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Abstract 

In a context of strong increases in volatility in energy markets it is useful to design 
hedging instruments to manage the risks of such increases. In natural gas markets, as 
well as other energy markets, changes in the spot price are partially predictable due to 
the existing seasonalities in weather, demand and storage levels. We find a strong 
seasonal pattern in spot price returns and, volatility, been winter volatility significantly 
higher than summer volatility. We propose to follow Martínez and Torró (2015) 
extending the study developed there to the Germans GASPOOL and NCG natural gas 
markets. 

We follow the approach of  Ederington and Salas  (2008). The minimum variance hedge 
is based on the predictive power of the base (futures price minus spot price) explaining 
unexpected changes in spot prices. When considering the partial predictability of 
changes in spot prices there is considerably improvement in attained risk reductions as 
Ederington and Salas (2008) obtained. We find that long hedges achieve greater 
hedging performance than short hedges and there is not benefit to be gained by the use 
of more complex hedging estimation (BEKK) over the simpler OLS model. 

 

 

Keywords: Hedging effectiveness, achievable risk reduction, naïve strategy, OLS 
strategy, BEKK. 

 



3 
 

Acknowledgements 

Firstly, I thank the person who has been the engine of my life, in both personal and 

academic field, the one who has always supported me and who has instilled me my 

eagerness to study since I was a child and the one who aroused me the excitement of 

studying a career and a master. Therefore, my thanks go to my maternal grandfather 

since, although he is no longer by my side, thinking about him always gives me strength 

and he would be proud to see this project concluded.  

Secondly, I want to thank my parents, as they have been an unconditional support since 

I can remember and during the implementation of this project they have managed to 

convey a sense of calm and energy that I have needed. 

Thirdly, I thank my closest friends for the support they have given me and, in the 

moments when I was feeling weak and had little faith in my capacity they have made 

me smile and keep on going. 

Finally, I should like to express my sincere thanks to my tutor Dr. Hipòlit Torró for 

investing his valuable time on my own interest, for the ideas he has contributed with, for 

his explanations and for encouraging my interest on the subject. 

 

 

 

 

 

 

 

 

 



4 
 

Contents 

1. Introduction ...................................................................................................................... 6 

2. Literature review. .............................................................................................................. 8 

3. Methodology ................................................................................................................... 11 

1.1 Traditional model ........................................................................................................ 11 

1.2 Alternative model ........................................................................................................ 12 

1.3 GARCH model: BEKK .................................................................................................... 13 

1.4 Hedging effectiveness ................................................................................................. 15 

4. Data ................................................................................................................................. 16 

5. Preliminary Analysis ........................................................................................................ 22 

6. Results ............................................................................................................................. 24 

7. Conclusions ..................................................................................................................... 31 

8. References. ...................................................................................................................... 33 

Annex I: Statistics of spot and futures prices differences. .......................................................... 35 

Annex II: Correlations. ................................................................................................................. 36 

Annex III: Summer and winter mean and volatility. .................................................................... 37 

Annex IV: Seasonal hedging ratios. ............................................................................................. 38 

Annex V: Hedging effectiveness by seasons. .............................................................................. 39 

Figures 

Figure 1: Spot and futures natural gas prices ............................................................................. 17 

Figure 2: Seasonal basis .............................................................................................................. 20 

Figure 3: Seasonal volatility ......................................................................................................... 21 

Figure 4: Weekly hedging ratios estimated with traditional and alternative models ................ 24 

Figure 5: Monthly hedging ratios estimated with traditional and alternative models ............... 25 

Figure 6: Weekly hedging ratios estimated with BEKK ............................................................... 26 



5 
 

 

Tables 

Table  1: Types of hedges ............................................................................................................ 17 

Table 2: Basis as a predictor of the change in spot and futures prices (weekly data). ............... 19 

Table 3: Basis as a predictor of the change in spot and futures prices (monthly data). ............. 20 

Table 4: Preliminary results: all sample weekly and monthly hedges. ....................................... 23 

Table 5: Hedging effectiveness in weekly hedges. ...................................................................... 28 

Table 6: Hedging effectiveness in monthly hedges. .................................................................... 29 

Table 7: Anova test (OLS with basis and OLS without basis)....................................................... 30 

Table 8: One week variations  statistic........................................................................................ 35 

Table 9: One month variations statistic. ..................................................................................... 35 

Table 10: Weekly correlations. .................................................................................................... 36 

Table 11: Monthly correlations. .................................................................................................. 36 

Table 12: Summer and winter mean and volatility: basis approximating. ................................. 37 

Table 13: Summer and winter mean and volatility: spot. ........................................................... 37 

Table 14: Summer and winter mean and volatility: futures. ...................................................... 37 

Table 15: Seasonal hedging ratios (one week period). ............................................................... 38 

Table 16: Seasonal hedging ratios (one month period). ............................................................. 38 

Table 17:  Hedging effectiveness by seasons in weekly hedges. ................................................ 39 

Table 17: Hedging effectiveness by seasons in monthly hedges. ............................................... 39 

  

 

 

 

 

 



6 
 

1. Introduction 

The European Union has the purpose to achieve natural gas liberalization. For the last 

years, the EU has been trying to implement different codes with the object to achieve a 

market integration and an effective competition. Heather (2015) analyzes the 

development of the gas hub and observes that “the process of transformation towards 

liberalized gas markets is not progressing at the same rate across Europe and that there 

is still a lot to be done, especially in Eastern Europe”. Thus, Heather (2015) stablishes 

that “Europe is not one homogenous gas market, neither in terms of infrastructure nor in 

political desire to change, and that even within each area there can be many levels of 

development” and the most developed part of Europe in terms of liberalized gas hubs is 

the North-West.  

In the past few years, the number of liquid markets have increased, currently the most 

liquid market in Europe is NBP1 followed by TTF2, ZEE3, NCG4 and GPL5. Heather 

(2012) establishes “For a hub to develop to become a price reference it needs to have 

amongst other attributes, depth, liquidity and transparency and to be able to readily 

attract a significant number of market participants”. 

Nowadays, Germany has two market areas and two hubs which started trading in 2009 

and which is the object of this work namely NetConnect Germany (NCG) and Gaspool 

(GPL). Heather (2012) examines the purpose of German Market unite into one Market 

Area and he says: “If the German market cannot unite into one Market Area, this could 

be a major stumbling block preventing a German hub from developing further”. 

Among the motivations of this work, it should be included the possibility of conducting 

a similar study for Spain. On 18 September 2014, the Spanish Council of Minister 

submitted to the Parliament a draft bill in order to implement a Gas Hub and since then, 

there have been taken different measures in order to fulfil the requirements of the 

European Network Code.  

                                                           
1
 Britain´s National Balancing Point Hub. 

2
 Dutch Title Transfer Facility Hub. 

3
The Belgian Zeebrugge Hub. 

4
 The German NetConnect Germany Hub. 

5
 The German Gaspool Balancing Services Hub. 
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Few years ago, there was not an organized market in the Iberian Peninsula, the traded 

gas were negotiated in bilateral transaction on the Over – The –Counter Market (OTC). 

Most of the transactions consisted of deliveries of the virtual balancing point (the so- 

called AOC).  The volume of traded gas on the OTC market have to be communicated 

to the system MS –ATR platform, ENEGAS, that allows us to know the volume and the 

number of operations of purchase and sale but not the price.  

The law 8/2015 dated 21 May, establishes the creation of an organized market and 

creates MIBGAS S.A. the company that will operate the new gas market. The Royal 

Decree 984/2015 dated 30 October, regulates the gas organized market with 

standardized products and third party access to the natural gas system facilities. The 

resolution of 4 December 2015 published in the BOE establishes the rules of the market, 

the adhesion contract and the resolutions of the organized gas market. 

The negotiations in MIBGAS began on 16 December 2015 and the regulated contracts 

are: Within-Day, Day-Ahead, Balance of Month and Month-Ahead. Finally, October 1st, 

2016 is the date that will really represent the real launch of the Spanish gas hub. 

The main object of this work is to analyze German natural gas seasonal effects on 

futures hedging and to compare different hedging strategies in order to choose the 

optimal hedging strategy. In a context of strong increases in volatility in energy markets 

it is useful to design hedging instruments to manage the risks of such increases. In this 

work we find out a strong seasonal pattern in volatility of basis, spot and futures returns, 

being winter volatility significantly higher than summer volatility. A relevant fact in the 

natural gas market is that changes in the spot are partially predictable due to the 

seasonal pattern, demand and storage levels. In this work, following Ederington and 

Salas (2008), we use the base (futures minus spot prices) as explicative variable of the 

unexpected changes in the spot prices. We find that the basis has predictive power for 

explaining unexpected spot price changes. Nevertheless, the basis has less ability to 

forecast futures price changes. 

