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Abstract 

 

The Fundamental Review of the Trading Book (FRTB) introduces the concept of non-

Modellable risk factors to Basel’s market-risk framework, which requires extra capital to 

be held. This new element puts pressure on banks for increasing the modellability of risk 

factors under FRTB, avoiding or reducing extra capital required to achieve their 

profitability goals too. Using external data seemed not to be enough and drove banks to 

explore other methods of reducing the amount of non-modellable risks. 

 

This article focuses on different techniques of modelling approach for Non-Modellable 

Risk Factors (NMRFs) by means of Modellable Risk Factors (MRFs) and comparing the 

outcomes of each other. Also, we provide the results from two different perspectives: the 

P&L at Attribution Test (PLAT), which evaluate the differences between the P&L 

calculated by the Front Office (F.O) and the P&L calculated from market risk department; 

and the Internal Model Capital Charge (IMCC). 

 

 

Keywords: Risk factors, Non-Modelllable Risk Factors (NMRF), Fundamental Review 

of the Trading Book (FRTB), modellability, PLAT, IMCC, volatility surface, 

Interpolation approach, Statistical Modelling approach, Parametrization approach. 

 

 

 

 

 

 

 

 

 

 

 

 



 III 

Table of Contents 

 

1. Introduction .................................................................................................... 1 

2. Theoretical Framework .................................................................................. 2 

2.1. Market Risk regulation review ...........................................................................2 

2.2. Market Risk under FRTB ..................................................................................3 

2.2.1. Backtesting Requirements.................................................................................................. 5 

2.2.2. PLAT Test Requirements................................................................................................... 5 

2.2.3. IMCC Calculation ............................................................................................................... 8 

3. Practical framework ....................................................................................... 9 

3.1. Inputs ............................................................................................................... 10 

3.1.1. Stochastic Volatility Model .............................................................................................. 10 

3.1.2. Volatility Market Data ..................................................................................................... 14 

3.1.3. Modellability Map ............................................................................................................. 16 

3.2. Methodological Proxies .................................................................................... 17 

3.2.1. General Framework.......................................................................................................... 17 

3.2.2. Theoretical Framework .................................................................................................... 24 

3.3. Results .............................................................................................................. 34 

3.3.1. Individual Proxies results ................................................................................................. 34 

3.3.2. PLAT metrics results under FRTB ................................................................................. 52 

3.3.3. IMCC Results .................................................................................................................... 54 

4. Conclusions .......................................................................................................... 61 

5. Further research .................................................................................................. 62 

Bibliography ................................................................................................................. 63 

 

 

  



 IV 

Table of Figures 

 

Figure 1 Internal Model approach process for Market Risk ............................................. 4 

Figure 2 Efects of shifted SABR parameters.................................................................. 12 

Figure 3 EURIBOR6M fixing historical series between 2006 and 2019 ....................... 15 

Figure 4 Generating Floating Strikes.............................................................................. 16 

Figure 5 Modellability implementation .......................................................................... 16 

Figure 6 Modellability steps ........................................................................................... 18 

Figure 7 Linear interpolation .......................................................................................... 36 

Figure 8 Linear Interpolation cap volatility one-day variations (NMRFs: ATM-0005 and 

ATM +0.035, t=3,5,10) .................................................................................................. 37 

Figure 9 Splines interpolation......................................................................................... 38 

Figure 10 Splines Interpolation cap volatility one-day variations (NMRFs: ATM-0.005 

and ATM +0.035, t=3,5,10) ............................................................................................ 39 

Figure 11 Heatmap of correlation between Risk Factors ............................................... 40 

Figure 12 Linear Regression line.................................................................................... 42 

Figure 13  Linear Regression cap volatility one-day variations (NMRFs: ATM-0.005 

and ATM +0.035, t=3,5,10) ............................................................................................ 42 

Figure 14 Eigenvectors related to MRF matrix .............................................................. 44 

Figure 15 PCA cap volatility one-day variations (NMRFs: ATM-0.005 and ATM 

+0.035) ............................................................................................................................ 45 

Figure 16 Jacobian cap volatility variations (NMRFs: ATM-0.005 and ATM +0.035) 46 

Figure 17 Absolute error term of each proxy in time. (T=3) .......................................... 48 

Figure 18 Absolute error term: mean and standard deviation. (T=3) ............................. 48 

Figure 19 Absolute error term of each proxy in time. (T=5) .......................................... 49 

Figure 20 Absolute error term: mean and standard deviation. (T=5) ............................. 49 

Figure 21 Absolute error term of each proxy in time. (T=10) ........................................ 49 

Figure 22 Absolute error term: mean and standard deviation. (T=10) ........................... 50 

Figure 23 Cap volatility surfaces under PLAT (T=3) by comparing all approaches ..... 51 

Figure 24 Cap volatility surfaces under PLAT (T=5) by comparing all approaches ..... 51 

Figure 25 Cap volatility surfaces under PLAT (T=10) by comparing all approaches ... 51 

Figure 26 Mean and standard deviation of error term between all approaches across new 

volatility surfaces ............................................................................................................ 52 



 V 

Figure 27 Stressed Scenarios from FO and Risk, maturity 3 years ................................ 55 

Figure 28 Stressed Scenarios from FO and Risk, maturity 5 years ................................ 55 

Figure 29 Stressed Scenarios from FO and Risk, maturity 10 years .............................. 56 

Figure 30 Error absolute term of each proxy under IMCC perspective(T=3) ................ 57 

Figure 31 Mean and standard deviation of error term between approaches under IMCC: 

(Entire new volatility surface, T=3) ............................................................................... 57 

Figure 32 Absolute error term of each proxy under IMCC (T=5).................................. 57 

Figure 33 Mean and standard deviation of error term between approaches under IMCC: 

(Entire new volatility surface, T=5) ............................................................................... 58 

Figure 34 Absolute error term of each proxy under IMCC (T=10)................................ 58 

Figure 35 Mean and standard deviation of error term between approaches under IMCC: 

(Entire new volatility surface, T=10) ............................................................................. 58 

 

  



 VI 

Table of Tables 

 

Table 1 PLAT thresholds .................................................................................................. 7 

Table 2 Main variables summary at Proxied Risk Factor Construction ......................... 20 

Table 3 Main variables summary in PLAT perspective ................................................. 21 

Table 4 Main variables summary in IMCC perspective ................................................. 22 

Table 5 Linear Regression OLS estimation results ........................................................ 41 

Table 6 Cumulative variance explained from each CP .................................................. 44 

Table 7  Spearman correlation and Kolmogorov Smirnov statistic under PLAT test 

metrics ............................................................................................................................ 53 

Table 8 Advantages and Disadvantages of each approach ............................................. 60 



 1 

1. Introduction 

 

The outbreak of the global financial crisis has highlighted the requirement to take account 

of the bank’s risk management practices. Basel Committee on Banking Supervision 

(BCBS) has been working with global authorities to strengthen the regulation, 

supervision and practices of the financial sector with the purpose of improving financial 

stability. 

 

The Fundamental Review of Trading Book (FRTB), known as Basel IV, is the newest 

supervision guidelines proposed by the Basel Committee. This overhaul framework for 

market risk regulatory capital rules focus on: Trading Book and Banking Book 

boundaries, Internal Model Approach (IMA), Standardized Approach(SA) capital charge 

calculation and the incorporation of the risk of market illiquidity. 

 

This paper focuses on the second approach in capital requirement of Basel IV: the Internal 

Model Approach, where banks need to determine an appropriate set of market risk factors 

to capture an accurate effect on the value of the bank’s trading position. In line with 

banking regulation, a risk factor must fulfil some standards to be classified as modellable, 

with the result that banks are subject to extra capital requirement for those non-modellable 

risk factors. Therefore, this new regulatory framework puts pressure on the bank’s 

business goals to maintain profitability at the same time, they are complying with the high 

capital requirements from Basel IV.  

 

Currently, the challenge for all banks is to meet the modellability criteria and looking for 

the solution of reductions in NMRF-related capital. Hence, the effort on exploring some 

possible solutions about that is the aim of this research. We have focused on the use of 

proxies to determine how a non-modellable risk factor can be explained by a modellable 

risk factor. 

 

The research has been split into two different parts. The first part is related to Theoretical 

Framework (Section 2), where it is introduced a brief chronological summary to put into 

perspective the evolution of the market risk framework under Basel regulation. The 

second part, Practical Framework (Section 3) is set out and analysed.  
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2. Theoretical Framework 

 

2.1. Market Risk regulation review  

 

Market risk is the reason and basis of The Fundamental Review of the Trading Book, 

since this regulation mainly consists of taking a thorough look at the way a finance entity 

manages the level of market risk involved in their trading book1. The BCBS defines the 

market risk as to the risk of losses in on and off-balance sheet positions, arising from 

adverse movements in risk factors that fix their market prices. 

 

Over the past few decades, market risk regulatory capital requirements have changed 

considerably. Since BCSB’s beginnings, it was excluded from Basel I, the first standard 

published in 1988, being introduced for the first time through an amendment in 1996.  By 

this time, internal models to calculate capital requirements were allowed. The next step 

was Basel II in 2004, principally focused on self-regulation and market discipline, without 

making major changes on market risk, fostering greater confidence in bank’s models 

based on Value at Risk (VaR)2.  This regulatory lasted until 2007-2009 world financial 

crisis, during which banks incurred significant trading book losses. Subsequent to this, a 

whole consultation process and amendments emerged, being in the spotlight the need to 

develop an adequate market risk regulatory framework. Due to this, a stress component 

was introduced as a market risk measure, Stressed VaR (SVaR)3. 

 

Subsequently, Basel III was developed to be a remedy and response to address the 2007-

2009 crisis. This new regulatory wave involved a source of capital requirements changes, 

imposing a greater quantity and quality of it. In 2012, The BCBS addressed the recent 

                                                 
1 A trading book consists of all instruments comprise financial instruments (primary financial instruments 

or cash instruments and derivative financial instruments), foreign exchange (FX), and commodities. 

