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ABSTRACT 
 
In this research we aim to focus our study in the modelling of risk-aversion parameter so that it 
changes over time, in order to take into account the variability of investors' expectations. To bring 
out the above purpose we implement some schemes such as the GARCH-M models. According to the 
above, we immerse ourselves in the theory of utility and choosing the optimal portfolio for risk averse 
individuals within the mean-variance context. We begin with the review of the unconditional 
Markowitz approach to analyse the optimal portfolio in a constant context. Then, we study more in 
depth how this kind of portfolio changes over time, through conditional models such as GARCH (1, 1) 
and DCC-GARCH. 
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INTRODUCTION 
 

In accordance with the mean-variance approach, we can partially order the set of 

investment opportunities, reducing the choice of investors to those portfolios located on the 

efficient frontier. However, with this approach, the investors cannot compare which alternatives 

are dominant among themselves, so they are not allowed to select the investment portfolio that 

best meets their goals. 

In order to find this portfolio, we must take a different criterion, incorporating individual risk 

attitude. Although these preferences are very complex (they depend on the age, gender, 

education level, income of the individual ...), to make their implementation easier, they are 

represented by a single parameter that summarizes the personal level of risk aversion, the 𝛼 

parameter.  

When an individual decides to invest his money, always chooses an efficient portfolio whose 

composition depends on his subjective preferences. Some individuals choose to assume greater 

risks to get higher returns, while more risk averse investors opt for portfolios with less associated 

risk, but with the promise of lower yields. 

As it is well known, an individual is more or less risk averse according to the economic and 

political circumstances. For instance, nowadays we are in a period in which even the most 

adventurous investor has had to reduce his optimistic expectations. Given that, it seems 

reasonable to model the risk aversion parameter so that it changes over time, in order to take 

into account the variability in agents' expectations. 

According to the last paragraphs, there are some studies in financial literature that refer to time-

varying risk aversion. For instance, Kim (2014) proposes a consistent indicator of conditional risk 

aversion in consumption-based CAPM. Other studies have differed widely in their estimates of 

time-varying risk aversion, such as Dionne (2014), who aim to extend the concept of orders of 

conditional risk aversion to orders of conditional dependent risk aversion. However, our 

motivation is in the line of the framework proposed by Cotter and Hanly (2010), which is based 

on estimating the risk aversion parameter as a derivation of the CRRA1. Thus, we estimate the 

risk aversion parameter through the conditional mean and variance. To bring out the last 

                                                           
1 This tern refers to the changes in relative risk aversion, which is a way to express the risk aversion 
attitude of an investor through his utility function. 
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purpose, we model these conditional moments through several GARCH schemes, such as the 

GARCH in mean. 

Moreover, we propose two novel approaches, based on our own intuition. The first one 

continues in the same line as previous model and is only based on the application of the 

European Consumer Confidence Indicator, CCI2, as a proxy of the European customer sentiment, 

replacing the individual wealth by this European indicator in the equation of the CRRA. In 

addition, we propose another approach which has no relation with quadratic functions, but 

more related with downside risk measures, in order to compare whether is better to work under 

the quadratic preferences world or according other risk approaches. Thus, the main idea of this 

research is to build optimal portfolios for different types of investment profiles in order to 

compare whether is better to use a constant risk aversion parameter or a dynamic one. 

Otherwise, the common investor aims to ensure a well-diversified portfolio, in order to be 

hedged against unfavourable movements in the stock market. According to the above, investors 

usually include a reasonable number of assets in their portfolios. In addition, they tend to select 

assets from different sources, such as different sectors of the economy or branches of business. 

Thus, it seems necessary to set a criterion for choosing the optimal assets that must be include 

in our portfolio. 

Linking to the previous lines, we assign an introductory chapter to review the asset allocation 

theory, analysing more in depth the screening rules and how can they help us to reduce the 

investment world to a limited set of assets. To accomplish this purpose, we follow the approach 

proposed by León, Navarro and Nieto (2015). The main idea is to sort the 50 equities that belong 

to the EuroStoxx-50 index and choosing the best 10, by the application of some performance 

measures (PMs) of the Lower partial moment´s family. Then, we explain how to use the principal 

component analysis (PCA) for reducing the information used in performance ratios. In the same 

line we are able to find some other researches that have the purpose of adding several 

performance measures, such as Billio et al.(2012) who build a performance index or Hang and 

Salmon (2003). 

Once we have selected the optimal assets to build a well-diversified portfolio, then we spend 

the most of this paper reviewing the second chapter, in which we are going to locate our study 

on the time-varying optimal portfolios. In particular, in this chapter we compare how well may 

                                                           
2 The survey data contained in this indicator, provide useful information of the current state of the 
European economy, forecast short-term developments and hence are closely followed by economists, 
policy-makers and business managers 
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be the optimal portfolio of different investment profiles in performance terms. For this, we 

begin studying the optimal portfolio in an unconditional world, to understand how the mean-

variance approach works in the context of utility functions.  

Then, we focus our study on a conditional approach, modelling the conditional volatilities, 

correlations and risk aversion parameters through several GARCH schemes. Further, we review 

several ratios and risk measures to evaluate the performance of our portfolio, such as the Sharpe 

Ratio and the Certainty Equivalent. In addition, for a better understanding by the reader, we plot 

the evolution of these performance measures over time to see how change the exposure of our 

different portfolios throughout the studied period. 

Finally, to conclude this research, we present the main results and conclusions that have been 

obtained from the study. From here we can get some important notions such as the PCA 

technique is really useful in terms of reducing information and helping us to get a single criterion 

to select a set of assets. Moreover, analysing more in detail the second chapter, we find that 

dynamic models could be better than constant ones. 
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CHAPTER 1: HOW BEST TO SELECT SEVERAL ASSETS. IN SEARCH OF A SINGLE 

CRITERION 
 

 

According to the annual report of the National Securities Market Commission (CNMV) 

on markets and its performance, during 2013 emissions of debt in international markets fell 

following the large decline in the offer of public debt, but they were partly offset with the 

emissions of private companies. The forecast for the next years is that fixed income is going to 

continue losing value worldwide. We are entering in a really difficult time to invest in bonds, in 

which even those considered to be safest in the world, US bonds, are in free fall. 

In recent years, both public and private issuers have been watching as each day passed, was 

more expensive to issue bonds to finance their projects. In those moments of great European 

depression, the big winners were the small investors, because the different public and private 

institutions were offering very high interest rates to be attractive, trying to alleviate the huge 

risk of insolvency they had associated. 

As seen in the market, the investment outlook is changing, although a few years ago they bet 

more for fixed income, today it seems that this is changing and is focusing radically towards a 

trend of investment in equities, which grows and grows every day. But, why this change is due 

in the markets? This is because public debt offer very low interest rates, which makes investors 

prefer to take the risks of other instruments such as equities due to the promise of higher returns 

in the future. 

Given the above, it seems obvious to think that rational investors aim to focus their portfolios 

on equities, not in debt. On this basis, in this first chapter, we aim to find the optimum ratio that 

investors should allocate in portfolios with a number of risky stocks. In particular, for reasons of 

financial diversification, we analyse this problem for ten risky stocks3.  

However, we must take into account that we are reviewing a theoretical analysis and as a 

consequence, trying to reach our goals, we assess our portfolios for different time frames, ones 

related to calm periods and others more related to economic recession. Thus, there are some 

periods in which the investment in fixed income is more attractive than investing in equities. 

                                                           
3 We review the diversification problem at MutualFunds (2015) 
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According to the previous lines and omitting the attractiveness of fixed income in some periods, 

we immerse ourselves in the equity context. Then, the ten risky shares are selected from the 

Eurostoxx-50 index, due to it is the most representative indicator in the Stock Europe markets. 

The main question that should arise is: How could we choose these assets? The answer is not so 

easy because we should take into account some important financial criteria, in order to ensure 

a good risk-return ratio of our portfolio and especially, to assure the portfolio diversification.  

Otherwise, since the Thesis of Markowitz (1952), asset allocation has been paid a lot of attention 

by researchers. As a consequence, several studies have been published between 1960-1990 

about the relationship between the number of stocks in a portfolio and its variance reduction. 

One of the papers that has been used as a framework is the research of Evans and Archer (1968). 

This study show that 10 stocks are enough to reach a well-diversified portfolio. A few years later, 

some more studies, such as the one proposed by Tapon and Vitali (2013), confirmed the 

conclusion of Evans and Archer with 8, 9 and 10 stocks. Keep in mind that this is one of the key 

elements of this work, given that, based on these criteria we are going to choose the optimal 

number of assets to include in our portfolios.  

Moreover, according to León, Navarro and Nieto (2015), the asset selection is an important 

problem for which the screening rules are useful. These rules aim to reduce the investment set 

of opportunities to a limited set of assets in order to make the asset allocation easier for financial 

investors.  

Particularly, in this section we focus on ranking the whole assets that belong to the EuroStoxx-

50 index and choosing the best 10 (for convenience purposes and given the evidence of the 

mentioned literature), through the application of some performance measures (PMs) that 

belong to the same family. Then, we also summarize the information contained in this 

performance ratios by using the principal component analysis (PCA) method, in order to get a 

global ranking, based on which, we are able to continue with our study of the time-varying risk 

aversion in the second chapter. 
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1.1. DATA: A BRIEF DESCRIPTION OF THE EUROSTOXX-50 INDEX 
 

 The data sample 

Talking about the EuroStoxx-50 used data, we must make it clear that in this first 

chapter, we  only employ a time frame of 522 days, from 01/01/2002 (after the Dot-com bubble) 

to 31/12/2003 (approximately 2 years) to obtain the estimations of the PMs for the series of 

individual asset returns. Particularly, we compute 6 PMs to each individual stock: three 

measures of the 𝐾 family for different values of order 𝑚 and the 𝐹𝑇 measures for three 

alternative combinations of 𝑚 and 𝑞. Then, we aim to use the principal component analysis 

(PCA) for summarizing the above information into a single ratio. After that, we order the 50 

stocks and choose the best 10 ones to be included in each one of the time-varying risk aversion 

portfolios. Lastly, once we have selected the optimum equities, in the second chapter we 

evaluate the performance of the proposed portfolios during two allocation periods, one related 

to a calm time frame and another more associated to a stressed one. 

Note that we work with continuously compound returns, instead of working with stock prices. 

We will analyse this procedure more in depth in section (2.1.1). 

 Constituent stocks of EuroStoxx-50 index 

The EuroStoxx-50 index is the most representative indicator in the stock markets of 

member countries in the Euro zone4. This index adds the 50 largest companies by market 

capitalization. It includes companies from Austria, Belgium, Finland, France, Germany, Greece, 

Ireland, Italy, Luxembourg, Netherlands, Portugal and Spain. This index is calculated by 

weighting the floating capital of each of the 50 mentioned companies. That is, not all companies 

have the same weight, but their representation is based on their capitalization. 

Currently, companies that have the greatest weight in the EuroStoxx-50 are French, which 

occupy 35% of the total, followed by German (28%) and Spanish companies (13%). Furthermore, 

we can affirm that all kind of business sectors belong to this stock index, although it's the sector 

of financial institutions the one that gives more weight above others. Specifically, 18, 7 % of all 

companies in the index. 

Then, we show the constituent stocks of Eurostoxx-50 index for the period described in the 

previous lines (from 01/01/2002 to 31/12/2003): 

                                                           
4 To review that index, we rely on STOXX (2016) 
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Table 1. Constituent stocks of Eurostoxx-50 index 

 

Source: Compiled by the author based on DataStream database. We ascertain them as an average of the continuously 
compound returns. Then, we show them in annual terms multiplying the monthly returns by 12 

 

NUMBER COMPANIES ANNUALIZED RETURN

1 SAFRAN 0,1755

2 AIRBUS GROUP 0,1552

3 UNIBAIL-RODAMCO 0,1271

4 LVMH 0,1119

5 ESSILOR INTL. 0,0905

6 SOCIETE GENERALE 0,0517

7 INTESA SANPAOLO 0,0471

8 DEUTSCHE POST (XET) 0,0417

9 IBERDROLA 0,0333

10 BASF (XET) 0,0315

11 ENI 0,0291

12 AIR LIQUIDE 0,0003

13 BANCO SANTANDER -0,0010

14 VINCI -0,0015

15 BNP PARIBAS -0,0032

16 SCHNEIDER ELECTRIC SE -0,0190

17 UNICREDIT -0,0251

18 DANONE -0,0274

19 BMW (XET) -0,0304

20 TOTAL -0,0406

21 SAINT GOBAIN -0,0422

22 SAP (XET) -0,0452

23 E ON (XET) -0,0563

24 SIEMENS (XET) -0,0757

25 ENEL -0,0771

26 TELEFONICA -0,0810

27 DEUTSCHE BANK (XET) -0,0909

28 VOLKSWAGEN PREF. (XET) -0,0923

29 ASML HOLDING -0,1039

30 L'OREAL -0,1050

31 FRESENIUS (XET) -0,1093

32 BBV.ARGENTARIA -0,1145

33 UNILEVER CERTS. -0,1147

34 DAIMLER (XET) -0,1284

35 INDITEX -0,1368

36 DEUTSCHE TELEKOM (XET) -0,1369

37 CARREFOUR -0,1411

38 AXA -0,1487

39 SANOFI -0,1627

40 PHILIPS ELTN.KONINKLIJKE -0,1756

41 ANHEUSER-BUSCH INBEV -0,1794

42 ASSICURAZIONI GENERALI -0,1900

43 BAYER (XET) -0,2078

44 ING GROEP -0,2100

45 ORANGE -0,2591

46 NOKIA -0,3588

47 ALLIANZ (XET) -0,4139

48 MUENCHENER RUCK. (XET) -0,5300

49 VIVENDI -0,5569

50 ENGIE -
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Paying attention to Table.1, we can appreciate that the above companies are sorted according 

to the annualized yield obtained over the mentioned period. Besides, note that ENGIE firm has 

been excluded from this analysis due to it is not traded in the index over the described period. 

 

1.2. PERFORMANCE MEASURES BASED ON PARTIAL MOMENTS 

 

First of all, we have to allocate ourselves in the framework of the Partial moments. 

Generally, we can talk about two different types, the Lower partial moments (LPM) and the 

Upper partial moments (UPM). 

LPM define risk as the negative deviations of the stock returns,𝑅, in relation to the mean return 

threshold, ℎ, or the minimal acceptable return. In this context, Fishburn (1977), defines the LPM 

of order 𝑚 as: 

 

𝐿𝑃𝑀(ℎ, 𝑚) = 𝐸[𝑀𝑎𝑥(ℎ − 𝑅, 0)𝑚] =  ∫ (ℎ − 𝑅)𝑚𝑓(𝑅)𝑑𝑅
ℎ

−∞

 

 

 

    (1.2.1) 

 

Note that in this case, we use the mean of the risk-free rate (3-month US treasury bills) as 

threshold. 

Where 𝑓(𝑅) is the probability density function. In contrast to the standard deviation, LPM 

considers only the negative deviations of returns assuming that investors are especially worried 

about the losses. The order of the LPM can be interpreted as the investors’ risk attitude.  

On the other hand, UPM of order 𝑞 could be defined as: 

 

𝑈𝑃𝑀(ℎ, 𝑞) = 𝐸[𝑀𝑎𝑥(𝑅 − ℎ, 0)𝑞] =  ∫ (𝑅 − ℎ)𝑞𝑓(𝑅)𝑑𝑅
∞

ℎ

 

 

    (1.2.2) 

 

In this case, we have to select the proper order 𝑞. In addition as in the previous case of LPM, we 

use the same mean for the h parameter. 

Our purpose is to sort a set of assets according to a performance measure (PMs), in order to 

choose the 10 best assets to build optimal portfolios. Thus, in this case, we have chosen a pair 

of PMs based on partial moments: The kappa and the Farinelli-Tibiletti ratios. 
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 Kappa ratios 

Kaplan and Knowles (2004) introduced the kappa indices which risk measure is 

estimated by using the Lower Partial Moments to evaluate the properties of returns probability 

distribution in the left tail. The kappa ratio of order 𝑚 is defined as: 

 

𝐾(ℎ, 𝑚) =
𝐸(𝑅) − ℎ

𝐿𝑃𝑀𝑚,ℎ(𝑅)1/𝑚
 

 

 

    (1.2.3) 

 

Particularly, in this work we will set the following values for the order of the LPM to consider 

different risk attitudes: 𝑚=10 (defensive investors), 𝑚=1.5 (moderate investors) and m=0.5 

(aggressive investors). 

 

 Farinelli-Tibiletti ratios 

 
Farinelli and Tibiletti (2008) proposed a ratio (FT ratio) that exclusively looks at the upper 

and lower partial moments by comparing the favorable and the unfavorable events: 

 

𝐹𝑇(ℎ, 𝑞, 𝑚) =
𝑈𝑃𝑀𝑞,ℎ(𝑅)1/𝑞

𝐿𝑃𝑀𝑚,ℎ(𝑅)1/𝑚
 

 

 

    (1.2.4) 

 

As in the case of the Kappa ratio, we set some values for the risk attitude parameters. In this 

case, the values assigned for the two parameters (𝑞, 𝑚)  are: (0.5, 2) for defensive investors; the 

Omega ratio (1, 1) for moderate investors; and the Upside Potential ratio (1, 2). 