Along the work, we extend the study developed by Martínez and Torró (2015) to the 

Germans GPL and NCG gas markets. We use four strategies: naïve, ‘OLS6 without 

basis’, ‘OLS with basis’ and BEEK; then we compare the risk reduction achieved by 

                                                           
6
 OLS: Ordinary Least Squares. 
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each hedging strategy and we detect a positive duration effect in hedging effectiveness. 

Furthermore, we analyze the attained risk reduction with the standard and Ederington 

and Salas (2008) approaches. We find that the standard approach tends to underestimate 

the risk reduction and overestimate the riskiness of unhedged position when changes in 

the spot are partially predictable. Finally, we can affirm that our results are similar to 

those obtained by Martínez and Torró (2015). 

This work is organized as follows. In the next section, we review the existing literature. 

Section three and four describe the estimation methodology and the data, respectively. 

Section five presents a preliminary analysis for the full sample. Section six presents the 

empirical results. Finally, section seven contains a brief conclusion. 

2. Literature review. 

The literature modelling time-varying volatility is abundant since the development of 

the ARCH7 by Engle (1982) and the GARCH8 by Bollerslev (1986). Bekaert and Wu 

(2000) in their paper entitled “Asymmetric volatility and Risk in Equity Market” 

introduce asymmetries in the GARCH and conclude that “negative shocks increase 

conditional covariances substantially, whereas positive shocks have a mixed impact on 

conditional covariances”. Other authors who modelling time-varying volatility are 

Efimova and Selertis (2014) and Hendry and Sharma (1999). 

The literature modelling conditional covariance is less extensive. Bollerslev et al.(1988) 

proposed the VECH model, in their paper entitled “A Capital Asset Pricing Model with 

Time-varying Covariances” the univariate GARCH is extended to the vectorized 

conditional -variance matrix. Bollerslev (1990) propose a multivariate time series with 

time varying conditional variances and covariances but constant conditional correlation, 

that is to say, the constant correlation model (CCORR). Engle and Kroner (1995) 

propose a class of MGARCH (the BEKK), it practically ensures that Ht will be positive 

definite. These three models are most used to model conditional variance.  

                                                           
7
 ARCH: Autoregressive Conditional Heteroscedastic (mean zero, serially uncorrelated processes with 

nonconstant variances conditional on the past, but constant unconditional variances). 
8
 GARCH: Generalization of the ARCH (stationarity conditions and autocorrelation are derived). 
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Yang (2001) in his paper entitled “M-GARCH Hedge Ratios and Hedging Effectiveness 

in Australian Futures Markets” analyzes the traditional model, the VAR model, the 

VECM and the DVEC multivariate GARCH and obtains that the GARCH time varying 

hedge ratios provide the greatest portfolio risk reduction. 

Bonga-Bonga and Umoetok (2015) estimate the hedging ratio in an emerging equity 

market and they conclude that for daily hedging periods the most effective method is 

the traditional model estimated by OLS; however, for weekly and monthly hedges, the 

VECM and multivariate GARCH models are more effective. 

Cotter and Hanly (2008) in their paper entitled “Hedging Effectiveness under 

Conditions of Asymmetry” obtain that the OLS model produce the best hedging 

effectiveness and suggest that “there is little economic benefit to be gained by the use of 

more complex hedging estimation models over the simple OLS model irrespective of 

the characteristics of the return distribution”. 

A relevant fact in gas prices is the presence of jumps, the natural gas prices are being 

affected by economic, politic, geopolitical factors and weather conditions. Mu (2004) 

estimates a GARCH model from the U.S. natural gas market and he uses the deviation 

of temperature (weather surprise) as a proxy for the demand shocks and a determinant 

of the conditional volatility of natural gas futures returns. He concludes that this proxy 

has a significant effect on the conditional volatility of natural gas prices. 

Nick and Thoenes (2014) show that “gas natural price is affected by temperature, 

storage and supply shortfalls in the short term, whereas the long- term development is 

closely tied to both crude oil and coal prices”. 

Henaff et al. (2013) argue a seasonal pattern and the existence of spikes, “the demand 

for natural gas heating in cold periods of the year produces a seasonal behavior for 

prices during winter periods, while unpredictable changes in weather can cause sudden 

shifts in gas prices”. They also affirm that “most of the positive spikes happen during 

the winter months of January and February and the summer month of June, which can 

be explained by the occurrence of an unpredicted cold front or heat wave”. They in their 

futures model incorporate seasonality in the futures curve and in their spot model 

describe the existence of spikes.  
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Efimova and Selertis (2014) affirm that “the natural gas market is influenced in a much 

larger extent by fundamental factors, such as predictable fluctuations in demand driven 

by weather variables, storage and transportation conditions, and seasonal production 

and consumption patterns”. They introduce seasonal dummy variable in the mean 

equation and obtain distinct fluctuations in the natural gas price, the price is higher in 

winter and summer than in the transition seasons. 

The naïve strategy involves taking futures market positions equal in magnitude but of 

opposite sign to their position in spot market. Ederington (1979) use the standard 

minimum variance hedge ratio to analyze the GNMA and T- Bill futures markets as 

instrument for such hedging. He concludes that “appear to be more effective in reducing 

the price change risk over long (four – week) than over short (two – week) periods”. 

Fama and French (1987) propose two views of the basis: firstly, the Theory of Storage; 

and secondly, in the alternative view propose express the basis as the sum of an 

expected premium and an expected change in the spot price. They obtain that in eight 

out of the regressions the basis F(t,T) – S(t) has reliable information about the future 

change in the spot price S(T) – S(t) for most maturities (T-t). 

Ederington and Salas (2008) extend the Ederington (1979) approach to the case when 

the changes in the spot are partially predictable. They propose to use the basis (futures- 

spot spread) as the information variable to approximate the expected spot price change. 

They conclude that “incorporating measures of the expected change in the spot price, 

into the regression results in substantially lower estimates of the riskiness of hedged and 

unhedged positions, and substantially higher estimates of the risk reduction achievable 

through hedging”. Therefore, when spot price returns can be partially forecasted his 

approach produces the more efficient estimates.   

Martínez and Torró (2015) apply this new approach to European gas markets and 

establish that it enables a significant improvement for hedging strategies and obtain that 

unexpected shocks in spot prices can be partially anticipated using the information 

contained in the basis (between 10%-30%). They also conclude that hedging 

effectiveness improves as increase the duration of the hedge. They find a strong 

seasonal pattern in the volatility of spot and futures price returns, which have been 

significantly higher in winter than in summer.  Martínez and Torró (2015) also use the 
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BEKK with the asymmetric extension, the seasonal covariance model and the seasonal-

basis covariance model but their results show that the better statistical performance of 

the GARCH does not imply a better hedging strategy performance. 

3. Methodology 

1.1 Traditional model 

In our analysis, we define the conventional minimum variance hedge ratio in a one- 

period model and an economic agent who is committed to a given a position in the spot 

market at the beginning of the period or `t’. To reduce the risk exposure, the agent may 

choose to hedge at time `t’ in the futures market with the same underlying asset. 

We denote ΔS and ΔF as spot and futures variations respectively which formulas are 

presented in table 1 following Martínez and Torró (2015). At ‘t+1’, that is, at the end of 

the period, the result of the hedger is calculated as follows: 

𝑥𝑡+1 = ∆𝑆(𝑡) − 𝑏𝑡∆𝐹(𝑡, 𝑇)                                                     (1) 

Where bt is the hedging ratio which indicates the positions to be taken in futures. If bt is 

positive (negative), short (long) positions are taken in futures. The hedger will choose bt 

to minimize the risk associated with the random result xt+ 1. As Martínez and Torró 

(2015) do, we are also agree with Alexander et al. (2013) methodology who argue 

“…for assets with prices that can jump, log returns can be highly inaccurate proxies for 

percentage returns even when measured at the daily frequency.” This is the reason why 

we use realized returns instead log returns and our hedging analysis is based on profit 

and loss (P&L). 

We follow the procedure of Martínez and Torró (2015) and we use the variance 

conditional on the available information to compute the risk of a hedge strategy: 

𝑉𝑎𝑟[𝑥𝑡+1|𝜓𝑡] = 𝑉𝑎𝑟[∆𝑆(𝑡) − 𝑏𝑡∆𝐹(𝑡, 𝑇)|𝜓𝑡]                                     (2) 
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The optimal hedge ratio has been defined as the amount of futures position per unit spot 

position such that the hedged portfolio variance is minimized and it can be obtained by 

minimizing eq.(2). 

