addition to
everything mentioned above, one relevant aspect is that both FRFT algorithms
are faster than any other method to compute Theta and in the case of FRFT9
it is up to four times more accurate than FD method. It can be seen here, as
to reach the same order that FRFT with FFT algorithm, it is necessary invest
approximately thirty times more time, so as it has been discussing until now,
FRFT is a best choice in comparison with FFT method.

We continue our analysis with Vega 11, showing in first place all its graphics in
figure (4.26)
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Figure 4.26: 3D Visualization, adjustments and errors for Double Heston Vega 11

This time, it has been observed that error in the adjustment is in arithmetic
mean 0.39% for FFT, 0.25% for FRFT8 and 2.5× 10−2% for FRFT9, so that
all Fourier algorithms continues being an accurate way to compute Greeks. On
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the other hand, CPU times are in inverse relation, being the fastest method
FRFT8, requiring a 51.35% less time in compute Vega 11 than FRFT9. FFT
method does not enter in this comparison, because it is much slower than FRFT
algorithms. It is important to point out that FRFT8 method is in arithmetic
mean near to 198.54% faster than direct integration via Gauss-Laguerre.

Table (4.11) shows results corresponding to the previous comments.

Double Heston Vega 11

Method Value Error (%) Time (s)

Closed Form 16.1568 0.0000 0.0040
Finite Differences 16.1570 -0.0011 0.0040
FFT Trapezoidal Rule 16.1587 0.0113 0.0660
FFT Simpson’s Rule 16.1587 0.0113 0.0820
FRFT8 TR 16.1458 -0.0684 0.0020
FRFT9 TR 16.1587 0.0112 0.0020
FRFT8 SR 16.1460 -0.0670 0.0010
FRFT9 SR 16.1587 0.0112 0.0020
S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6

κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6

Table 4.11: Results for Double Heston Vega 11.

In this table it can been observed that FD is the most accurate method for
ATM options, but not the most faster, having ascertained that any FRFT
method is more faster than the first one.

For the remaining Greeks, there are not any strangeness in the results, therefore
they only will comment briefly.
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Figure 4.27: 3D Visualization, adjustments and errors for Double Heston Delta
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For Delta, it has been obtained that errors in arithmetic mean are: 0.31%, 5.0×
10−2% and 8.1× 10−3% for FFT, FRFT8 and FRFT9 algorithms respectively,
reflecting these results the fact that magnitude order decreased one order in
each refinement. Having CPU times into account, it has been checked that
FRFT8 is a 54.8% faster than FRFT9 and 6.8% than DI form.
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Figure 4.28: 3D Visualization, adjustments and errors for Double Heston Gamma

A similar behaviour it can be observed in Gamma results, since 0.43% 0.34%
1.1 × 10−2% are the error in the adjustment for FFT, FRFT8 and FRFT9
respectively, whilst FRFT8 is a 36.25% faster than FRFT9 and a 2.51% than
DI form.
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Figure 4.29: 3D Visualization, adjustments and errors for Double Heston Rho

In the same line as it has been commented in the previous paragraphs, Rho
adjustments present an identical behaviour, being 0.31% for FFT, 6.1× 10−2%
for FRFT8 and 8.2× 10−3% for FRFT9 and FRFT8 is near to 38.96% faster
than FRFT9 method and a 9.09% than DI form.
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(a) Vega 12
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Figure 4.30: 3D Visualization, adjustments and errors for Double Heston Vega 12

The last Greek that we analyze is Vega 12, whose adjustment analysis is very
similar to Vega 11, being the errors in arithmetic mean of 0.17%, 2.8× 10−2%
and 5.6 × 10−3% for FFT, FRFT8 and FRFT9 respectively. However, the
most relevant aspect is that for CPU times, it has been find that FRFT8 is in
arithmetic mean near to 47.43% faster than FRFT9, but it is become up to
193.58% faster than DI form, which is a very remarkable result.

Next, it will be analyzed other sensitivities, where it will be only commented
with table Vega 22

(a) Vega 22

70 80 90 100 110 120 130

0.5

1

1.5

2

2.5

Vega22

Strike Price

V
al

ue

 

 

DI FFT TR FRFT TR

(b) Adjust

70 80 90 100 110 120 130

10
−2

10
−1

10
0

Vega22

Strike Price

R
el

at
iv

e 
E

rr
or

 (
%

)

 

 

FFT Error FRFT Error (N=28) FRFT Error (N=29)

(c) Errors

Figure 4.31: 3D Visualization, adjustments and errors for Double Heston Vega 22

Vega 22 in Double Heston model is calculated with an moderate accuracy at
it can be seen in figure (4.31c), where errors in arithmetic mean are 0.30%,
0.24% and 2.7× 10−2% for FFT, FRFT8 and FRFT9 respectively. This time,
we have that FFT and FRFT8 presented a similar precision order, but it is
unimportant when CPU times are considered, because FRFT8 is up to 57.53%
faster than FRFT9 and even 224.65% than DI form.

Table (4.12) shows the results for Vega 22.
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Double Heston Vega 22

Method Value Error (%) Time (s)

Closed Form 2.9707 0.0000 0.0040
Finite Differences 2.9707 -0.0004 0.0040
FFT Trapezoidal Rule 2.9711 0.0121 0.0790
FFT Simpson’s Rule 2.9711 0.0121 0.0830
FRFT8 TR 2.9653 -0.1813 0.0020
FRFT9 TR 2.9711 0.0121 0.0020
FRFT8 SR 2.9655 -0.1776 0.0010
FRFT9 SR 2.9711 0.0121 0.0020
S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6

κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6

Table 4.12: Results for Double Heston Vega 22.

It can be checked that FD method is the most accurate method among all, but
this accuracy has a disadvantage and it is CPU time, because FD is not so
faster than any FRFT algorithm, but in the case of FFT, the last one is clearly
a worse option than FD.

Figure (4.32) shows the results for Kappa 1.
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Figure 4.32: 3D Visualization, adjustments and errors for Double Heston Kappa 1

Until now, we have analyzed for this model some Greeks and other sensitiv-
ities, but Kappa 1 is the first that we will analyze that has been calculated
symbolically, so due to our previous analysis we might be able to expected
some relevant results, but if is not the case in relation to errors adjustment,
because they are very similar to the errors in previous Greeks and parameter;
0.36% for FFT, 0.19% for FRFT8 and 1.8× 10−2% for FRFT9. However, it is
true that there is one remarkable aspect and it is relative to CPU times, since
in this case, the symbolic derivative makes an increment in times of 14.49%
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when we are calculated Kappa 1 with FRFT8 in relation to the CPU time
elapsed when we do the same considering DI form. Anyway it is consequence
only of the symbolic derivative, as it has been explained previously in other
sections. FRFT8 continues being the fastest method among Fourier algorithms,
a 64.79% faster that FRFT9 for example.

Kappa 2 is showed in figure (4.33)
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Figure 4.33: 3D Visualization, adjustments and errors for Double Heston Kappa 2

Any new it can be found here, due to everything relevant aspect have been
commented in the last paragraph and Kappa 2 differs only from Kappa 1 in
that derivative is calculated as regards to κ2 instead of κ1. Anyway, the errors
in the adjustment are; 0.29%, 9.8× 10−2% and 1.5× 10−2% for FFT, FRFT8
and FRFT9 respectively, whereas in relation to CPU times we have that FRFT8
is 63.88% faster than FRFT9, but a 6.15% slower than DI form.