 

1.3.  PRINCIPAL COMPONENT ANALYSIS (PCA) 
 

Otherwise, this first chapter goes on the use of PCA as a way to summarize the 

information content of some performance measures that belong to the same family (Lower 

partial moments). Thus, the idea is to summarize the ratings obtained for each one of the 6 

performance measures described in the previous section, building a global rating through the 

application of the PCA technique. 

In several studies, analysts often take the greatest number of variables from a data sample.  

However, if we take too many variables, we have to consider an excess of correlation coefficients 

which complicates the view of the relationships between variables. 
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Another problem that occurs in multiple studies, is the strong correlation between variables. By 

taking too many variables, it is normal that they are related or provide the same information in 

different views. 

Thus, it is necessary to reduce the number of studied variables, being important to highlight the 

fact that the concept of additional information is related to the higher variability or variance, 

that is, the greater the variability of the data, then the greater the availability of the information. 

To analyse the relations between 𝑝 variables, we could change the original set of variables into 

another new set of uncorrelated variables. This new set of assets is known as Principal 

Components set. Furthermore, we have to mention that resulting variables are linear 

combinations of the original variables and they are constructed according to the percentage of 

total variability that they explain from the data sample. 

The ideal way is to find 𝑚 < p variables which are linear combinations of the 𝑝 original variables 

and obviously which are uncorrelated with each other. If the original variables are already 

uncorrelated, then the principal component analysis has a lower sense. However, in this case 

our initial variables have a strong relation since the beginning. The above is due to the fact that 

we are analysing the PCA problem from 6 ratios that belong to the same family. Given that, we 

can assess the mentioned correlation coefficients through the following matrix: 

Table 2. PCA: Correlation Matrix 

 

Source: Compiled by the author. Each row contains the correlation coefficients between each ratio and the rest of 

them 

 

Table.2 shows the Pearson correlation coefficients between the 6 analysed ratios. Then, we can 

observe a rather high lineal relation between the studied variables. The presence of high 

correlations is a well indicator of the existence of a structure between the mentioned ratios. The 

above allows us to implement a Principal Component Analysis (PCA), using the above ratios as 

variables. 

KAPPA 0,5 KAPPA 1,5 KAPPA 10 FT(0.5,2) FT(1,1) FT(1,2)

KAPPA 0,5 1,0000       0,9964       0,9515       0,7034       0,9985       0,7119       

KAPPA 1,5 0,9964       1,0000       0,9678       0,7030       0,9993       0,7098       

KAPPA 10 0,9515       0,9678       1,0000       0,5951       0,9597       0,5981       

FT(0.5,2) 0,7034       0,7030       0,5951       1,0000       0,7117       0,9328       

FT(1,1) 0,9985       0,9993       0,9597       0,7117       1,0000       0,7192       

FT(1,2) 0,7119       0,7098       0,5981       0,9328       0,7192       1,0000       
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1.3.1. How to obtain the Principal Components. 

 

We consider a set of assets characterized as 𝑋1, 𝑋2, … , 𝑋𝑝. These variables are expressed 

in deviations from their mean or typified. Then, our purpose is to change these variables into a 

new set of uncorrelated variables defined as 𝑃𝐶1, 𝑃𝐶2, … , 𝑃𝐶𝑝 whose variances decrease 

progressively. 

Thus, the first component is denoted by 𝑃𝐶1 and it is defined as a linear combination of 

𝑋1, 𝑋2, … , 𝑋𝑝. 

 

𝑃𝐶1𝑖 = 𝑤11𝑋1𝑖 + 𝑤12𝑋2𝑖 + … + 𝑤1𝑝𝑋𝑝𝑖 , 𝑖 = 1, 2, … , 𝑛 

 

 

    (1.3.1) 

Where 𝑛 represents the data size, 𝑤1𝑖 is the weight of the 𝑋𝑗 variable in the composition of the 

𝑃𝐶ℎcomponent and the variance of 𝑃𝐶1 is given by: 

 

𝑉(𝑃𝐶1) =
∑ 𝑃𝐶1𝑖

2𝑛
𝑖=1

𝑛
=

1

𝑛
𝑃𝐶2′𝑃𝐶2 =

1

𝑛
(𝑋𝑤1)′(𝑋𝑤1) = 𝑤1

′ (
1

𝑛
𝑋′𝑋) 𝑤1 

 

 

    (1.3.2) 

 

The pxp matrix 
1

𝑛
𝑋′𝑋 is denoted by 𝑉, that is the sample covariance matrix, if the variables 

variables are expressed in deviations from their mean, whereas if the variables are typified, 

1

𝑛
𝑋′𝑋 is the correlation matrix. 

The first component is constructed so that its variance is maximum, subject to the constraint 

that the sum of squared weights equals the drive. 

 

∑ 𝑤1𝑗
2

𝑝

𝑗=1

= 𝑤1
′𝑤1 = 1 

 

 

    (1.3.3) 

 

The usual way to maximize a multivariable function subject to some constraints is the Lagrange 

multipliers method. Where 𝑤1is the eigenvector associated to the greater eigenvalue of the 

matrix 𝑉. Thus, the first component is defined by 𝑃𝐶1 = 𝑋𝑤1 
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Then, the second component (like the remaining components) is defined as another linear 

combination of the original variables: 

 

𝑃𝐶2𝑖 = 𝑤21𝑋1𝑖 + 𝑤22𝑋2𝑖 + … + 𝑤2𝑝𝑋𝑝𝑖 , 𝑖 = 1, 2, … , 𝑛 

 

 

    (1.3.4) 

 

Further, the variance of the second component is obtained through a similar expression: 

 
 

𝑉(𝑃𝐶2) =
∑ 𝑃𝐶2𝑖

2𝑛
𝑖=1

𝑛
=

1

𝑛
𝑃𝐶2′𝑃𝐶2 =

1

𝑛
(𝑋𝑤2)′(𝑋𝑤2) = 𝑤2

′ (
1

𝑛
𝑋′𝑋) 𝑤2 

 

 

      

    (1.3.5) 

 

Thus, we are in search of the 𝑃𝐶2 vector that maximizes 𝑉(𝑃𝐶2) subject to the constraint 

𝑤2
′ 𝑤2 = 1. Furthermore, we are looking that the second component has no correlation with the 

first one, so we need to include the constraint 𝑤2
′ 𝑤1 = 0. 

Again, to solve this optimization problem with two constraints, we use the method of Lagrange 

multipliers, by which is possible to show that 𝑤2 is the normalized eigenvector of the covariance 

matrix 𝑉, associated with the second largest eigenvalue. Thus, the second component is defined 

by 𝑃𝐶2 = 𝑋𝑤2 .  

In the same way, we can calculate the 𝑛’𝑡ℎ component, which is defined as 𝑃𝐶ℎ = 𝑋𝑤ℎ, where 

𝑤ℎ is the eigenvector of the 𝑉 matrix associated to the greater eigenvalue. However, in this 

research we build 3 components. In fact, looking for our academic purposes, we only need the 

first one. 

It can be demonstrated, through the PCA, that the variance of the 𝑛′𝑡ℎ component is equal to 

the eigenvalue 𝜆ℎ 

 

𝑉(𝑃𝐶ℎ) = 𝑤ℎ
′ [

1

𝑛
𝑋′𝑋] 𝑤ℎ = 𝑤ℎ

′ 𝑤ℎ = 𝜆ℎ 

 

 

    (2.3.6) 

 

1.3.2. Variability Percentages 
 

Given the fact that each eigenvalue corresponds to the variance of 𝑃𝐶ℎ component that 

was defined by the eigenvector 𝑥ℎ, by adding all the eigenvalues we have the total variance of 

the components: 
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∑ 𝑉(𝑋ℎ)

𝑝

ℎ=1

= 𝑡𝑟𝑎𝑐𝑒(𝑉) 

 

     (      
(1.3.7) 

 

Further, since the matrix 𝑉 is diagonal, it can be shown that: 

 

∑ 𝑉(𝑋ℎ)

𝑝

ℎ=1

= 𝑡𝑟𝑎𝑐𝑒(𝑉) = 𝑡𝑟𝑎𝑐𝑒(𝐷𝜆) = ∑ 𝜆ℎ

𝑝

ℎ=1

 , 

 

 

     ( 
(1.3.8) 

 

Where 𝐷𝜆 is a diagonal matrix which contains the eigenvalues of the 𝑉 matrix. The above allows 

us to talk about the percentage of the total variance which is explained by each one of the 

principal components: 

 
𝜆ℎ

∑ 𝜆ℎ
𝑝
ℎ=1

=
𝜆ℎ

𝑡𝑟𝑎𝑐𝑒(𝑉)
 

 

   (1.3.9) 

 

Thus, we could show the variability percentage explained by the first 𝑝 components as follows: 

 
∑ 𝜆ℎ

𝑞
ℎ=1

∑ 𝜆ℎ
𝑝
ℎ=1

=
∑ 𝜆ℎ

𝑞
ℎ=1

𝑡𝑟𝑎𝑐𝑒(𝑉)
 

 

 

 (1.3.10) 

 

Then, to obtain the values of the 𝑃𝐶ℎ component: 

 

𝑃𝐶ℎ = 𝑤ℎ1𝑋1𝑖 + 𝑤ℎ2𝑋2𝑖 + … + 𝑤ℎ𝑝𝑋𝑝𝑖 , 𝑖 = 1, 2, … , 𝑛 

 

 

 (1.3.11) 

 

In addition, by dividing the scores for 𝑃𝐶ℎ component between its standard deviation, we obtain 

the typified components: 

 
𝑃𝐶ℎ

√𝜆ℎ

=
𝑤ℎ1

√𝜆ℎ

𝑋1𝑖 +
𝑤ℎ2

√𝜆ℎ

𝑋2𝑖 + ⋯ +
𝑤ℎ𝑝

√𝜆ℎ

𝑋𝑝𝑖 , ℎ = 1, 2, … , 𝑝;  𝑖 = 1, 2, … , 𝑛 

 

 

 

 (1.3.12) 
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Then, we show the explained variability according to each one of the ascertained principal 
components: 

Table 3. Explained Variability 

  

  Source: Compiled by the author. Note that each eigenvalue corresponds to the variance of the 𝑃𝐶ℎ component that 

was defined by the eigenvector 𝑥ℎ 

Paying attention to the table of the explained variability (Table.3), we can observe a list of the 

eigenvalues which comes from the covariance matrix. Note that the first part of the graph is 

about the initial eigenvalues and the second part is about the 3 searched principal components. 

Talking about the second part of the table, the first column is showing the eigenvalues, which 

define the variability explained by each component.  In addition, the second column represents 

the percentage of variance explained by each eigenvalue. The last column shows the 

accumulated percentage of explained variance. 

According to the last table, we can appreciate that the first three components capture the 

99.23% of the variability, being the first principal component the one which collect the higher 

variation in the data sample, reaching the 85.15% of the variability. The last two components 

only collect 12.95% and 1.13% of the variance, respectively. However, we must make it clear 

that for academic purposes we are only going to consider de first component, due to we are 

looking for a single measure, based on which we are going to sort the 50 studied equities. 

1.3.3. Identification of the Principal Components 
 

The main purpose of the PCA technique is to reduce the data size. On this basis, the 

identification of these components seems to be a key element. Usually financial analysts 

preserved only those components that collect most of the variability, a fact that allows us to 

represent data in two or three dimensions. Moreover, there are several criteria to determine 

the number of components that must be considered in the study which is being carried out. In 

this section we only considerer the simplest one, the scree plot. 

Total 

variance

Explained 

variance

Accumulated 

explained 

variance

Total 

variance

Explained 

variance

Accumulated 

explained 

variance

1 5,1091        85,1517      85,1517      5,1091       85,1517     85,1517     

2 0,7767        12,9450      98,0967      0,7767       12,9450     98,0967     

3 0,0677        1,1286        99,2253      0,0677       1,1286       99,2253     

4 0,0448        0,7464        99,9717      

5 0,0017        0,0275        99,9992      

6 0                  0,0008        100              

Sum of the squared saturations

component

Initial Eigenvalues
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Figure 1. Identification of PC. The Scree Plot

 

Source: Compiled by the author. This graph follows the same idea as Table.3, that is to say, it shows the variability of 

each component in a decreasing order 

 

The scree plot (Figure.1) is obtained from represent on a Cartesian axis, the magnitude of the 

eigenvalues in descending order (or their relative position in relation to the sum of the 

eigenvalues) on the side of ordinates and on the side of abscissas the number of the principal 

component with which an area chart is generated such as the one illustrated in the last graph. 

Both the table of the explained variance and the scree plot shows the eigenvalues sorted from 

highest to lowest. If an eigenvalue approaches zero is considered as a residual factor and 

meaningless in the analysis because it is unable to explain a significant amount of the total 

variance. The scree plot shows the eigenvalues associated with the vectors of the principal 

components proving that the first three eigenvalues concentrated more information about the 

data variability. 

In particular, paying attention to the scree plot, we choose those components whose 

eigenvalues are near to the settling zone. In this case, this approach suggests choosing two 

factors. However, we choose only the first one. This is because our purpose is based on getting 

a global criteria to select several assets, so we prefer to have one factor instead of two of them. 
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1.4. MAIN RESULTS AND FINDINGS 
 

In this section we show the key elements and conclusions obtained from our study in 

the asset allocation area. To begin with the study, we analyse those table related to the Kappa 

and Farinelli-Tibiletti ratios and then, we review more in depth the PCA technique and the single 

ratio obtained through that analysis: 

First of all, we review the family of those ratios related with the Partial moment family, that is 

to say, Kappa and Farinelli-Tibiletti ratios. In this case, we sort the 50 assets that belong to 

EuroStoxx-50 regarding to the two mentioned criteria and choose the best 10 in performance 

terms. Given that, we can appreciate the greatest equities in the following tables: 

Table 4.Kappa ratios

 

Source: Compiled by the author. Note that we use the assets’ returns at daily frequency and the 3-month German 

Treasury bills as a threshold 

Table 5. Farinelli-Tibiletti ratios

 

Source: Compiled by the author. Note that we use the assets’ returns at daily frequency and the 3-month German 

Treasury bills as a threshold 

 

RANKING FIRM RATIO FIRM RATIO FIRM RATIO

1 UNIBAIL-RODAMCO 0,2984 SAFRAN 0,0663 SAFRAN 0,0148

2 SAFRAN 0,2867 UNIBAIL-RODAMCO 0,0660 UNIBAIL-RODAMCO 0,0132

3 ESSILOR INTL. 0,1303 AIRBUS GROUP 0,0372 AIRBUS GROUP 0,0122

4 AIRBUS GROUP 0,1271 ESSILOR INTL. 0,0346 LVMH 0,0104

5 LVMH 0,1173 LVMH 0,0336 ESSILOR INTL. 0,0079

6 IBERDROLA 0,0756 IBERDROLA 0,0188 IBERDROLA 0,0046

7 SOCIETE GENERALE 0,0493 SOCIETE GENERALE 0,0123 INTESA SANPAOLO 0,0030

8 DEUTSCHE POST (XET) 0,0420 DEUTSCHE POST (XET) 0,0115 DEUTSCHE POST (XET) 0,0029

9 INTESA SANPAOLO 0,0360 INTESA SANPAOLO 0,0107 SOCIETE GENERALE 0,0029

10 ENI 0,0355 ENI 0,0095 BASF (XET) 0,0023

KAPPA 0,5 KAPPA 1,5 KAPPA 10

RANKING FIRM RATIO FIRM RATIO FIRM RATIO

1 AIRBUS GROUP 0,2377 UNIBAIL-RODAMCO 1,1048 AIRBUS GROUP 0,5889

2 LVMH 0,2291 SAFRAN 1,1024 LVMH 0,5776

3 DEUTSCHE POST (XET) 0,2143 AIRBUS GROUP 1,0534 INTESA SANPAOLO 0,5552

4 VOLKSWAGEN PREF. (XET) 0,2136 ESSILOR INTL. 1,0521 SAFRAN 0,5455

5 BASF (XET) 0,2123 LVMH 1,0487 SAP (XET) 0,5427

6 SAFRAN 0,2107 IBERDROLA 1,0286 DEUTSCHE POST (XET) 0,5412

7 ENI 0,2106 SOCIETE GENERALE 1,0188 VINCI 0,5388

8 TOTAL 0,2106 DEUTSCHE POST (XET) 1,0169 SIEMENS (XET) 0,5375

9 DEUTSCHE BANK (XET) 0,2092 INTESA SANPAOLO 1,0154 ESSILOR INTL. 0,5369

10 SIEMENS (XET) 0,2087 ENI 1,0143 BASF (XET) 0,5353

FT(0.5,2) FT(1,1) FT(1,2)
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Note that the whole ratios showed in Table.4 and Table.5 come from equation (1.2.3) and 

equation (1.2.4) for different risk aversion levels. 

Following the above tables, we show the 10 selected assets according to the two proposed 

performance ratios. As well as we can appreciate in the tables, Kappa ratios usually assign the 

top of the ranking to the same firms (SAFRAN, UNIBAIL-RODAMCO and AIRBUS) while the 

Farinelli-Tibiletti criterion is more heterogeneous regarding to the asset allocation. 