𝑏𝑡 =
𝑐𝑜𝑣(∆𝑆(𝑡), ∆𝐹(𝑡, 𝑇)|𝜓𝑡)

𝑣𝑎𝑟(∆𝐹(𝑡, 𝑇)|𝜓𝑡)
                                                  (3) 

In this equation second moments are conditioned to the information set available at the 

beginning of the hedging period, ψt. The equation 3 can be estimated from a linear 

relationship between spot and futures returns if we use an unconditional probability 

distribution. Thus is, estimating the linear relationship appearing in eq. (1) by ordinary 

least squares (OLS henceforth) but adding an intercept and white noise: 

∆𝑆(𝑡) = 𝛼 + 𝑏∆𝐹(𝑡, 𝑇) + 𝜀(𝑡)                                                  (4) 

Where bt is the unconditional definition of the optimal hedge ratio of the eq. (3) 

(Ederington, 1979) estimated with OLS. 

1.2 Alternative model 

In the framework of Ederington and Salas (2008) this approach has been adapted to the 

case where spot price changes are partially predictable and futures prices are unbiased 

estimators of future spot prices. In this context, Ederington and Salas (2008) show that 

the riskiness of the spot position is overestimated and the achievable risk reduction is 

underestimated. If we consider this approach, the unexpected result of the hedge in 

eq.(1) can be reformulated as: 

𝑥𝑡+1 = (∆𝑆(𝑡) − 𝐸[∆𝑆(𝑡)|𝜓𝑡]) − 𝑏´𝑡∆𝐹(𝑡, 𝑇)                                      (5) 

We reformulate the risk of the hedge strategy in Eq. (2) as: 

𝑉𝑎𝑟[𝑥𝑡+1|𝜓𝑡] = 𝑉𝑎𝑟[(∆𝑆(𝑡) − 𝐸[∆𝑆(𝑡)|𝜓𝑡]) − 𝑏′𝑡∆𝐹(𝑡, 𝑇)|𝜓𝑡]                   (6) 
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and the minimum variance hedge ratio are obtained after minimizing eq. (6) is: 

𝑏′𝑡 =
𝑐𝑜𝑣((∆𝑆(𝑡) − 𝐸[∆𝑆(𝑡)|𝜓𝑡]), ∆𝐹(𝑡, 𝑇)|𝜓𝑡)

𝑣𝑎𝑟(∆𝐹(𝑡, 𝑇)|𝜓𝑡)
                                      (7) 

Changes in the spot price are partially predictable in many markets, Fama and French 

(1987) have shown that Ft-St has predictive ability for futures changes in spot price. 

Ederington and Salas (2008) following Fama and French (1987) approach propose 

futures price minus spot price namely basis at the beginning of the hedge as the variable 

information to approximate the expected spot price change. They propose the alternative 

estimation: 

∆𝑆𝑡+𝑠 = 𝛼′ + 𝛽′∆𝐹𝑡+𝑠 + 𝜆𝑍𝑡 + 𝜀′𝑡+𝑠                                            (8) 

“If �̂�𝑍𝑡 = 𝐸𝑡(∆𝑆𝑡+𝑠), the variance of the residuals from this equation (eq.8) provides an 

unbiased estimate of variance of a position hedged using hedge ratio 𝛽′̂.  

We obtain an unconditional estimate of the hedge ratio in eq. (7) by estimating the 

following liner regression using OLS which is equivalent that proposed by Ederington 

and Salas (2008) where Zt = (Ft-St). 

∆𝑆(𝑡) = 𝛼′ + 𝑏′∆𝐹(𝑡, 𝑇) + 𝜆(𝐹(𝑡, 𝑇) − 𝑆(𝑡)) + 𝜀(𝑡)                              (9) 

Where 𝜆(𝐹(𝑡, 𝑇) − 𝑆(𝑡)) is used to estimate 𝐸[∆𝑆(𝑡)|𝜓𝑡]. So the expected change in the 

spot is perfectly approximated with the product between the basis at the begging of the 

hedge and its estimated coefficient �̂�(𝐹(𝑡, 𝑇) − 𝑆(𝑡)) = 𝐸[∆𝑆(𝑡)|𝜓𝑡]. 

1.3  GARCH model: BEKK 

The asymmetric version of the BEKK is estimated to obtain conditional estimates of the 

second moments. The input to the BEKK are the residuals obtained by the estimating a 

model in means. Firstly, we propose the same vector error correction as Martínez and 

Torro (2015), introducing the lagged value of the basis (can be seen as an error 
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correction term when spot and futures prices are co-integrated, see Lien, 1996) in the 

model: 

∆𝑘𝑆(𝑡) = 𝛾1 + 𝛾10(𝐹(𝑡, 𝑇𝑘) − 𝑆(𝑡)) + ∑ 𝛾11𝜏∆𝑘𝑆(𝑡 − 𝜏) + ∑ 𝛾12𝜏∆𝑘𝐹(𝑡 − 𝜏, 𝑇𝑖) + 𝜀1,𝑡+𝑘              (10)

𝑝

𝜏=1

𝑝

𝜏=1

 

∆𝑘𝐹(𝑡, 𝑇𝑖) = 𝛾2 + 𝛾20(𝐹(𝑡, 𝑇𝑘) − 𝑆(𝑡)) + ∑ 𝛾21𝜏∆𝑘𝑆(𝑡 − 𝜏) + ∑ 𝛾22𝜏∆𝑘𝐹(𝑡 − 𝜏, 𝑇𝑖) + 𝜀2,𝑡+𝑘               

𝑝

𝜏=1

𝑝

𝜏=1

 

Where ΔS and ΔF are computed as table 1 shows; the parameters to estimate are the 

gammas; p is the lag of the VAR and is chosen by minimizing the Hannan and Queen 

(1979) information criteria with the object to eliminate any pattern of autocorrelation. 

The vector of residuals 𝜀𝑡+𝑘 = (𝜀1𝑡+𝑘, 𝜀2𝑡+𝑘)′ obtained by estimating the VAR by OLS9 

is saved and used as observable data to estimate the multivariate GARCH. The number 

of parameters to estimate in the second part is reduced with this procedure10, also 

decreases the estimation error, and enables a faster convergence in the estimation 

procedure. 

Engle and Kroner (1995) proposed a class of MGARCH model called the BEKK, we 

estimate this model introducing asymmetries following Glosten et al. (1993) approach. 

The two – dimensional asymmetric BEKK model can be written in its compacted form 

as: 

𝐻𝑡 = 𝐶′𝐶 + 𝐵′𝐻𝑡−1𝐵 + 𝐴′𝜀𝑡−1𝜀′
𝑡−1𝐴 + 𝐺′𝜂𝑡−1𝜂′

𝑡−1𝐺                             (11) 

Where C, A, B are 2x2 matrices of parameters; Ht is the 2x2 conditional covariance 

matrix, the diagonal elements of Ht are variance terms and elements outside the 

                                                           
9
 Engle and Granger (1987): “least squares standard error will be consistent estimates of the true 

standard errors”. 
10

 Engle and Ng (1993) estimate the unexpected return at time t (εt) that is treated as a collective 

measure of news at time t, then use these unexpected return as a observable data in the ARCH and 

GARCH models. Kroner and Ng (1998) follow a similar procedure, they estimate four multivariate GARCH 

models (BEKK; FARCH; VECH and CCORR) in two steps, first they estimate the mean equation to get the 

residuals and in the second step they estimate the conditional covariance matrix parameters using 

maximum likelihood. 
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diagonal are covariances; and εt and 𝜂t are 2x1 vectors containing the shocks and 

threshold terms series. The unfolded covariance model is written as follows: 

[
ℎ11𝑡 ℎ12𝑡

ℎ12𝑡 ℎ22𝑡
] = [

𝑐11 𝑐12

0 𝑐22
]

′

[
𝑐11 𝑐12

0 𝑐22
] + [

𝑏11 𝑏12

𝑏21 𝑏22
]

′

[
ℎ11𝑡−1 ℎ12𝑡−1

ℎ12𝑡−1 ℎ22𝑡−1
] [

𝑏11 𝑏12

𝑏21 𝑏22
]

+ [
𝑎11 𝑎12

𝑎21 𝑎22
]

′

[
𝜀1𝑡−1

2 𝜀1𝑡−1𝜀2𝑡−1

𝜀1𝑡−1𝜀2𝑡−1 𝜀2𝑡−1
2 ] [

𝑎11 𝑎12

𝑎21 𝑎22
]

+ [
𝑔11 𝑔12

𝑔21 𝑔22
]

′

[
𝜂1𝑡−1

2 𝜂1𝑡−1𝜂2𝑡−1

𝜂1𝑡−1𝜂2𝑡−1 𝜂2𝑡−1
2 ] [

𝑔11 𝑔12

𝑔21 𝑔22
]                                     (12) 

Where hij for all i,j =1,2 are the conditional second moment series; cij, bij, aij and gij for 

all i,j = 1,2 are parameters; ε1t and ε2t are the unexpected shock series obtained from 

eq.(10); and 𝜂1t = max(0,-ε1t) and 𝜂2t = max(0,-ε2t) are the Glosten et al (1993) dummy 

series capturing negative asymmetries from the shocks. 