(Minimum capital requirements for market risk -BCBS (2019). Section RB25, paragraphs 25.1 and 25.2) 

2  VaR is a measure of the worst expected loss on a portfolio of instruments resulting from current market 

movements over a given time horizon and pre-defined confidence level. (Minimum capital requirements for 

market risk -BCBS (2019). Section MAR10, paragraph 10.15) 

3 SVaR is based on the VaR methodology, but calculations are computed on a stressed historical period in 

order to give an idea of possible losses given worse market conditions. 
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persistent wave of regulations, FRTB, with related market risk measures. One proposal 

was to change the internal model based on VaR and SVaR, introducing the use of 

Expected Shortfall (ES) for capturing tail risk. Until 2016, the final market risk standards 

were not published and had not come into effect until January 2019, being a subject of 

intense debate among the industry. 

 

FRTB, comparing with the last Basel III, has been introduced with new points in the 

market risk framework. Overall, key-elements are: 

 

o Changes in boundaries of Banking and Trading book to reduce incentives to 

arbitrage between them. 

o Amendments to the internal model approaches, where this research work has been 

conducted. 

o Amendments to standard model approach to make it in better alignment with the 

bank’s actual risk management practices, pulling it to be more granular and risk 

sensitive. 

 

2.2. Market Risk under FRTB 

 

Under banking regulatory, the measurement and evaluation of the Trading Book Risk, 

which the bank is exposed, could be done using either the standard approach or internal 

model approach, respectively submitted for the approval of the designed authorities. 

Banks are called to manage properly their market risk, in such a way capital charge is 

being appropriately met.  This paper is focused on risk measure techniques by means of 

the internal model approach, mainly on modellability risk factors requirements. 

 

Quantitative market risk assessment involves defining the probability of occurrence and 

potential impact of the risk to the organization’s business. ES-based metric is currently 

used to capturing risk, which could be carried out into different alternatives4. The 

historical simulation model is the one we have decided to use along with the research. 

                                                 
4 ES metric could be carried out into Model Construction or Variance-Covariance Approach (parametric 

method), Historical simulation (takes actual past market movements as scenarios) or Monte Carlo 

simulation (generates random hypothetical scenarios). 
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This approach is a non-parametric method, that uses empirical distribution of variations 

time series to generate the related risk metric. ES measure relay on the average of extreme 

losses in the VaR engine.  

 

The IMA process and design is based on four core checks:  

 

1. Qualitative and quantitative evaluation and endorsement by supervisors of the 

accuracy and robustness of a bank’s risk measure framework. 

2. Modellability requirements of underlying risk factors under market prices. 

3. Backtesting requirements and PLAT test requirements, which consists of a 

comparison between daily risk-theoretical P&L (RTPL) signed off by front office 

and the hypothetical P&L (HPL) used in the ES engine. 

4. Calculation of the aggregate capital charge for modellable risk factors (IMCC)  

 

Figure 1 Internal Model approach process for Market Risk  
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The IMA process illustrated in Figure 1, reveals that trading desks are finally the level 

where the approval of the bank’s internal model is given. Because of the relevance of the 

quantitative requirements, the following subsections will try to define the ones specified 

for Backtesting and PLAT, which are determinants if a bank wants to use IMA to 

determine market risk capital. Moreover, it is introduced the specifications of the 

calculation of IMCC.  

 

2.2.1. Backtesting Requirements 

In respect of backtesting requirements at the trading desk level, FRTB reads as follows:  

At trading desk level, must be compared the VaR measure calibrated at the 97.5th 

and the 99th percentile of the actual P&L (APL) and the hypothetical P&L (HPL) 

using the prior 12-months current observations. The exception threshold is 12 at 

the 99th percentile and 30 at the 97.5th percentile. If any given trading desk obtains 

results above those limits, their capital requirements must be determined through 

the standardised approach. (Minimum capital requirements for market risk -

BCBS (2019). Section MAR32, paragraphs 32.18 and 32.19) 

As this requirement is not a subject of this article, for a further analysis please see 

(Fuentes.N, July 2019). 

 

2.2.2. PLAT Test Requirements 

In a nutshell, the rationale of PLAT is to evaluate the differences between P&L computed 

by Front Office and the one calculated at Risk. 

In this regard, PLAT test requirements are worded as follows: 

Any given trading desk must compare daily risk-theoretical P&L (RTPL) with the 

daily hypothetical P&L (HPL), which is the same as the HPL used for backtesting. 

The RTPL is the daily trading desk-level P&L that is produced by the valuation 

engine of the trading desk’s risk management model. There must include 

modellable, had taken up in the ES model, and non-modellable risk factors, which 
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are not included in the ES model.  (Minimum capital requirements for market risk 

-BCBS (2019). Section MAR32, paragraphs 32.22 and 32.24) 

PLAT test is based on two different metrics, using the time series of the most recent 250 

P&L Vectors: 

• Spearman correlation: the objective is to find out the correlation between the 

HPL and RTPL P&L Vectors.  

Assessment process 

As a first step, the bank must rank each P&L vector in ascending order, so that 

the lowest value receives a rank of 1. 

After ranking, the bank must calculate the Spearman correlation coefficient 

applying the following formula: 

 

𝑟𝑆 =
𝑐𝑜𝑣(𝑅𝐻𝑃𝐿 , 𝑅𝑅𝑇𝑃𝐿)

𝜎𝑅𝐻𝑃𝐿 ⋅ 𝜎𝑅𝑅𝑇𝑃𝐿
         (1) 

 

           Where, 𝜎𝐻𝑃𝐿 , σRRTPL
 are the standard deviations of each ranked P&L vectors and 

              cov(RHPL,RRRTPL) is the covariance between two ranked times series. 

 

Finally, the output must be compared with the predefined regulatory threshold. 

 

• Kolmogorov -Smirnov test: the objective of this test is to measure the similarity 

of the distribution of HPL and RTPL. 

Assessment process 

Firstly, the bank must calculate the empirical cumulative distribution function 

(cdf) of RTPL and HPL. For any value, cdf is the product of 0.004 and the number 

of each observation that is less than or equal to the specified P&L vector. The KS 

statistic is the largest absolute difference observed between these two empirical 

cumulative distributions at any P&L value. This output must be compared with 

the predefined regulatory threshold. 
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PLAT test metrics evaluation consists in classifying a trading desk in three zones on the 

basis of the outcome of the tests described before.  Both metrics of PLAT test must meet 

the thresholds, which are summarised in Table 1. 

 

Table 1 PLAT thresholds 

 
Zone allocation thresholds Zone allocation consequences 

Zone  
Spearman 

Correlation 

Kolmogorov-Smirnov 

Statistic 
 

  

 

Source: Minimum capital requirements for market risk -BCBS (2019). Section MAR32, paragraph 32.42 

Any given trading desk allocated in the red PLAT test zone is unfit to apply IMA, having 

to be used standardised approach to determine market risk capital requirements. 

On this point, while PLAT attribution test is being conducted by supervisors, each trading 

desk must carry out one of the most important parts in risk management: a proper market 

risk factors selection. According to the regulation, risk factors are the principal 

determinant of change in the value of an instrument, and they are bound to meet a number 

of modellability considerations. 

Risk Factor eligibility test (RFET) is the name given to the necessary condition that any 

risk factor in a trading desk has to fulfil.  This test calls for a sufficient amount of real5 

                                                 

5 BSBC establish that a price is considered as real if it must have meet at least one of the following criteria 

1. It is a price at which the institution has conducted a transaction. 2. It is a verifiable price for an actual 

transaction between other arms-length parties. 3. It is a price obtained from a committed quote made by 

the bank itself or another party. 4. It is a price that is obtained from a third-party vendor.  (Minimum capital 

requirements for market risk -BCBS (2019). Section MAR31, paragraph 31.12) 

     SP > 0.8 and      KS < 0.09 

0.8 < SP < 0.7   or   0.12 < KS < 0.09 

     SP < 0.7     or      KS > 0.12 

Trading desks are entitled to 

go for the IMA 

Trading desks are not 

considered out-of-scope to go 

for the IMA, but are subject to 

a capital surcharge 
Trading desks are entitled to 

go for the IMA 
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prices that are representative of each risk factor.  Once a price is account as real, it shall 

serve as an observation of every risk factor for which is representative. 

Regarding the modellability, where we focus on, FRTB, in short, sets the following 

requirements that any risk factor has to satisfy to be considered as modellable: 

1) At least, 24 observable real prices per year during the term where ES bank’s model 

has calibrated without more than an observation per day. Moreover, on 12 

previous months cannot have passed a 90 days period where less than 4 real price 

observations. This should be checked monthly. 

2) Alternatively, banks can isolate at least 100 observable real prices over the 12 

previous months. 

The importance of an efficient assessment of modellable and non-modellable risk factors 

(MRF and NMRF) lies in the impact that NMRFs have in the IMA capital charge. While 

Modellable Risk capital charge is based on aggregating ES measure across a number of 

scenarios, Non-modellable Risk Factors will be capitalized individually using stress test 

scenarios without diversification. No diversification is translated into extra capital to be 

held.  Last year, The International Swaps and Derivatives Association (ISDA), found in 

a Quantitative Impact Study (QIS) that capital associated with NMRF is excessive, being 

4.66 timed the ES component of the FRTB IMA capital (ISDA-GFMA-IIF, June 2018). 

This links with the following section where it is introduced the IMCC requirements. 

2.2.3. IMCC Calculation 

 

IMCC calculation is the subsequent step once Backtesting and PLAT have been 

successfully passed. As mentioned before, ES-based metric is currently used to capturing 

market risk, being carried out, in this research, into the historical simulation model, in 

order to simplify the process. This approach uses the empirical distribution of variations 

time series to generate the related risk metric.  