Sigma 1 is showed in figure (4.34)
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Figure 4.34: 3D Visualization, adjustments and errors for Double Heston Sigma 1

The results for Sigma 1 are in some way, surprising in what to an error
adjustment it referred, because Sigma 1 and as we will see later, Sigma 2, are
the only exceptions in Double Heston model considering this configuration in
where mean error for FRFT8 is greater than error in FFT, being they 0.82%,
1.28% and 0.14% for FFT, FRFT8 and FRFT9 respectively. It can be explained
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due to values of σ1 and σ2 are shorter than κ1 and κ2, together with the fact
that we calculated their derivatives symbolically also. FRFT8 shows a CPU
times a 65.90% faster than FRFT9 and a 18.46% slower than DI form.

We will see now, the results for Sigma 2.

(a) Sigma 2
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Figure 4.35: 3D Visualization, adjustments and errors for Double Heston Sigma 2

Sigma 2 presents the same characteristics mentioned before for Sigma 1, so
the results will be only given without any relevant comment. Errors in the
adjustment in arithmetic mean are 3.69%, 14.02% and 0.46% for FFT, FRFT8
and FRFT9 respectively, whereas FRFT8 is faster than FRFT9 in a 63.49%,
but a 11.11% slower than DI form.

To finish this section, it will be showed in figure (4.36) results for Vega 21.
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Figure 4.36: 3D Visualization, adjustments and errors for Double Heston Vega 21

Vega 21 shows a similar behaviour to Vega 22, so we present here again the
results, without any relevant input. Errors in the adjustment in arithmetic mean
are 0.40%, 0.28% and 2.9× 10−2% for FFT, FRFT8 and FRFT9 respectively,
whereas FRFT8 is faster than FRFT9 in a 49.36% and a 192.4% faster than
DI form.
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4.6 The Mikhailov and Nögel (2004) Model

This section does not include any analytic formula, since Greeks and other
sensitivities for the Time-Dependent Heston model5 have the same form as for
the Heston model. The only difference is the way in which they have to been
calculated, but it is straightforward once we know the final set of parameters
ΘN =

(
κN , θN , σN , vN0 , ρ

N
)
, so they are not presented here.

The goal of the only part of this section is to compare the results obtained when
we compute the Greeks and other sensitivities for the TD Heston model by
means of methods as finite differences or Fourier algorithms. We will compare
them in relation with the results provided by Direct Integration of semi-closed
solution via Gauss-Laguerre quadrature.

4.6.1 Numerical Results

It will be presented here, the numerical results for Time-Dependent Heston
model. Unlike of all previous model, in this section the results will be presented
in a different way, since it has been opted for remove 3D visualization figures
and in its place, graphics with CPU times have been included to analyse them
for Greeks and other sensitivities. This choice has been motivated due to the
fact that it has not sense consider a 3D figure, because we need to make several
suppositions about the parameters or estimate the time-dependent parameters
for each period, which is far of the scope of this Master Thesis. Instead of 3D
visualization graphics, it has been though convenient introduce CPU times,
since they will be able to help us with our times comparisons in the next
analysis.

For this model, all the graphics and results showed in this section, corresponding
to an European call option with the following conditions: K = 100, the static
parameters θ = 0.1, σ = 0.2, v0 = 0.1 and ρ = −0.3, while κ varies from
κ = 1, 2, 4 in the three periods, which we assume to be equal in length,
considering maturity in this case and a difference of the previous models as
τ = 5. Furthermore, the model has been implemented considering r = 0, like
Mikhailov and Nögel [MN04] made in table 1 of their article of 2004. At last,
it has been considered the same spot range of S0 ∈ [70, 130].

5When we talk about the Time-Dependent Heston Model, we refer to the Mikhailov and
Nögel Model.
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On the other hand, Fourier algorithms have been implemented considering a
dampening factor of α = 1.75 and N = 28 integration points for both Fourier
algorithms, whilst the upper limit of integration is 200 for FFT and 100 for
FRFT algorithm.

In the next pages, it will be showed the table of results for Delta, Theta and
Sigma only, whereas the remainder Greeks and other sensitivities will be showed
graphically. As we have been doing until now, bidimensional cuts have been
taken at maturity for the parameters indicated in before.

We begin this section showing the results for Delta Greek, which it is presented
in figure (4.37)
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Figure 4.37: CPU times, adjustments and errors for Mikhailov and Nögel Delta

Figure (4.37a), shows a comparison among the different methods employed
in order to compute Delta under TD Heston model. In this figure it can be
observed that with the choice of parameters N and uplimit, we have that
Fourier algorithms are both faster than FD method, concretely, in the FRFT
case it is up to 1.43× 10−3% more than FD, but it is also, near to 198% times
faster than DI form. Figure (4.37b) shows the adjustment of Delta Greek under
Fourier algorithms via trapezoidal rule, whose errors in arithmetic mean can
be noticed in figure (4.37c), where it can be observed that FRFT algorithm is
two magnitude orders lower than FFT and FD method.

Table (4.13) shows the results of Delta at maturity for ATM options.
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TD Heston Delta

Method Value Error (%) Time (s)

Closed Form 0.6441 0.0000 0.0060
Finite Differences 0.6440 0.0022 0.0270
FFT Trapezoidal Rule 0.6441 0.0001 0.0050
FFT Simpson’s Rule 0.6438 -0.0461 0.0060
FRFT Trapezoidal Rule 0.6441 0.0000 0.0010
FRFT Simpson’s Rule 0.6441 0.0000 0.0020

S0 = 100, θ = 0.1, σ = 0.2, v0 = 0.1, ρ = −0.3

κτ1 = 4, κτ2 = 2, κT = 1

Table 4.13: Results for Mikhailov and Nögel Delta.

The most significant result of table above is that FFT via Simpson’s rule
does not adjust Delta and as we will see later, any other sensitivity with the
accuracy that might be able to expected. This a curiously fact, because FFT
via Simpson’s Rule algorithm is the same that it has been used for FRFT in
this model and we can not find any explanation to this fact.

Theta will be the next Greek to be analyzed
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Figure 4.38: CPU times, adjustments and errors for Mikhailov and Nögel Theta

One relevant aspect it can be observed in figure (4.38a) and it is that ranking
CPU mean times has changed in relation to Delta times ranking. FD method
and FFT algorithm have swapped their positions now. CPU times relatives for
DI, FD and FFT are respectively; 890%, 1.24× 103% and 269% slower than
FRFT algorithm. In relation to mean errors, they most accurate method is
also FRFT, with an accuracy of 3.41× 10−4% in arithmetic mean, while errors
for FD and FFT are respectively about 7.3× 10−2% and 7.6× 10−3%.

Next table shows results for ATM options.
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TD Heston Theta

Method Value Error (%) Time (s)

Closed Form -2.5730 0.0000 0.0210
Finite Differences -2.5750 -0.0780 0.0280
FFT Trapezoidal Rule -2.5730 -0.0000 0.0050
FFT Simpson’s Rule -2.5728 -0.0082 0.0070
FRFT Trapezoidal Rule -2.5730 -0.0000 0.0020
FRFT Simpson’s Rule -2.5730 -0.0000 0.0020

S0 = 100, θ = 0.1, σ = 0.2, v0 = 0.1, ρ = −0.3

κτ1 = 4, κτ2 = 2, κT = 1

Table 4.14: Results for Mikhailov and Nögel Theta.

It can be noticed as FFT algorithm implemented via trapezoidal rule is by
far, the worse Fourier algorithm as accuracy as concerned. Any other relevant
aspect is remarkable in this table.