The parameters of the BEKK model are estimated by maximizing the conditional log-

likelihood function: 

𝐿(𝜃) = −
𝑇𝑁

2
ln(2𝜋) −

1

2
∑(𝑙𝑛|𝐻𝑡(𝜃)| + 𝜀𝑡

′𝐻𝑡
−1(𝜃)𝜀𝑡)                        (13)

𝑇

𝑡=1

 

where θ denotes the vector of all the parameters to be estimated; T is the number of 

observations; and N is the number of equations in the system. The log-likelihood 

function is estimated using the BFGS algorithm via quasi-maximum likelihood 

estimation (QMLE). 

1.4 Hedging effectiveness 

The hedging effectiveness is computed following Ederington (1979) approach, that is, 

the hedging effectiveness is measured by the percentage reduction in variance of the 

hedged position relative to the unhedged position (b=0): 

𝑉𝑎𝑟(𝑈) − 𝑉𝑎𝑟(𝐻)

𝑉𝑎𝑟(𝑈)
= 1 −

𝑉𝑎𝑟(𝐻)

𝑉𝑎𝑟(𝑈)
                                                (14) 
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Where, Var(U) is the variance of unhedged position and Var(H) is the variance of 

hedged position. 

The variance of unhedged position is computed following the standard and Ederington 

and Salas (2008) approaches respectively: 

𝑉𝑎𝑟[∆𝑘𝑆(𝑡)]                                                                   (15) 

𝑉𝑎𝑟[∆𝑘𝑆(𝑡) − �̂�(𝐹(𝑡, 𝑇𝑘) − 𝑆(𝑡))]                                            (16) 

In section 6 we compare four hedging strategies labeled: 

- Naïve strategy: a hedge where futures positions have the opposite sign to the 

position held in the spot market but the same size (bt=1 for all t). 

- OLS without basis: obtained after estimating equation (4). 

- OLS with basis: obtained after estimating equation (9). 

- BEKK: obtained after estimating the BEKK model equations (10) to (13). 

The variance of hedged positions is computed with the same procedure as we use to 

compute the variance of the unhedged positions, that is to say, with the standard and 

Ederington and Salas (2008) approaches respectively: 

𝑉𝑎𝑟[∆𝑘𝑆(𝑡) − �̂�𝑡∆𝑘𝐹(𝑡, 𝑇𝑖)]                                                 (17) 

𝑉𝑎𝑟[∆𝑘𝑆(𝑡) − �̂�𝑡∆𝑘𝐹(𝑡, 𝑇𝑖) − �̂�(𝐹(𝑡, 𝑇𝑘) − 𝑆(𝑡))]                              (18) 

Also, in a preliminary study in section 5, we analyze if the adjusted R2 is a good 

measure of the achievable risk reduction. We compare the adjusted R2 with the hedging 

effectiveness computed as described. 

4. Data 

We obtained natural gas spot and futures prices from EEX and ICE with observations at 

daily intervals. We use data from October 2007 to June 2015. In the case of weekly 

frequency data, the prices are taken on Wednesday or the previous trading day if not 
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tradable, and rollovers are taken the last Wednesday of the month or second to last 

Wednesday if the last trading day of the month is Wednesday. 

As we have said in section 3, we use realized returns computed as shown in table 1. In 

the last column are reported the basis (spread) used to approximate the expected spot 

price change.  

Table  1: Types of hedges 

This table displays the type of hedges; basis approximating; and ΔkS(t) and Δk F(t,T1) (spot and futures returns, respectively). Where 
k= w, m indicates one week and one month, respectively. 

Hedging period Data Frequency Spot return Futures return Basis approximating 
E[Δk S(t)|ψt] 

1 week Weekly ΔwS(t)=S(t+1week)-S(t) Δw F(t,T1)=F(t+1week,T1) –F(t,T1) F(t,T1)-S(t) 
1 month Monthly Δm S(t)=S(t+1month)-S(t) Δm F(t,T1)=F(t+1month,T1) –F(t,T1) F(t,T1)-S(t) 

 

The time series for the spot and futures with maturity one month are exhibits in figure 1.  

Spot and futures present a seasonal pattern with prices higher in winter and lower in 

summer. The highest prices in winter (at the end of 2008, January 2009, February 2012 

and March 2013) can be explained by the dispute about gas prices and transit between 

Russia and Ukraine combined with the cold winter, higher storage costs and demand’s 

increases. 

Figure 1: Spot and futures natural gas prices  

Spot price (-----) and the first to delivery futures prices (—— ).  a)GPL spot  and first to delivery futures contract. b) NCG spot and 
first to delivery futures contract. 

a)  
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b) 

 

A relevant fact is that in June 2014 Russia halted its natural gas supplies to Ukraine; 

nevertheless the prices didn’t increase due to the warm summer and the sufficient 

storage levels. 

Annex I displays the basic statistics of spot and futures prices differences. In most 

cases, as we can see, spot mean values are positives but not significantly different from 

zero; nervertheless, the spot mean values are negative but not significantly for monthly 

returns from October 2007 to June 2015 in the NCG. Futures mean values are negatives 

and significantly11 different from zero in all cases. Futures mean values varying 

between -0.13 for weekly returns and -0.577 for monthly returns, it could be said that 

the futures market is in contango. We contrast the null hypothesis of median equality 

between futures and spot time series with the Kruskal –Wallis test. The null hypothesis 

is not rejected in all cases except for weekly spot and futures returns in both Hubs. Also 

we contrast the null of variance equality, the Levene test is rejected in all cases except 

for monthly spot and futures returns in both Hubs. The standard deviation is always 

higher in spot returns.  

All the time series analyzed in Annex I have significant excess of Kurtosis and one out 

of the total time series analyzed has significant excess of Skewness. The Jarque- Bera 

test is used to contrast the null hypothesis of normality distribution, we reject this null in 

                                                           
11

 At 5% of significance level. Henceforth, we do the contrasts at 5% significance level. 
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all cases. Thus, we reject the normality distribution hypothesis in all the time series 

analyzed. The Ljung –Box test with twenty lags detects significant autocorrelation in 

four out of the total time series analyzed: weekly spot and futures returns in both Hubs. 

Also it was detected a significant heteroscedasticity in five out of the total time series 

analyzed.  

Annex II displays the correlation between spot and futures returns. In the case of NCG, 

the highest correlation is obtained by spot and futures for weekly returns and the lowest 

by spot and futures for monthly returns. However, the highest correlation in the GPL is 

obtained by spot and futures for monthly returns, and the lowest by spot and futures for 

weekly returns. 

We regress ΔS and ΔF on basis approximating respectively to analyze the Ederington 

and Salas (2008) approach. The results for weekly and monthly periods are presented in 

tables 2 and 3, respectively. The basis has predictive power for explaining unexpected 

spot price changes that improves as hedging length increases (between 3.56% and 

10.90%). As tables 2 and 3 show the basis has less ability to forecast futures price 

changes. Ederington and Salas (2008) get the same results and argue that “futures 

changes in the spot price, S, are more predictable that changes in the futures price, F”. 

These results also coincide with the results of Martínez and Torró (2015) who associate 

the futures prices results with the martingale hypothesis. 

Table 2: Basis as a predictor of the change in spot and futures prices (weekly data). 

This table displays the results of the regression between spot and futures changes appearing in the second column on the basis 
defined in the third column for weekly data. The t-statistic computed with Newey- West standard error are reported between 
bracketed [.]. The numbers between parenthesis (.) are p-values. 