Under the historical simulation model, past variations are applied to a base scenario, 

producing stress scenarios and therefore obtaining Profit and Loss (P&L6) values. 

                                                 
6 P&L: profit and losses vector computing from simulating the performance of the current positions held, 

against historical market movements and compute the difference against base scenario. 
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Calculating ES implies using the 97.5
th percentile one-tailed confidence level of the P&L 

distribution.  

 

As mentioned before, results are going to be reported from two perspectives: PLAT and 

IMCC. Thus, it is important to underline the differences in P&L computing for PLAT 

requirement and P&L for IMCC.   

 

1. In the first case, variations for PLAT metrics are computed for one-day intervals 

to shock each risk factor. They have to be calculated in a 12-month window and 

reviewed on a quarterly basis.   

2. In the other case, IMCC, base liquidity horizon7 is established of 10 days, that it 

means shocking all the risk factors by computing variations for 10 days.  They 

have to be calculated in a 12-month window and on a daily basis. 

 

Following the outline of the document, in the following section, we move into the 

Practical Framework (Section 3) where it is map out the essential parties of the research, 

the inputs and methodologies needed (Points 3.1 and 3.2) and the final output (Point 3.3). 

Methodologies needed, refer to this paper aims to set out:  different methods to perform 

the modellability assessment of IR volatility surfaces, in order to reduce, as much as 

possible, the amount of non-modellable risk factors by determining how a NMRF can be 

explained by a modellable risk factor.  

 

3. Practical framework 

 

In this section, the main stages that make up the experimental part of the document are 

described. Firstly, we introduce in point 3.1 an overview of the essential inputs of our 

empirical research. Continuing in the following point, 3.2, it is displayed and developed 

                                                 

7 Basel Committee on Banking Supervisions defines Liquidity Horizon as the time assumed to be required 

to exit or hedge a risk position without materially affecting market prices in stressed market conditions. 

(Minimum capital requirements for market risk -BCBS(2019).Section MAR10, paragraph 10.20) 
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the methodological proxies applied. In the ending point 3.3, we summarized the results 

in order to compare the different techniques implemented. 

 

3.1. Inputs 

 

This point focusses on the key inputs that have been necessary in order to develop the 

research properly. First, we described the Stochastic Volatility Model implemented 

(3.1.1), justified by the emerging of the new negative interest environment and for being 

one of the models most favoured by the industry in the context of interest rate derivatives. 

Secondly, volatility market data retrieving through the previous model is explained step 

by step (3.1.2), pointing out the main features of volatility surfaces that we require for 

our objective. Finally, volatility data (3.1.3) is characterized in accordance with the 

purpose of the research, modellability assessment under FRTB. 

 

3.1.1. Stochastic Volatility Model 

 

Before describing the data-sets included in the paper, a brief introduction will be given to 

explain the new volatility conventions in negative interest environment and the 

consequences on the models that have been traditionally used by the industry. 

Negative interest rates break down any valuation formula that is based on terms that only 

contemplate positive forward rates, such as logarithm in the Black's model. As a result, 

current negative interest rates require modified lognormal models, as Shifted SABR, 

widely used by practitioners, and which has been implemented in this research. 

Furthermore, this type of model is able to handle another drawback that characterizes 

Black’s model and any traditional one-factor interest rate models too. It is related to the 

assumption of the independence of implied volatility (𝜎𝐵) from the value of the strike (𝐾) 

and the forward rate (𝑓), which is not consistent with the well-known market volatility 

smiles or skew. This concept gives the name to the reliance between implied volatility 

and its strikes. This model was originally proposed by (Hagan et al.,2002), in this original 

form, Stochastic Alpha Beta Rho model, (SABR). It is a two-factor stochastic volatility 

model, that provides an approximation formula for the implied volatility. This classic 

model only allows non-negative rates, due to this, Shift SABR model takes on meaning 
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by replacing the forward rate, 𝑓 , with a shifted forward rate 𝑓 + 𝑠. The shift parameter 

𝑠, is a positive constant that avoids forward rates and strikes going down to 0. All 

expression of classic SABR model are the same for the shifted SABR model, by adding 

the displacement parameter to the forward rate and to the strike.  

In the displaced SABR model, the underlying instantaneous forward rate, 𝑓𝑡 and its 

instantaneous volatility 𝜎𝑡, is modelled as: 

 

            𝑑(𝑓𝑇 + 𝑠)  = 𝜎𝑇 ⋅  (𝑓𝑇 + 𝑠)
𝛽𝑑𝑊𝑇 (2.a) 

            𝑑𝜎𝑇  = 𝜈𝑇 ⋅ 𝛼𝑇 ⋅  𝑑𝑍𝑇 (2.b) 

Where: 

• 𝑓𝑇 is the forward of the underlying cap rate for expiry, or fixing at T.  

• 𝛼 may be thought of as the volatility of 𝑓𝑇, related to the at-the-money volatility 

• 𝛽 controls the lognormality of the forward evolution, 𝛽 =1 represents a stochastic 

lognormal model, and 𝛽 = 0 represents a stochastic normal model. 

• 𝜈𝑇 is the volatility forward volatility, the volatility of 𝜎𝑇 

• 𝑑𝑊𝑇 and 𝑑𝑍𝑇 are standard Brownian motions under the terminal measure 𝑄𝑇 , 

the drivers for 𝜎𝑇 and 𝑓𝑇, respectively. This also means 𝜎𝑇 and 𝑓𝑇 are martingales 

under Qt.  

 

Allowing the relation that prices and market smiles have in reality, moving in the same 

direction, the forward and the volatility are correlated as follows: 

 

𝐸𝑄
𝑇
[𝑑𝑊𝑡 ⋅  𝑑𝑍𝑡] = 𝜌𝑑𝑡. 

     (3) 

 

Where 𝜌 is the correlation between the two above Brownian motions. 

 

Financially speaking, 𝛼 determines the overall level of at the money forward volatility; 𝜌 

also manage the skew shape and 𝜈 , volatility of volatility, is a measure of convexity. 

Figure 2 graphs these effects. 
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Figure 2 Efects of shifted SABR parameters 

 

 

 

 

For our purposes, the parameter 𝛽 is considered as a fixed value for simplicity. The 

displacement 𝑠 should be selected high enough to prevent values of 𝑓 and K falling below 
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• The initial volatility:  𝛼 

•The leverage: 𝜌 

• The volatility of volatility:  𝜈  

 

The natural bounds of the parameters are:   𝛼 >  0, −1 ≤ 𝜌 ≤  1,   𝜈 >  0. 

 

SABR model provides an estimate of the implied volatility curve which is used as an 

input in other pricing models such as Black’s model. Consequently, giving the implied 

Black volatility there are many available analytic approximations.  

 

The implied volatility approximation applied in this paper, 𝜎𝐵(𝑓,𝐾), following (Hagan 

et al.,2002), adding the shift parameter, is given by: 

 

𝜎𝐵(𝑓,𝐾)  =

𝛼⋅{1+[
(1−𝛽)2

24

𝛼2

((𝑓+𝑠)(𝐾+𝑠))
1−𝛽+

1

4
⋅

𝜌⋅𝛽⋅𝜈⋅𝛼

((𝑓+𝑠)(𝐾+𝑠))
1−𝛽
2

+
2−3𝜌2

24
𝜈2]𝑇}

((𝑓+𝑠)(𝐾+𝑠))
1−𝛽
2 [1+

(1−𝛽)2

24
ln(

(𝑓+𝑠)

(𝐾+𝑠)
)
2
+
(1−𝛽)4

1920
ln(

(𝑓+𝑠)

(𝐾+𝑠)
)
4
]

⋅
𝑧

𝑥(𝑧)}
  (4.a) 

𝑧 =  
𝜈

𝛼
((𝑓 + 𝑠)(𝐾 + 𝑠))

1−𝛽
2 ln

(𝑓 + 𝑠)

(𝐾 + 𝑠)
 

 

(4.b) 

𝑥(𝑧) = ln (
√1− 2𝜌 𝑧 + 𝑧2 + 𝑧 − 𝜌

1 − 𝜌
) 

(4.c) 

 

 

In the case of at-the-money (ATM) option, K = f, the formula simplifies to: 

 

         𝜎𝐴𝑇𝑀 =
𝛼

(𝑓+𝑠)1−𝛽
⋅ {1 + [

(1−𝛽)2

24

𝛼2 

(𝑓+𝑠)2−2𝛽
+
1

4

𝜌⋅𝛽⋅𝜈⋅𝛼

((𝑓+𝑠)(𝐾+𝑠))
1−𝛽 +

2−3𝜌2

24
𝜈2] ⋅ 𝑇}  (5) 

  

Once the free parameters are calibrated, the implied volatility is a function only of the 

forward price  𝑓  and the strike K. 
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3.1.2. Volatility Market Data 

 

As shifted SABR calibration lies beyond the scope of this paper8, for the retrieving data 

that has been implemented along with the practical framework, we have been based on 

the calibration of SABR parameters obtained from external vendors. These parameters 

correspond to values of 𝜌𝑡 , 𝜈𝑡 , 𝜎𝐴𝑇𝑀,𝑡 , 𝛽9, 𝑓𝑡 for one-year historical series, that covers the 

period from January 31, 2018 to January 31, 2019. 

   

Data-set provided is related to cap10 volatilities for EURIBOR 6M (at fixed Strikes) along 

the following range of maturities(years): {0.25, 0.5, 0.9, 1,3,5,10, and 20}.  

 

Parameter 𝛼𝑡 has been calibrated using the values of those parameters, applying the 

following cubic polynomial, obtained as of ATM formula (see Equation (5)). 