Gamma is presented in the next figure.
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Figure 4.39: CPU times, adjustments and errors for Mikhailov and Nögel Gamma

Here, we can find that CPU times ranking is the same than for Delta, being
FRFT the fastest algorithm. Figure (4.39b) shows a different aspect to what we
were used to see in the previous model, which it is consequence of the choice of
parameters. Maybe, the most relevant aspect we can find it, when we analyze
figure (4.39c), where it can be noticed that for OTM options, the adjustment
via FFT is worse than ITM options, as direct consequence of FFT algorithm.
It is important to point out that FRFT does not present this inconvenience, as
it can see in the same graphic.

We will finish our study of TD Heston Greeks making a quick analysis for the
remaining Greeks, Rho and Vega 1.
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Rho will be commented in first place.
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Figure 4.40: CPU times, adjustments and errors for Mikhailov and Nögel Rho

It can be noticed that Rho shows similar characteristics to other Greeks
commented previously. Figure (4.40a) is clear and figure (4.40c) show the error,
which are in arithmetic mean; 473× 10−5%, 9.7× 10−3% and 2.38× 10−4% for
FD, FFT and FRFT respectively. This time, FD is more accurate than Fourier
method. By contrast, it is three magnitude orders slower than FRFT.

Vega 1 is the last Greek that will be commented.
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Figure 4.41: CPU times, adjustments and errors for Mikhailov and Nögel Vega 1

This Greek does not present any interesting result that we have not commented
before. Therefore, it will only given the results for figure (4.41c), since figure
(4.41a) is clear. Therefore, errors in arithmetic mean are; 1.47 × 10−4%,
1.4× 10−2% and 3.41× 10−4% for FD, FFT and FRFT respectively. We can
find again, as FRFT is the most convenient algorithm, due to it is the most
accurate and fastest among all.

We conclude this section showing other sensitivities, as Kappa, Sigma and Vega
2. In this section, Sigma has been chosen to be analyzed together its table of
results, so we will begin analyzed it in first place.
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Figure 4.42: CPU times, adjustments and errors for Mikhailov and Nögel Sigma

Sigma has been calculated via symbolic derivatives, so it can explain the results
showed in figure (4.42a), where the most relevant aspect is that CPU times
for FFT in the OTM options side is slower than CPU times for FFT in the
ITM options side. CPU times are all the same order, 10−2s, so choosing one or
another method has to be conditioned by the mean error in the adjustment.
Figure (4.42c) shows that mean error is about 65% for FD method, while
Fourier methods presented errors in arithmetic mean under 10−2% for the FFT
case and under 10−4% for FRFT case. We do not understand why FD errors are
so higher in this case, since derivatives have been calculated symbolically and
the method has been implemented in the same way that the models before.

TD Heston Sigma

Method Value Error (%) Time (s)

Closed Form -0.6448 0.0000 0.0380
Finite Differences -0.6521 -11.3213 0.0270
FFT Trapezoidal Rule -0.6448 -0.0000 0.0160
FFT Simpson’s Rule -0.6450 0.0281 0.0170
FRFT Trapezoidal Rule -0.6448 -0.0000 0.0110
FRFT Simpson’s Rule -0.6448 -0.0000 0.0110

S0 = 100, θ = 0.1, σ = 0.2, v0 = 0.1, ρ = −0.3

κτ1 = 4, κτ2 = 2, κT = 1

Table 4.15: Results for Mikhailov and Nögel Sigma.

ATM options always presents the best adjustment and in spite of, error made
in the calculation this Greek is about 11%, which is really large. Notice, that
FFT Simpson’s Rule continues presenting the worse adjust among Fourier
methods.
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Kappa is the other sensitivity that has been calculated symbolically. We will
see now how it has affected to Kappa.
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Figure 4.43: CPU times, adjustments and errors Mikhailov and Nögel Kappa

Figures (4.43a) and (4.43c) are very similar to the figures (4.42a) and (4.42c)
respectively, but in a shorter scale, so the same comments made before are
valid here. As results, notice that mean error for FD is about 30%, while FFT
presented a mean error about 10−2% and FRFT an erro of 10−4%.

This section conclude with the results for Vega 2.
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Figure 4.44: CPU times, adjustments and errors for Mikhailov and Nögel Vega 2

Ranking of CPU times is the same than Vega 1 ranking and it can be observed
in figure (4.44a). Figure (4.44c) also shows the same aspect than error in Vega
1, but in a shorter scale. This time, mean errors in arithmetic mean are the
same order order, 10−4% for FD and FRFT, while FFT reachs an accuracy of
10−2%.



5
Conclusions and Outlook

This chapter draw the conclusions and discuss other alternatives to Fourier
algorithms within Quantitative Finances
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Through previous chapters, it can be checked as algorithms based on Fourier
transforms are much more efficiencies than methods as Monte Carlo when
we prices options or as finite differences when we calculate greeks or other
sensitivities. By efficient we refer to the fact that these algorithms are more
accurate and faster than Monte Carlo and sometimes it is also true as regards
to finite differences method.

It is also important to indicate that for a similar temporal magnitude order,
Fourier methods provide at the same time prices for about 211 strikes, while
Monte Carlo simulations, provide only a single strike price. Here is the great
advantage of Fourier methods over Monte Carlo simulations. So all the analyses
performed represent a valid comparison in the only case that we are interested
in knowing the price for a given strike, since otherwise, Fourier methods are
much more powerful.

We have also made our study considering two Fourier algorithms implemented
via trapezoidal or Simpson’s rules and between them, we have checked that
FRFT is usually faster than FFT and sometimes, it is also true when we
compared FRFT algorithm with the integration of semi-closed solution via
Gauss-Laguerre quadrature It is also remarkable, that there are many cases for
which FRFT is a better alternative than FFT once we have suitably selected
the parameters η and λ. The most of all our comparison have this fact into
account and prove and reinforce the use of FRFT algorithm over FFT.

On the other hand, it is important to point out that main drawbacks of the
Fourier algorithms are that they force to log-strikes to fall inside integration
grid, so the methodology has to be adapted to this situation or if not, the
methods are limited to pricing only options whose corresponding log-strike
prices fall on that grid. To solve this situation, we have designed the first
alternative and we have used and interpolation scheme. This is the reason for
which sometimes accuracy order is not sufficiently good. Another drawback
of Fourier algorithms is that the value of N must always be a power of 2, but
the main problem arises when we need to price exotic options. In general in
these cases, Fourier methods does not provide us with a solution, so we need
to revert to Monte Carlo methods.

Finally, we conclude with some comments about the alternatives to Fourier
methods to option pricing. These alternative consider other transforms, as it
can be read in [Lin11], where Lin devoted its study to the Hilbert transform and
its applications in computational Finance or [FO08], where Fang et al. develop
an option pricing method for European options based on the Fourier-cosine
series, and call it the COS method. However, noticed that both methods
consider also Fourier techniques inside.
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In this appendix, more detailed tables and figures corresponding to other

simulation for the Heston Model can be downloaded from here
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2 A. Mean Errors and Times for Heston Model


A.1 Heston Price Errors and Times1


Heston Price Errors and Times


Method Error (%) CPU Time (s)


FFT 0.0005 0.2618
FRFT 0.0054 0.0095
MC 1 0.4489 0.5255
MC 2 0.3738 0.8465
S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9


Table A.1: Mean errors and CPU Times for Heston price.
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Figure A.1: Errors and CPU Times for Heston Price


1The table results have been obtained under the conditions indicated in figures legend.