 Dependent 
variable 

Basis Intercept Basis coefficient Adjusted R2 

 
 

NCG 

ΔS(t) F(t,T1)-S(t) -0,079027 
[-1,225853] 

(0,2210) 

0,209284 
[2,614545] 
(0,0093) 

0,051015 

ΔF(t,T1) F(t,T1)-S(t) -0,092447 
[-1,870274 
(0,0622) 

-0,126107 
[-3,296245] 

(0,0011) 

0,035603 

 
 

GPL 

Δ S(t) F(t,T1)-S(t) -0,053053 
[-0,810541] 

(0,4181) 

0,196699 
[2,405027] 
(0,0166) 

0,040996 

ΔF(t,T1) F(t,T1)-S(t) -0,085803 
[-1,870302] 

(0,0622) 

-0,146479 
[-3,916151] 

(0,0001) 

0,049877 
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Table 3: Basis as a predictor of the change in spot and futures prices (monthly data). 

This table displays the results of the regression between spot and futures changes appearing in the second column on the basis 
defined in the third column for monthly data. The t-statistic computed with Newey- West standard error are reported bracketed [.]. 
The numbers between parenthesis (.) are p-values. 

 Dependent 
variable 

Basis Intercept Basis coefficient Adjusted R2 

 
 

NCG 

ΔS(t) F(t,T1)-S(t) -0,487489 
[-1,512640 

(0,1340 

0,455368 
[3,330335] 
(0,0013) 

0,109085 

ΔF(t,T1) F(t,T1)-S(t) -0,316021 
[-1,248565 

(0,2151 

-0,201346 
[-1,740112] 

(0,0853) 

0,030636 

 
 

GPL 

Δ S(t) F(t,T1)-S(t) -0,354093 
[-1,350912] 

(0,1802) 

0,448056 
[4,371599] 
(0,0000) 

0,098930 

ΔF(t,T1) F(t,T1)-S(t) -0,347880 
[-1,445215] 

(0,1519) 

-0,186964 
[-1,785938] 

(0,0776) 

0,018451 

 

Figure 2 shows seasonal basis, we can see a seasonal pattern being the basis positive in 

winter and negative in summer. It stands out the cold winter of 2008-2009 in which the 

bases are superior to 3 and the beginning of the summer 2013 with basis less than -2. 

There are several authors who explain this pattern; we, as Martínez and Torró (2015), 

explain the positive bases in winter for the cold weather, so the demand increases, the 

storage levels decreases and storage cost increases. In summer, the opposite situation 

takes place producing a negative basis, nevertheless, in some cases the basis is positive, 

which may be due to the increasing number of cooling systems.  

Figure 2: Seasonal basis  

This figure shows seasonal basis. 13-week moving average basis approximating at NCG (——) and GPL (--------). The vertical lines 
separate winter (October to March) and summer (April to September) seasons. 

 



21 
 

Figure 3: Seasonal volatility 

a) GPL spot volatility (——) and its front monthly futures volatility (- - -). b) NCG spot volatility (——) and its front monthly 
futures volatility (- - -). Standard deviation of a 13-week moving window returns are reported. The vertical lines separate winter 
(October to March) and summer (April to September) seasons. 

a) 

 

 

b) 

 

 

Figure 3 displays spot and futures prices volatility for NCG and GPL respectively, the 

seasonal pattern is similar to that of the basis, winter volatility is higher than summer 

volatility. The peaks in the volatility figures correspond to large declines in the market, 

that is to say, the peaks correspond with the dispute between Russia and Ukraine, the 
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Libyan war in 2011, the withheld Russian exports in 2012. The peak in 2013 can be due 

to the cold winter of 2013. 

We divided the year in two seasons for weekly spot and futures returns and basis 

approximating in order to analyze the seasonal effects (see Annex III). The two seasons, 

as in the EEX and ICE markets are: summer from April to September and winter from 

October to March. The null hypothesis of median equality of the Kruskal - Wallis test is 

not rejected in all cases for spot and futures returns and for basis approximating. The 

Levene test contrasts the null hypothesis of variance equality between summer and 

winter and is rejected in all cases. The winter volatility is significantly higher than 

summer volatility for spot and futures returns and basis approximating, therefore we can 

affirm that there is a strong seasonal pattern.   

5. Preliminary Analysis 

In a preliminary study we estimate the traditional model and the alternative model (see 

equations 4 and 9, respectively) for weekly and monthly hedges for the full sample. 

Tables 4 shows the results of both models for weekly and monthly hedges, columns 2 

and 3 display the hedge ratio estimated for the traditional model and the alternative 

model, respectively. Columns 4 and 5 report the Newey –West standard errors for the 

estimations without and with basis explicative variable. For monthly hedges, the 

alternative model appears to be more efficient; nevertheless, for weekly hedges the 

traditional model.  

Columns 8 and 9 report the ratio of variances without and with basis approximating of 

unhedged and hedged positions12, we obtain the same results as Ederington and Salas 

(2008), when changes in the spot price are anticipated, the traditional model tends to 

overstate the variance. The overestimate ranges for unhedged position from 9% for 

monthly hedges to 1.40% for weekly hedges and for hedged position from 108.44% for 

monthly hedges to 36.33% for weekly hedges. The overestimate of the variance 

increases as the hedging duration increases. These results confirm the proposition 3 and 
                                                           
12

 These ratios are computed as follow, in the case of unhedged position we compute the variance with 
Zt and without Zt  (see equations 15 and 16, respectively) and, then, we divide the variance with Zt by the 
variance without Zt. In the case of hedged position, the procedure is the same, but in this case we use 
equations 17 and 18, respectively. 
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4 of Ederington and Salas (2008) who propose that “when changes in the spot price are 

anticipated, the traditional model will tend to overstate the variance of hedged and 

unhedged positions”. 

The estimated percentages reduction in variances (adjusted R2) are reported in columns 

10 and 11 for the traditional model and the alternative model, respectively, in all cases 

the traditional model under –estimates the percentage reduction in variance. The 

hedging effectiveness is computed following Ederington and Salas (2008) approach. 

The results are displayed in Columns 12 and 13, respectively, in all cases the traditional 

model tends to underestimate the hedging effectiveness. Furthermore, we find a positive 

duration effect in hedging effectiveness. If we compare the adjusted R2 as a predictor of 

the risk reduction, we can conclude that the adjusted R2 is not a good measure of the 

hedging effectiveness because in all cases tends to overestimate the hedging 

effectiveness. 

 

Table 4: Preliminary results: all sample weekly and monthly hedges. 

This table displays: the minimum variance hedge ratio estimates, the efficiency of the estimated hedge ratio, the riskiness of hedged 
and unhedged positions, the percentage reduction in the variance achievable by hedging (adjusted R2 and Ederington and Salas 
(2008) approach) for the traditional model (eq.4) and the alternative model (eq. 9). The hedges are estimated with all sample size 
(data from the beginning of our sample to June 2015). In this table k and m indicate weekly and monthly hedges respectively. 

 

Minimum variance 
hedge ratio 

estimates (b) 

Newey-West 
standard errors for 

hedge ratio 
estimates 

Coefficient of the 
information 

variable Zt(k) 

Ratio of variance 
estimates (with 

basis/without basis) 

Estimated 
percentage 
reduction in 

variance 

Hedging 
effectiveness 

(Ederington and 
Salas, 2008, 
approach) 

 
Without 

basis 
With 
basis 

Without 
basis 

With 
basis 

Coeffici
ent T value unhedge

d Hedged Without 
basis 

With 
basis 

Without 
basis 

With 
basis 

NCG k1 0.97643 
(0.0000) 

1.07958 
(0.0000) 0.04607 0.05084 0.34542 

(0.0000) 6.25369 1.03356 1.37828 48.29 62.322 46.129 61.319 

GPL k1 1.00342 
(0.0000) 

1.13410 
(0.0000) 0.06147 0.07566 0.36282 

(0.0000) 5.61974 1.01405 1.36333 46.060 60.279 44.644 59.979 

NCG m1 0.88085 
(0.0000) 

1.06800 
(0.0000) 0.16091 0.09177 0.67040 

(0.0000) 6.6233 1.09001 2.00336 45.124 72.590 38.599 70.474 

GPL m1 0.88427 
(0.0000) 

1.03079 
(0.0000) 0.10863 0.06883 0.64078 

(0.0000) 7.23395 1.08727 2.08446 51.759 76.807 46.571 75.117 

 

The results obtained in this preliminary analysis are the same that the conclusions of 
Ederington and Salas (2008) and, therefore, we agree with their approach. All the 
implications of this preliminary analysis are suitable for empirical methodology carried 
out in the next section. 



24 
 

6. Results  

In this section, firstly we estimate the models with data from the beginning of our 

samples until November 2010, that is, we estimate the models for the first three years. 