Continuing with our study and applying the PCA technique, we have reduced the information 

contained in the 6 mentioned ratios, in order to express it in a single one. Then, we take the 

information contained in this first component and we sort it in the same way as in previous 

ratios. Thus, we show the results and the main appreciations of this analysis:  

Table 6. Global ratio. The optimal set of assets

 

Source: Compiled by the author. Note that this global ratio comes from the first principal component (equation (1.3.1)), 

but in this case we only show the first ten elements of the component because of academic purposes. 

Paying attention to the optimal selected assets (Table.6), we can find some differences regarding 

to previous lists.  Given that, we have started this first chapter following the approach proposed 

by Tapon,F., Vitali, A. (2013) and looking for a number of assets which, included in a portfolio, 

ensured us a well-diversified financial one. To bring out the above purpose, we decide to select 

those equities which have the greatest performance ratio in accordance with the Patial 

moment’s family. 

Finally, we must say that the chosen assets meet the previously established requirements at the 

beginning of this chapter. The reason is, as well as we can appreciate in the last table, the chosen 

assets meet with requirement of “number” (10 assets) and “different sources” (they come from 

very different sectors). However, we must make it clear that we do not make any constraints 

about the different sectors, that is to say, the source they come from is arbitrary. 

RANKING FIRMS INDUSTRY RATIO

1 SAFRAN Industrial goods 2,2595

2 UNIBAIL-RODAMCO Real estate 1,9762

3 AIRBUS GROUP Industrial services 1,8922

4 LVMH Diversified 1,8280

5 ESSILOR INTL. Medical equipment 1,7481

6 DEUTSCHE POST Industrial goods 1,3136

7 INTESA SANPAOLO Banks 1,3119

8 IBERDROLA Utilities 1,1130

9 BASF Chemicals 0,8920

10 ENI Oil and gas 0,8437

GLOBAL RATIO
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CHAPTER 2: FROM MARKOWITZ TO OUR DAYS. A CONDITIONAL ANALYSIS OF 

THE OPTIMAL PORTFOLIO 

 

 

As it is well-known, investors usually want to ensure a good risk-return trade-off. 

Financial theory establishes as basic foundation a direct relationship between these two 

characteristics, return and risk, so those portfolios which incorporate a higher level of risk or 

more aggressive, tend to generate on average a higher yield, while more conservative portfolios 

tend to provide lower average yield. Thus, both types of portfolios could be attractive for 

different investors. 

According to the previous context, the most basic financial theory considers that the investor 

takes his portfolio decisions maximizing his utility function, which depends on two moments of 

the returns distribution: mean and variance. The investor's utility level depends positively on 

return and inversely on volatility. The investor supposedly maximizes his utility function subject 

to the constraints of available resources, obtaining an optimal portfolio solution. This portfolio 

is defined in terms of the proportion of the investment allocated in each of the considered 

assets. 

Different investors which differ in their utility function, have a different optimal portfolio. This 

is due to the importance attached to the portfolio returns and its volatility. Of course if the set 

of selected assets is different, it also makes their optimal portfolios different from each other. 

Another important criteria to select a portfolio of risky assets is to choose the minimum variance 

portfolio proposed by Markowitz (1952). Thus, we can observe each investor is really different 

and chooses an optimal portfolio according to his risk aversion level and his own preferences. 

For that reason, it seems necessary to use utility functions in order to help us choosing the best 

portfolio for each kind of investor. 

In particular, in this second chapter, we aim to focus our study in the modelling of risk aversion 

parameter so that it changes over time, in order to take into account the variability in investors' 

expectations. The concept of time-varying risk aversion is well-understood in the literature 

under the context of habit formation. This variation in risk aversion raises the correlation 

between marginal utility and asset returns, while the correlation between consumption and 

returns remains low. The goal of this second chapter is to extend the idea of time-varying risk 

aversion making a comparison between different types of investment profiles, ones associated 
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to the unconditional risk aversion and others more related to the modelling of risk aversion 

parameter over the timeframe. 

According to the above, we spend the second chapter analysing the theory of utility and 

choosing the optimal portfolio for risk averse individuals within the mean-variance context. We 

begin with the study of the unconditional Markowitz approach to analyse the optimal portfolio 

in a constant context. Then, we study more in depth how this kind of portfolio changes over 

time, through conditional schemes such as GARCH (1, 1) and DCC-GARCH.  

 

2.1.      DATA ANALYSIS AND PORTFOLIO CONSTRUCTION. 
 

As we have mentioned in the first chapter, the main purpose of this second one is to 

generate different kind of time-varying portfolios for two sample periods. The first one is the 

calm period, which runs from 01/01/2004 to 31/12/2007. Moreover, the second timeframe is a 

more stressed one and comes from 01/09/2008 to 31/12/2012, in order to consider how the 

portfolios have changed during the crisis period. To show the empirical results of this research, 

the used data is referred to the daily and monthly closing prices of some European equities and 

indicators. Then, we analyse them more in detail: 

 Data at daily frequency 

We use data at daily frequency for the cases of Model A, C.1, C.2 and D5. These conditional 

portfolio models are constructed by the application of the EuroSroxx-50 index at daily frequency 

as a proxy of the time-varying risk aversion. In addition we use the ten equities selected in 

chapter one at daily frequency, in order to ascertain the different terms and parameters of the 

conditional portfolio weights. As we have mentioned before, we analyse these portfolios over 

two different periods. The calm period, which runs from 01/01/2004 to 31/12/2007 has 1043 

work days and the second timeframe (stress period) comes from 01/09/2008 to 31/12/2012 

(1045 work days).We have been able to find these data at DataStream database.  

 Data at monthly frequency 

Otherwise, we propose a novel approach to analyse the time-varying risk aversion, based on the 

application of the European Consumer Confidence Indicator, CCI, as a proxy of the customer 

European sentiment. The CCI is a composite indicator ascertained at monthly frequency and 

                                                           
5 We explain these dynamic models in greater detail in section 2.4 
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based on answers from several economic questions asked to European consumers. We have 

been able to find these monthly data at Europa.eu. Thus, we use data at monthly frequency for 

the case of the mentioned indicator. Note that in this case, we have 48 months for both analysed 

periods (calm and stress).  

Then, we spend the most of this section making a brief analysis about some important statistical 

characteristics of financial time series. However, we only analyse these attributes in detail for 

the case of the ENI firm due to the obtained results and appreciations are very similar for the 

rest of the ten studied equities. In spite of that, note that you can review the obtained results 

for the rest of the studied stocks in Appendix A. 

2.1.1. Key elements of financial time series 

Figure 2.Financial time series analysis. ENI 

 

Source: Compiled by the author based on ENI stock prices and returns at daily frequency. In addition, we compare 

the ENI returns against the normal distribution function. 

Paying attention to the first graph (top left of Figure.2), we can observe that stock price 

changes over time, in other words, stock price returns are being modelled. There are two ways 

to convert prices into returns, you can either convert to periodically compound returns (See 

equation 2.1.1) or to continuously compound returns (See equation 2.1.2). Note that in this 

paper we use the second equation. 
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𝑅𝑡 =
𝑆𝑡

𝑆𝑡−1
− 1 

   (2.1.1) 

 

 

𝑅𝑡 = 𝑙𝑛 (
𝑆𝑡

𝑆𝑡−1
) 

 

 

   (2.1.2) 

 

, where 𝑆𝑡 is the stock price at time 𝑡, 𝑆𝑡−1 is the previous traded stock price in the market and 

𝑅𝑡 is the stock return. Note that in the last graph we calculate the returns at daily frequency, 

but for the rest of this paper, we ascertain them in a monthly way, that is to say, taking log-

differences in traded stock prices every 22 days. 

As we can observe in the first two graphs (located at the top of Figure.2), ENI stocks move like a 

random walk with stochastic trend or unit root. It would also be unsteady. As for the mean, as 

in most financial returns, it is constant over time. Moreover, talking about the variance, the serie 

shows random variability, due to we can observe groupings or “volatility clusters ". This term 

refers to those moments in time when there is high volatility, they tend to come followed by 

periods of high volatility. Otherwise, low volatility moments come followed by a succession of 

low volatility periods. To collect these groupings of volatility, we use models of conditional 

heteroscedasticity (GARCH, exponential smoothing ...). 

Then, if we look at the kernel graph, we can observe ENI returns do not follow a normal 

distribution, owing to the curve described by them is sharper than the Gaussian one, that is to 

say, ENI yields are leptokurtic. This is because its kurtosis is higher than normal (kurtosis = 3.98> 

3). We could analyse the abnormality of ENI in another way, paying more attention to the 

distribution tails, due to ENI tails are wider than normal ones.  

Finally, the fourth graph, draw the qq-plot of returns by comparing the number of returns to a 

normal distribution. The red line emerges to face the quantiles of a normal distribution with the 

quantiles of a normal distribution. Otherwise, the blue line represents our performance, and 

comes to face the normal quantiles against the ENI quantiles. Analysing this graph, we could say 

that blue line is not completely over red line, as we can affirm again that its tails are wider than 

normal.  

2.1.2. Jarque-Bera normality test 

The Jarque-Bera test is a goodness of fit test that examines whether a data sample has 

the skewness and kurtosis of a normal distribution. The above measures is a parametric test, 

which is defined as: 
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𝐽𝐵 =
𝑛 − 𝑘 + 1

6
(𝑆2 +

1

4
(𝐾 − 3)2) 

 

    (2.1.3) 

 

, where 𝑆 represents the sample skewness and  𝐾 is the sample Kurtosis of the time serie. 

Otherwise, 𝑛 are the degrees of freedom and 𝑘 is the number of regressors. 

The Jarque-Bera statistic is asymptotically distributed as chi-squared distribution,𝜒2, with two 

degrees of freedom. In this case, we use it to test the null hypothesis that ENI yields belong to a 

normal distribution. The null hypothesis is a joint hypothesis that skewness and kurtosis are nil. 

Then, we make this contrast for the chosen yield: 

Table 7. Jarque-Bera statistic. 

 

                                                           Source: Compiled by the author 

Then, according to Table.7, we can appreciate the two ways by which we can analyse whether 

we reject the null hypothesis or not. That is to say, the JB-statistic and the P-value. Note that in 

this research we assess this test according to the P-value. Remember that the p-value is the 

probability of observing an statistical evidence as or more extreme than the observed value 

under the null hypothesis (this hypothesis is assumed true at the beginning). 

Given the above, we reject the null hypothesis at a significance level of 95%, since the P-value is 

less than 𝛼 (0.05). Thus, it is not possible to affirm that ENI returns follow a normal distribution. 

 

𝐻0 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 𝑖𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 

 

 

    (2.1.4) 

 

Linking to the above, we must mention that in spite of knowing that assets’ returns have the 

problem of heavy tails, we are going to continue this research with the assumption of normality 

in returns. 

2.1.3. Simple and partial autocorrelation functions ( FAS and FAP) 

The analysis of persistence in performance is an interesting line of research because of 

the controversy over whether this phenomenon occurs and if so, whether that persistence exists 

only in short-term time periods or in longer time horizons. Moreover, the existence of this 

JB-Statistic P-Value

59,1933     1,40E-13

ENI
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phenomenon can be considered a useful information tool for participants in financial markets 

when making their investment decisions. 

Correlation refers to the persistence in returns or correlation between current and past values 

of the studied variable. The autocorrelation of a stochastic process is measured by simple and 

partial autocorrelation functions. The 𝜌 parameter is generally known as the persistence of the 

process. An increase or decrease in the actual return of assets, take effect in their own future 

performance, although the influence of the current value gradually grows over time, in 

accordance with the decrease of the 𝜌 coefficient. A 𝜌 value closes to 1 is introducing high 

persistence in the process, and conversely, a value of 𝜌 close to 0 is not introducing persistence 

in the process. 

Then, we plot the simple and partial autocorrelation functions of ENI firm. To ascertain these 

functions, we have used 20 lags and the application of MatLab functions: 

 
Figure 3. Simple and partial autocorrelation functions 

 

Source: Compiled by the author 

In accordance with Figure.3, top graphs show the simple and partial autocorrelation function of 

asset returns, while graphs located at the bottom represent the same functions, but for squared 

returns. Through that, it is intended to see the possible existence of serial correlation and 

heteroscedasticity. 

As shown in the graph of both simple and partial autocorrelation functions, they appear to be 

among the bands in the case of the studied equity, suggesting the absence of autocorrelation or 
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that it is weak. On this basis, we can conclude that a clear persistence in returns is not 

appreciated, though we will confirm it using statistical tests. 

Moreover, talking about the serial correlation of squared returns, we can appreciate that ENI 

correlations are out of bounds, which indicates heteroscedasticity or autocorrelation in second 

moments, that is to say, it is changing over time. Given that, it seems advisable to model 

volatilities and correlations over time, by the application of several GARCH schemes. 

However, the autocorrelation functions are merely qualitative tools for analysing the presence 

of autocorrelation in yield lags. Therefore, to evaluate the combined autocorrelation of some 

lags in a more quantitative way, we will use the statistical test of Box-Pierce.   

2.1.4. Box-Pierce statistical test 

Box and Pierce (1970) developed a statistic based on the squares of the first 

autocorrelation coefficients of residual yields, to analyse whether there is autocorrelation. The 

statistic is defined as a cumulative sum of squares of the correlation coefficients, that is: 

 

𝑄𝑝 = 𝑛 ∑ �̂�𝑗
2𝑝

𝑗=1   

 

 

    (2.1.5) 

 

, where  �̂�𝑗 =
∑ 𝜀𝑡𝜀𝑡−𝑗

𝑛
𝑡=𝑗+1

∑ 𝜀𝑡
2𝑛

𝑡=1
  and 𝜀𝑡is the residual.  

Under the null hypothesis of no autocorrelation, Q statistic is asymptotically distributed as a chi-

squared, 𝜒2 with degrees of freedom equal to the difference between the accumulated number 

of coefficients (𝑝) and the number of parameters estimated by adjusting the considered process.  

            Table 8. Box-Pierce statistic 

 

           Source: Compiled by the author 

 

Note that, as in the JB-test, we analyse this test according to the associated P-value.  In addition, 

we must mention that we have used 5 lags in the calculus of this test. 

LAGS Q P-Value

1 1,0275       0,3107       

2 1,1412       0,5652       

3 1,1824       0,7572       

4 1,3162       0,8586       

5 1,8899       0,8642       

ENI
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Then, we evaluate the results obtained from Table.8. For a significance level of 95%, we affirm 

that there is no autocorrelation between returns, since the p-value is not less than 0.05 for 

neither of the studied cases, so we accept the null hypothesis in such cases. 

 

𝐻0 = 𝑁𝑜 𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

 

 

    (2.1.6) 

 

Following the above, this equity has no persistence in returns. Given that, this equity follows a 

white noise structure. 

Linking to the above, we must mention that in spite of knowing that there are a few cases in 

which a clear persistence in returns is appreciated (see Appendix. A), we are going to continue 

this research without adjusting the equities’ returns by autocorrelation. 

 

2.2.      MEAN-VARIANCE APPROACH. THE UNCONDITIONAL MARKOWITZ THEORY 
 

It has always said that we can divide investment history in two clearly defined parts, 

before and after 1952, when the economist Harry Markowitz published his doctoral thesis on 

the Portfolio Selection. Markowitz (1952) was the first on paying attention to the practice of 

portfolio diversification, as well as we could appreciate in his publishing of 1959, “Portfolio 

Selection: Efficient Diversification of Investments”. This is the base where investors generally 

prefer to keep asset portfolios rather than individual assets, because they do not take into 

account only the returns of these assets but also the risk thereof.  

Within this framework, Markowitz proposed the minimum variance portfolio, which is a 

combination of risky assets that has the lowest level of risk between the different possible 

combinations of risky assets. Formally, in the original problem, the author fix a specific expected 

return of the portfolio as a constraint. In other words, the original Minimum-Variance Markowitz 

problem is as follows: 

 

𝑚𝑖𝑛  𝑤′𝑉𝑤 

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑡𝑜: ∑ 𝑤𝑖

𝑛

𝑖=1

E = 𝐸𝑝 

                        ∑ 𝑤𝑖

𝑛

𝑖=1

= 1 

 

       

             
(2.2.1) 
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However, in this paper we face the construction of the minimum-variance portfolio in a different 

way, without restricting short positions, that is to say, those positions which probably would 

take on the assets of higher risk (volatility). Thus, the proposed problem is: 

 

𝑚𝑖𝑛  𝑤′𝑉𝑤 

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑡𝑜: ∑ 𝑤𝑖

𝑛

𝑖=1

= 1; 

 

 

       

 (2.2.2) 

 

 

Through this minimization problem, we can obtain the following expression for the minimum 

variance portfolio: 

 

𝑊𝑚𝑣 =
𝑉−11𝑛

1𝑛′𝑉−11𝑛
 

 

 

(2.2.3) 

 

, where 𝑉−1 is the inverse of the covariances matrix and 1𝑛 is a 10𝑥1 ones vector  

 

Then, we can ascertain the minimum variance expected return and volatility thorough the 

following expression: 

 
𝐸𝑚𝑣 = 𝑊𝑚𝑣

′ 𝐸 

𝜎𝑚𝑣 = √𝑊𝑚𝑣
′ 𝑉𝑊𝑚𝑣 

 

 

(2.2.4) 

 

, where 𝑉 is the 10𝑥10 covariance matrix, 𝐸 is the 1𝑥10 expected return vector and 𝑊𝑚𝑣 is the 

10𝑥1 minimum-variance weight vector. Note that both arrays are obtained from the individual 

assets set for the whole period, that is to say, they are constant over the mentioned time frame. 