 

(
(1−𝛽)2

24⋅(𝑓+𝑠)2−2𝛽
𝑇) 𝛼3 + ( 

𝛽⋅𝜈⋅𝜌

4⋅(𝑓+𝑠)1−𝑏𝑒𝑡𝑎
𝑇)𝛼2 + (1 +

2−3⋅𝜌2

24
𝜈2𝑇) 𝛼 − 𝜎𝐴𝑇𝑀 ⋅ (𝑓 + 𝑠)

1−𝛽 = 0  
 

(6)  

 

(West. G,2005) justified along with his research, that this equation may have more than 

one real root for alpha and his proposal is using the smallest positive one. With this in 

mind and following (Pineda. A, 2017) and (Tsvetanova. E, 2017), we decided to 

implement it. Furthermore, the equation may have imaginary solutions, so in this case, 

we just keep the smallest real part. It should be mentioned that some cases are handled to 

obtain a more consistent calibration of this parameter. 

 

By computing those parameters as inputs through shifted SABR model, we have built cap 

volatility surfaces referenced of EURIBOR 6M, replicating implied market volatilities 

quotes, related to the previously tenors and the following range of strikes: 

                                                 
8 For a further analysis about SABR calibration please see (Pineda. A, 2017) and (Tsvetanova. E, 2017). 

9  As mentioned before, 𝛽 is considered as fixed value for simplicity, the same as the parameter 𝑠. Them 

are fixed, respectively, on 0.7, obtained from external vendors, and 0.03, according industry conventions. 

10  The concept of caps through this research, is related to a type of European option which is the sum of 

caplets. Each caplet is the same type option too, on the 6-month Euribor rate.  
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 {ATM, -1, -0.5, +0.5, +1, +1.5, +2, +2.5, +3, +3.5, +4, 4.5, +5} 

 

In our case, we have built our volatilities surfaces within floating strikes, instead of fixing, 

in order to provide a more reliable comparison between volatilities at different times. To 

further understand this reason and strengthen it, Figure 3 displays the temporal evolution 

of EURIBOR 6M fixings between 2006 and 2019 with maturity 10 years. According to 

with the figure, not work with floating strikes implies applying historical variations 

related deep out of the money strike, on today variations related to ATM strike. 

 

Figure 3 EURIBOR6M fixing historical series between 2006 and 2019 

 

Source: Bloomberg 

 

As it will report later in this section, we are going to compute volatilities variations, due 

to this, it is important to generalize all the strikes stablishing each ATM strike at the 

relating forward rate for each time. From this point, it is applied a granularity11 of 

(∓ 0.5%) to every ATM strike, finally obtaining the entire volatility surfaces as follows:  

 

 

 

                                                 
11 It is important to notice that definition of a higher level of granularity in the structure of the volatility 

smile is restricted to the granularity defined in the modellability map (see 3.1.3). 
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Figure 4 Generating Floating Strikes 

                                    𝒇 = 𝟏. 𝟔𝟑% 

 

0,63% 1,13% ATM 2,13% 2,63% 3,13% 3,63% 4,13% 4,63% 5,13% 

 

 

 

 

 

 

Notes: Forward rate corresponds to the underlying of a cap EURIBOR 6M maturity 10 years 

 

 

3.1.3. Modellability Map 

 

Recalling the purpose of this research, modellability assessment under FRTB, once the 

entire volatility smile has been achieved, to address the core of the practical framework, 

we have had to choose some strikes as modellable risk factors. The selection of these 

strikes has been made under the premise that the highest trading concentration occurs 

close to ATM, at the same time we seek to provide results from a conservative view. In 

this way, a balance is achieved between real and conservative situation. Only three strikes, 

due to a parametrization proxy, which will be explained later (Point 6 on Section 3.2.2.3), 

have been set as a modellable risk factor of the full volatility surface computed through 

SABR model: ATM-0.01, ATM and ATM+0.01.  

 

Figure 5 Modellability implementation 

 

 

By this way, we manage to explain complete smiles by means of a conservative scenario, 

that is, only 3 modellable risk factors, and indeed to be able to make an extrapolation 

analysis for deep out of the money cap options. 

 

 

ATM-0.01 ATM-0.005 ATM ATM+0.005 ATM+0.01 ATM+0.015 ATM+0.02 ATM+0.025 ATM+0.03 ATM+0.035 ATM+0.04 ATM+0.045 ATM+0.05

MODEBLLABILITY 

SURFACE
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3.2. Methodological Proxies 

 

As mentioned earlier in this research, a proper risk factor selection is one of the most 

important parts of risk management, in terms of the quantity of capital required and the 

possibility to compute it going through IMA. According to some modellability 

specifications (see point 2.2.2), each risk factor selected must be classified as Modellable 

or Non-modellable with their respective impact on market risk capital requirements. In 

order to reduce the IMA capital charge of Non-modellable risk factors, banks are focused 

on looking for ways to decomposite risks into modellable and non-modellable.  

 

In section 3.2.1, we will describe the common essential steps regarding the modellability 

assessment. Once the common framework has been established, in section 3.2.2 we will 

describe different methodologies that shall be considered to perform the modellability 

assessment of IR volatility surfaces.  

 

3.2.1. General Framework 

 

Before getting to know the common essential steps regarding the modellability 

assessment, it is important to draw a distinction between the three key parties involved in 

the whole process: Proxied Risk Factor Construction(1) based on the above section (3.1), 

PLAT perspective  (2)  and IMCC perspective (3), both linked to the evaluation of the 

results of research purpose.  

 

In order to summarize the whole process, the modellability assessment steps followed 

along this research are summarised in  Figure 6:  
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Figure 6 Modellability steps 

 

Notes: At the second step, squares marked with an asterisk are related to the NMRF partially modelled by approach methods implemented. 

 

1. Proxied Risk Factor Construction:  

 

This party contains first and second steps. It is the crucial one involved in the process 

because NMRF approaches in terms of MRF have been made based on one-day historical 

variations MRF series. In this sense, before starting the process, we should calculate these 

historical variations of the volatility surface.  

 

As mentioned in the input section 3.1.2, we have built our volatilities surfaces along with 

floating strikes rates through shifted SABR parameters already calibrated.  Working in 

this line, it has been set out as Risk Factors each original implied volatility:  

𝜎𝑡(𝐾, 𝑇), where 𝐾 refers to the floating strike, 𝑇 refers to the maturity of the option and 

𝑡 is referred to  asthe scenario of a given date. 
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The variation is computed, for each Risk Factor, in a multiplicative way: 

 

∆𝜎𝑡,𝑡−1(𝐾, 𝑇) =
𝜎𝑡(𝐾, 𝑇)

𝜎𝑡−1(𝐾, 𝑇)
− 1, 

𝑖 = {ATM,−1,−0.5,+0.5,+1,+1.5,+2,+2.5,+3,+3.5,+4, 4.5,+5} 
(7) 

 

The decision of computing the modellability methodologies as of 1-day variation series 

has been taken in order to obtain accurate results with lower error rate. 

 

Once the original multiplicative variations of each Risk Factor between scenarios 𝑡 and 

 𝑡 − 1  have been calculated, the modellability assessment process begins with the first 

step.  

 

The first step consists on to split risk factors into modellable and non-modellable, 

according to of what has been exposed in Section 3.1.3, (See  Figure 5 for the selection 

of modellable and non-modellable risk factors). Those modellable floats strikes should 

be set up as modellable risk factor itself, that is, using its own historical series 

(∆𝜎𝑡,𝑡−1(𝐾, 𝑇) =   ∆𝜎𝑡,𝑡−1(𝐾, 𝑇). For the non-modellable ones, we will use proxy 

methodologies to make them partially modellable, thus, it is not possible to apply its 

historical series, leading us to use an approach based on MRF variations, ∆𝜎𝑡,𝑡−1(𝐾, 𝑇) ≅

∆𝜎𝑡,𝑡−1
∗ (𝐾, 𝑇)). 

All methods implemented are based on how a non-modellable risk factor can be explained 

by a modellable risk factor and we have focused on the use of proxies over the historical 

variations computed previously. As we can see in Section 3.2.2, we have considered the 

following alternatives options, which will be covered in the later: 

 

• Interpolation approach: Linear Interpolation and Splines Interpolation 

• Statistical approach: Simple Linear regression and multi-factor model  

• Parametrization approach: Jacobian 

 

The Second step is to re-calculate the volatility surface, but now every Risk Factor could 

be considered as modellable. Risk Factor (original value) in 𝑡 − 1 is stressed by shocking 
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it with the Proxied Risk Factor Variations between 𝑡 and 𝑡 − 1 so that variations of risk 

factors are returned into volatilities, obtaining the Proxied Risk Factor: 

 

𝜎𝑡
∗(𝐾, 𝑇) = 𝜎𝑡−1(𝐾, 𝑇) ⋅ (∆𝜎𝑡,𝑡−1

∗ (𝐾, 𝑇) + 1) (8) 

 

This is continued with computing the Stress Risk Factor Variations in order to obtain 

specific proxied variations requested to IMCC perspective, addressed further in (party 3). 

They are the proxied multiplicative variations with a liquidity horizon of 𝐿𝐻 = 10 days 

with respect to the Proxied Risk Factor.  

 

By this way, we situate at the end of the (party 1) in order to get started with the two 

perspectives: PLAT and IMCC. But first, in order to summarise what is exposed above 

and make it easier to follow the text, Table 2 sums up the principal variables relating to 

the party (1): 

 

Table 2 Main variables summary at Proxied Risk Factor Construction 

𝜎𝑡(𝐾, 𝑇) Risk Factor obtained through the process explained in Section 3.1 

∆𝜎𝑡,𝑡−1(𝐾, 𝑇) 
Original Risk Factor Variation, computed in a multiplicative way between 

scenarios 𝑡 and 𝑡 − 1  

∆𝜎𝑡,𝑡−1
∗ (𝐾, 𝑇) 

Proxied Risk Factor Variation: For further information about the 

methodological proxies, please see section [3.2.2] 

𝜎𝑡
∗(𝐾, 𝑇) 

Proxied Risk Factor: the variations of risk factors are returned into 

volatilities. 