In this part (in-sample) the hedging strategies are compared ex-post. In the second part 

(out-of-sample), we estimate the models for the first three years and the estimated 

parameters are then used to construct hedges for the subsequent three years period, then 

we move ahead one observation and use the parameters using data through the second 

first three years to construct a hedge for the three following years and so on. Therefore 

in the ex-ante study results are compared using forecasted hedge ratios. 

The ex-post and ex-ante hedging ratios for the traditional and the alternative model are 

displayed in figure 4 (one week period) and figure 5 (one month period), the pattern is 

similar in both cases. The ex-ante hedging ratios moves around ex- post hedging ratios 

in both cases, also the hedging ratios estimated with the alternative model are situated 

above the hedging ratios estimated with the traditional model.  

Figure 4: Weekly hedging ratios estimated with traditional and alternative models 

a) GPL traditional and alternative hedging ratios. b) NCG traditional and alternative hedging ratios. The vertical line separates the 
ex-post and ex-ante (three years moving window) periods. The traditional hedging ratios estimated with eq. 4 (——) and 
alternatives hedging ratios estimated with eq. 9 (-------). 

a)  

 

 

 



25 
 

b) 

 

 

 

Figure 5: Monthly hedging ratios estimated with traditional and alternative models 

a) GPL traditional and alternative hedging ratios. b) NCG traditional and alternative hedging ratios. The vertical line separates the 
ex-post and ex-ante (three years moving window) periods. The traditional hedging ratios estimated with eq. 4 (——) and 
alternatives hedging ratios estimated with eq. 9 (-------). 

a) 
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b) 

 

Furthermore, figure 6 shows the hedging ratios for the BEKK, as in the previous figures 

the ex-ante hedging ratios moves around ex-post hedging ratios. In these figures it can 

be seen that conditional hedging ratio values move around linear regression based hedge 

ratios. 

Figure 6: Weekly hedging ratios estimated with BEKK 

a) GPL BEKK hedging ratios. b) NCG BEKK hedging ratios. The vertical line separates the ex-post and ex-ante (three years 
moving window) periods. 

a) 
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b) 

 

 

Also we have tested the equality in mean between summer and winter with Anova test 

for the ex-ante periods, the results are displayed in Annex IV. The null of mean equality 

is not rejected (at 5% of significance level) in four out of ten cases analyzed, only is 

rejected in the case of the alternative model for weekly hedges, the estimated hedging 

ratios are significantly higher in summer. The null of median equality contrasted with 

Kruskal-Wallis test only is rejected in the same cases as the Anova test, that is to say, is 

rejected for the hedging ratios estimated with the alternative model. Equality in variance 

contrasted with Levene test only can be rejected for weekly and monthly hedging ratios 

estimated with the traditional model in the NCG, the winter volatility is significantly 

higher. We also analyze the risk reduction achieved by seasons for the ex-ante period, in 

the case of weekly hedges (see Annex V, table 17) we obtain results similar to those 

reported in table 5 for both seasons; nevertheless, for monthly hedges (Annex V, table 

18), the attained risk reduction in winter is higher to those reported in table 6 and the 

achievable risk reduction in summer is lower. 

The hedging effectiveness are displayed in table 5 and 6 for weekly and monthly 

hedges. In the ex-ante periods for weekly hedges, the largest risk reductions are 

obtained with the ‘OLS without basis’ strategy and variance computed with Ederington 

and Salas (2008) approach. The worst outcomes are obtained for the BEKK; 

nevertheless, in the ex-post periods the largest risk reductions are produced with this 

model in both Hubs. Anyway, the most relevant results are those corresponding to the 
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ex-ante periods because in the ex-post periods we do not consider only the information 

available until t. In the ex-post period the ‘OLS with basis’ strategy and the BEKK 

produce the poorest results in the NCG and GPL, respectively.   

Table 5: Hedging effectiveness in weekly hedges. 

This table reports the risk reduction achieved by each hedging strategy: naïve (b=1); OLS without basis (eq.4); OLS with basis 
(eq.9); and BEKK (eq.12). The in- sample results are computed for the first six months and then a moving window of six months is 
used to compute the out- of- sample results. The risk reduction achieved is computed using eq.(14). The unhedged spot position 
variance is computed using eq.(15) and eq.(16) in the standard and Ederington and Salas (2008) approaches, respectively. The 
variance of each hedging strategy is computed using eq.(17) and eq.(18) in the standard and Ederington and Salas (2008) 
approaches, respectively. 

 
Standard approach 

Ederington and Salas 
(2008) approach Standard approach 

Ederington and Salas 
(2008) approach 

 
in sample out of sample 

Period Oct. 17th, 2007- Oct. 27th, 2010 Nov. 3rd, 2010- June 17th, 2015 
A.1 Hedging one-week spot risk in GPL 

Spot variance (no 
hedged) 3,082018 3,140703 1,324045 1,208424 

 Risk reduction (%) Risk reduction (%) 

Naïve strategy (b=1) 55,307 68,3379 33,3477 45,1441 
OLS without basis 55,4048 69,0508 33,3648 45,1975 

OLS with basis 54,3948 70,0418 31,647 44,4154 
BEKK 58,7945 75,2596 28,0558 42,5905 

 A.2 Hedging one-week spot risk in NCG 
Spot variance (no 

hedged) 2,963743 2,871649 1,050719 0,990873 

 Risk reduction (%) Risk reduction (%) 
Naïve strategy (b=1) 53,9041 66,9372 39,1045 51,0693 

OLS without basis 53,9104 67,0669 39,499 51,2411 
OLS with basis 53,3419 67,6536 38,1895 50,7632 

BEKK 52,7934 70,9006 30,2856 43,2112 

 

Results comparing the attained risk reduction with the standard and Ederington and 

Salas (2008) approaches show that the standard approach tends to underestimated the 

achievable risk reduction, for weekly hedges the attained risk reduction is 

underestimated with the standard approach between 11.74% and 14.53% in the ex-ante 

periods; in the ex-post period these values are higher, between 13.03% and 18.11%. 

In the ex-ante periods, the best outcomes of table 6 for one month hedge periods are 

obtained with the naïve strategy; furthermore, the achieved risk reduction of ‘OLS’ and 

naïve hedges are quite similar when we compute the variance with Ederington and Salas 

(2008) approach. In this period, the standard approach underestimates the attained risk 
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reduction between 14.41% and 19.85%. The naïve strategy produces the poorest 

outcomes when we compute the variance with the standard approach. 

The biggest achieved risk reduction in the ex-post periods are obtained with ‘OLS with 

basis’ strategy, the standard approach underestimate the risk reduction between 22.48% 

and 29.14%. 

Table 6: Hedging effectiveness in monthly hedges. 

This table is computed as table 6, but using monthly data frequency and only three hedging strategies (naïve, OLS without basis and 
OLS with basis). 

 
Standard approach 

Ederington and Salas 
(2008) approach Standard approach 

Ederington and Salas 
(2008) approach 

 
in sample out of sample 

Period October 2007- October 2010 November 2010- June 2015 
A.1 Hedging one-month spot risk in GPL 

Spot variance (no 
hedged) 7,664527 7,479363 6,146954 5,186982 

 Risk reduction (%) Risk reduction (%) 
Naïve strategy (b=1) 67,0613 93,2554 46,5294 62,9739 

OLS without basis 69,3457 91,8275 46,5771 60,9851 
OLS with basis 67,8654 93,3445 46,2734 62,0778 

 
A.1 Hedging one-month spot risk in NCG 

Spot variance (no 
hedged) 9,326139 8,963394 6,195252 5,201321 

 Risk reduction (%) Risk reduction (%) 
Naïve strategy (b=1) 63,9457 90,9582 33,7378 53,1465 

OLS without basis 64,2956 89,6443 34,5486 52,1483 
OLS with basis 62,4372 91,5779 32,7348 52,5819 

  

 

From these results we can deduce that hedging performance improves as hedging length 

increases. As to whether the variance computed following Ederington and Salas (2008) 

approach produces better results than variance computed with standard approach the 

results are conclusive. For weekly hedging and monthly hedging the Ederington and 

Salas (2008) approach produces better outcomes. Furthermore, when changes in the 

spot are partially predictable, the usual estimates of the riskiness of unhedged positions 

are biased upward in most cases.  

Results comparing the traditional model with the alternative model are inconclusive 

because for monthly hedges the alternative model improves the hedging effectiveness 

but not for weekly hedges in which the traditional model produce better outcomes. 
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Figures 4 and 5 represent the hedging ratios for weekly and monthly for the traditional 

and the alternative models, the hedging ratios estimated with the alternative model are 

above the hedging ratios estimated with the traditional model. Also we have contrasted 

the equality in mean between both hedging ratios, the Anova test is rejected in the case 

of one week and one month hedging period (see table 8), the hedged ratios estimated 

with the alternative model are significantly higher. This implies that a more efficient 

hedge ratio estimate will not mean an improvement in the performance of the hedging 

strategy. The null of variance equality contrasted with Levene test is rejected in all 

cases, the volatility of hedging ratios estimated with the alternative model is 

significantly higher. 