According to the minimum-variance approach, the set of portfolios we could build in the case of 

𝑛 risky assets can be displayed as a cloud of points showing the set of investment opportunities 

which is given by the market.  Possible portfolios entirely cover a region of the mean-variance 

space and this region is convex. There are actually many possible combinations of assets, but for 

simplicity, we only represent the surround set, called “the minimum variance curve”. Based on 

the above, the unconditional portfolios can be formed from contributions of the ten risky stocks 

are represented in the next figure. As an example of the traditional Markowitz’s approach, we 

only plot these combinations for the calm period (01/01/2004-31/12/2007):  
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Figure 4. Investment Opportunity Set. The Efficient Frontier 

 

Source: Compiled by the author. Note that expected returns and standard deviations are expressed in annual terms. 

It is possible by multiplying the monthly returns by 12 and their associated standard deviations by √12. 

 

According to Figure.4, we can observe that in general terms, the whole studied assets have a 

rather high standard deviation. To solve the above problem, with the construction of the 

minimum-variance portfolio and its associated diversification effect, we can get this deviation 

greatly reduced. Moreover, talking about yield terms, the minimum-variance portfolio has only 

been surpassed by IBERDROLA, BASF, ESSILOR and UNIBAIL-RODAMCO. The above means that 

we have reached a portfolio with fairly good results on average (Mean=16%, Stdv=2%). 

However, currently have emerged numerous empirical studies that have trashed the Markowitz 

theorem. The reason is that the last theory analysed the portfolio management at a particular 

moment in time, while new approaches are based on the possibility of introducing different 

statistical moments that are changing over time. Therefore, in section 2.4., “How to build time-

varying portfolios. A conditional approach”, we introduce this possibility of change by applying 

conditional correlations models (DCC GARCH). For this, previously, we model the changing 

volatilities over time by developing models of conditional variances such as GARCH (1, 1). In 

addition, we add the possibility of time-varying risk aversion in the following sections. 
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2.3.     UTILITY FUNCTIONS. LOOKING FOR THE INVESTORS’ OPTIMAL PORTFOLIO  
 

In uncertainty contexts it is possible to reach the preferences representation of 

economic agents through the expected utility. The use of expected utility although, on the one 

hand, excludes some behaviours that would be rational as a representation by ordinal utility 

functions, on the other hand, provides a greater degree of detail and understanding in decision-

making. 

In short, it is suggested that financial theory have developed utility functions to assess how good 

an investment is, according to its expected utility. When we represent investor preferences 

through utility functions, we are assuming that the decision maker has a well-defined utility 

function of his wealth, 𝑈 (𝑊). It is also assumed that each individual chooses among different 

alternatives maximizing the expected utility of his wealth. 

Within this area, we must make a very important distinction. While risk depends on the specific 

characteristics of financial assets, the risk attitude depends on the individual preferences and 

therefore, may be different for each kind of agent. In fact, in accordance with the shape of the 

utility function, we can distinguish three types of attitudes toward risk: risk aversion, risk 

neutrality and risk appetite. To get a feel for the risk attitude, it is essential to study the risk 

aversion coefficients of Arrow-Pratt (1971). 

On the one hand, Arrow developed the absolute risk aversion coefficient for an individual with 

an associated utility function: 

 

𝐴𝑅𝐴 = −
𝑈′′(𝑊)

𝑈′(𝑊)
 

 

    (2.3.1) 

 

This aversion coefficient is positive if and only if the individual is risk averse, that is to say, if the 

individual shows a concave utility function 𝑈′′(𝑊) < 0. Actually, is the concavity (second 

derivative) which reflects the risk aversion level, but it is necessary to adjust this measure by the 

first derivative of the utility function, to ensure that it does not change under linear 

transformations. 

On the other hand, we can talk about the relative risk aversion coefficient, which measures 

aversion in percentage terms: 
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𝐶𝑅𝑅𝐴 = −𝑊
𝑈′′(𝑊)

𝑈′(𝑊)
= 𝑊 𝐴𝑅𝐴 

 

    (2.3.2) 

 

Intuitively, it seems clear that absolute risk aversion should be decreasing for most individuals, 

whereas relative aversion is generally decreasing. 

In general, we assume that investors are risk-averse. For that reason, in this work we only focus 

on the analysis of two risk-averse utility functions, such as quadratic and CARA functions. Given 

that, we use the first ones to obtain explicit forms for optimal portfolios and the second ones in 

order to help us modelling the risk aversion parameter over time. 

 

2.3.1. Negative exponential utility functions 

Analytically, the negative exponential utility function (CARA) is represented as follows: 

 

𝑈(𝑊) = −𝑒−𝛼𝑤,   𝛼 > 0 

  
 

 

    (2.3.3) 

 

, where an increase in wealth (𝑊) produces an equal diminishing utility level.6Then, calculating 

the first and the second derivative of this expression, we can see that it is an increasing and 

concave function. Which makes sense, due to this is a function which represents the preferences 

of risk averse individuals.  

 

𝑈′(𝑊) = 𝛼𝑒−𝛼𝑤 > 0    𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 function 

𝑈′′(𝑊) = −𝛼2𝑒−𝛼𝑤 < 0    𝑐𝑜𝑛𝑐𝑎𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

 

    (2.3.4) 

 

Although this function exhibits constant absolute risk aversion, it is widely used. This is because 

this function combined with the assumption of normality in returns of financial assets, allows to 

obtain explicit forms for optimal portfolios. We show the above through the following 

expressions: 

 

 

                                                           
6 This is often a feature of institutional investors. 
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𝐴𝑅𝐴 = −
(−𝛼2𝑒−𝛼𝑤)

𝛼𝑒−𝛼𝑤
= 𝛼 

 
𝛿𝐴𝑅𝐴

𝛿𝑊
= 0            𝐴𝑅𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

𝐶𝑅𝑅𝐴 = −𝑊
(−𝛼2𝑒−𝛼𝑤)

𝛼𝑒−𝛼𝑤
= 𝑊𝛼 

 
𝛿𝐶𝑅𝑅𝐴

𝛿𝑊
> 0            𝐶𝑅𝑅𝐴 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 

 

 

   

  

  (2.3.5) 

 

Then, to show the CARA function graphically, we assign the values 10,1 and 0.1 to the risk 

aversion parameter, in order to assess how the function changes according to the aversion level 

of the studied individual (from more averse investors to less averse ones). In addition, to make 

the graph analysis easier for the reader, we assign some arbitrary convenience values to the 

investor wealth. Given that, the mentioned function is as follows: 

 

Figure 5. Individual preferences. CARA utility function 

 

  Source: Compiled by the author 

As we can appreciate in Figure.5, the CARA function is becoming flatter as we are decreasing the 

risk aversion level from 10 to 0.1.  

 

2.3.2. The optimal portfolio construction. An extension of the CARA function 

Formally, in this research we will analyse optimal portfolio using the negative 

exponential utility function (CARA), which has been described in detail in the previous lines 
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(equation 2.3.3). Given that, if the final investor’s wealth follows a normal distribution with an 

associated mean 𝜇 and variance 𝜎2, then using the moment-generating function of a normal 

distribution: 

 

𝐸[𝑈(𝑊)] = 𝐸[−𝑒−𝛼𝑤] = −𝑒
[−𝛼𝑤(𝜇−

1
2𝛼𝜎2)]

= 𝑈 [𝐸(𝑊) −
𝛼

2
𝜎2(𝑊)] 

 

 

(2.3.6) 

 

On the other hand, analytically, the investor's problem is based on determine the weights of the 

risky assets that maximize the expected utility, given the constraint that these weights sum the 

unity7:  

 

max
𝑤

𝑈(𝐸𝑃 , 𝜎𝑃
2) = (𝑤′𝐸 −

𝛼

2
𝑤′𝑉𝑤) 

𝑠. 𝑎. ∑ 𝑤𝑖

3

𝑖=1

= 1 

 

 

             
(2.3.7) 

 

, and the Lagrangian function associated would be as follows: 

max. 𝐿 = (𝑤′𝐸 −
1

2
𝑤′𝑉𝑤) − 𝜆(𝑤′1𝑛 − 1) 

Then, we calculate the partial derivatives conditioning to the assets weights and to the multiplier 

lambda. After that, we equate this equation to zero and we obtain: 

𝜕𝐿

𝜕𝑤
= 0;        𝐸 − 𝛼𝑉𝑤 − 𝜆1𝑛 = 0𝑛  

𝜕𝐿

𝜕𝜆
= 0;        𝑤′1𝑛 − 1 = 0  

, based on the above, we solve 𝑤: 

𝑤 =
1

𝛼
𝑉−1𝐸 −  𝜆

1

𝛼
𝑉−11𝑛 

Finally calculating and replacing values in above equations, we get an expression for the optimal 

portfolio weights: 

  

   

                                                           
7 To analyse that problem, we rely on: Gómez (2011). 
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𝑊𝑜 =
𝑉−11𝑛

1𝑛′𝑉−11𝑛
+

1

𝛼
 (𝑉−1𝐸 −

1𝑛′𝑉−1𝐸

1𝑛′𝑉−11𝑛
𝑉−11𝑛) 

𝑊𝑜 = 𝑊𝑚𝑣 +
1

𝛼
 (𝑉−1𝐸 −

1𝑛′𝑉−1𝐸

1𝑛′𝑉−11𝑛
𝑉−11𝑛) 

 

  (2.3.8) 

 

, where 𝑉−1 is the 10𝑥10 inverse covariance matrix, 1𝑛 is a 10𝑥1 ones vector, 𝐸 is the 1𝑥10 

expected return vector and  𝛼 is the individual level of risk aversion.  

Then, the optimal expected return and volatility can be ascertained as follows: 

 
𝐸𝑜 = 𝑊𝑜

′𝐸 

𝜎𝑜 = √𝑊𝑜
′𝑉𝑊𝑜 

 

(2.3.9) 

 

, where 𝑉 is the 10𝑥10 covariance matrix, 𝐸 is the 1𝑥10 expected return vector and 𝑊𝑜 is the 

10𝑥1 minimum-variance weight vector. Note that both arrays are obtained from the individual 

assets set for the whole period, that is to say, they are constant over the mentioned time frame. 

 

Moreover, in this section we take into account the way in we can introduce the individual risk 

attitude within the mean-variance world. Obviously, to introduce the risk preferences of an 

investor we need to use an economic tool, the indifference curves. Specifically, these curves 

show the investor arrangement of exchanging risk by return. We could build these curves 

equalizing the expected utility function calculated above to a constant parameter, 𝐾: 

 

 

𝑈 [𝐸(𝑊) −
𝛼

2
𝜎2(𝑊)] 

𝐸𝑃 −
1

2
𝛼𝜎𝑃

2 = 𝐾 

𝐸𝑃 = 𝐾 +
1

2
𝛼𝜎𝑃

2 

 

 

 

   

 (2.3.10) 

 

Then, by applying these equations we can obtain the following indifference curves (the green 

ones) for different k values8: 

                                                           
8 Each one of the indifference curves has the same k associated parameter. Along the curves, the only 
changing parameters are the standard deviation and the expected return of the portfolio. 



33 
 

Figure 6. The indifference curves and the optimal portfolio. 

 

Source: Compiled by the author. Note that expected returns and standard deviations are expressed in annual terms. 

It is possible by multiplying the monthly returns by 12 and their associated standard deviations by √12. 

 

Paying attention to Figure.6, we can observe that we are moving away from the minimum-

variance portfolio, as we are decreasing the risk aversion level from 11 to 1. According to the 

above, those optimal portfolios with a higher risk aversion level also has a greater expected 

return but a rather high standard deviation. Otherwise, the above occurs inversely. 

As in the case of the minimum-variance approach, for simplicity, we have only plot the 

mentioned figure for the calm period. According to this chart, we can obtain the optimal 

portfolio of risky assets. This kind of portfolio is an efficient alternative which represents the 

optimal risk-return ratio that an investor should take into account, given his individual 

preferences, which are represented by a utility function that depends on the investor’s risk-

aversion level. In other words, it is the portfolio of risky assets that maximize the expected utility 

of the investor. 

Graphically, the investor's optimal portfolio is represented as the intersection of the efficient 

frontier and the indifference curve (utility function). At this point the slopes of both curves are 

equal, so the rate at which we can exchange return for market risk is equal to the ratio at which 

the investor is willing to do it personally. Thus, the optimal portfolio represents the combination 

of assets that supports the efficient frontier and also is in the highest indifference curve. 

2.3.3. Quadratic utility functions  

Formally, the quadratic utility function is represented by the next expression: 
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𝑈(𝑊) = aW − b𝑊2,   𝑏 > 0, 𝑊 <
𝑎

2𝑏
 

 

 

  (2.3.11) 

 

To make its graph implementation easier, we assign some arbitrary values to the individual 

wealth (we fix the same values as in the case of CARA utility function) and we also make the 

function parameters (𝑎, 𝑏) be fixed in 1 and 0.3, respectively. Given the above values, this kind 

of utility function looks like: 

Figure 7. Individual preferences. Quadratic utility function 

 

  Source: Compiled by the author 

Then, calculating the first and second derivative we can show the main characteristics of this 

kind of function: 

 

𝑈′(𝑊) = a − 2𝑏𝑊      (> 0  𝑖𝑓    𝑊 <
𝑎

2𝑏
)    not always an 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑈′′(𝑊) = −2𝑏 < 0    𝑐𝑜𝑛𝑐𝑎𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

𝐴𝑅𝐴 = −
(−2𝑏)

a − 2bW
 

𝛿𝐴𝑅𝐴

𝛿𝑊
> 0            𝐴𝑅𝐴 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 

 
 

𝐶𝑅𝑅𝐴 = −𝑊
(−2𝑏)

a − 2bW
=

2𝑏

(
𝑎
𝑊) − 2b

 

𝛿𝐶𝑅𝑅𝐴

𝛿𝑊
> 0            𝐶𝑅𝑅𝐴 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 

 

   

  

 

  

 (2.3.12) 
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These functions have some important drawbacks. On the one hand, utility is not always 

increasing. On the other, the absolute risk aversion is always increasing. However, working with 

this utility function, the mean-variance approach is consistent with the criteria of maximizing 

the investor’s expected utility, which is something relevant in the CAPM context. The above is a 

key element in this work, as it relates the quadratic utility functions with the market risk 

premium. Given the importance of this element, we analyse it more in depth in the following 

section. 

 

2.3.4. The risk aversion parameter and the quadratic utility framework 

Despite the influence of risk aversion in the optimal portfolio context,  

there are not many studies which have explicitly estimated the risk aversion of an investor. 

Instead of that, they choose random values to reflect the common levels of risk aversion. The 

equity literature on risk aversion has developed around the review of Arrow (1971), who 

affirmed that the risk aversion parameter should be around 1. Otherwise, in the equity context 

have appeared several studies which differ in their estimations of risk aversion. For instance, 

Mehra and Prescott (1985) argued that this parameter should be greater than 10. Moreover, 

Ghysels et al (2005) have affirmed that the risk attitude should be between 1.5 and 2 on average, 

while Guo and Whitelaw (2006) established the mentioned parameter in 4.93.  

However, the common sense tells us that the use of arbitrary values for this parameter could 

yield us optimal portfolios that do not reflect the actual investor´s attitude towards risk. Given 

that, one of the goals of this paper is to propose the modelling of the risk aversion parameter in 

order to make it changing over time. To carry out this key proposal, we focus our attention on 

the review of the quadratic utility functions framework.  

Within this context, we must make a very important distinction. The ARA parameter presented 

in the last section, refers to the changes in absolute risk aversion, that is to say, it is a measure 

of investor reaction to euro changes in wealth. On the other hand, we have to talk about the 

CRRA. This term is more related to the measuring of changes in relative percentages invested in 

risky and risk free assets. Moreover, as we could intuit, this expression is a really useful tool in 

financial contexts in the sense of helping us with the calculus of the risk aversion parameter.  

Thus, we could affirm it is possible to represent the risk aversion attitude of an investor in a 

single number by the CRRA expression. As we have mentioned in the previous lines, we only 
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review the CRRA within the context of quadratic utility, following two different approaches. The 

first one, published by Cotter and Hanly (2010), is based on the estimation of the CRRA through 

the market risk premium. In this context of asset pricing, the size of the risk premium is 

determined by the aggregate risk aversion of investors and by market volatility, which is usually 

represented by the variance. Particularly, since we are analysing the performance in European 

stock markets, we use the EuroStoxx-50 index as a proxy of the market. The proposed formula 

is as follows: 

 

𝐸(𝑅𝑚) − 𝑅𝑓 = 𝛼𝜎𝑚
2  

 

𝛼(𝐶𝑅𝑅𝐴) =  
𝐸(𝑅𝑚) − 𝑅𝑓

𝜎𝑚
2  

 

 

   

  (2.3.13) 

 

Moreover, we propose a novel approach, based on our own intuition. It is based only on the 

application of the European Consumer Confidence Indicator, CCI, as a proxy of the customer 

European sentiment, replacing the individual wealth by this European indicator in the expression 

of the CRRA presented above (the fifth equation of expression 2.3.11)9. We have chosen this 

indicator because of its economic transcendence, as it reflects the customers’ opinions about 

past, current and future economic developments. The CCI is a composite indicator ascertained 

at monthly frequency and based on answers from several economic questions asked to 

European consumers10. It is generally viewed as a timely pointer of developments in private 

consumption. 