A.2. Heston Sensitivities Errors and Times 3


A.2 Heston Sensitivities Errors and Times2


Heston Sensitivities Errors


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.0337 0.1295 0.0192 0.0111 0.0202 0.4876 0.0518 0.0196
FFT 2 0.0222 0.0478 0.0194 0.0111 0.0202 0.1717 0.0518 0.0196
FRFT 1 0.0048 0.0077 0.0046 0.0035 0.0072 0.0788 0.0429 0.0075
FRFT 2 0.0048 0.0058 0.0047 0.0035 0.0068 0.0218 0.0190 0.0069
FD 0.0477 0.0280 0.0025 0.0033 0.0000 0.0001 0.0050 0.0000


S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9


Table A.2: Mean errors for Heston sensitivities.


Heston Sensitivities Times


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.0205 0.0203 0.0207 0.0215 0.0205 0.0463 0.0477 0.0214
FFT 2 0.0731 0.0751 0.0738 0.0711 0.0715 0.1179 0.1231 0.0732
FRFT 1 0.0010 0.0010 0.0010 0.0012 0.0010 0.0111 0.0122 0.0011
FRFT 2 0.0014 0.0015 0.0015 0.0018 0.0015 0.0186 0.0204 0.0016
FD 0.0025 0.0037 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025


S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9


Table A.3: Mean times for Heston sensitivities.
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Figure A.2: Errors and CPU Times for Heston Delta


2The table results have been obtained under the conditions indicated in figures legend.
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Figure A.3: Errors and CPU Times for Heston Gamma
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Figure A.4: Errors and CPU Times for Heston Rho
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Figure A.5: Errors and CPU Times for Heston Theta
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Figure A.6: Errors and CPU Times for Heston Vega 1
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Figure A.7: Errors and CPU Times for Heston Kappa
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Figure A.8: Errors and CPU Times for Heston Sigma
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Figure A.9: Errors and CPU Times for Heston Vega 2
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In this appendix, more detailed tables and figures corresponding to other

simulation for the Bates Model can be downloaded from here
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2 B. Mean Errors and Times for Bates Model


B.1 Bates Price Errors and Times1


Bates Price Errors and Times


Method Error (%) CPU Time (s)


FFT 0.4790 0.0212
FRFT 0.4814 0.0019
MC 1 0.4893 3.6651
MC 2 0.3892 5.5493
S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9


Λ = 3, µS = −0.05, σS = 10−4


Table B.1: Mean errors for Bates price.
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Figure B.1: Errors and CPU Times for Bates Price


1The table results have been obtained under the conditions indicated in figures legend.







B.2. Bates Sensitivities Errors and Times 3


B.2 Bates Sensitivities Errors and Times2


Bates Sensitivities Errors


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.2268 0.2459 0.1826 0.6189 0.6480 1.4798 1.5070 0.6406
FFT 2 0.1288 0.1405 0.0784 0.6264 0.5187 1.3471 1.1818 0.5123
FRFT 1 0.0710 0.0771 0.0047 0.6326 0.4229 1.0392 0.9663 0.4184
FRFT 2 0.0710 0.0771 0.0047 0.6326 0.4229 1.0392 0.9663 0.4184
FD 0.3184 0.3958 0.3728 0.0033 0.0000 0.0001 0.0050 0.0000


S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9


Λ = 3, µS = −0.05, σS = 10−4


Table B.2: Mean errors for Bates sensitivities.


Bates Sensitivities Times


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.0201 0.0205 0.0194 0.0210 0.0200 0.0443 0.0476 0.0201
FFT 2 0.0211 0.0209 0.0210 0.0209 0.0203 0.0468 0.0488 0.0208
FRFT 1 0.0018 0.0018 0.0017 0.0021 0.0017 0.0189 0.0209 0.0018
FRFT 2 0.0015 0.0015 0.0015 0.0019 0.0015 0.0183 0.0207 0.0016
FD 0.0027 0.0041 0.0028 0.0027 0.0027 0.0027 0.0027 0.0027


S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9


Λ = 3, µS = −0.05, σS = 10−4


Table B.3: Mean times for Bates sensitivities.
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Figure B.2: Errors and CPU Times for Bates Delta


2The table results have been obtained under the conditions indicated in figures legend.







4 B. Mean Errors and Times for Bates Model
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Figure B.3: Errors and CPU Times for Bates Gamma
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Figure B.4: Errors and CPU Times for Bates Rho
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(a) Theta Errors
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Figure B.5: Errors and CPU Times for Bates Theta







B.2. Bates Sensitivities Errors and Times 5
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Figure B.6: Errors and CPU Times for Bates Vega 1
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(a) Kappa Errors
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Figure B.7: Errors and CPU Times for Bates Kappa
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(a) Sigma Errors
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Figure B.8: Errors and CPU Times for Bates Sigma
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(a) Vega 2 Errors
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Figure B.9: Errors and CPU Times for Bates Vega 2
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In this appendix, more detailed tables and figures corresponding to other

simulation for the SVJJ Model can be downloaded from here
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2 C. Mean Errors and Times for SVJJ Model


C.1 SVJJ Price Errors and Times1


SVJJ Price Errors and Times


Method Error (%) CPU Time (s)


FFT 0.5388 0.2677
FRFT 0.5438 0.0024
MC 1 4.7725 23.1713
MC 2 4.7847 34.7665
S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9


Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV = 0.01


Table C.1: Mean errors for SVJJ price.
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Figure C.1: Errors and CPU Times for SVJJ Price


1The table results have been obtained under the conditions indicated in figures legend.







C.2. SVJJ Sensitivities Errors and Times 3


C.2 SVJJ Sensitivities Errors and Times2


SVJJ Sensitivities Errors


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.1137 0.1216 0.0468 0.7393 0.5491 1.4340 1.4119 0.5429
FFT 2 0.1137 0.1216 0.0468 0.7393 0.5491 1.4340 1.4119 0.5429
FRFT 1 0.0856 0.0899 0.0075 0.7438 0.4956 1.2464 1.2821 0.4909
FRFT 2 0.0856 0.0903 0.0075 0.7436 0.4950 1.2141 1.2933 0.4900
FD 0.3397 0.4494 0.4373 0.0131 0.0000 0.0107 0.0160 0.0000


S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9


Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV = 0.01


Table C.2: Mean errors for SVJJ sensitivities.


SVJJ Sensitivities Times


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.0787 0.0795 0.0768 0.0795 0.0765 0.1375 0.1451 0.0747
FFT 2 0.2608 0.2598 0.2608 0.2598 0.2618 0.3706 0.3857 0.2597
FRFT 1 0.0012 0.0012 0.0014 0.0019 0.0012 0.0156 0.0175 0.0013
FRFT 2 0.0018 0.0019 0.0018 0.0029 0.0018 0.0246 0.0280 0.0020
FD 0.0033 0.0049 0.0033 0.0032 0.0033 0.0032 0.0032 0.0033


S0 = 100, κ = 2, θ = 0.06, σV = 0.1, v0 = 0.06, ρ = 0.9


Λ = 3, µS = 0.014, σS = 10−4, ρJ = −0.4, µV = 0.01


Table C.3: Mean times for SVJJ sensitivities.
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Figure C.2: Errors and CPU Times for SVJJ Delta


2The table results have been obtained under the conditions indicated in figures legend.
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Figure C.3: Errors and CPU Times for SVJJ Gamma
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Figure C.4: Errors and CPU Times for SVJJ Rho
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(a) Theta Errors
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Figure C.5: Errors and CPU Times for SVJJ Theta







C.2. SVJJ Sensitivities Errors and Times 5
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Figure C.6: Errors and CPU Times for SVJJ Vega 1
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Figure C.7: Errors and CPU Times for SVJJ Kappa
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Figure C.8: Errors and CPU Times for SVJJ Sigma
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Figure C.9: Errors and CPU Times for SVJJ Vega 2
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2 D. Mean Errors and Times for Double Heston Model


D.1 Double Heston Price Errors and Times1


Double Heston Price Errors and Times


Method Error (%) CPU Time (s)


FFT 0.0016 0.2613
FRFT 0.0135 0.0016
MC 1 1.0243 95.7629
MC 2 1.2038 200.9712
S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6


κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6


Table D.1: Mean errors for Double Heston price.
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Figure D.1: Errors and CPU Times for Double Heston Price


1The table results have been obtained under the conditions indicated in figures legend.