Table 7: Anova test (OLS with basis and OLS without basis) 

This table reports the mean and volatility for the traditional model (eq.4) and the alternative model (eq.9). Where, w and m indicate 
weekly and monthly hedges, respectively. This table also displays the Anova test and Levene test and its p-values between brackets 
(.). 

 Mean Volatility 

 
OLS Without 

basis OLS With basis Anova test OLS Without 
basis OLS With basis Levene tet. 

GPL w1 0,9870 1,0613 939,7780 
(0.0000) 

0,0348 0,0493 24,2460 
(0,0000) 

NCG w1 0,9588 1,0643 1141,4890 
(0.0000) 

0,0350 0,0336 6,1867 
(0,0132) 

GPL m1 1,0397 1,1849 0.018321 
(0.0000) 

0,1044 0,1297 6,1712 
(0,0145) 

NCG m1 0,9547 1,1426 149,6514 
(0.0000) 

0,0785 0,0825 5,8705 
(0,0171) 

 

The largest risk reduction is obtained for monthly hedges, in the case of the GPL 

coincides with the biggest correlation but not in the case of NCG. Therefore, we can say 

that the correlations are not a really interesting point to keep in mind when we choose 

the optimal hedging strategy. 
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7. Conclusions 

In this work we have analyzed the gas natural market of Germany in a similar way to 

Martínez and Torró (2015) in their paper entitled “European natural gas seasonal effects 

on futures hedging”. Also we have followed Ederington and Salas (2008) approach, that 

is, we have adapted the standard minimum variance hedge ratio to the case where spot 

prices are partially predictable. 

The European Union has been trying to implement different codes with the object to 

achieve natural gas liberalization but this process is not progressing at the same rate 

across Europe. Furthermore, in Spain there has been taken different measures in order to 

fulfil the requirements of the European Network Code and there have been stablished 

the date 1st October, 2016 for launch the Spanish gas hub. 

Firstly, we have analyzed the power of the basis (spot minus futures prices) for explain 

the unexpected change in the spot and futures prices. We find that the basis have 

predictive power for explaining unexpected spot price changes that improves as hedging 

length increases (between 3.56% and 10.90%). However, the basis has less ability to 

forecast futures price changes. 

Secondly, we have estimated the traditional and the alternative models for data from the 

beginning of our samples through June 2015 (all sample) and we have compared both 

outcomes and if the adjusted R2 is a good measure of the hedging effectiveness. Our 

conclusions have been the same as Ederington and Salas (2008), the traditional model 

underestimate the achievable risk reduction in all cases. Furthermore, the adjusted R2 in 

all cases tends to overestimate the risk reduction. 

Thirdly, we have realized the study in two sub-periods, ex-ante and ex-post, and we 

have computed the hedging effectiveness with the standard and Ederington and Salas 

(2008) approaches. Depending on the hedging duration, the achievable risk reduction 

attains values between 42.59% and 62.79% in the ex-ante period. The largest risk 

reductions for both hedging periods are obtained with the Ederington and Salas (2008) 

approach. Therefore, we agree with Ederington and Salas (2008), they conclude that 

more efficient estimates can be obtained using his approach when spot price returns can 
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be partially forecasted. Furthermore, the riskiness of unhedged position is overestimated 

with the standard approach when changes in the spot are partially predictable. 

Fourthly, we have estimated the hedging ratios with the BEKK for a week hedging 

period; nevertheless we can affirm that in the ex-ante period the better statistic 

performance of the BEKK does not imply an improvement in the hedging performance. 

In this framework we have used the effectiveness measure proposed by Ederington 

(1979); nevertheless, Lien (2005 b) affirm that “Ederington (1979) hedging 

effectiveness is only useful for measuring the risk reduction effect of the OLS hedge 

ratio….A strict application of this measure almost always leads an incorrect conclusion 

stating that the OLS hedge ratio is the best hedging strategy” 

Fifthly, if we compare the hedging effectiveness between one week and one month 

hedging period, we conclude that hedging effectiveness increases as hedging period 

increases. 

Finally, we have analyzed a seasonal pattern in spot and futures prices. We find a strong 

seasonality in the volatility of basis approximating and spot and futures returns, the 

winter volatility is significantly higher than summer volatility. The highest volatility 

coincides with the Russian-Ukrainian gas dispute of 2009, the Libyan civil war in 2011, 

the withheld Russian exports in 2012 and the cold winter of 2013. 
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Annex I: Statistics of spot and futures prices differences. 

This Annex I displays the summary statistics of spot and futures prices returns. The median and variance equality between ΔS(t) and 
ΔF(t, Ti) are tested by Kruskal-Wallis and Levene statistics test. Skewness and Kurtorsis mean the skewness and Kurtosis 
coefficients and have asymptotic distribution of N(0,6/T) and N(0,24/T) under normality, respectively (T is the sample size).  The 
nulls hypothesis test whether the skewness and Kurtosis coefficient are equal to zero. The normal distribution hypothesis is tested by 
Jarque-Bera test, its statistic is computed as 𝑇[𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠2 6 + (𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠)2 24⁄⁄ ] and has an asymptotic 𝜒2 distribution under the 
normal distribution hypothesis. Q(20) and Q2(20) are Ljung-Box test for twentieth order serial correlation in the differentiated and 
its squared series, respectively. Marginal significance levels of the statistical are displayed as [.]. 

Table 8: One week variations  statistic.  

 
NCG GPL 

 
ΔF  ΔS ΔF ΔS 

Mean -0,14377 (0,00290) 0,00081 (0,99040) -0,13031 (0,00710) 0,00305 (0,96580) 
Median  -0,13150   -0,02500   -0,10000   0,00500   
Kruskal-
Wallis 4,74542 (0,02940)     5,73650 (0,01660)     
S.D. 0,96058   1,34793   0,96484   1,42445   

Levene 16,04191 (0,00010)     15,28325 (0,00010)     
Skewness -0,32124 (0,00880) -0,04672 (0,70324) -0,34349 (0,00590) -0,44622 (0,00027) 
Kurtosis 2,82283 (0,00000) 4,02925 (0,00000) 3,49745 (0,00000) 5,43163 (0,00000) 

Jarque- Bera 135,65730 (0,00000) 263,39850 (0,00000) 205,96800 (0,00000) 492,56320 (0,00000) 
Maximum 3,51000   6,40000   3,92000   6,03000   
Minimum -4,45000   -6,25000   -4,55000   -7,85000   

Q(20) 31,94900 (0,04400) 42,65700 (0,00200) 33,53000 (0,02900) 55,77500 (0,00000) 
Q²(20) 228,51000 (0,00000) 97,86500 (0,00000) 132,85000 (0,00000) 97,86500 (0,00000) 

 

 

Table 9: One month variations statistic.  

 
NCG GPL 

 
ΔF ΔS  ΔF  ΔS  

Mean -0,57710 (0,01000) -0,00330 (0,99080) -0,53757 (0,01780) 0,00682 (0,98010) 
Median  -0,33500   -0,02000   -0,27200   0,00000   
Kruskal-
Wallis 2,93685 (0,08660)     2,05962 (0,15120)     
S.D. 2,09087   2,72340   2,12488   2,59828   

Levene 1,71820 (0,19160)     2,39969 (0,12310)     
Skewness -1,00759 (0,00011) -1,20812 (0,00000) -1,08736 (0,00003) -0,54398 (0,03720) 
Kurtosis 2,13894 (0,00006) 6,32187 (0,00000) 2,77240 (0,00000) 4,59131 (0,00104) 

Jarque- Bera 29,42830 (0,00000) 154,05110 (0,00000) 42,13767 (0,00000) 13,94210 (0,00094) 
Maximum 3,20000   8,07000   3,53000   6,45000   
Minimum -8,08000   -13,15000   -9,00000   -9,50000   

Q(20) 20,39100 (0,43400) 28,78800 (0,09200) 20,96600 (0,39900) 30,47600 (0,06200) 
Q²(20) 33,22500 (0,03200) 26,11600 (1,00000) 29,69300 (0,07500) 73,77000 (0,99500) 
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Annex II: Correlations. 