In other way, we propose another approach which has no relation with quadratic functions, but 

more related with downside risk measures, in order to compare whether is better to work under 

the quadratic preferences world or according other risk approaches. We analyse it more in depth 

in section 2.4.4. 

 

 

 

                                                           
9 This and other procedures will be explained in detail in section 2.4. 
10 We have been able to find these monthly data at Europa.eu 
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2.4.     HOW TO BUILD TIME-VARYING PORTFOLIOS. A CONDITIONAL APPROACH 
 

First of all, we must remember that one of the main ideas of this paper was the time-

modelling of probability distribution moments, in order to make our optimal portfolios changing 

over time. To reach the above, and focusing on the optimal portfolio equation (2.3.8), we 

propose the application of conditional variance and correlation schemes such as GARCH (1, 1) 

and DCC-GARCH, to model the conditional moments included in the mentioned formula. 

Otherwise, according to the previous section, the CRRA allows us to obtain the risk aversion 

attitude of an investor in a single number. However, in this research we are more interested in 

the time-varying risk aversion, not in a constant parameter. Thus, what we will do is to model 

the market mean and variance through conditional models such as GARCH-M, GARCH (1, 1) or 

EWMA schemes. Once we have done this, we get a number of risk aversion parameters that 

fluctuate over time, due to the movements in conditional market means and volatilities. In 

addition, we propose another approach, based on the implementation of the CCI. 

Further, we aim to assess whether it is better to work with a constant or changing risk aversion 

parameter. Thus, the idea is to build optimal portfolios for different types of investment profiles, 

the conditional ones associated to the CRRA and other one based in constant risk aversion. 

2.4.1. Optimal portfolio construction. Modelling variances and correlations 

This section describes how to obtain the optimal portfolio weights, given a set of assets. 

According to Clements and Silvennoinen (2013), we assume that the expected return of our 

portfolio follows a normal distribution function with a constant mean and a time-varying 

variance: 

 

𝐸𝑜,𝑡~𝑁(𝐸, 𝑉𝑡) 

 

 

    (2.4.1) 

 

, where 𝐸𝑜,𝑡,  is the expected return of the optimal portfolio at a given moment of time, 𝑁 is the 

multivariate normal distribution function, 𝐸 is the fixed expected return vector  and 𝑉𝑡 is the 

dynamic covariance matrix, calculated by modelling conditional correlations and volatilities 

Focusing our study on the construction of dynamic portfolios, to obtain the optimal conditional 

weights, we must adapt the equation (2.3.8) to a time-varying context: 
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𝑊𝑜,𝑡 =
𝑉𝑡

−11𝑛

1𝑛′𝑉𝑡
−11𝑛

+
1

𝛼
 (𝑉𝑡

−1𝐸 −
1𝑛′𝑉𝑡

−1𝐸

1𝑛′𝑉𝑡
−11𝑛

𝑉𝑡
−11𝑛) 

𝑊𝑜 = 𝑊𝑚𝑣,𝑡 +
1

𝛼
 (𝑉𝑡

−1𝐸 −
1𝑛′𝑉𝑡

−1𝐸

1𝑛′𝑉𝑡
−11𝑛

𝑉𝑡
−11𝑛) 

 

 

   

    (2.4.2) 

 

, where 𝑉−1 is the 10𝑥10 inverse dynamic covariance matrix, 1𝑛 is a 10𝑥1 ones vector, 𝐸 is the 

1𝑥10  fixed expected return vector and  𝛼 is the time-varying individual level of risk aversion.  

Note that the expected return vector and the covariance matrix are expressed in annual terms. 

Then, once we known the amounts invested in each one of the selected assets, we can calculate 

the expected return and the volatility of the optimal portfolio: 

 
𝐸𝑜,𝑡 = 𝑊𝑜,𝑡

′ 𝑅𝑡 

𝜎𝑜,𝑡 = √𝑊𝑜,𝑡
′ 𝑉𝑡𝑊𝑜,𝑡 

 

    (2.4.3) 

 

, where 𝑊𝑜,𝑡 is the vector which contains the dynamic weights invested in each of the studied 

equities, 𝑅𝑡 is a vector composed by the assets' returns for each month of the market and 𝑉𝑡 is 

the conditional covariance matrix. 

Moreover, to carry out the above purpose, we need to ascertain the previous calculus of the 

time-varying covariance’s matrix. As well as we describe in section 2.3.2., “The optimal portfolio 

construction. An extension of the CARA function”, this matrix is given by the next expression: 

 

𝑉𝑡 = (
𝜎1𝑡

2 ⋯ 𝜎1,10𝑡

⋮ ⋱ ⋮
𝜎10,1𝑡 ⋯ 𝜎10𝑡

2
) 

 

 

   

  (2.4.4) 

 

, where the main diagonal elements are the variances of each one of the selected assets and the 

rest of the elements are the covariances between these equities. Note that, in spite of having 

the assets’ returns at monthly frequency, we must annualize them multiplying the covariance 

matrix by√12, in order to ascertain the optimal portfolio weights. In addition, we must multiply 

the expected return vector by 12. 

Given that, the question that arises in this context is: How can we make these probability 

distribution moments changing over time? The answer is so easy, by applying conditional 

variances and correlation moments. In particular, in the context of optimal portfolio’s 
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construction, we only model these moments through the GARCH (1, 1) schemes for the case of 

the variance and DCC-GARCH for correlation terms11.  

Once we have obtained the conditional correlations, the conditional covariance matrix is 

obtained from the next expression: 

𝑉𝑡 = 𝐷𝑡𝛤𝑡𝐷𝑡  

 

𝑉𝑡 = (

𝜎1,𝑡 0 0

0 ⋱ 0
0 0 𝜎10,𝑡

) (

1 ⋯ 𝜌1,10𝑡

⋮ 1 ⋮
𝜌10,1𝑡 ⋯ 1

) (

𝜎1,𝑡 0 0

0 ⋱ 0
0 0 𝜎10,𝑡

) 

 

 

    (2.4.5) 

 

, where 𝐷𝑡 is the conditional deviation matrix, which main diagonal is composed by the 

conditional deviations obtained from the GARCH (1, 1) model and the rest of the matrix is 

composed by zeros. On the other hand, 𝛤𝑡 is the dynamic correlation matrix obtained through 

the application of DCC-GARCH schemes. This matrix has its main diagonal composed by ones 

and conditional correlations out of the mentioned diagonal. 

2.4.2. Model A. An application of the market risk premium 

As we have been discussing, the risk aversion attitude is a key input in the estimation of 

optimal portfolios based on Expected-Utility maximization. However, in the equity literature 

there are not many studies that has explicitly calculated the risk aversion parameter. For that 

reason, we follow the approach proposed by Cotter and Hanly (2010) which is based on 

estimates the observed risk aversion through a derivation of the CRRA and applies it to generate 

utility maximizing based on the unleaded gasoline market. Specifically, as we have described in 

the last section, the derivation of the CRRA is based on the market risk premium. In this case, 

we use the mentioned estimation of the market risk premium, but for the EuroStoxx-50 data12. 

In addition, we adjust the equation (2.3.12) to our purpose, trying to avoid negative values of 

the parameter when the market yields less than the risk-free asset. For that reason, our proposal 

is based on fixing the numerator of the mentioned formula as the maximum between the excess 

market return at each month of the market and its mean for the whole data period. The formula 

would be as: 

                                                           
11 These and other models are explained more in detail in section 2.5. , “Methodology. Conditional 

probability distribution moments”. 

 
12 We use daily closing prices and we transform them into returns by applying logarithms, following the 
same procedure described in section 2.1. 
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𝛼 =  
𝑀𝑎𝑥(𝐸(𝑅𝑚,𝑡) − 𝑅𝑓𝑡, ℎ)

𝜎𝑚,𝑡
2  

𝑤ℎ𝑒𝑟𝑒, ℎ =
∑ (𝐸(𝑅

𝑚,𝑡
) − 𝑅𝑓

𝑡
)𝑛

𝑡=1

𝑛
 

 

 

   

  (2.4.6) 

 

Talking about the formula terms,  𝐸(𝑅𝑚) − 𝑅𝑓 represents the market risk premium (the excess 

return on the market), 𝛼 is the coefficient of relative risk aversion (CRRA) and 𝜎𝑚
2  is the market 

variance. In particular, we use daily closing prices of EuroStoxx-50 index as market portfolio and 

3-month German Treasury Bills at daily frequency as risk free rate. Then, we ascertain the 

returns in a monthly way. 

In this case, we use the GARCH in mean schemes to estimate the 𝛼 parameter. We have chosen 

these kind of models because of their good statistical properties, that is to say, these schemes 

are well-known for modelling the mean and the variance simultaneously. In particular, we 

estimate the risk parameter through the GARCH-M (1, 1) specification. To sum up, the 

mentioned model is as follows: 

 

𝐸(𝑅𝑚,𝑡) = 𝛿 + 𝜆𝜎𝑚,𝑡
2  

 

𝜎𝑚,𝑡
2 = 𝜔 + 𝛼𝑅𝑚,𝑡−1

2 + 𝛽𝜎𝑚,𝑡−1
2  

 

 

 

 

   

  (2.4.7) 

 

2.4.3. Model B.  The CCI as a proxy of the customers’ preferences 

In the previous lines we have explained and adapted the approach proposed by Cotter 

and Hanly (2010). However, there are many ways to model the risk attitude which are not 

specifically based on the market risk premium. In this case, we propose to continue working 

within the context of quadratic utility functions and replacing the investor’s wealth by the 

Consumer Confidence Indicator at monthly frequency in the expression of the quadratic CRRA 

(equation 2.3.11):13 

 

                                                           
13 In this case, we work with the CCI indicator at levels, that is to say, without transforming it by applying 
logarithms. 
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𝐶𝑅𝑅𝐴 =
2𝑏

(
𝑎
𝑊) − 2b

 

 

𝛼(𝐶𝑅𝑅𝐴) =  
2𝑏

(
𝑎

𝐶𝐶𝐼
) − 2b

 

 

 

   

  (2.4.8) 

 

Note that in this case, we must calculate the whole terms (mean and variance) of the optimal 

portfolio weights in a monthly way, because we are introducing the risk aversion level at 

monthly frequency too. 

Otherwise, we have to make it clear that in this case we do not have to estimate any parameters. 

Conversely, in this case, we assign some arbitrary values to 𝑎 and 𝑏 parameters. Obviously, 

according to the last equation, the risk aversion parameter is going to be smaller if we reduce 

the numerator or increase the denominator. Given that and following the approach proposed 

by Dybvig (1983) and Grinblatt and Titman (1983), we give some economic coherence to this 

review, setting the values of 𝑎 and 𝑏 parameters according to the studied period. Thus, we fix 

the values 30 and 0.1 for the parameters 𝑎 and 𝑏, respectively, in the case of the calm period. 

Moreover, in the case of the stressed period, we assign the values 25 and 0.1, respectively.  

2.4.4. Model C. Risk aversion attitude and the downside risk measures 

In performance literature, it is usually assumed that risk aversion cannot be expressed 

exclusively in terms of expected value and standard deviation, as there are many examples in 

which the Sharpe ratio violates the criterion of stochastic dominance. This ratio does not take 

into account those investors which are not concerned about the large deviations above the 

mean or threshold. For that reason, we propose another approach to model the risk aversion 

parameter based on the implementation of the downside risk measures. In particular, we use 

the first lower partial moment, fixing the threshold as a risk-free rate. 

The higher the standard deviation, the greater risk aversion, but this is especially worrying for 

investors when they are on the side of the losses. We aim to find a different way to model the 

risk aversion parameter, which depends on the volatility and which takes into account the fact 

that market moves up or down, penalizing the negative trends with an increase of the 

parameter. Given that, our proposal is as follows: 

 

𝛼 =  𝜎𝑚.𝑡 (1 + 𝑀𝑎𝑥(𝑅𝑓𝑡 − 𝑅𝑚,𝑡 , 0)) 

 

 

    (2.4.9) 
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We use the 3-month German Treasury Bills as risk-free rate and the EuroStoxx-50 index as a 

proxy of the market (we take both prices at daily frequency and then we change them into 

monthly returns). On the other hand, talking about the market volatility, our purpose is to model 

the EuroStoxx-50 volatility by the application of dynamic schemes, such as EWMA and GARCH. 

Based on the above, we analyse this model in two different ways: 

 Model C.1 (EWMA) 

 

𝜎𝑚,𝑡
2 = 𝜆𝜎𝑚,𝑡−1

2 + (1 − 𝜆)𝑅𝑚,𝑡−1
2  

 

 

   (2.4.10) 

 

 Model C.2 (GARCH(1, 1)) 

 

𝜎𝑚,𝑡
2 = 𝜔 + 𝛼𝑅𝑚,𝑡−1

2 + 𝛽𝜎𝑚,𝑡−1
2  

 

 

  (2.4.11) 

 

 

2.4.5. Model D. Constant risk aversion as a derivation of the Sharpe ratio 

Focusing on the case of constant risk aversion, we must set a criterion for choosing an 

appropriate parameter according to the risk aversion attitude in Europe. In particular, our 

proposal is based on choosing several values according to each one of the mentioned literatures 

(section 2.3.3.). The chosen values are 1 (Arrow), 11 (Mehra and Prescott), 1.8 (Ghysels et al) 

and 4.93 (Guo and Whitelaw). 

Once we have selected these values, we keep the ones that make the optimal portfolio has 

better performance at each month according to the Sharpe ratio. We ascertain this ratio 

monthly, to avoid the noise frequency of this type of data, and we use the 3-month German 

Treasury Bills as risk-free rate14.  

Lately, we calculate the average of the optimal parameters obtained at each month in the 

market, in order to reach a single risk parameter. Finally, the obtained average parameter is 

8.51, and it is the one that will be used to model the optimal portfolios at each time of the 

market.  

 

                                                           
14 Remember that we are working with daily equity prices, but we can evaluate the performance of our 
portfolio in a monthly way by ascertaining the returns and the variance at monthly frequency too. 
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2.5.     METHODOLOGY. CONDITIONAL PROBABILITY DISTRIBUTION MOMENTS  
 

In this section we show how to implement the conditional distribution models. Paying 

attention to the whole written formulas, we can appreciate that the modelization of the current 

variance or correlation is expressed as a function which depends on the residuals of the previous 

period, among other parameters. However, we aim to make it clear that in this research we do 

not apply the autocorrelation adjustment. The above means that we work with returns, in spite 

of having the whole models expressed in terms of residuals. 

We estimate the model parameters through the application of the maximum log likelihood. Note 

that you can review the application of this technique for univariate and multivariate models in 

Appendix B. 

2.5.1. Conditional variance/mean models 

Knowing the volatility is really important in financial markets. Investors obviously are 

interested in the volatility of stock prices, as high volatility can mean huge losses or potential 

profits, and consequently lead to greater uncertainty. Given the above, the question is, how 

could we model the volatility of time series? 

Talking about levels, a characteristic of most time series is that they are random walkers, ie, they 

are not stationary. Moreover, in the form of first differences, usually, they are stationary. As a 

result, the models are built with first differences. However, these differences often show wide 

variations or "volatility", which makes us think that variance of time series changes over time. 

In these cases, it is very useful to use the “Autoregressive conditional heteroscedasticity model” 

(ARCH), developed by Engle (1982). In this model, the unequal variance, may have an 

autoregressive structure, in which we observed that heteroscedasticity over different periods 

could be autocorrelated. 

Since its discovery in 1982, the development of ARCH models has become a booming area, with 

all kinds of variations from the original model. One of the most popular is the Generalized 

Autoregressive Conditional Heteroscedasticity, proposed by Bollerslev (1986).  The GARCH 

model in its simplest version is the GARCH (1, 1) and is the one we use in this paper to model 

the conditional volatility over time. In addition, we model de volatility through other conditional 

schemes, such as the EWMA and GARCH-M models. Note that the application of the last one is 

really important in this research, due to this scheme allows us to model the variance and the 

mean simultaneously. 
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 Exponential smoothing, EWMA model 

To model the volatility structure through EWMA schemes, we assume the returns are 

following a simple stochastic process: 

 

𝑅𝑡 = 𝛾 + 𝜀𝑡 

𝜀𝑡 = 𝜎𝑡𝜂𝑡 

Where   𝜂𝑡~𝑁(0, 1). 

 

 

   

  (2.5.1) 

 

Thus, the EWMA model is defined as follows: 

 

𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝜀𝑡−1
2     

 𝑠. 𝑎   𝜆 > 0 

 

   

  (2.5.2) 

 

Where 𝑅𝑡 denotes the assets’ returns, 𝜂𝑡 are the standardized returns, 𝜀𝑡 are the residuals and 

𝜎𝑡
2 are the assets’ variances. 

 

 GARCH (1, 1) model 

This model states that current conditional variance depends not only on squared return 

of the previous period (as in ARCH (1)), but also on its conditional variance of the previous 

period. In fact, the GARCH (1, 1) model is much more like an ARCH (2). 