D.2. Double Heston Sensitivities Errors and Times 3


D.2 Double Heston Sensitivities Errors and Times2


Double Heston Sensitivities Errors I


Method Delta Gamma Rho Theta Vega 11 Vega 12


FFT 1 0.3083 0.4247 0.3077 0.1760 0.3892 0.3455
FFT 2 0.1352 0.1999 0.1321 0.0739 0.1756 0.1517
FRFT 1 0.0546 0.3454 0.0604 0.0287 0.2475 0.1946
FRFT 2 0.0084 0.0105 0.0082 0.0056 0.0249 0.0233
FD 0.0900 0.0464 0.0081 0.0053 0.0021 0.0018


S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6


κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6


Table D.2: Mean errors for Double Heston sensitivities I.


Double Heston Sensitivities Errors II


Method Kappa 1 Kappa 2 Sigma 1 Sigma 2 Vega 21 Vega 22


FFT 1 0.3611 0.2935 0.8165 3.6871 0.4004 0.3707
FFT 2 0.1621 0.1256 0.4401 1.2359 0.1816 0.1643
FRFT 1 0.1871 0.0979 1.2834 14.0238 0.2759 0.2386
FRFT 2 0.0181 0.0156 0.1392 0.4590 0.0291 0.0271
FD 0.0000 0.0000 0.0148 0.1174 0.0008 0.0005


S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6


κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6


Table D.3: Mean times for Double Heston sensitivities II.


Double Heston Sensitivities Times I


Method Delta Gamma Rho Theta Vega 11 Vega 12


FFT 1 0.0745 0.0747 0.0753 0.0803 0.0765 0.0757
FFT 2 0.0216 0.0219 0.0220 0.0238 0.0223 0.0222
FRFT 1 0.0012 0.0013 0.0012 0.0017 0.0012 0.0012
FRFT 2 0.0018 0.0021 0.0018 0.0027 0.0018 0.0018
FD 0.0041 0.0061 0.0040 0.0041 0.0041 0.0041


S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6


κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6


Table D.4: Mean times for Double Heston sensitivities times I.


2The table results have been obtained under the conditions indicated in figures legend.
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Double Heston Sensitivities Times II


Method Kappa 1 Kappa 2 Sigma 1 Sigma 2 Vega 21 Vega 22


FFT 1 0.1155 0.1125 0.1205 0.1158 0.0715 0.0755
FFT 2 0.0461 0.0456 0.0488 0.0478 0.0213 0.0219
FRFT 1 0.0110 0.0105 0.0123 0.0113 0.0013 0.0012
FRFT 2 0.0186 0.0171 0.0206 0.0193 0.0020 0.0019
FD 0.0041 0.0040 0.0040 0.0040 0.0040 0.0040


S0 = 100, κ1 = 2, θ1 = 0.005, σ1 = 0.2, v01 = 0.04, ρ1 = 0.6


κ2 = 1.5, θ2 = 0.006, σ2 = 0.25, v02 = 0.03, ρ2 = −0.6


Table D.5: Mean times for Double Heston sensitivities times II.
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Figure D.2: Errors and CPU Times for Double Heston Delta
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Figure D.3: Errors and CPU Times for Double Heston Gamma
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Figure D.4: Errors and CPU Times for Double Heston Rho
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Figure D.5: Errors and CPU Times for Double Heston Theta
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Figure D.6: Errors and CPU Times for Double Heston Vega 11
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Figure D.7: Errors and CPU Times for Double Heston Vega 1
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Figure D.8: Errors and CPU Times for Double Heston Kappa 1
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(a) Kappa 2 Errors


70 80 90 100 110 120 130


10
−3


10
−2


10
−1


Kappa2


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 1.12e−1
N = 210


uplimit = 200
η = 0.20
λ = 0.031


FFT TR
µ = 4.56e−2
N = 29


uplimit = 300
η = 0.59
λ = 0.021


FRFT TR
µ = 1.05e−2
N = 28


uplimit = 100
η = 0.10
λ = 0.005


FRFT TR
µ = 1.71e−2
N = 29


uplimit = 100
η = 0.10
λ = 0.005


FD
µ = 4.04e−3


(b) Kappa 2 CPU Times


Figure D.9: Errors and CPU Times for Double Heston Kappa 2
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(a) Sigma 1 Errors
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Figure D.10: Errors and CPU Times for Double Heston Sigma
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(a) Sigma 2 Errors
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Figure D.11: Errors and CPU Times for Double Heston Sigma 2
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Figure D.12: Errors and CPU Times for Double Heston Vega 2
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Figure D.13: Errors and CPU Times for Double Heston Vega 2
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In this appendix, more detailed tables and figures corresponding to other

simulation for TD-Heston Model can be downloaded from here
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2 E. Mean Errors and Times for TD-Heston Model


E.1 TD-Heston Price Errors and Times1


TD-Heston Price Errors and Times


Method Error (%) CPU Time (s)


FFT 0.0006 0.0838
FRFT 0.0001 0.0041
MC 1 0.4822 1.6980
MC 2 0.4203 2.8226
S0 = 100, θ = 0.1, σ = 0.2, v0 = 0.1, ρ = −0.3


κτ1 = 4, κτ2 = 2, κT = 1


Table E.1: Mean errors for TD-Heston price.
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Figure E.1: Errors and CPU Times for TD-Heston Price


1The table results have been obtained under the conditions indicated in figures legend.







E.2. TD-Heston Sensitivities Errors and Times 3


E.2 TD-Heston Sensitivities Errors and Times2


TD-Heston Sensitivities Errors


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.0033 0.0639 0.0097 0.0140 0.0138 0.0167 0.0223 0.0138
FFT 2 0.0539 0.1825 0.0135 0.0302 0.0290 0.1336 0.0962 0.0283
FRFT 1 0.0001 0.0003 0.0002 0.0003 0.0003 0.0006 0.0006 0.0003
FRFT 2 0.0001 0.0003 0.0002 0.0003 0.0003 0.0006 0.0006 0.0003
FD 0.0023 0.0015 0.0000 0.0734 0.0000 29.9904 65.3799 0.0000


S0 = 100, θ = 0.1, σ = 0.2, v0 = 0.1, ρ = −0.3


κτ1 = 4, κτ2 = 2, κT = 1


Table E.2: Mean errors for TD-Heston sensitivities.