This Annex displays correlation matrix of the spot and futures prices variations for weekly and monthly data. For a sample size of T 
observations, the asymptotic distribution of the √𝑇 times the correlation coefficient is a zero-one normal distribution. 

Table 10: Weekly correlations. 

 
 

  

 
 
 
 
 
 

 

 

Table 11: Monthly correlations. 

 
  NCG GPL 
  ΔS(t) ΔF(t,T1) ΔS(t) ΔF(t,T1) 

NCG 
ΔS(t) 

 

 1.000000  0.676270  0.965219  0.694191 
 0.676270  1.000000  0.713732  0.992549 
 0.965219  0.713732  1.000000  0.723155 
 0.694191  0.992549  0.723155  1.000000 

ΔF(t,T1) 

GPL 
ΔS(t) 

ΔF(t,T1) 

 

 

 

 

 

 

 

 

  NCG GPL 
  ΔS(t) ΔF(t,T1) ΔS(t) ΔF(t,T1) 

NCG 
ΔS(t)  1.000000  0.695837  0.910953  0.684259 

 0.695837  1.000000  0.679943  0.967695 
 0.910953  0.679943  1.000000  0.679668 
 0.684259  0.967695  0.679668  1.000000 

 

ΔF(t,T1) 

GPL 
ΔS(t) 

ΔF(t,T1) 
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Annex III: Summer and winter mean and volatility. 

Tables 12, 13 and 14 reports, for weekly frequency data, the mean and volatility (standard deviation) of basis approximating, spot 
and futures returns in winter (October to March) and summer (April to September), respectively. These tables also report the values 
of different test (Anova, Kruskal – Wallis, and Levene); p-values are reported between brackets (.).  

Table 12: Summer and winter mean and volatility: basis approximating. 

 Summer mean Winter mean Equality Summer volatility Winter volatility Equality 
NCG m1 0.445169 0.342230 0.479788 

(0.4885) 
1.169456 1.746067 3.944242 

(0.0478) 
GPL m1 0.359732 0.233377 1.011832 

(0.3145) 
1.082261 1.863577 5.616831 

(0.0183) 
 

Table 13: Summer and winter mean and volatility: spot. 

 Summer mean Winter mean Equality Summer volatility Winter volatility Equality 
NCG m1 0.032027 -0.044754 1.212755 

(0.2708) 
1.052900 1.526574 

 

12.52978 
(0.0005) 

GPL m1 0.026377 -0.038874 0.353252 
(0.5523) 

1.013616 1.699086 18.13975 
(0.0000) 

 

Table 14: Summer and winter mean and volatility: futures. 

 Summer mean Winter mean Equality Summer volatility Winter volatility Equality 
NCG m1 -0.073470 -0.210104 2.322121 

(0.1267) 
0.782429 1.046811 12.75851 

(0.0004) 
GPL m1 -0.074464 -0.203344 2.886805 

(0.0893) 
0.858225 1.033792 7.211672 

(0.0076) 
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Annex IV: Seasonal hedging ratios. 

This Annex III reports the mean, median and volatility (standard deviation) of weekly and monthly hedging ratios (tables 15 and 16, 
respectively) estimated using OLS with basis, OLS without basis and BEKK in winter (October to March) and summer (April to 
September). This table also reports the values of different test (Anova, Kruskal – Wallis, and Levene); p-values are reported 
between brackets (.).  

Table 15: Seasonal hedging ratios (one week period). 

 Mean Median Volatility 
 Summer Winter Anova Summer Winter Kruskal-

Wallis 
Summer Winter Levene 

NCG OLS with basis 1,1173 1,0977 12.4751 
(0,0005) 

1,1114 1.0991 5.7858 
(0,0162) 

0.0331 0.0458 0.7169 
(0,3981) 

NCG  OLS without 
basis 

0,9896 0.9887 0.0446 
(0,8329) 

0.9897 0.9934 0,0004 
(0,9835) 

0.0201 0.0383 48.2198 
(0,0000) 

GPL OLS with basis 1,0743 1.0526 35.5963 
(0,0000) 

1.0729 1.0565 23.2989 
(0,000) 

0.0241 0.0281 1.9390 
(0,1653) 

GPL  OLS without 
basis 

0.9590 0.9559 0.4313 
(0,5121) 

0.9575 0.9650 0,8536 
(0,3555) 

0.0301 0.0383 1.9825 
(0,1606) 

NCG BEKK 1.0994 
 

1.0861 
 

0,0844 
(0,7716) 

1.0645 1.0250 0.3756 
(0,5400) 

0.3392 0.3195 0.8438 
(0,3594) 

GPL BEKK 1,0429 
 

1,0386 
 

0.0044 
(0,9470) 

0,9584 1.0023 0.2341 
(0,6285) 

0.4456 0.4711 0.4899 
(0,4847) 

 

 

Table 16: Seasonal hedging ratios (one month period). 

 Mean Median Volatility 
 Summer Winter Anova Summer Winter Kruskal-

Wallis 
Summer Winter Levene 

NCG OLS with basis 1.1631 1.1407 0.8842 
(0.3520) 

1.1485 1.1645 0.3333 
(0.5637) 

0.0761 0.088 0.4282 
(0.5161) 

NCG  OLS without 
basis 

0.9433 0.9676 1.0240 
(0.3168) 

0.9447 0.1108 0.8996 
(0.3294) 

0.0387 0.1108 6.5041 
(0.0142) 

GPL OLS with basis 1.2120 1.2028 0.0664 
(0.7978) 

1.2418 1.2048 0.3099 
(0.5777) 

0.1297 0.1170 0.1054 
(0.7468) 

GPL  OLS without 
basis 

1.0379 1.0719 1.5921 
(0.2134 

1.0672 1.0722 0.9392 
(0.3325) 

0.0923 0.0941 0.6789 
(0.4142) 
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Annex V: Hedging effectiveness by seasons. 

This table reports the out- of -sample seasonal risk reduction achieved by each hedging strategy: naïve (b=1); OLS without basis 
(eq.4); OLS with basis (eq.9). The risk reduction achieved is computed using eq.14. The unhedged spot position variance is 
computed using eq.15 and eq.16 in the standard and Ederington and Salas (2008) approaches, respectively. The variance of each 
hedging strategy is computed using eq.17 and eq.18 in the standard and Ederington and Salas (2008) approaches. 

Table 17:  Hedging effectiveness by seasons in weekly hedges. 

Hedging one-week spot risk in NCG 

 
Summer Winter 

 
Standard approach 

Ederington and Salas 
(2008) approach Standard approach 

Ederington and Salas 
(2008) approach 

Spot variance (no 
hedged) 0,823672 0,637815 1,2958 1,3356 

 
Risk reduction (%) Risk reduction (%) 

Naïve strategy (b=1) 35,0645 49,0606 40,2479 51,1292 
OLS without basis 35,0713 49,0997 40,919 51,4230 

OLS with basis 33,9879 48,0845 39,3744 51,0515 

 Hedging one-week spot risk in GPL 

 
Summer Winter 

 
Standard approach 

Ederington and Salas 
(2008) approach Standard approach 

Ederington and Salas 
(2008) approach 

Spot variance (no 
hedged) 0,803351 0,56225 1,8279 1,8022 

 
Risk reduction (%) Risk reduction (%) 

Naïve strategy (b=1) 27,0058 47,2313 34,7994 43,9998 
OLS without basis 27,2154 47,6201 34,8029 44,0237 

OLS with basis 23,6109 43,7349 33,6555 43,9277 
 

Table 17: Hedging effectiveness by seasons in monthly hedges. 

Hedging one-month spot risk in NCG 

 
Summer Winter 

 
Standard approach 

Ederington and Salas 
(2008) approach Standard approach 

Ederington and Salas 
(2008) approach 

Spot variance (no 
hedged) 4,8571 5,2051 7,1941 5,0534 

 
Risk reduction (%) Risk reduction (%) 

Naïve strategy (b=1) 32,5452 30,4874 33,4222 73,3254 

OLS without basis 34,9972 32,8347 33,4609 69,5186 
OLS with basis 27,9137 26,1844 34,1364 75,3742 

 Hedging one-month spot risk in GPL 

 
Summer Winter 

 
Standard approach 

Ederington and Salas 
(2008) approach Standard approach 

Ederington and Salas 
(2008) approach 

Spot variance (no 
hedged) 4,6234 4,3116 7,3506 5,7215 

 
Risk reduction (%) Risk reduction (%) 

Naïve strategy (b=1) 47,1909 46,9436 45,7611 74,2634 

OLS without basis 45,838 45,7161 46,7821 72,2300 
OLS with basis 41,6839 40,7387 48,1674 76,6109 
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