Thus, the GARCH (1, 1) model looks like: 

 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2     

 

 

    (2.5.3) 

 

With the following constraints  

𝛼 + 𝛽 < 1  

𝜔 > 0  

𝛼 ≥ 0  

𝛽 ≥ 0 

 

 

   

    (2.5.4) 

 

For regression purposes, the model can be rewritten as: 
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𝑅𝑡 = 𝛾 + 𝜀𝑡 

𝜀𝑡 = 𝜎𝑡𝜂𝑡      𝜂𝑡~𝑁(0, 1) 

 

 (2.5.5) 

 

Where 𝑅𝑡 denotes the assets’ return, 𝜀𝑡 is the residual and 𝜎𝑡
2 is the assets’ variance. Moreover, 

following this scheme, the long-term variance can be calculated as follows: 

 

𝜎2  = 𝜔/(1 − 𝛼 − 𝛽) 

 

    (2.5.6) 

 

 GARCH-M (1,1) 

One of the most important statements of financial theory is the relationship between 

risk and return. The CAPM model, for instance, implies a linear relationship between the 

expected return of the market portfolio and its variance. If the variance is not constant over 

time, then the conditional expected return of the market is a linear function of the conditional 

variance. Engle(1987) proposed the estimation of conditional variances by GARCH schemes and 

then these estimations will be used in the conditional means' estimation. This is well-known as 

the GARCH-in-Mean (GARCH-M) model.  

The GARCH-M scheme models the mean by making it dependent on the variance. In addition, 

the variance is modelled by a GARCH (1, 1) scheme, so we have to estimate simultaneously the 

conditional mean and variance of the process. 

The variance is modelled according to a GARCH (1, 1) scheme, as we describe before. As for the 

mean, it will look like this: 

 

𝜇𝑡 = 𝛿 + 𝜆𝜎𝑡
2 

 

 

    (2.5.7) 

 

Where 𝛿 is a constant and 𝜆 is a parameter to be estimated. 

 

The GARCH regression model, adding an extra regressor as the standard deviation, for this 

scheme is: 

  

𝑅𝑡 = 𝛿 + 𝜆𝜎𝑡 + 𝜀𝑡 

𝜀𝑡 = 𝜎𝑡𝜂𝑡     𝜂𝑡~𝑁(0, 1) 
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 𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2  

 

    (2.5.8) 

 

Where 𝑅𝑡denotes the Eurostoxx-50 return, 𝜀𝑡 is the residual, 𝜎𝑡
2 is the Eurostoxx-50 variance 

and 𝜆 is the CRRA. Further, in this model the  𝜆𝜎𝑡 term could be interpreted as the risk premium. 

 

2.5.2. Conditional correlation models 

 

 DCC GARCH model 

 

The dynamic conditional correlations GARCH model is defined as: 

 

𝑞𝑖𝑗,𝑡+1 = 𝜔 + 𝛼(𝜂𝑖,𝑡𝜂𝑗,𝑡) + 𝛽𝑞𝑖𝑗,𝑡     

 

 

    (2.5.9) 

 

With constraints 

  

�̅� = (1 − 𝛼 − 𝛽)𝜌𝑖𝑗 

𝛼 > 0 

𝛽 > 0 

 

 

   

(2.5.10) 

 

, where 𝜂𝑖,𝑡  𝑦 𝜂𝑗,𝑡 are the standardized returns of the chosen assets, obtained from the GARCH 

(1, 1) model.  

In addition, to normalize the conditional correlation, we use the following expression: 

 

 

𝜌𝑖𝑗,𝑡+1 =
𝑞𝑖𝑗,𝑡+1

√𝑞𝑖𝑖,𝑡+1√𝑞𝑗𝑗,𝑡+1

 

 

 

   

 (2.5.11) 

 

Furthermore, to initialize the calculus of the correlation coefficient by DCC GARCH model, we 

must impose two initial conditions: 
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𝑞𝑖𝑗,1 =
∑ 𝜂𝑖,𝑡𝜂𝑗,𝑡

𝑇
𝑖=1

𝑇
 

𝑞𝑖𝑖,1 = 𝑞𝑗𝑗,1 = 1 

 

 

 

 

   

(2.5.12) 

 

2.6.     EXPERIMENTATION.  THE USE OF TIME-VARYING OPTIMAL PORTFOLIOS 
 

In this section, we make an overview of the main results and findings obtained by the 

application of the different studied models. In particular we analyse the estimated parameters, 

the monthly evolution of the different portfolio’s weights and the conditional evolution of the 

risk aversion parameter over the two selected periods (calm and stress).  

2.6.1. Parameter estimation 

First of all, we want to make it clear that in this section, we only analyse in detail the 

estimated parameters for each one of the risk aversion models described in section 2.4, while 

the estimated parameters for the construction of conditional optimal portfolios (GARCH and 

DCC GARCH schemes), are shown in Appendix E. In addition, we can review the dynamic 

volatilities and correlations obtained from the GARCH models in Appendices C and D. 

Them, we show the main results and parameters obtained for each of the proposed time-varying 

risk aversion models. In addition, we must remember that the whole estimations are based on 

the EuroStoxx-50 returns at monthly frequency. 

Note that in this case, we exclude Model B and Model D because we do not have to estimate 

any parameters in these schemes. The above is because of we fixed the parameters (a, b) in the 

case of Model B. Moreover, talking about Model D, we have assigned a constant risk aversion 

parameter (8.51) obtained as a derivation of the Sharpe Ratio, so we do not have to show any 

results. 
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 Parameters of Model A  (GARCH-M(1, 1)) 

 

The results of the estimation procedure for Model A are shown in the next table: 

 

            Table 9. Estimated parameters. Model A 

 

                     Source: Compiled by the author  

 

Then, we can appreciate an extra value in Table.9, the 𝜆  parameter, showing the effect of the 

variance in the mean model. Substituted into the model, the equations will look as follows: 

  

 

𝜇𝑡 = 0.000005 + 0.8999𝜎𝑡
2 

𝜎𝑡
2 = 0.00001 + 0.7266𝑅𝑡−1

2 + 0.2724𝜎𝑡−1
2    

  

 

 

  (2.6.1) 

 

  

𝜇𝑡 = 0.000001 + 0.9𝜎𝑡
2 

𝜎𝑡
2 = 0.00001 + 0.8919𝑅𝑡−1

2 + 0.0755𝜎𝑡−1
2     

 

 

   

  (2.6.2) 

 

In this model and for both studied periods, the previous variance has a low impact on the current 

variance, while the most of the effects come from the returns of the previous period. Even 

though an extra parameter was added in the equation of the mean, it has no impact in the 

variance in mean model, that is to say, it is not significantly different from 0.  

 

 

 

Parameter Value Parameter Value

w 0,00001 w 0,00001

a 0,7266 a 0,8919

b 0,2724 b 0,0755

l 0,8999 l 0,9000

δ 0,000005 δ 0,000001

STRESS PERIODCALM PERIOD
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  Parameters of Model C.1 (EWMA) 

The estimated parameters for EWMA model are represented in the next figures: 

Table 10.Estimated parameters. Model C.1 

 

                       Source: Compiled by the author 

 

 

𝜎𝑡
2 = 0.9478𝜎𝑡−1

2 + 0.0522𝑅𝑡−1
2     

𝜎𝑡
2 = 0.965𝜎𝑡−1

2 + 0.035𝑅𝑡−1
2     

 

 

   

 

(2.6.3) 

 

As we can observe in Table.10, in this fist model and for both studied cases, the previous returns 

have a low impact on the current variance, while the most of the effects come from the variance 

of the previous period, that is to say, the previous variance has a high impact on the current 

variance. 

 Parameters of Model C.2 (GARCH(1, 1)) 

The estimated parameters for the case of the GARCH (1, 1) model are as follows: 

 

Table 11. Estimated parameters. Model C.2 

 

                             Source: Compiled by the author 

 

 𝜎𝑡
2 = 0.000001 + 0.9172𝑅𝑡−1

2 + 0.0756𝜎𝑡−1
2  

 𝜎𝑡
2 = 0.000005 + 0.8944𝑅𝑡−1

2 + 0.0899𝜎𝑡−1
2  

 

 

   

(2.6.4) 

 

As can be appreciated in Table.11, the constants are very low and have a little effect on the 

current variance. The hypothesis that 𝜔 is not significantly different from 0 cannot be accepted. 

Parameter Value Parameter Value

l 0,9478 l 0,9650

STRESS PERIODCALM PERIOD
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The most of the effects, however, come from the variance and the returns of the previous 

period. Whereby the variance seem to say relatively a lot less than the returns for both periods. 

2.6.2. Monthly evolution of the risk aversion parameter 

Once we have estimated the parameters associated to each one of the previous models, 

then we ascertain the risk aversion attitude. We assess the results and findings for the 

mentioned models (we have exclude Model D because the parameter is constant over the time 

frame) and for the two selected scenarios (calm and stress), in order to appreciate which one of 

the models does better for the whole period. 

 Model A. GARCH-M(1, 1) 

The conditional risk aversion parameters ascertained according model A are shown in the next 

figure: 

Figure 8. Monthly evolution of the risk aversion parameter. Model A 

 

 Source: Compiled by the author based on the CRRA ascertained at monthly frequency. We use the GARCH-M schemes, 

in order to model the conditional variance and return simultaneously. We use the EuroStoxx-50 data, available at 

DataStream database. 

According to Figure.8, the risk aversion parameter is greater on average in the stress period, 

which make sense, due to the common investor is more risk averse when the market is having 

a negative trend (bearish market). In addition, according to this model, we can assess that risk-

aversion time series present a random variability, due to we can observe groupings or “clusters". 

Table 12. Key elements of Model A 

 

                       Source: Compiled by the author 

MEAN 1,9328       MEAN 2,4284       

MIN 0,8116       MIN 0,4657       

MAX 6,8949       MAX 9,9864       

STDEV 1,1420       STDEV 2,2914       

Calm period Stress period
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Moreover, as we can appreciate in the previous tables (Table.12), the maximum values are 

greater and the minimum values are lower in the case of the stress period (the values range 

between 0.5 and 10). In addition, the above can also be seen reflected in the conditional 

parameters’ standard deviation, due to it is higher in the second case. 

 Model B. CCI 

The estimated risk aversion parameters for the case of model B are as follows: 

Figure 9. Monthly evolution of the risk aversion parameter. Model B 

 

Source: Compiled by the author based on the CRRA ascertained at monthly frequency. We use the CCI data. These data 

are available at Europa.Eu 

As in the previous model, the risk aversion parameter is greater on average in the stress period, 

as can be seen in Figure.9. However, this case is a bit different from the last model because the 

new one exhibits a more stable trend over the studied period, without the presence of clusters. 

The above could be due to the fact that in this case we do not follow a conditional volatility 

scheme to model the risk aversion parameter.  

Table 13. Key elements of Model B 

 

                               Source: Compiled by the author 

Furthermore, we can also assess, following Table.13, that maximum and minimum values are 

more extreme in the case of stress period, reaching values close to 7.  

 

 

 

MEAN 2,4774       MEAN 3,3183       

MIN 1,9183       MIN 1,1222       

MAX 3,2254       MAX 6,3529       

STDEV 0,3927       STDEV 1,4807       

Calm period Stress period
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 Model C.1. EWMA 

Then, we show the conditional risk aversion parameters ascertained according Model C.1: 

Figure 10. Monthly evolution of the risk aversion parameter. Model C.1 

 

Source: Compiled by the author based on Downside risk measures ascertained at monthly frequency. We implement 

EWMA schemes, in order to model the conditional volatility. We use the EuroStoxx-50 data, available at DataStream 

database. 

 

According to Figure.10, as for the case of Model A, the risk aversion parameter is higher on 

average in the stress period. Then, we evaluate the main characteristics of this model through 

the following table:          

Table 14. Key elements of Model C.1 

 

                      Source: Compiled by the author 

 

However, paying attention to Table.14, we can appreciate that Model C.1 is also different 

because in this case, even though the minimum and the maximum parameters follow the same 

line as in model A, they are much lower. Further, as in the mentioned model, we can assess that 

the parameter series present a random variability, due to we can observe groupings or 

“clusters". 

 

 

 

MEAN 0,8505       MEAN 1,7208       

MIN 0,5527       MIN 0,8066       

MAX 1,5904       MAX 4,3359       

STDEV 0,2281       STDEV 0,7792       

Calm period Stress period



53 
 

 Model C.2. GARCH(1, 1) 

The estimated parameters for the case of Model C.2 are as follows: 

Figure 11. Monthly evolution of the risk aversion parameter. Model C.2 

 

Source: Compiled by the author based on Downside risk measures ascertained at monthly frequency. We implement 

GARCH (1, 1) schemes, in order to model the conditional volatility. We use the EuroStoxx-50 data, available at 

DataStream database. 

As we can deduct from Figure.11, this model is more similar to the previous one than any other 

of the assessed cases. Its parameters are essentially the same on average. Then, analysing the 

following table: 

Table 15. Key elements of Model C.2 

 

                                  Source: Compiled by the author 

In accordance with Table.15, the minimum values are lower in the calm period and greater in 

the stressed one. However, in occurs inversely for the case of the maximum values. 

2.6.3. Monthly evolution of the optimal portfolio weights 

Then, we ascertain the optimal portfolio weights of each one of the whole mentioned 

models (A, B, C.1, C.2, D), that is to say, those weights that maximize the investor´s expected 

utility. As in the last section, we analyse the portfolio evolution for the two selected periods. 

Moreover, we only assess in detail the evolution of the constant risk aversion attitude, Model 

D. The above is because the conditional evolution trend is really similar for all the studied cases. 

In spite of that, note that you can review the rest of the conditional optimum models in Appendix 

F. 

MEAN 0,7456       MEAN 1,7387       

MIN 0,0961       MIN 0,9738       

MAX 2,2254       MAX 4,0416       

STDEV 0,5798       STDEV 0,6868       

Calm period Stress period
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Figure 12. Monthly evolution of the optimal portfolio for the calm period. Model D 

 

 Source: Compiled by the author 

 

Figure 13. Monthly evolution of the optimal portfolio for the stress period. Model D 

 

 Source: Compiled by the author 
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According to Figure.12, we can assess the evolution of the optimal weights that an investor has 

to assign to each one of the previously selected equities, in order to maximize his expected utility 

function at each time of the market. In particular, in this chart we are analysing the evolution of 

the optimal portfolio in the case of the calm period.  

Paying attention to the last graph of the portfolio evolution over the stress period (Figure.13), 

we can appreciate that assets’ trend has several differences regarding to the calm period 

analysis. Firstly, the optimal weights are higher on average. In addition, we can observe that 

weights distribution is a bit different. 

 Summary table 

Then, we show a summary table of the analysed weights according to each one of the mentioned 

models and for the two studied periods: 

Table 16. Summary of the optimum percentage weights/ calm period 

 

Source: Compiled by the author 

Following Table.16, which shows the average of the conditional portfolio weights expressed as 

a percentage, we can evaluate more in detail how each one of the assessed portfolios behaves 

over the selected period. Thus, we can remark the conditional evolution of IBERDROLA (23.80%) 

and ESSILOR (22.90%), which are the firms that have captured the greatest weights on average 

over the considered period. Moreover, the lowest weights have been assigned to LVMH (-0.40%) 

and SAFRAN (-0.77%), which are the only two companies by which, we introduce the short selling 

strategy. 

Table 17. Summary of the optimum percentage weights/ stress period 

 

Source: Compiled by the author 

 

LVMH AIRBUS INTESA IBERD SAFRAN UNIBAIL ESSILOR D. POST ENI BASF 

Model A 1,00 -   0,13    10,09  24,91  1,41 -   8,43     23,15  10,61  20,31  4,78    

Model B 0,75 -   0,24    10,13  24,45  1,14 -   8,38     23,04  10,77  20,46  4,42    

Model C.1 1,75 -   0,32 -   9,99     26,25  2,18 -   8,60     23,46  10,21  19,91  5,83    

Model C.2 3,33 -   1,16 -   9,73     28,83  3,49 -   8,94     24,08  9,35     19,10  7,94    

Model D 0,40 -   0,43    10,18  23,80  0,77 -   8,31     22,90  10,97  20,66  3,93    

LVMH AIRBUS INTESA IBERD SAFRAN UNIBAIL ESSILOR D. POST ENI BASF 

Model A 5,24 -   1,43    15,04 - 26,47  2,32    17,62  47,70  12,02  16,32  3,60 -   

Model B 5,51 -   1,21    15,72 - 26,77  2,32    17,78  46,71  12,58  17,35  3,50 -   

Model C.1 5,05 -   1,42    15,20 - 25,76  2,44    17,83  47,91  12,04  16,25  3,40 -   

Model C.2 5,10 -   1,42    15,16 - 25,91  2,41    17,79  47,86  12,04  16,28  3,45 -   

Model D 5,62 -   1,37    14,83 - 27,43  2,11    17,48  47,28  12,15  16,57  3,94 -   
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As in the last case, Table.17 shows the weights of the 10 firms expressed as a percentage. In this 

case, we must highlight the conditional evolution of ESSILOR (47.28%), because this firm have 

captured the highest weights on average over the considered period, standing well above the 

rest of companies. Moreover, the lowest weights have been assigned to INTESA (-14.83%), 

LVMH (-5.62%) and BASF (-3.94%) which are the base of the short selling strategy. 