TD-Heston Sensitivities Times


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.0073 0.0071 0.0070 0.0075 0.0071 0.0207 0.0225 0.0074
FFT 2 0.0073 0.0075 0.0072 0.0076 0.0073 0.0211 0.0227 0.0076
FRFT 1 0.0018 0.0019 0.0018 0.0021 0.0019 0.0112 0.0121 0.0019
FRFT 2 0.0017 0.0017 0.0017 0.0019 0.0017 0.0110 0.0121 0.0018
FD 0.0290 0.0433 0.0290 0.0290 0.0289 0.0293 0.0288 0.0291


S0 = 100, θ = 0.1, σ = 0.2, v0 = 0.1, ρ = −0.3


κτ1 = 4, κτ2 = 2, κT = 1


Table E.3: Mean times for TD-Heston sensitivities.
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Figure E.2: Errors and CPU Times for TD-Heston Delta


2The table results have been obtained under the conditions indicated in figures legend.
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Figure E.3: Errors and CPU Times for TD-Heston Gamma
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Figure E.4: Errors and CPU Times for TD-Heston Rho
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Figure E.5: Errors and CPU Times for TD-Heston Theta
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Figure E.6: Errors and CPU Times for TD-Heston Vega 1
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Figure E.7: Errors and CPU Times for TD-Heston Kappa
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Figure E.8: Errors and CPU Times for TD-Heston Sigma
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Figure E.9: Errors and CPU Times for TD-Heston Vega 2
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Following to [Rou13], it is possible to derive semi-closed formulas for greeks
under Carr and Madan representation and compare the accuracy of the greeks
obtained under this model and the computation time involved in the calculations.
If we recall the equation (1.13) of Carr & Madan

cT (k) = e−αk

π

∫ ∞
0

Re

{
e−ivk

e−rτφT [v − (α+ 1)i]
α2 + α− v2 + i(2α+ 1)v

}
dv

Then, it is very simply show that greeks under this formulation are:

∆CM = ∂cT (k)
∂S

= e−αk

πS

∫ ∞
0

Re

{
e−ivk

e−rτ ivφT [v − (α+ 1)i]
α2 + α− v2 + i(2α+ 1)v

}
dv (F.1)

ΓCM = ∂2cT (k)
∂S2

= e−αk

πS2

∫ ∞
0

Re

{
e−ivk

e−rτ (iv − 1)φT [v − (α+ 1)i]
α2 + α− v2 + i(2α+ 1)v

}
dv (F.2)

ΘCM = −∂cT (k)
∂τ

= e−αk

π

∫ ∞
0

Re

{
e−ivk

e−rτ (rφ+ ∂φ/∂τ)
α2 + α− v2 + i(2α+ 1)v

}
dv (F.3)

V1
CM = ∂cT (k)

∂v

= e−αk

π

∫ ∞
0

Re

{
e−ivk

e−rτD(τ, v)φT [v − (α+ 1)i]
α2 + α− v2 + i(2α+ 1)v

}
dv (F.4)

And now it is possible adapt these expressions to implement the FFT and FRFT
algorithms. We need construct the integration grid {vj}Nj=1, the log-strike grid
{ku}Nu=1, and to calculate the points xj = exp [i (b− ln(St)) vj ]ψ(vj)wj for
j = 1, . . . , N . We consider now that

ψ(vj) = e−rτφT [vj − (α+ 1)i]
α2 + α− v2

j + i(2α+ 1)vj

where now, φ corresponding to derivative of the second1 characteristic function
for the desired greek using the expression calculated in 3.

1For the Double Heston model we have only one characteristic function, so that in this case,
we referring it as the derivative of the cf, instead of the second cf.
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With this, we obtain x̂u = C(ku), and the value of the greek is given by

x̂u = ηe−αku

π

N∑
j=1

Re
{
e−i

2π
N (j − 1)(u− 1)xj

}
for u = 1,. . . ,N (F.5)
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106 G. Final Presentation

This Master Thesis was defended at Thursday, July 10th, 2014 and the final

presentation can be download from here:
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Prof. Federico Platańıa & Prof. Manuel Moreno


July 10, 2014
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What is a Fourier Transform?


The Generalized Fourier Transform


The Generalized Fourier Transform of an integrable function, f(t),
is given by


f̂(ω) ,


√
| b |


(2π)1−a


∫ ∞
−∞


eibωtf(t) dt <∞


The Inverse Generalized Fourier Transform


The Inverse Generalized Fourier Transform of an integrable
function, f̂(ω), is given by


f(t) ,


√
| b |


(2π)1+a


∫ ∞
−∞


e−ibωtf̂(ω) dω <∞
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The Characteristic Function


A characteristic function φ(ω), with ω ∈ R, can be defined as the
Fourier transform of the probability density function P(x)


φ(ω) , F [P(x)] =


∫ ∞
−∞


eiωxP(x) dx = E
[
eiωx


]


The Probability Density Function


Probability density function P(x) can be obtained by inverse
Fourier transform of the characteristic function φ(ω)


P(x) , F−1 [φ(ω)] =
1


2π


∫ ∞
−∞


e−iωxφ(ω) dω
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The Black-Scholes Style Formula


c(K) denotes the price of an European call.


c(K) = e−rτEQ [(ST −K)+
]


= e−rτEQ [ST1(ST>K)


]
−Ke−rτEQ [1(ST>K)


]
= StP(ST > K)−Ke−rτQ(ST > K)


= StP1 −Ke−rτP2 (1)


where for j = 1, 2 we have


Gil-Peláez Inversion Formula (1951)


Pj = Prob{ST > K} =
1


2
+


1


π


∫ ∞
0


Re


[
e−iϕ lnKφj(ϕ;x, v)


iϕ


]
dϕ
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Carr & Madan (1999) Representation


Now, let x ≡ ln(ST ) and k ≡ ln(K), then risk neutral
valuation yields


cT (K) = e−rτE
[
(ST −K)+


]
= e−rτ


∫ ∞
k


(ex − ek)qT (x) dx


Evaluating the limit as k → −∞, we see that


lim
k→−∞


cT (k) = lim
k→−∞


e−rτ
∫ ∞
k


(ex − ek)qT (x) dx


= S0 ⇒ cT (k) /∈ L2
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Carr & Madan rectify this by defining the modified call price
c̃T (k) as


c̃T (k) , eαkcT (ek)


Now the Fourier transform of c̃T (k) is well-defined.


ψT (v) ,
∫ ∞
−∞


eivk c̃T (k) dk =
e−rτφT [v − (α+ 1)i]


α2 + α− v2 + i(2α+ 1)v


Inverting gives


Carr & Madan (1999) Formula for ATM and ITM call options


cT (k) =
e−αk


π


∫ ∞
0


Re
[
e−ivkψT (v)


]
dv
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Carr & Madan (1999) Formula for OTM call options


zT (k) =
1


2π sinh (αk)


∫ ∞
0


Re
[
e−ivkγT (v)


]
dv


where


γT (v) =
ζT (v − iα)− ζT (v + iα)


2


ζT (v) = e−rT
[


1


1 + iv
− erT


iv
− φT (v − i)


v(v − i)


]
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The Fast Fourier Transform


The call price for ATM/ITM options under Carr & Madan
representation is given by


cT (k) =
e−αk


π


∫ ∞
0


Re
[
e−ivkψT (v)


]
dv


To implement FFT algorithm, first create the integration grid
{vj}Nj=1, and discretising the integral via trapezoidal rule


vj = (j − 1)η for j = 1, . . . , N


cT (k) ≈ ηe−αk


π


N∑
j=1


Re
[
e−ivjkψ̂T (vj)


]
wj
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The second step is to create the log-strike grid {ku}Nu=1.


ku = −δ + (u− 1)λ+ lnSt δ =
Nλ


2


c(ku) ≈ ηe−αku


π


N∑
j=1


Re
[
e−iλη(j−1)(u−1)ei(δ−lnSt)vjψ(vj)


]
wj (2)


FFT Algorithm (1965)


Fk(x) =
N∑
j=1


e−i
2π
N


(j−1)(k−1)xj for k = 1, . . . , N (3)
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12/42 Gorka Koldo González Sáez Fourier Transform Methods for Option Pricing







Fourier Transforms in Finance
The Models


Greeks and other Sensitivities
Conclusions


Continuous Fourier Transform
Carr & Madan (1999) Representation
The Fast Fourier Transform
The Fractional Fast Fourier Transform


The second step is to create the log-strike grid {ku}Nu=1.


ku = −δ + (u− 1)λ+ lnSt δ =
Nλ


2


c(ku) ≈ ηe−αku


π


N∑
j=1


Re
[
e−iλη(j−1)(u−1)ei(δ−lnSt)vjψ(vj)


]
wj (2)


FFT Algorithm (1965)


Fk(x) =


N∑
j=1


e−i
2π
N


(j−1)(k−1)xj for k = 1, . . . , N (3)
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To apply the FFT, we have the following constraint on the
increments η and λ


ηλ =
2π


N


This is an important limitation of the FFT, since it entails a
trade-off between the grid sizes.
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The Fractional Fast Fourier Transform


The FRFT was proposed by Bailey in 1991.