∆𝜎𝑡,𝑡−𝐿𝐻
∗ (𝐾, 𝑇) 

Stress Risk Factor Variations: proxied multiplicative variations with a 

liquidity horizon of 𝐿𝐻 = 10  

 

The third step is divided into two branches that make up the other two parties involved 

in the modellability assessment process: PLAT perspective (2) and IMCC perspective (3) 

 

2. PLAT Perspective:  

 

There is the essential point to determine the endorsement or not to go through IMA to 

capital requirement calculation. As has been explained in the theory part (2.2.2), under 

this view, FRTB states that for PLAT requirements, one-day variation series must be 
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calculated to generate stress scenarios, which are called P&L vectors in this context. P&L 

vectors would result from: 

 

  𝜎𝑡0,𝐻𝑃𝐿
∗ (𝐾, 𝑇) = 𝜎𝑡0−1

∗ (𝐾, 𝑇) ⋅ (∆𝜎𝑡0,𝑡0−1
∗ (𝐾, 𝑇) + 1) (9) 

 𝜎𝑡0,𝑅𝑇𝑃𝐿(𝐾, 𝑇) = 𝜎𝑡0−1(𝐾, 𝑇) ⋅ (∆𝜎𝑡,𝑡−1(𝐾, 𝑇) + 1) (10) 

  

The base scenario always corresponds to volatility from the day before. 

 

Specific features under this perspective among data implemented are gathered in the 

following notation:   

 

Table 3 Main variables summary in PLAT perspective 

𝜎𝑡0−1(𝐾, 𝑇) PLAT Base Scenario 

𝜎𝑡0,𝐻𝑃𝐿
∗ (𝐾, 𝑇) PLAT HPL Scenario: Volatility surfaces stressed by shocking the PLAT Base 

Scenario. 

𝜎𝑡0,𝑅𝑇𝑃𝐿(𝐾, 𝑇) PLAT RTPL Scenario: Original volatility at time 𝑡0 

 

3. IMCC Perspective:  

 

One of the components of capital requirements once a bank has the approval to go through 

IMA. This component requests the specific features about the manner of computing P&L 

vectors explained in a previous section (2.2.3).  

 

As FRTB sets for capital purposes, to later ES measurement, base liquidity horizon is 

established of 10 days. In this sense, once new modellable volatility surface is obtained 

from the one-day variation series (𝜎𝑡
∗(𝐾, 𝑇)), it is necessary to calculate variations with 

10 days liquidity horizon: 

   

∆𝜎𝑡,𝑡−𝐿𝐻
∗ (𝐾, 𝑇) =

𝜎𝑡
∗(𝐾, 𝑇)

𝜎𝑡−10
∗ (𝐾, 𝑇)

− 1 (11) 

 

These new 10 days variations are used to generate stress scenarios  
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𝜎𝑡,𝑡−𝐿𝐻
∗ (𝐾, 𝑇) = 𝜎𝑡0(𝐾, 𝑇) ⋅ (∆𝜎𝑡,𝑡−𝐿𝐻

∗ (𝐾, 𝑇) + 1) (12) 

 

The base scenario always corresponds to volatility from the current day t. In this case, 

base scenario matches with the most recent day of the sample:    

    

𝜎𝑡0(𝐾, 𝑇) = 𝜎31/01/ 2019(𝐾, 𝑇)   
  

 

These specific features are summarised with the following notation in Table 4: 

 

Table 4 Main variables summary in IMCC perspective 

𝜎𝑡0(𝐾, 𝑇) IMCC Base Scenario 

𝜎𝑡,𝑡−𝐿𝐻
∗ (𝐾, 𝑇) IMCC Stress Scenario: Stress volatility surfaces by shocking the IMCC Base 

Scenario with the Stress Risk Factor Variations. 

 

Even though we have not computed the capital to be held under IMA for reasons of data 

resources, as we have only worked with one type of Risk Factor, we introduce a brief 

outline of the ES measure methodology. Under this premise, computing the amount of 

capital required makes little sense and is not relevant.  

 

Firstly, each P&L vector has been ranked in descending order and comparing with the 

97.5th percentile, it should be selected those values larger or equal to that threshold.  ES 

measure is computed as a mean, the sum of those extreme values divided by the numbers 

of exceptions.  

 

Subsequently, to shock every risk factor to generate stressed scenarios under each 

perspective, P&L vectors must be calculated. Although the most accurate methodology 

would be to apply a full revaluation methodology, there exists another alternative that 

allows us to approximate the results, that is to be the Taylor approach. In order to avoid 

confusion, both pricing approaches are presented, although only the Taylor approach is 

the selected one in this document. 

 

1. Full revaluation: involves evaluating the pricing formula to the new stress scenario 

generated, deriving new stressed cap prices. After that, it is calculated the 
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differences between cap prices obtained in the stress and in the base scenario.  In 

this way P&L vectors are reached, allowing to observe the change in the value for 

the total portfolio. 

 

2. Taylor Approximation: it is related to explain price variations of a financial 

product through the sensitivities of the product and the variations of the risk 

factors. In our case, we will be interested in finding out how the values of caps 

have changed before variations on the volatility surface. To measure this effect, 

we have used vega sensitivity: 

𝑣𝑒𝑔𝑎 =
𝜕𝑉𝐵,𝑐𝑎𝑝(𝑇, 𝐾, 𝑓, 𝜎𝐵)

𝜕𝜎𝐵(𝑓, 𝐾)
 (13)  

 

As explained in the previous paragraph, this document is only focused on variations with 

respect to the volatility parameter and there is no analysis with respect to the variations 

of any other risk factors involved, such as implied forward rate (sticky strike approach is 

assumed). Applying Taylor theorem, which is a series expansion to the price function of 

a cap with respect to the volatility parameter, 𝑓(𝑥) = 𝑉𝐵,𝑡(𝑇, 𝐾, 𝑓, 𝜎𝐵,𝑡,𝑡−𝐿𝐻
∗ ), the price of 

an instrument can be expressed up to first order as follows: 

 

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓
′(𝑥0 + 𝑑𝑥) ⋅ 𝑑𝑥 + 𝑂(ℎ) 

 

Where 𝑥 in our case is related to the volatility parameter.  

𝑥 = 𝑥0 + 𝑑𝑥 → 𝜎𝐵,𝑡
∗ (𝐾, 𝑇) = 𝜎𝐵,𝑡0(𝐾, 𝑇) ⋅ (∆𝜎𝐵,𝑡,𝑡−𝐿𝐻

∗ + 1) 

To interpret this in our context:  

𝑉𝐵,𝑡(𝑇, 𝐾, 𝑓, 𝜎𝐵,𝑡
∗ ) = 𝑉𝐵,𝑡(𝑇, 𝐾, 𝑓, 𝜎𝐵) + ∆𝜎𝐵,𝑡,𝑡−𝐿𝐻

∗ ⋅ 𝑣𝑒𝑔𝑎𝑡0 (14) 

Finally, P&L could be approached as follows 

𝑃&𝐿𝑡 = 𝑉𝐵,𝑡(𝑇, 𝐾, 𝑓, 𝜎𝐵) −  𝑉𝐵,𝑡(𝑇, 𝐾, 𝑓, 𝜎𝐵) 

= ∆𝜎𝐵,𝑡,𝑡−𝐿𝐻
∗ ⋅ 𝑣𝑒𝑔𝑎𝑡0 

 

(15) 

 

In all the test cases performed in this document, Taylor Approximation has been used for 

each risk factor instead of Full Revaluation assuming a unitary value of the vega 

sensitivity. 
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3.2.2. Theoretical Framework 

 

This point develops, in a general way, the several proxy methods that have been 

implemented, in order to meet modellability requirements under FRTB and to reach 

accurate approaches of NMRF in terms of the modellable ones too.  These methodologies 

are computed when we are situated at Proxied Risk Factor construction (1), steps one and 

two of the modellability assessment process. These are applied to Non-Modellable Risk 

Factor variation (∆𝜎𝑡,𝑡−1(𝐾, 𝑇)), in order to obtain the Proxied Risk Factor Variation 

(∆𝜎𝑡,𝑡−1
∗ (𝐾, 𝑇)). We have implemented a total of 5 methodologies, although there are 6 

described below, categorized in three broad groups: Interpolation approach (3.2.2.1), 

Statistical Modelling approach (3.2.2.2) and Parametrization approach (3.2.2.3). It is 

worth mentioning that knowing the specific strengths and weak points of each proxy, we 

decided to sum them up at the end of the results section (See Table 8), in order to not 

anticipate the final facts. 

 

3.2.2.1 Interpolation approach 
 

 

We are going to implement two types of interpolations: Linear Interpolation (1) and 

Splines interpolation (2). In an overview, them consist on interpolating the non-

modellable strikes using the modellable ones, applying specific functions related to each 

interpolation type, which fit the given data.  Linear Interpolation matches is a simple 

method to implement, that use a single polynomial on a closed interval. Splines 

interpolation, for its parts, divide the approximation interval into a group of subintervals 

and construct polynomials on each one. It has been applied in order to provided 

interpolation results from another different alternative and to compare each other. 

 

1. Linear Interpolation: curve fitting method using linear polynomials. 

 

Methodology  

• We have N intervals from N+1 increasing data points:  𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 

• Each interval defines a linear polynomial:  𝑓𝑖(𝑥) = 𝑐𝑖𝑥 + 𝑑𝑖  𝑤ℎ𝑒𝑛 𝑥 ∈ [𝑥{𝑖−1}, 𝑥𝑖] 

• Two parameters to be solved in each interval:  𝑦 =  𝑦𝑖  +  (𝑥 − 𝑥𝑖)
𝑦𝑖−𝑦{𝑖−1}

𝑥𝑖−𝑥{𝑖−1}
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• For those non modellable risk factors lower or higher than the give modellable risk 

factor, it is setting the nearest one. 