 

2.7.     ANALYSIS OF PORTFOLIO MANAGEMENT. SOME PERFORMANCE RATIOS 
 

In this section, we show a number of ratios and risk measures to analyse the 

performance of our portfolio. In addition, we assess the exposures of the different studied 

funds. Note that we spend the most of this section with the analysis of the Sharpe Ratio and as 

a consequence it is the one that we explain in greater detail. 

2.7.1. Portfolio exposures. Geographical and sector analysis 

Figure 14. Geographical Exposures 

 

 Source: Compiled by the author as an average of the different weights showed by each one of the models over the 

mentioned periods. Note that in this case we group these weights by Countries. 

The above graphs (Figure.14) show the geographical exposure of our portfolios, that is 

to say, the assigned weight to each one of the main European countries. Thus, this figure 

represents a comparative analysis of the averaged weights that we have assigned for the whole 

studied models and for both studied periods. 

On the one hand, talking about the calm period we can appreciate that imposed weights are 

really similar for the case of France, Italy and Spain, ranging between 25% and 30%, being 

perhaps Italy the country which has the higher weights on average. In another way, our 

portfolios have little exposure to Netherlands, showing weights that become negative in the 
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case of some models. The above means that in this case, we are harmed by the increases in 

Dutch market and conversely, we are rewarded by downward trends in that market. 

On the other hand, in the recession period, the largest averaged percentage is located in France 

(more than 60%). Moreover, the rest of the countries have a much lower associated percentage, 

remarking the case of Spain (25%) 

Then, we evaluate the Sector exposure of our portfolios for both time frames: 

Figure 15. Sector Exposures 

 

Source: Compiled by the author as an average of the different weights showed by each one of the models over the 

mentioned periods. Note that in this case we group these weights by sectors 

Paying attention to Figure.15 and talking about the calm scenario, we can assess that the largest 

averaged weights are assigned to Medical and Utilities sectors (25%), while the Diversified sector 

is the only one that has assigned a negative exposure. 

Otherwise, as in the case of geographical exposures, the greatest percentages have been 

assigned to the Medical Equipment sector (50%), which agrees with the highest percentage 

assigned by geographical areas (France: 60%). Furthermore, the negative exposure of our 

portfolios is better distributed: Banks (-10%), Real State (-5%) and Chemicals (-3%). The above 

negative weights make sense. For instance, it seems reasonable to avoid the exposure to the 

European Banking sector, because of its huge decline. 

 

2.7.2. Unconditional distribution moments. Individual assets versus composed 

portfolios 

Then, we show the first two unconditional moments of each one of the assets and the 

appropriate moments for the five studied portfolios: 
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Table 18. Unconditional moments. Individual assets

 

Source: Compiled by the author. Note that expected returns and standard deviations are expressed in annual terms. 

It is possible by multiplying the monthly returns by 12 and their associated standard deviations by √12. 

 

Table 19. Unconditional moments. Composed portfolios

  

Source: Compiled by the author. Note that expected returns and standard deviations are expressed in annual terms. 

It is possible by multiplying the monthly returns by 12 and their associated standard deviations by √12. 

 

Paying attention to Table.18 and Table.19, we can observe that mean and standard deviation of 

individual assets and composed portfolios are expressed in annual terms, due to this is the 

preferred approach in finance. In addition, talking about the assets’ moments, we need to 

annualize them because this is a requirement to ascertain the optimal portfolio weights. 

Otherwise, we must make it clear that skewness and kurtosis of the proposed portfolios are 

assumed to be 0 and 3, respectively, as we have assumed normality when calculating such 

portfolios15. 

Then, talking about the calm period we can assess that SAFRAN firm has a negative return on 

average and a rather high standard deviation. However, with portfolio construction, through the 

diversification effect, we can get this deviation greatly reduced, as can be seen in Table 19. Given 

that, we have finally achieved a well-diversified portfolio for each one of the studied models. 

The above means that we have reached some portfolios with fairly good results on average 

(Mean=17%, Stdv=10%). 

Moreover, analysing more in detail the stress period, we can observe that in general terms, the 

set of assets have a lower mean and a greater deviation, regarding to the calm period. In fact, 

as can be seen at the bottom of table 18, we can appreciate four firms which have a negative 

                                                           
15 Although we know that the probability distribution of assets' returns has the problem of heavy tails 
(leptokurtosis), we assumed normality in returns 
 

MEASURES LVMH AIRBUS INTESA IBERD SAFRAN UNIBAIL ESSILOR D. POST ENI BASF 

Mean 0,0863  0,0353  0,1334  0,2342  0,0459 - 0,1679  0,1816  0,0871  0,1289  0,1973  

Std.deviation 0,1899  0,3163  0,2065  0,1784  0,2870  0,2557  0,1801  0,2088  0,1693  0,1787  

INDIVIDUAL ASSETS. CALM PERIOD

MEASURES LVMH AIRBUS INTESA IBERD SAFRAN UNIBAIL ESSILOR D. POST ENI BASF 

Mean 0,1376  0,1574  0,2456 - 0,1899 - 0,1932  0,0600  0,1554  0,0088 - 0,0523 - 0,1077  

Std.deviation 0,3585 0,3983 0,5690 0,3682 0,4112 0,3081 0,2232 0,3790 0,3494 0,3898

INDIVIDUAL ASSETS. STRESS PERIOD

Model A Model B Model C.1 Model C.2 Model D Model A Model B Model C.1 Model C.2 Model D

Mean 0,1727  0,1711  0,1773  0,1860  0,1690  0,0570  0,0546  0,0598  0,0591  0,0523  

Std.deviation 0,1068  0,1068  0,1070  0,1081  0,1067  0,1676  0,1675  0,1676  0,1676  0,1675  

MEASURES

CALM PERIOD

COMPOSED PORTFOLIOS

STRESS PERIOD
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performance in terms of returns (INTESA, IBERDROLA, ENI and DEUSTCHE POST). In addition, as 

in the last period, we have finally reached a well-diversified portfolio for each one of the studied 

models. However, due to the above reasons, the results of the stress portfolios are worse on 

average (Mean=5%, Stdv=16%). 

2.7.3. The Sharpe Ratio 

 How to ascertain the Ratio 

The Sharpe ratio measures the excess return per unit of risk16. This ratio allows prioritizing the 

different investment options based on return and risk. In addition, the Sharpe ratio should be 

only used when normality is assumed, due to the standard deviation of the portfolio only makes 

sense if we have a stable probability distribution over the sample period. The higher the value 

of this ratio is, the best performance of our portfolio, that is to say, it indicates that we are 

getting higher returns relative to their associated risk. 

We can ascertain it as follows: 

𝑆𝑅 =
𝐸(𝑅𝑝) − 𝑅𝑓

𝜎(𝑅𝑝)
 

 

    (2.7.1) 

 

  

, where 𝐸(𝑅𝑝) is the expected portfolio return, 𝑅𝑓 is the risk free rate and 𝜎(𝑅𝑝) is the volatility 

approximated as the standard deviation of the portfolio. For the allocation period of our 

portfolios, we show how this ratio evolves for each one of the studied portfolio models. We 

calculate it at monthly frequency and we use the 3-month German Treasury Bills as risk-free 

asset return. 

In spite of calculation this ratio monthly, we expressed it in annual terms for all the mentioned 

portfolios. To carry out this process, we have annualized the risk-free return because we have 

previously ascertained the expected return and the variance of each one of the portfolios in 

annual terms. Further, as in previous sections, we analyse this ratio evolution for the two 

selected periods. 

 Conditional evolution of the Sharpe Ratio 

First of all, we begin with the study of the calm period: 

                                                           
16 To review this section, we rely on Sharpe (1994)  and Sharpe (1966) 
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Figure 16. The Sharpe Ratio. Calm period review

 

 

 Source: Compiled by the author. Expressed in annual terms 
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According to Figure.16, we can observe the evolution of the Sharpe Ratio over the calm time 

frame for the whole studied models. Note that for a well understanding by the reader, we have 

divided the graph in three clear-defined parts. The first part of the graph compares the selected 

models against the benchmark (market performance). The second part follows the same line as 

the first one, but in this case we are plotting the whole models in excess of the market index. 

The key of the above, is to appreciate more in detail how well we are performing with an active 

managing of our equities portfolios regarding to the passive management (be invested in the 

EuroSroxx-50 index over the time frame). The bottom of the graph is about the models in excess 

of the naïve one (Model D), in order to visualize how well are doing the dynamic models 

regarding to the constant one. 

Following the previous graphs, firstly, we can appreciate that the performance of our portfolio 

over the calm period is quite acceptable for the whole analysed models as it ranges between -6 

and 7, been the Model C.2 the best model on average. According to the above, as can be seen 

in the graphs, we are outperforming the benchmark (EuroStoxx-50) for much of the time frame 

and for the case of the Models C.1, C.2 and D. Further, we can observe a greater frequency of 

negative Sharpe values at the end of the period, that is to say, when we are really close to the 

beginning of the Economic Crisis. Note that negative values are not too high in this calm period. 

The above seems reasonable, because we are talking about a calm period in which the equity 

investment offered more attractive returns than fixed income, so it is logical to assume that the 

Sharpe Ratio is going to be almost always positive. 

Then, we continue our study analysing the stress period: 
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Figure 17. The Sharpe Ratio. Stress period review

 

 

Source: Compiled by the author. Expressed in annual terms 
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According to Figure.17, as in the last case, we can observe the evolution of the Sharpe Ratio over 

the stress period for the whole mentioned models. In this case, we follow the same structure as 

for the calm period. Given that, the first part of the graph compares the selected models against 

the benchmark (market performance). The second part follows the same line as the first one, 

but in this case we are plotting the whole models in excess of the market index. The bottom of 

the graph is about the models in excess of the naïve one (Model D), in order to visualize how 

well are doing the dynamic models regarding to the constant one. 

Otherwise, talking about the stress time frame, our portfolios continue making a rather good 

performance regarding to the benchmark (in fact, the EuroStoxx-50 index has a negative stress 

ratio on average). However, in this case, the Sharpe Ratio shows negative values with a higher 

frequency than the observed in the previous period, ranging between -8 and 7. According to the 

previous lines, in those periods in which we observe negative values of the ratio, we can intuit 

that invest our money in fixed income would be more profitable than keep it invested in our 

portfolio models. The above comes from the fact that negative values of the Sharpe Ratio are 

caused by high values of the risk free rate, that is to say, the risk free asset (fixed income) offers 

a greater return regarding to our portfolios. 

Then, we show a summary table of the averaged ratios described above for the two analysed 

periods: 

Table 20. Sharpe Ratio average. Calm period   

 

Source: Compiled by the author. Expressed in annual terms 

Table 21. Sharpe Ratio average. Stress period  

 

 Source: Compiled by the author. Expressed in annual terms 

 

Note that both tables (Table.20 and Table.21) are expressed in annual terms. The first row 

describes the standard Sharpe Ratio reached on average for each one of the mentioned periods. 

Moreover, the second row is showing the mean of the Sharpe Ratio on excess of the EuroStoxx-

SHARPE AVERAGE Model A Model B Model C.1 Model C.2 Model D EuroStoxx-50

Sharpe Standard 1,6535 1,6617 1,6888 1,6913 1,6769 0,9048

portfolios vs EStoxx50 0,7487 0,9048 0,7840 0,7865 0,7720 -

Dynamic vs Constant -0,0234 -0,0152 0,0119 0,0144 - -

PORTFOLIOS

SHARPE AVERAGE Model A Model B Model C.1 Model C.2 Model D EuroStoxx-50

Sharpe Standard 0,2437 0,2258 0,2770 0,2698 0,2052 -0,3263

portfolios vs EStoxx50 0,5700 0,5521 0,6033 0,5961 0,5315 -

Dynamic vs Constant 0,2437 0,2258 0,2770 0,2698 - -

PORTFOLIOS
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50 index, reached for the whole models. Lately, the third row is about the averaged differences 

between the dynamic portfolios and the constant one (Model D) 

According to the last tables, we continue the analysis of the Sharpe Ratio assessing the 

differences in performance terms between the different selected models. Firstly, talking about 

the calm period, the fund which exhibits the highest ratio over this time frame is Model C.2. 

However, paying attention to the stress period, the best fund in Sharpe terms is Model C.1, 

although it is followed closely by Model C.2. Thus, we can conclude that Model C.2 is the best 

one according to the Sharpe Ratio, because this fund has the best performance on average for 

the two considered periods. 

 Hypothesis testing for the Ratio average 

In this case, we implement a mean-difference test in two independent samples, that is 

to say, we are comparing whether the differences between the averaged ratios of dynamic 

models and the constant one are significant or not. The above is well-known as a parametric 

test. 

We can decide whether we reject the null hypothesis or not in two different ways. That is to say, 

the t-statistic and the associated P-value. Given that, we can ascertain the t statistic, which is 

defined as: 

 

𝑡 =
𝜇1 − 𝜇2

𝜎1,2√2/𝑛
 

 

 

    (2.7.2) 

 

, where 𝜇1 − 𝜇2 represents the mean difference between each one of the models and the 

constant one (Model D).  Otherwise, 𝜎1,2 is the joint deviation and 𝑛 represents the data size. 

Then, the null hypothesis of this parametric test is as follows: 

𝐻0:  𝜇1 − 𝜇2 = 0 

 

    (2.7.3) 

 

Then we show the statistics and p-values for the different studied models in the following tables: 

Table 22. Mean test. Calm period 

 

Source: Compiled by the author 

t-statistic P-value t-statistic P-value t-statistic P-value t-statistic P-value

-0,0351 0,4861 -0,0228 0,4909 0,0179 0,4929 0,0211 0,4916

Model A Model B Model C.1 Model C.2
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Table 23. Mean test. Stress period 

Source: Compiled by the author 

According to Table.22 and Table.23, we accept the null hypothesis at a significance level of 95% 

for the whole studied models and for the two mentioned periods. This is due to the 𝑝𝑣𝑎𝑙 is not 

less than 𝛼 (0.05). Thus, it is not possible to affirm that dynamic models are better than the static 

one, that is to say, there are not significant evidences. 

According to the previous lines, if we had to invest some money in a risky portfolio, we would 

choose the one associated to Model C.2. However, if we observe the results obtained in the last 

test, we can appreciate that there are not many differences between the different selected 

models. In fact, if we prefer not to make our life complex (by ascertaining the conditional risk-

aversion attitude through different mathematical equations), we can select the constant risk-

aversion scheme (Model D). As we have mentioned before, this is because the differences 

between the best model (Model C.2) and the worst one (Model D) are not really significant. 

2.7.4. The Certainty Equivalent 

In addition, we discuss another measure to assess our portfolio management, the 

certainty equivalent. This analysis tool can be calculated as follows: 

 

𝐶𝐸 = 𝐸(𝑅𝑝) −
1

2
𝛼𝜎𝑅𝑝

2 +
𝜏(𝑅𝑝)

6
𝛼2𝜎𝑟𝑝

3 −
𝑘(𝑅𝑝) − 3

24
 𝛼3𝜎𝑟𝑝

4  

 

 

    (2.7.4) 

 

Since we are assuming normality in returns with expected return 𝐸(𝑅𝑝), variance 𝜎𝑅𝑝
2 , skewness 

𝜏(𝑅) = 0 and kurtosis 𝑘(𝑅𝑝) = 3, we can reach a new expression: 

𝐶𝐸 = 𝐸(𝑅𝑝) −
1

2
𝛼𝜎𝑅𝑝

2  
     (2.7.5) 

 

This expression refers to the amount of money due to which, an investor would be willing to 

give up keep his portfolio invested under uncertainty. Obviously, as in the case of the Sharpe 

Ratio, the highest the Certainty Equivalent is, the best performance of our portfolio model.  

Note that we ascertain it in annual terms, as in the previous section. 

 

t-statistic P-value t-statistic P-value t-statistic P-value t-statistic P-value

0,0526 0,4791 0,0281 0.4888 0,0981 0.4611 0,0882 0,4649

Model A Model B Model C.1 Model C.2
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Firstly, we begin with the analysis of the calm period: 

Figure 18. The Certainty Equivalent. Calm period analysis 

 

Source: Compiled by the author. Expressed in annual terms 

Paying attention to the last chart (Figure.18), we can appreciate that the whole models show 

the same trend along the calm time frame, but having many differences in terms of magnitudes. 

Thus, the best performing fund in this period is Model C.2. Note that in this period the Certainty 

Equivalent is always positive. 

Then, we continue reviewing about the stress period: 

Figure 19.The Certainty Equivalent. Stress period analysis 

 

Source: Compiled by the author. Expressed in annual terms 
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Analysing the stress period (figure.19), we can observe the trend is not the same as in the 

previous time frame. In this period, as for the Sharpe Ratio, the best performing fund is Model 

C.1. Furthermore, the Certainty Equivalent is not always positive. In fact, for the case of Model 

D, it is almost always negative, which means that is the worst model in this context. 