Fk(x) =


N∑
j=1


e−i
2π
N


(j−1)(k−1)xj


⇓


Gk(x, β) =
N∑
j=1


e−i2π(j−1)(k−1)βxj


Therefore, we can choose the grid size parameters freely.


c(ku) ≈ ηe−αku


π


N∑
j=1


Re
[
e−i2πβ(j−1)(u−1)ei(δ−lnSt)vjψ(vj)


]
wj
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To implement the FRFT on a set of points (x1, . . . , xN ), first
define the vectors y and z, each of dimension 2N.


y =


([
e−iπ(j−1)


2βxj


]N
j=1


, [0]Nj=1


)
z =


([
eiπ(j−1)


2β
]N
j=1


,
[
eiπ(N−j+1)2β


]N
j=1


)


We can write the FRFT in compact form as:


FRFT Algorithm (1991)


Gk(x, β) =


([
e−iπ(k−1)


2β
]N
k=1


, [0]Nk=1


)
� F−1k [Fk(y)� Fk(z)]
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15/42 Gorka Koldo González Sáez Fourier Transform Methods for Option Pricing







Fourier Transforms in Finance
The Models


Greeks and other Sensitivities
Conclusions


Continuous Fourier Transform
Carr & Madan (1999) Representation
The Fast Fourier Transform
The Fractional Fast Fourier Transform


To implement the FRFT on a set of points (x1, . . . , xN ), first
define the vectors y and z, each of dimension 2N.


y =


([
e−iπ(j−1)


2βxj


]N
j=1


, [0]Nj=1


)
z =


([
eiπ(j−1)


2β
]N
j=1


,
[
eiπ(N−j+1)2β


]N
j=1


)


We can write the FRFT in compact form as:


FRFT Algorithm (1991)


Gk(x, β) =


([
e−iπ(k−1)


2β
]N
k=1


, [0]Nk=1


)
� F−1k


[Fk(y)


�


Fk(z)]
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To implement the FRFT on a set of points (x1, . . . , xN ), first
define the vectors y and z, each of dimension 2N.


y =


([
e−iπ(j−1)


2βxj


]N
j=1


, [0]Nj=1


)
z =


([
eiπ(j−1)


2β
]N
j=1


,
[
eiπ(N−j+1)2β


]N
j=1


)


We can write the FRFT in compact form as:


FRFT Algorithm (1991)


Gk(x, β) =


([
e−iπ(k−1)


2β
]N
k=1


, [0]Nk=1


)
�


F−1k [Fk(y)� Fk(z)]


15/42 Gorka Koldo González Sáez Fourier Transform Methods for Option Pricing







Fourier Transforms in Finance
The Models


Greeks and other Sensitivities
Conclusions


Continuous Fourier Transform
Carr & Madan (1999) Representation
The Fast Fourier Transform
The Fractional Fast Fourier Transform


To implement the FRFT on a set of points (x1, . . . , xN ), first
define the vectors y and z, each of dimension 2N.


y =


([
e−iπ(j−1)


2βxj


]N
j=1


, [0]Nj=1


)
z =


([
eiπ(j−1)


2β
]N
j=1


,
[
eiπ(N−j+1)2β


]N
j=1


)


We can write the FRFT in compact form as:


FRFT Algorithm (1991)


Gk(x, β) =


([
e−iπ(k−1)


2β
]N
k=1


, [0]Nk=1


)
� F−1k [Fk(y)� Fk(z)]
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18/42 Gorka Koldo González Sáez Fourier Transform Methods for Option Pricing







Fourier Transforms in Finance
The Models


Greeks and other Sensitivities
Conclusions


The Heston (1993) Model
The Bates (1996) Model
The SVJJ (2000) Model
The Double Heston (2009) Model
The Time Dependent Heston (2003) Model


The Models
Choose the modelu -


Characteristic Functionu
@
@
@
@
@R u Gil-Peláez
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The Heston (1993) Model


The Heston Model (1993)


It specifies the following risk-neutral stock price dynamics


dSt = rStdt+
√
vtStdW̃1,t


dvt = κ(θ − vt)dt+ σ
√
vtdW̃2,t


E
[
dW̃1,tdW̃2,t


]
= ρdt


Pure diffusion model


Volatility follows a CIR process
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The Bates (1996) Model


The Bates (1996) Model


It considers jumps independently and identically distributed in the
asset price modeled by a compound Poisson process.


dSt = (r − ΛµJ)Stdt+
√
vtStdW̃1,t + JStdÑt


dvt = κ(θ − vt)dt+ σv
√
vtdW̃2,t


E
[
dW̃1,tdW̃2,t


]
= ρdt


with


1 + J ∼ logN
(
µS , σ


2
S


)
µJ = exp


(
µS +


σ2S
2


)
− 1
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The SVJJ (2000) Model


The SVJJ (2000) Model


It considers jumps in the volatility process in addition to those in
the stock price process.


dSt = (r − λµJ)Stdt+
√
vtStdW̃1,t + JStdÑt


dvt = κ(θ − vt)dt+ σv
√
vtdW̃2,t + +ZdÑt


E
[
dW̃1,tdW̃2,t


]
= ρdt


where


Z ∼ exp(µV )


(1 + J) ∼ LogN
(
µS + ρJZ, σ


2
S


) µJ =
exp


(
µS +


σ2
S
2


)
1− ρJµV
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26/42 Gorka Koldo González Sáez Fourier Transform Methods for Option Pricing







Fourier Transforms in Finance
The Models


Greeks and other Sensitivities
Conclusions


The Heston (1993) Model
The Bates (1996) Model
The SVJJ (2000) Model
The Double Heston (2009) Model
The Time Dependent Heston (2003) Model


SVJJ Price CPU Times


70 80 90 100 110 120 130


10
−3


10
−2


10
−1


10
0


10
1


10
2


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 2.68e−1
N = 211


uplimit = 700
η = 0.34
λ = 0.009


70 80 90 100 110 120 130


10
−3


10
−2


10
−1


10
0


10
1


10
2


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 2.68e−1
N = 211


uplimit = 700
η = 0.34
λ = 0.009


FRFT TR
µ = 2.43e−3
N = 29


uplimit = 200
η = 0.10
λ = 0.005


70 80 90 100 110 120 130


10
−3


10
−2


10
−1


10
0


10
1


10
2


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 2.68e−1
N = 211


uplimit = 700
η = 0.34
λ = 0.009


FRFT TR
µ = 2.43e−3
N = 29


uplimit = 200
η = 0.10
λ = 0.005


MONTE CARLO
µ = 2.32e+1
Paths = 1.0e+5
Time steps = 50


70 80 90 100 110 120 130


10
−3


10
−2


10
−1


10
0


10
1


10
2


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 2.68e−1
N = 211


uplimit = 700
η = 0.34
λ = 0.009


FRFT TR
µ = 2.43e−3
N = 29


uplimit = 200
η = 0.10
λ = 0.005


MONTE CARLO
µ = 2.32e+1
Paths = 1.0e+5
Time steps = 50


MONTE CARLO
µ = 3.48e+1
Paths = 1.5e+5
Time steps = 50
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27/42 Gorka Koldo González Sáez Fourier Transform Methods for Option Pricing