         

2. Cubic Spline Interpolation: Splines are usually cubic piecewise polynomial curves  

  

Methodology  

• We have N intervals from N+ 1 increasing data points: 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁  

• Each interval defines a cubic polynomial:  

𝑓𝑖(𝑥) = 𝑎𝑖𝑥
3  +  𝑏𝑖𝑥

2 + 𝑐𝑖𝑥 + 𝑑𝑖  𝑤ℎ𝑒𝑛 𝑥 ∈ [𝑥{𝑖−1}, 𝑥𝑖]. 

• 4 N parameters to be solved. 

 

 Conditions 

1. The first and last splines must pass through its respective first and endpoint: 

𝑓(𝑥) must interpolate the data points  

𝑓𝑖(𝑥𝑖) = 𝑦𝑖     and     𝑓𝑖(𝑥𝑖−1) = 𝑦1−1  

2. 𝑓′(𝑥) must be continuous at each internal knot 

3. 𝑓′′(𝑥) must be continuous at each internal knot 

4. Natural spline: 𝑓𝑜
′′(𝑥0) = 0 =  𝑓𝑁

′′(𝑥𝑁) The curvature must be specified at the 

endpoints. 

 

3.2.2.2 Statistical modelling approach  
 

In this point, we are also viewing two types of this statistical modelling approach: Simple 

Linear Regression Model (3) and Multi-factor model based on PCA analysis (4). 

Univariate Linear regression is widely used in social science to describe relationships 

between variables and provide results in a very intuitive way. The multi-factor model 

helps us to complete this analysis, in the sense, it allows explaining NMRF by mean of 

more than one MRF, by contrast with Univariate Linear Regression Model. 
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3. Simple Linear Regression Model 

 

In statistics, this is a mathematical model for assessing the value of one dependent 

variable from the value of one given independent variable. It is represented by the well-

known equation: 

𝑌𝑖 = 𝛼𝑖 + 𝑋𝑖 ⋅ 𝛽𝑖 + 𝑢𝑖 ,    

 𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑅𝑖𝑠𝑘 𝐹𝑎𝑐𝑡𝑜𝑟𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑠𝑢𝑟𝑓𝑎𝑐𝑒  
  (16) 

 

The dependent variable, 𝑌𝑖, match with those Non-Modellable Risk Factors (NMRF) and 

the selection of the independent variable, 𝑋𝑖, has relied on settle the most correlated 

modellable risk factor as the best proxy, as will be explained hereunder.  

 

Methodology 

The linear regression in our context, in scalar form, would be: 

 

𝑁𝑀𝑅𝐹𝑖   = 𝛼𝑖 +𝑀𝑅𝐹𝑖 ⋅ 𝛽𝑖 + 𝑢𝑖  (17) 

 

𝛼𝑖 𝑎𝑛𝑑 𝛽𝑖, the level (intercept) and the steepness of the regression line respectively, are 

unknown fixed parameters, which are estimates applying Ordinary Least Squares (OLS).  

OLS is based on an objective function 𝑺(�̂�𝑖 , �̂�𝑖) that seeks to minimize the unknown error 

term 𝑢𝑖 as much as possible.  

 

By Ordinary Least Squares (OLS) method: 

 

• 𝑢𝑖  is defined by: 𝑢𝑖 = 𝑒(𝛽) = 𝑦𝑖 − (�̂�𝑖𝑖 + 𝑥𝑖 �̂�𝑖) = 𝑦𝑖 − �̂�𝑖, so the sum of the 

square of the residue is 𝑆(�̂�𝑡 , �̂�𝑖) = ∑ (𝑢𝑖)
2 = ∑ (𝑦𝑖 − �̂�𝑖)

2 𝑛
𝑖=1  𝑛

𝑖=1  . 

• 𝛼𝑖 𝑎𝑛𝑑 𝛽𝑖  are estimated through �̂�𝑡 , 𝛽�̂� , such that 𝑆(�̂�𝑡 , �̂�𝑖) = min
𝛼,𝛽

𝑆(�̂�𝑡 , �̂�𝑖). 

 

Minimizing the function requires computing the first order derivatives with respect to 

�̂�𝑡 , �̂�𝑖 and set them equal to 0. 
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𝜕𝑆(�̂�𝑖 , �̂�𝑖)

𝜕�̂�𝑖
=  −2∑(𝑦𝑖 − (�̂�𝑖 + 𝑥𝑖 �̂�𝑖)) = 0

𝑛

𝑖=1

 

           
𝜕𝑆(�̂�𝑡 , �̂�𝑖)

𝜕�̂�𝑖
=  −2∑(𝑦𝑖 − (�̂�𝑖 + 𝑥𝑖 �̂�𝑖)) = 0

𝑛

𝑖=1

 

          (18.a) 

           (18.b) 

 

It is a linear system of two equations with two unknown parameters, which can be solved 

as follows: 

 

➢ For alpha: �̂�𝑖 =  ∑ (𝑦𝑖 − 𝑥𝑖  �̂�𝑖)−→ �̂�𝑖 = �̅� −
𝑛
𝑖=1 �̂�𝑖 ∗ �̅� 

➢ For beta :  �̂�𝑖 =  
∑ (𝑦𝑖−�̅� )
𝑛
𝑖=1

∑ (𝑥𝑖−�̅� )
𝑛
𝑖=1

=
∑ (𝑦𝑖−�̅� )⋅∑ (𝑥𝑖−�̅� )

𝑛
𝑖=1

𝑛
𝑖=1

∑ (𝑥𝑖−�̅� )
𝑛
𝑖=1

2 =  
𝐶𝑜𝑣(𝑥,𝑦)

𝑉𝑎𝑟(𝑥)
 

(19.a) 

(19.b) 

 

The second derivatives of two functions must be positive to ensure that �̂�𝑖 𝑎𝑛𝑑 �̂�𝑖 

minimize the sum of squared residuals. 

 

4. Multi-factor model based on PCA analysis 

 

In essence, is the same as the statistic model above, but involving more than one 

explanatory variable. A multi-factor model is represented by the following equation: 

 

𝑌𝑖 = 𝛼𝑖 + 𝑋1 ⋅ 𝛽1 + 𝑋2 ⋅ 𝛽2 +⋯+𝑋𝑁 ⋅ 𝛽𝑁 + 𝑢𝑖 

 

Where 𝑌𝑖 is related to each NMRF, and 𝑋𝑖 are related to the three modellable risk factors. 

 

 Using this model could trigger two setbacks: 

  

➢ Multicollinearity: refers to existing possible linear relationships between 

model regressors. 

➢ Dimensionality: refers to having many variables but it is possible that not all 

variables are equally important, not submitting a great deal of information on 

the variable that we want to explain through the regression model.  
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Because we have three modellable risk factors to explain each non-modellable, the second 

problem is not a reality, but to address the first one, we decided to introduce the Principal 

Components Analysis method (PCA). 

 

Principal Components Analysis method  

PCA is a feature extraction technique, where variables are combined in a linear way, 

explained at a larger stage, allowing for remove variables that provide little information 

to the model while preserving as much information as possible. Principal components are 

new variables that are constructed as linear combinations of the initial ones. 

The value-added ensuring from PCA is the independence between the new variables. 

 

Methodology   

For proper understanding, we sum up the manly concepts and variables involved in this 

technique.  

 

➢ The three modellable risk factors are included in a 𝑇 𝑥 𝑛 matrix 𝑿, where 𝑇 is the 

length of the sample used (one-year historical series) and 𝑛 are the number of 

independent variables (modellable risk factors). 

➢ 𝑉 is the covariance or correlation matrix of 𝑿. 

➢ Let 𝑾 be the orthogonal matrix of the eigenvectors of 𝑽, as 𝑽 is a symmetric 

matrix. 

➢ The principal components of 𝑽 are the columns of matrix 𝑷, the same size as 𝑿. 

By this way, 𝑿 has been transformed into a system of orthogonal variables, which 

are the volatility variations, 𝑷 =  𝑿𝑾. 

➢ Being W an orthogonal matrix implies that  𝑾−𝟏  =  𝑾’ (its inverse is equal to its 

transpose), so  𝑿 = 𝑷𝑾’, obtaining a representation of the original variables in 

terms of the principal components.  

 

Continuing with the methodology. Firstly, normalisation of all input variables so that each 

one of them contributes equally to the analysis. Computing eigenvalues, by solving the 
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characteristic equation12, and eigenvectors13 from correlation or covariance matrix, 𝑽, 

inasmuch as both are equivalent because of the normalisation. By this way, it is broken 

down into eigenvalues and eigenvectors the correlation or covariance matrix of the original 

variable matrix.  

Sorting out the eigenvalues from highest to lowest and choosing the k eigenvectors related 

with the k highest eigenvalues, we get the Principal Components in order of significance. 

This means to order the columns of 𝑾, being the first one which is associated with the 

largest eigenvalue of 𝑽. 

 

Each Principal Component14 is built as linear combinations of the initial variables being 

the coefficients each eigenvector.  