To sum up, according to the last figures, we can conclude that the highest risk premium offered 

on average to exchange our portfolio, is the one showed by Model C.2, since it is the one that 

usually offers us the greatest relationship over time17. As a consequence, we can enounce the 

following statement:  

“Those portfolios with better performances based on Certainty-Equivalent ratio are associated 

with the time-varying risk aversion attitude, while those with a constant risk aversion parameter 

(Model D), have a negative risk-return relationship and a very unstable trend throughout the 

whole studied period”. 

2.7.5. Lower and Upper Partial Moments Family 

Then, we come back to the first chapter (section 1.2.), in order to rescue the 

performance measures based on partial moments. In this case, we assess some popular ratios, 

such as the Kappa of order 1 and its associated Omega statistic. In addition we analyse the 

Sortino Ratio (kappa of order 2). According to the above, in this section we fix the following 

values for the order of the LPM to consider different risk attitudes: 𝑚 = 2 (moderate investors-

Sortino Ratio) and 𝑚 = 1 (aggressive investors-Kappa(1)). Moreover, we set the value 𝑞 = 1 for 

the case of Omega index. The three mentioned ratios are ascertained as follows: 

 

𝐾(𝑅𝑓 , 1) =
𝐸(𝑅) − 𝑅𝑓

𝐸[𝑀𝑎𝑥(𝑅𝑓 − 𝑅, 0)]
 

 

 

(2.7.6) 

 

 

𝛺(𝑅𝑓 , 1,1) =
𝐸[𝑀𝑎𝑥(𝑅 − 𝑅𝑓 , 0)]

𝐸[𝑀𝑎𝑥(𝑅𝑓 − 𝑅, 0)]
=  𝐾(𝑅𝑓 , 1) + 1 

 

 

(2.7.7) 

 

 

𝐾(𝑅𝑓 , 2) =
𝐸(𝑅) − 𝑅𝑓

𝐸[𝑀𝑎𝑥(𝑅𝑓 − 𝑅, 0)2]1/2
 

 

 

(2.7.8) 

 

  

                                                           
17 In this context, the average means, taking into account the performance of the models over the whole 
period, that is to say, the sum of the calm and the stress period. 
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Note that we have fixed the value of the threshold as the risk-free rate for the whole studied 
ratios. 

Table 24. Performance measures based on partial moments 

 

Source: Compiled by the author. Expressed in annual terms 

As can be seen in Table.24, the results follow the same trend as in the previous performance 

measures. The highest average ratio, is the one showed by Model C.2, since it is the one that 

usually offer us the greatest relationship over time, that is to say, the greatest ratio on average 

for the two considered periods18.  

In addition, we can appreciate that those portfolios with the lowest associated risk, also have 

the lowest associated performance ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
18 Note that Model C.1 offers better results (according to the Partial Moments) than Model C.2 in the 
stress period. However, Model C.2 is the best one on average. 

RATIOS Model A Model B Model C.1 Model C.2 Model D Model A Model B Model C.1 Model C.2 Model D

Kappa 1 0,0755  0,0748  0,0775  0,0810  0,0739  0,0128  0,0124  0,0132  0,0131  0,0121       

Omega 1,0755  1,0748  1,0775  1,0810  1,0739  1,0128  1,0124  1,0132  1,0131  1,0121       

Sortino 0,3347  0,3318  0,3435  0,3593  0,3277  0,0899  0,0874  0,0929  0,0922  0,0850       

CALM PERIOD STRESS PERIOD
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RESEARCH LIMITATIONS 

 

The main limitation of this study is that the optimal assets, which were previously 

selected in chapter 1, were assessed in an economic expansion period (2002-2003). However, 

we have used these assets to build portfolios in subsequent periods, which are located in other 

different economic contexts, such as the calm period (2004-2008) and the stress one (2008-

2012). As a possible extension, we could choose the appropriated equities for both periods, by 

ascertaining the screening rules twice, one for the calm time frame and other for the stress one. 

Moreover, talking about the second chapter, although we know that the probability distribution 

of assets' returns has the problem of heavy tails, we assumed normality in returns. In this case, 

we can model the returns according to other distributions such as the student’s t distribution.  

Otherwise, another limitation of this study is that we have worked with returns unadjusted by 

autocorrelation, so the obtained results may be biased. In this case, as a possible extension, we 

can correct the results by autocorrelation. In addition, the above allows us to estimate the 

conditional volatility and correlation models using the residual instead of the assets’ return. 

However, linking to the above, we must remember the results obtained in section 2.1, when we 

use the simple and partial autocorrelation functions and the Box-Pierce test. The above tools 

suggested the absence of autocorrelation or that it is weak. On this basis, we can conclude that 

a clear persistence in returns is not appreciated. Given that, we can conclude that is not really 

significant to work with data unadjusted by autocorrelation. 
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CONCLUSIONS 

 

As it is well known, when an individual decides to invest an amount of money in a risky 

portfolio, always choose an efficient one whose composition depends on his subjective 

preferences. Analysing the market more in depth, we can appreciate that investor preferences 

are heterogeneous, that is to say, there are some individuals that prefer to take some risks but 

there are others more cautious. However, it is assumed in financial literature that investors are 

traditionally risk averse individuals. 

Given the above, at first, we planned to build a well-diversified portfolio from the set of assets 

listed in the EuroStoxx-50 index. Then, the following question arises: What and how many assets 

we should include in our portfolio? To answer the last question, we spent the first chapter 

proposing several performance ratios, which belong to the Lower Partial Moments (LPM) risk 

measures. In particular, we proposed 3 Kappa ratios of different orders and 3 ratios of the 

Farinelli-Tibiletti family. In addition, we proposed the use of the Principal Component Analysis 

(PCA) in order to help us summarizing the information contained in the last ratios. 

Once we have finished the last research, we can assess (based on previous studies) that we can 

obtain a well-diversified portfolio including 10 assets that belong to different sectors or branches 

of business. The key of this proposal is to compensate the adverse movements in some assets 

with the earnings obtained in others. It is well known as “diversification effect”. Moreover, the 

10 risky assets have been selected based in a single criterion given by the application of the PCA 

technique. This single criterion is an acceptable way to select several assets because it contains 

the information referred to 6 different performance ratios related with different risk aversion 

attitudes. Thus, the ten selected assets are: SAFRAN, UNIBAIL-RODAMCO, AIRBUS GROUP, 

LVMH, ESSILOR INTL., DEUSTCHE-POST, INTESA SANPAOLO, IBERDROLA, BASF and ENI. 

Otherwise, an investor is more or less risk averse according to the economic and political 

circumstances, that is to say, the investment attitude depends on the market trend. As an 

example of the last statement, nowadays even the most adventurous investor has had to reduce 

his optimistic expectations due to we are in an economic recession period. Given that, we 

proposed to spend the second chapter looking for the optimal portfolio that best meets with 

the customer behaviour, taking into account the variability of the market. To bring out the last 

proposal, we planned the possibility of introducing some different models of time-varying risk 

aversion attitude and compare them against the constant risk aversion. In addition, we analysed 

this study in two different periods (calm and stress) due to we aimed to observe whether is 



71 
 

better to fix a single parameter to build the optimal portfolio over the whole period or make it 

changes over the time frame. 

Given that, in particular in the second chapter, trying to reach the proposed terms, we have 

immersed ourselves in the theory of utility and choosing the optimal portfolio for risk averse 

individuals. We began with the study of the unconditional Markowitz approach to analyse how 

we can build the optimal portfolio in a constant context. After that, we have studied more in 

depth how this portfolio changes over time, through conditional schemes such as GARCH (1, 1) 

and DCC-GARCH. Lately, we have spent the most of the second chapter focusing our study in the 

modelling of risk aversion parameter so that it changes over time.  

Despite the influence of risk aversion in the optimal portfolio context,  

there are not many studies which have explicitly estimated the risk aversion of an investor. 

Instead of that, they choose random values to reflect the common levels of risk aversion. 

However, the common sense tells us that the use of arbitrary values for this parameter could 

yield us optimal portfolios that do not reflect the actual investor´s attitude towards risk. Given 

that, one of the goals of this paper has been to propose the modelling of the risk aversion 

parameter in order to make it changing over time. To carry out this key proposal, we have 

focused our attention on the review of the quadratic utility functions framework, analysing the 

CRRA in two different ways. One way associated to the market risk premium and other more 

related to the Consumer Confidence Indicator (CCI). Further, we have considered another 

approach to model the risk aversion parameter, which is based on the application of the 

downside risk measures. 

Thus, the key of this paper was to assess whether is better to work with a constant or a time-

varying risk aversion parameter. Then, analysing the performance results for the whole 

proposed models and for both studied periods, we have tested that in general, those models 

related to time-varying risk aversion showed a better performance on average. This is so, both 

from the point of view of Sharpe Ratio as the Certainty Equivalent. Furthermore, more 

specifically, the best way to model the risk aversion parameter in performance terms is the one 

associated to Model C.2. This scheme was based on modelling the risk aversion parameter in a 

new way, depending on the volatility and taking into account the fact that the market goes up 

and down, penalizing the decreases with an increase in the parameter. We have brought out the 

above, through the application of GARCH (1, 1) schemes, in order to model the conditional 

variance. 
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APPENDIX.A: NORMALITY AND AUTOCORRELATION TESTS 

 

 

 

 

JB-Statistic P-Value JB-Statistic P-Value JB-Statistic P-Value JB-Statistic P-Value JB-Statistic P-Value

459,7206 0 13.658,71  0 118.135,8  0 70,4538     5,55E-16 390,3702  0

JB-Statistic P-Value JB-Statistic P-Value JB-Statistic P-Value JB-Statistic P-Value JB-Statistic P-Value

180,4343  0 457,0526    0 19.512,7    0 21,0186     2,73E-05 59,1933     1,40E-13

DEUTSCHE POST INTESA SANPAOLO IBERDROLA BASF ENI

JARQUE-BERA NORMALITY TEST

SAFRAN UNIBAIL-RODAMCO AIRBUS GROUP LVMH ESSILOR INTL.

LAGS Q P-Value Q P-Value Q P-Value Q P-Value Q P-Value

1 13,4735     0,0002       0,1260       0,7226       1,5391       0,2148       0,4388       0,5077       45,4881     1,54E-11

2 14,3712     0,0008       0,1266       0,9387       2,1335       0,3441       0,9460       0,6231       54,0483     1,83E-12

3 15,0863     0,0017       0,6722       0,8797       5,8912       0,1170       4,0549       0,2556       54,8063     7,55E-12

4 15,4449     0,0039       6,3676       0,1733       5,9200       0,2052       4,0896       0,3940       57,1724     1,14E-11

5 16,2532     0,0062       6,4031       0,2689       6,5949       0,2526       6,6643       0,2468       63,5873     2,20E-12

SAFRAN UNIBAIL-RODAMCO AIRBUS GROUP LVMH ESSILOR INTL.

BOX-PIERCE  STATISTICAL TEST

LAGS Q P-Value Q P-Value Q P-Value Q P-Value Q P-Value

1 0,4132       0,5203       2,1736       0,1404       2,2396       0,1345       3,5330       0,0602       1,0275       0,3107       

2 9,2235       0,0099       6,7424       0,0343       2,8568       0,2397       5,6139       0,0604       1,1412       0,5652       

3 16,1833     0,0010       7,0930       0,0690       3,3744       0,3374       8,4131       0,0382       1,1824       0,7572       

4 16,1893     0,0028       7,6667       0,1046       3,7070       0,4471       8,6544       0,0703       1,3162       0,8586       

5 22,3782     0,0004       7,6670       0,1756       4,0125       0,5476       9,2274       0,1003       1,8899       0,8642       

BOX-PIERCE  STATISTICAL TEST

DEUTSCHE POST INTESA SANPAOLO IBERDROLA BASF ENI
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APPENDIX.B: THE LOG LIKELIHOOD. UNIVARIATE AND MULTIVARIATE MODELS 

 

The parameters have been estimated by the application of the maximum likelihood method. Further, we have assumed normality in returns. Thus, the 

procedure for obtaining the covariance matrices through the previous calculus of dynamic correlations, requires consideration of univariate and multivariate 

models. Univariate models are used in modelling the volatility of each one of the ten selected assets. Otherwise, Multivariate models are used to model the 

conditional correlations between the mentioned assets. Note, we have also used the univariate schemes to model the volatility of Eurostoxx-50 index. 

 

B.1. Univariate Normal Distribution 

First of all, we consider that asset returns follow a univariate normal distribution. Given that, its associated density function is as follows: 

𝑓(𝑥/𝜇, 𝜎2) =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 (−

1

2

(𝑥 − 𝜇)2

𝜎2 ) 

Where the likelihood function is obtained as the multiplication of the density function form 1 to 𝑛: 

𝐿(𝜇, 𝜎2/𝑥𝑖) = ∏
1

√2𝜋𝜎2
 

𝑛

𝑖=1

𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝜇)2

2𝜎2 ) 

𝐿(𝜇, 𝜎2/𝑥𝑖) = 2𝜋−
𝑛
2  𝜎−

2𝑛
2  exp (−

1

2
∑

(𝑥𝑖 − 𝜇)2

𝜎2

𝑛

𝑖=1

) 

 



iii 
 

Then, the log likelihood is defined as: 

𝑙𝑜𝑔𝐿(𝜇, 𝜎2/𝑥𝑖) = −
𝑛

2
log (2𝜋𝜎2)  −

1

2
∑

(𝑥𝑖 − 𝜇)2

𝜎2

𝑛

𝑖=1

 

B.2. Multivariate Normal Distribution 

Moreover, we assume multivariate probability distributions for estimating conditional correlations models, that is to say, it is assumed that asset returns are 

distributed by a given multivariate distribution function. Then, we show the distribution and likelihood functions: 

𝑓(𝑥1 … 𝑥𝑛/𝜇, 𝑉) =
1

(2𝜋)
𝑛
2(𝑉)

1
2

 𝑒𝑥𝑝 (−
1

2
(𝑥 − 𝜇)′𝑉−1(𝑥 − 𝜇)) 

, where  𝑥 = [𝑥1 … 𝑥𝑛] are the standardized returns and 𝑉−1is the 10x10 inverse covariance matrix 

The likelihood function is defined as: 

𝐿(𝜇, 𝑉/𝑥𝑖) = ∏  

𝑛

𝑖=1

1

(2𝜋)
𝑛
2|𝑉|

1
2

 𝑒𝑥𝑝 (−
1

2
(𝑥𝑖 − 𝜇)′𝑉−1(𝑥𝑖 − 𝜇)) 

𝐿(𝜇, 𝑉/𝑥𝑖) = 2𝜋−
𝑛
2  |𝑉|−

2𝑛
2  𝑒𝑥𝑝 (−

1

2
(𝑥𝑖 − 𝜇)′𝑉−1(𝑥𝑖 − 𝜇)) 

Then, we show the log likelihood: 

𝑙𝑜𝑔𝐿(𝜇, 𝑉/𝑥𝑖) = −
𝑛

2
log (2𝜋) −

𝑛

2
log |𝑉|  −

1

2
∑(𝑥𝑖 − 𝜇)′𝑉−1(𝑥𝑖 − 𝜇)

𝑛

𝑖=1
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APPENDIX.C: OPTIMAL PORTFOLIO CONSTRUCTION. THE CALM PERIOD 

 

C.1 Monthly conditional volatilities/ GARCH (1, 1). The calm period 

 

Note that monthly conditional volatilities are expressed in annual terms, multiplying them by √12 
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C.2 Monthly conditional correlations/ DCC-GARCH. The calm period 
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APPENDIX.D: OPTIMAL PORTFOLIO CONSTRUCTION. THE STRESS PERIOD 

D.1 Monthly conditional volatilities/ GARCH (1, 1). The stress period 

 

 

Note that monthly conditional volatilities are expressed in annual terms, multiplying them by √12 
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D.2 Monthly conditional correlations/ DCC-GARCH. The stress period 
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APPENDIX.E: ESTIMATED PARAMETERS 

E.1 Conditional volatility model/ GARCH (1, 1) 

 

 Calm period 

 

 Stress period 

 

E.2 Conditional correlations model/ DCC-GARCH 

 

LVMH AIRBUS INTESA IBERD SAFRAN UNIBAIL ESSILOR D. POST ENI BASF 

w 0,00001  0,00001  0,00000  0,00000  0,00003  0,00002  0,00001  0,00002  0,00001  0,00002  

a 0,0991    0,1759    0,0546    0,1952    0,1002    0,1647    0,1001    0,0983    0,1000    0,0677    

b 0,8000    0,8231    0,9444    0,8000    0,8000    0,8000    0,8000    0,8000    0,8000    0,8000    

LVMH AIRBUS INTESA IBERD SAFRAN UNIBAIL ESSILOR D. POST ENI BASF 

w 0,00003 0,00005 0,0001 0,00001 0,00002 0,00002 0,00002 0,00003 0,00002 0,00002

a 0,0983 0,0588 0,1042 0,1653 0,1004 0,1000 0,0989 0,0394 0,1001 0,0989

b 0,8000 0,8000 0,8000 0,8000 0,8000 0,8000 0,8000 0,8079 0,8000 0,8000

parameter Value parameter Value

w 0,00001     w 0,00003     

a 0,0107 a 0,0117

b 0,8863 b 0,8874

Calm period Stress period
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APPENDIX F: MONTHLY EVOLUTION OF THE OPTIMAL PORTFOLIO 

 

F1. Calm period weights 
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F.2. Stress period weights 
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