Fourier Transforms in Finance
The Models


Greeks and other Sensitivities
Conclusions


The Heston (1993) Model
The Bates (1996) Model
The SVJJ (2000) Model
The Double Heston (2009) Model
The Time Dependent Heston (2003) Model


SVJJ Price CPU Times


70 80 90 100 110 120 130


10
−3


10
−2


10
−1


10
0


10
1


10
2


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 2.68e−1
N = 211


uplimit = 700
η = 0.34
λ = 0.009


70 80 90 100 110 120 130


10
−3


10
−2


10
−1


10
0


10
1


10
2


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 2.68e−1
N = 211


uplimit = 700
η = 0.34
λ = 0.009


FRFT TR
µ = 2.43e−3
N = 29


uplimit = 200
η = 0.10
λ = 0.005


70 80 90 100 110 120 130


10
−3


10
−2


10
−1


10
0


10
1


10
2


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 2.68e−1
N = 211


uplimit = 700
η = 0.34
λ = 0.009


FRFT TR
µ = 2.43e−3
N = 29


uplimit = 200
η = 0.10
λ = 0.005


MONTE CARLO
µ = 2.32e+1
Paths = 1.0e+5
Time steps = 50


70 80 90 100 110 120 130


10
−3


10
−2


10
−1


10
0


10
1


10
2


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 2.68e−1
N = 211


uplimit = 700
η = 0.34
λ = 0.009


FRFT TR
µ = 2.43e−3
N = 29


uplimit = 200
η = 0.10
λ = 0.005


MONTE CARLO
µ = 2.32e+1
Paths = 1.0e+5
Time steps = 50


MONTE CARLO
µ = 3.48e+1
Paths = 1.5e+5
Time steps = 50
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The Double Heston (2009) Model


The Double Heston (2009) Model


It considers a variance process split in two factors, each of them
driven by its own SDE.


dSt = (r − q)Stdt+
√
v1,tStdW̃1,t +


√
v2,tdW̃2,t


dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdZ̃1,t


dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdZ̃2,t


E
[
dW̃1,tdZ̃1,t


]
= ρ1dt


E
[
dW̃2,tdZ̃2,t


]
= ρ2dt
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The Time Dependent Heston (2003) Model


The Mikhailov and Nögel (2003) Model


τk = Tk − Tk−1 for k = 1, . . . , N


Θk = [κk, θk, σk, v0,k, ρk]


φj(ϕ;x, v,Θk) = exp
[
C̃j(ϕ, τk; Θk) + D̃j(ϕ, τk; Θk)v0,k + iϕx


]
This model introduces time dependency in the Heston model
by allowing the parameters in the model to be piecewise
constant.


The idea is to obtain expressions for C̃j and D̃j recursively for
each maturity.
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32/42 Gorka Koldo González Sáez Fourier Transform Methods for Option Pricing







Fourier Transforms in Finance
The Models


Greeks and other Sensitivities
Conclusions


The Heston (1993) Model
The Bates (1996) Model
The SVJJ (2000) Model
The Double Heston (2009) Model
The Time Dependent Heston (2003) Model


TD-Heston Price CPU Times


70 80 90 100 110 120 130
10


−3


10
−2


10
−1


10
0


10
1


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 8.38e−2
N = 210


uplimit = 550
η = 0.88
λ = 0.014


70 80 90 100 110 120 130
10


−3


10
−2


10
−1


10
0


10
1


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 8.38e−2
N = 210


uplimit = 550
η = 0.88
λ = 0.014


FRFT TR
µ = 4.06e−3
N = 29


uplimit = 450
η = 0.10
λ = 0.005


70 80 90 100 110 120 130
10


−3


10
−2


10
−1


10
0


10
1


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 8.38e−2
N = 210


uplimit = 550
η = 0.88
λ = 0.014


FRFT TR
µ = 4.06e−3
N = 29


uplimit = 450
η = 0.10
λ = 0.005


MONTE CARLO
µ = 1.70e+0
Paths = 1.0e+5
Time steps = 50


70 80 90 100 110 120 130
10


−3


10
−2


10
−1


10
0


10
1


Price


Strike Price


T
im


e 
(s


)


 


 


FFT TR
µ = 8.38e−2
N = 210


uplimit = 550
η = 0.88
λ = 0.014


FRFT TR
µ = 4.06e−3
N = 29


uplimit = 450
η = 0.10
λ = 0.005


MONTE CARLO
µ = 1.70e+0
Paths = 1.0e+5
Time steps = 50


MONTE CARLO
µ = 2.82e+0
Paths = 1.5e+5
Time steps = 50
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35/42 Gorka Koldo González Sáez Fourier Transform Methods for Option Pricing







Fourier Transforms in Finance
The Models


Greeks and other Sensitivities
Conclusions


The Heston Greeks


Greeks and Other Sensitivities


Choose the modelu
HHH


HHH
HHHHj uCall Price


���
���


�����uCarr & Madan


?u
CF


∂C/∂ϑ


∂φ/∂ϑ -


?
Closed
Greeks


∂φ/∂ϑ�
�


�
�


�
�	


FFT
Greeks


@
@
@
@
@R
FRFT
Greeks


@
@
@
@
@R


�
�


�
�
�	


FD
GreeksGreeks Greeks


Closed
Greeks


?


ERRORS


CPU TIMES
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Results for Heston Greeks and Sensitivities


Heston Sensitivities Errors


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.0337 0.1295 0.0192 0.0111 0.0202 0.4876 0.0518 0.0196
FFT 2 0.0222 0.0478 0.0194 0.0111 0.0202 0.1717 0.0518 0.0196
FRFT 1 0.0048 0.0077 0.0046 0.0035 0.0072 0.0788 0.0429 0.0075
FRFT 2 0.0048 0.0058 0.0047 0.0035 0.0068 0.0218 0.0190 0.0069
FD 0.0477 0.0280 0.0025 0.0033 0.0000 0.0001 0.0050 0.0000


S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9


Heston Sensitivities Times


Method Delta Gamma Rho Theta Vega 1 Kappa Sigma Vega 2


FFT 1 0.0205 0.0203 0.0207 0.0215 0.0205 0.0463 0.0477 0.0214
FFT 2 0.0731 0.0751 0.0738 0.0711 0.0715 0.1179 0.1231 0.0732
FRFT 1 0.0010 0.0010 0.0010 0.0012 0.0010 0.0111 0.0122 0.0011
FRFT 2 0.0014 0.0015 0.0015 0.0018 0.0015 0.0186 0.0204 0.0016
FD 0.0025 0.0037 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025


S0 = 100, κ = 2, θ = 0.06, σ = 0.1, v0 = 0.06, ρ = 0.9
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Adjustments for Heston Greeks and Sensitivities
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3D Figures for Heston Greeks and Sensitivities
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Conclusions


The main drawback of Fourier Transform methods is to
calculate the characteristic function of the model.


Fourier Methods are more accurate and faster than Monte
Carlo simulations in option pricing for the models studied:
Heston, Bates, SVJJ, Double Heston and TD-Heston.


Fourier Methods can be also used for calculate Greeks and
other sensitivities, although the Finite Differences method
offers us more accurate results sometimes.
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Thank you for your
attention
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