 

𝐶𝑃𝑛,𝑖 = 𝑤𝑛,𝑖 ⋅ 𝑋𝑖 + 𝑤𝑛,𝑖 ⋅ 𝑋𝑖 +⋯𝑤𝑛,𝑖 ⋅ 𝑋𝑖 

 

Where each 𝑤𝑛,𝑖  are the corresponding eigenvectors columns of the  𝑛 ⋅  𝑛  𝑾 matrix. So, 

the multifactorial model, where principal components are the explanatory variables, 

would be defined as: 

 

𝑌𝑖 = 𝛼𝑖 + 𝐶𝑃1 ⋅ 𝛽1𝑖 + 𝐶𝑃2 ⋅ 𝛽2𝑖 +⋯+ 𝐶𝑃𝑁 ⋅ 𝛽𝑁𝑖 + 𝑢𝑖 

 

In our context:    

 

𝑁𝑀𝑅𝐹𝑖 = 𝛼𝑖 + 𝐶𝑃1 ⋅ 𝛽1,𝑖 + 𝐶𝑃2 ⋅ 𝛽2,𝑖 + 𝐶𝑃3 ⋅ 𝛽3,𝑖  

(20)  

 

                                                 
12  The characteristic equation is defined as follows: |𝑿 − 𝝀𝑰| = 0, where I is the identity matrix. 

13  The eigenvectors are computed by resolving the following system: (𝑿 − 𝝀𝑰)𝒄 = 0, where 𝒄 contains the 

n variables. 

14 The existing PCA literature set the first three principal components as the necessary ones to explain 

almost the 90% of original variables variability. Within term structure of interest rate framework, these 

three components are related to the level, slope and curvature of the specified curve. 
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As applying PCA involves to use only a reduced set of the principal components, the 

selection has been done by computing the proportion of cumulative variance explained 

from the eigenvalues until reaching a certain level of explained variance. As a result: 

𝑿 ≈ 𝑷∗𝑾′∗ 

Where 𝑷∗ is the chosen principal components matrix and 𝑾′∗ corresponds to the 

eigenvectors matrix to each elected principal component. 

 

In our research we decided to include the three principal components, since the 

dimensionality problem is not a reality and using these three components implies that the 

model is explaining the 100% of the variance of the original variable matrix 𝑿. 

The estimation of the regression above has been reached using OLS too, so what was 

explained on the matter in the linear regression method applies here. 

 

For further details about this statistical methodology see (Carol Alexander,2008) 

 

3.2.2.3 Parametrization methods 

 

By contrast with previous methodologies, we have decided to implement this 

parametrization method. It consists on approaches variations of SABR parameters. By 

this way, we have implemented the Jacobian matrix (6) of SABR and it enables to obtain 

results based on a coherent volatility surface. Before introducing the Jacobian approach, 

it is described the SABR method (5), although we have not implemented. 

 

5. SABR 

 

In the case of establishing a reasonable amount of modellable risk factors, this approach 

shall be interesting. It is related to calibrate all the SABR parameters, using modellable 

points and obtaining the entire modellable volatility smile.   

 

Having only the three modellable risk factors mentioned before, the calibration of all the 

SABR parameters cannot be carried out, pulling us to compute a more conservative 

approach. This approach relies on using the Jacobian matrix of SABR function, 
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approached by means of the three modellable points considered throughout the research. 

It is explained below. 

It is worth mentioning, that if we were in a higher modellable environment, calibration of 

SABR could be done, but it would also mean that modellability no longer would be a key 

problem. 

 

6. Jacobian’s SABR 

 

This approach consists on using only modellable risks points and recalculates stressed 

scenarios for SABR parameters15 to obtain the entire modellable volatility smile. It is 

worth mentioning that given the different effects16 on the smile from the three parameters 

𝛼, 𝜌 and 𝜈 , a likeness can be made between PCA analysis described previously. Changing 

the parameter 𝛼 influences the level of the smile, 𝜌 impacts directly over the curve’s skew 

and 𝜈 controls the curvature. 

 

The aim is to approximate variations on SABR parameters applying the Jacobian matrix. 

This matrix is made up of the partial derivatives of the three SABR modellable volatilities 

respect to the parameters: 𝜌, 𝜈 and  𝛼. As mentioned in the data section, 𝛼 is a function 

of the rest of the parameters, 𝛼 = 𝑓( 𝜎𝐴𝑇𝑀, 𝜌, 𝜈, 𝛽), and can be extracted directly from 

𝜎𝐴𝑇𝑀.  In view of this relation, we decided to approach Jacobian computing first 

derivatives of the three modellable risk factors with respect 𝜌, 𝜈 and 𝜎𝐴𝑇𝑀, according to 

the parameterization implemented in the calibration of SABR, explained in the data point, 

and exploiting that ATM is set as a modellable risk factor. 

 

As mentioned earlier, due to this proxy, the election of the modellable risks across 

volatility surface strikes has been only three of them.  This way, we make sure that the 

Jacobian matrix is a square matrix, same numbers of parameters and modellable points.  

If the square matrix has non-zero determinant, then, it is possible to compute its inverse 

matrix. 

 

                                                 
15 Both parameters, 𝛽 and s, are assumed to be given constants, so derivatives with respect to them are not 

included. 
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The Jacobian matrix is a 𝑚 ⋅  𝑛  17 defined and arranged as follows: 

 

𝑱𝑺𝑨𝑩𝑹(𝝆,𝝂,𝝈𝑨𝑻𝑴) =

(

 
 
 
 

𝜕𝜎𝐴𝑇𝑀−0.01
𝜕𝜎𝐴𝑇𝑀

𝜕𝜎𝐴𝑇𝑀−0.01
𝜕𝜌

𝜕𝜎𝐴𝑇𝑀−0.01
𝜕𝜈

𝜕𝜎𝐴𝑇𝑀
𝜕𝜎𝐴𝑇𝑀

𝜕𝜎𝐴𝑇𝑀
𝜕𝜌

𝜕𝜎𝐴𝑇𝑀
𝜕𝜈

𝜕𝜎𝐴𝑇𝑀+0.01
𝜕𝜎𝐴𝑇𝑀

𝜕𝜎𝐴𝑇𝑀+0.01
𝜕𝜌

𝜕𝜎𝐴𝑇𝑀+0.01
𝜕𝜈 )

 
 
 
 

 
(21) 

 

Methodology: 

Finite Difference Method, specifically, Forward Difference Method has been applied to 

determine the entries of the matrix above. It must mention that this approach would be 

done by the closed-form formulas of each derivative, attaining more favourable results.  

 

A summary of the variables involved in this method is worded: 

 

Being 𝒇 ∶ ℝ𝒏 → ℝ𝒎 a function with as inputs the vector 𝝈 ∈  ℝ𝒏   that produces as output 

𝒇(𝝈) ∈  ℝ𝒎, carrying it out of our context: 

 

• 𝝈 ∈ ℝ𝒏: {Δσ𝐴𝑇𝑀,𝑡 , Δσ𝐴𝑇𝑀−1,𝑡 , ΔσATM+1,t} 

• 𝒇(𝝈) ∈ ℝ𝒎: {Δ𝜎𝐴𝑇𝑀,𝑡 , Δ𝜌𝑡 , Δ𝜈𝑡} 

 

Where 𝑚 refers to the original number of parameters, in our case (𝜎𝐴𝑇𝑀 , 𝜌, 𝜈), and 𝑛 

refers to a number of variables, in our case {ATM, ATM-1, ATM+1}. 

       

 Following this notation and given SABR implied volatility function, its derivative can 

be approximated through finite differences with respect to the base scenario  (𝜌 =

𝜌𝑡0 , 𝜈 = 𝜈𝑡0 , 𝜎𝐴𝑇𝑀 = 𝜎𝐴𝑇𝑀𝑡0 
) as follows: 

 

𝜕𝑓

𝜕𝑥
(x 0) = 

𝑓(x 0 + 𝑑𝑥) −  𝑓(x 0)

𝑑𝑥
+ 𝑂(𝑑𝑥) 

 

                                                 
17  In this case, m refers to the number of modellable risk factors, which are: ATM-0.001, ATM and 

ATM+0.01. n refers to the number of parameters, they are three too:  𝜎𝐴𝑇𝑀 , 𝜌, 𝜈 
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In our context: 

  𝜕𝜎𝐾(𝜎𝐴𝑇𝑀,𝑡0, 𝜌𝑡0 , 𝜈𝑡0)

𝜕𝜎𝐴𝑇𝑀
= 
𝜎𝐾(𝜎𝐴𝑇𝑀,𝑡0 + 𝑑𝜎𝐴𝑇𝑀,𝑡0 , 𝜌𝑡0, 𝜈𝑡0) − 𝜎𝐾(𝜎𝐴𝑇𝑀,𝑡0, 𝜌𝑡0 , 𝜈𝑡0)

𝑑𝜎𝐴𝑇𝑀
 

(22.a) 

  𝜕𝜎𝐾(𝜎𝐴𝑇𝑀,𝑡0 , 𝜌𝑡0, 𝜈𝑡0)

𝜕𝜌
=  
𝜎𝐾(𝜎𝐴𝑇𝑀,𝑡0 , 𝜌𝑡0 + 𝑑𝜌𝑡0 , 𝜈𝑡0) − 𝜎𝐾(𝜎𝐴𝑇𝑀,𝑡0, 𝜌𝑡0, 𝜈𝑡0)

𝑑𝜌
 (22.b) 

  𝜕𝜎𝐾(𝜎𝐴𝑇𝑀,𝑡0 , 𝜌𝑡0, 𝜈𝑡0)

𝜕𝜈
=  
𝜎𝐾(𝜎𝐴𝑇𝑀,𝑡0 , 𝜌𝑡0, 𝜈𝑡0 + 𝑑𝜈𝑡0) − 𝜎𝐾(𝜎𝐴𝑇𝑀,𝑡0, 𝜌𝑡0, 𝜈𝑡0)

𝑑𝜈
 

(22.c) 

 

Once derivatives have been approximated numerically, to approximate parameters 

variation, we have considered of the next relation between the Jacobian matrix and the 

differential of a function: 

 

𝒅𝒇(𝝈) = 𝑱𝒇 ⋅ (𝒅𝝈) 

𝑱𝒇 
−𝟏 ⋅ 𝒅𝒇(𝝈) = (𝒅𝝈) 

(23) 

 

Where ∆𝒇(𝒙) = 𝒇𝒙𝒅𝒙 is the differential function of f and 𝒅𝒙 are the vector of the 

differential variables. 

Interpreting it in our context: 

  

(

 
 
 
 

𝜕𝜎𝐴𝑇𝑀−0.01
𝜕𝜎𝐴𝑇𝑀

𝜕𝜎𝐴𝑇𝑀−0.01
𝜕𝜌

𝜕𝜎𝐴𝑇𝑀−0.01
𝜕𝜈

𝜕𝜎𝐴𝑇𝑀
𝜕𝜎𝐴𝑇𝑀

𝜕𝜎𝐴𝑇𝑀
𝜕𝜌

𝜕𝜎𝐴𝑇𝑀
𝜕𝜈

𝜕𝜎𝐴𝑇𝑀
𝜕𝜎𝐴𝑇𝑀

𝜕𝜎𝐴𝑇𝑀+0.01
𝜕𝜌

𝜕𝜎𝐴𝑇𝑀+0.01
𝜕𝜈 )

 
 
 
 

−1

⋅ (

𝑑𝜎𝐴𝑇𝑀−1%
𝑑𝜎𝐴𝑇𝑀

𝑑𝜎𝐴𝑇𝑀+1%

) = (
𝑑𝜎𝐴𝑇𝑀

∗

𝑑𝜌∗

𝑑𝜈∗
) (24) 

 

Computing the inverse matrix of the Jacobian and then multiplying by modellable risk 

factors, which are the variations of modellable strikes of the volatility surface, it is 

possible to obtain an approximation of parameters variation.  
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Applying these variations to the original parameters in t-1, we obtain a proxy of 

parameters in t: 

𝜎𝐴𝑇𝑀𝑡−1 ⋅ (1 +  𝑑𝜎𝐴𝑇𝑀
∗ ) = 𝜎𝐴𝑇𝑀𝑡

∗ (25.a) 

       𝜌𝑡−1 ⋅ (1 + 𝑑𝜌
∗) = 𝜌𝑡

∗ (25.b) 

       𝜈𝑡−1 ⋅ (1 + 𝑑𝜈
∗) = 𝜈𝑡

∗ (25.c) 

 

Finally, we are able to obtain the entire volatility surface through SABR model computing 

these new parameters:    𝝈∗(𝝈𝑨𝑻𝑴𝒕 ∗, 𝝆𝒕 ∗, 𝝂𝒕 ∗) =  𝝈𝑩
∗ (𝒇, 𝑲). 

 

Once it is obtained the volatilities for each strike and tenor, variations across volatility 

surface must be calculated, as it has been described previously, and compare with the 

original ones, in order to obtain P&L vector and evaluation PLAT tests. 

Recall that one-day variations are related to PLAT and 10-day variations to IMCC 

perspective. 

 

3.3. Results 

 

The following section has been organized into several sub-parts in order to exhibit the 

outcomes from different perspectives.  The first point (3.3.1) summarizes the main results 

from each implemented proxy method, presenting them individually and jointly to ensure 

a proper comparison. The two following sub-parts (3.3.2 and 3.3.3) are focused on 

evaluating the results from PLAT and IMCC perspective, ending each one with a short 

balance of which methodology is appropriate under the conditions that FRTB levies to 

each one. In the end, the main advantages and disadvantages of each approach are 

summed up in Table 8. 

 

3.3.1. Individual Proxies results 

  

In order to show a thorough report of the results of each proxy, findings have been 

summarized by tables and graphs to allow comparisons to be made. 
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Firstly, among non-modellable risk factors, we have selected one enclosed between two 

modellable risk factors, ATM -0.005, and the other one, ATM+0.035, located in the right 

corner, away from modellable points. Recalling Figure 5, ATM -0.005 is located between 

ATM-0.01 and ATM, two of the three modellable risk factors, and ATM +0.035 is 

surrounded by NMRF, placed five positions away from the modellable risk factor ATM 

+0.01, counting from its left.  Also, three different maturities have been chosen (T=3, 5, 

10 years). By this way, it is possible to analyse how proxies perform in different cases. 

 

Along these lines, it is conducted an in-depth analysis of each approach standing by 

figures. At the last point (3.3.1.2), the first graphs (from Figure 17 to Figure 22) represent 

the absolute error term between each approach in the two cases of NMRFs chosen. It is 

followed by the new volatility surfaces resulting after approaches implementation (Figure 

23, Figure 24 and Figure 25).  In closing, to complete the analysis, it is provided Figure 

26, where it is plotted the standard deviation and mean of the error term between all 

approaches, considering the entire volatility surface, drawing a distinction between how 

each proxy performs in both MR and NMRF.  

 

3.3.1.1 Comparison of approaches accuracy 

individually 
 

Along with this sub-section, it goes on to describe the process of each proxy by means of 

examples and figures, focused on the two NMRF chosen, ending with a comprehensive 

comparison between all the methodologies across the entire volatility surface. Recall that 

all approaches have been applied to one-day volatility variations, consequently, all 

arguments outlined in this point are related to them.  

 
3.3.1.1.1 Linear interpolation 

 

In case of a NMRF is enclosed by two Modellable Risk Factors, linear interpolation is 

computed as follows: 

 

∆𝜎𝑡,𝑡−1
∗ (𝐾𝑁𝑀𝑅𝐹, 𝑇) ≈ ∆𝜎𝑡,𝑡−1(𝐾𝑖 , 𝑇) + (𝐾𝑁𝑀𝑅𝐹 − 𝐾𝑖) ⋅

∆𝜎𝑡,𝑡−1(𝐾𝑖,𝑇)−∆𝜎𝑡,𝑡−1(𝐾𝑖−1,𝑇)

𝐾𝑖−𝐾𝑖−1
  (26) 

 

Where 𝐾𝑖 refers to each strike over the volatility surface across MRF. 
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Example: In the case of ATM - 0.005, which is enclosed by two modellable tenors, 

linear interpolation is computed as follows: 

∆𝜎𝑡,𝑡−1
∗ (𝐾𝐴𝑇𝑀−0.005, 𝑇) ≈ ∆𝜎𝑡,𝑡−1(𝐾𝐴𝑇𝑀 , 𝑇) + (𝐾𝐴𝑇𝑀−0.005 −𝐾𝐴𝑇𝑀) ⋅

∆𝜎𝑡,𝑡−1(𝐾𝐴𝑇𝑀,𝑇)−∆𝜎𝑡,𝑡−1(𝐾𝐴𝑇𝑀−0.01,𝑇)

𝐾𝐴𝑇𝑀−𝐾𝐴𝑇𝑀−0.01
  

 

In case of NMRF which are lower or higher than the given MRFs, it is setting the nearest 

one, that it is to say, we apply variations of the MRF nearest the NMRF. 

 

Example: In the case of ATM + 0.035, a higher point than the modellable settled, 

it is approached with the nearest one, ATM+0.01. 

 

According to that, Figure 7 displays how linear interpolation performs among the 

different risk factors in three different maturities 

 

Figure 7 Linear interpolation 

 

 

 

 

  

Notes: Data:  One-day multiplicative volatility variations of cap EURIBOR6M along each strike of the volatility surface, on 31 January 2019, 

related to T= 3 years (7.1), 5 years (7.2) and 10 years (7.3). Data is expressed as decimal values. 

 

On the one hand, ATM +0.035, and in general any NMRF as of ATM+0.01 point, is 

approached by variations of ATM+0.01, its nearest MRF. In these cases, approaches of 

NMRFs in terms of MRFs is computed by extrapolation technique, that implies using 

volatility variations of the MRF closer to the NMRF, exemplified above.  By this way, 

linear interpolation is not functioning well enough.  On the other hand, this method is 

very precise at ATM-0.05 point, which is enclosed by two modellable risk factors: ATM-

0.01 and ATM.  Figure 7 also includes MRF and, of course, linear interpolation performs 

exactly in these cases. 
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In addition to this, Figure 8 shows how error term increases in the case of ATM+0.035, 

the one allocated far away from modellable risk factors, and where it has been computed 

extrapolation over volatility variations. In the case of ATM-0.005, where interpolation 

approach over volatility variations is applied, results are highly accurate, the error term 

is practically zero. Moreover, in this case, this approach appears to be more precise along 

with maturities 5 and 10, since the error term decreases as maturity increases. 

 

Figure 8 Linear Interpolation cap volatility one-day variations (NMRFs: ATM-0005 and ATM +0.035, t=3,5,10)  
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Notes: One-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(8.1.1,8.2.1,8.3.1) and 

ATM+0.035(8.2.1,8.2.2,8.3.2), t= 3,5,10 years respectively; and error terms Sample one year, from 31 January 2019 to 31 January 2018. Data 

is expressed as decimal values. 

 

3.3.1.1.2 Splines interpolation 

 

According to the previous methodology section (2), as we have three modellable points, 

cubic polynomials are defined among the two intervals: [ATM-0.01, ATM] and [ATM, 

ATM+0.01]. ATM -0.005 is located in the first interval and for ATM+0.03 it is used a 

periodic extrapolation. To further information about Splines Interpolation topic, please 

see (Burden and Faires,2011). 

Figure 9 shows how splines interpolation does not work accurately among outlying Risk 

Factors. Although among NMRFs enclosed by MRFs, splines interpolation performs 

accurately, the result, in general, is very distant from reality, given that we have more 

NMRFs far removed from MRF that enclosed by them. 

 

Figure 9 Splines interpolation  

 

Notes: Data: One-day multiplicative volatility variations of cap EURIBOR6M along each strike of the volatility surface, on 31 January 2019, 

related to maturities  3 years (9.3), 5 years(9.2) and 10 years(9.3). Data is expressed as decimal values. 
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Figure 10 evidences one of the constraints of splines interpolations approach since in the 

ATM-0.005 cases it is reflected that this approach matches almost perfectly, in 

ATM+0.035 cases, the non-modellable risk factor away from the modellable ones, the 

error term has increased substantially. Moreover, as occurs with the previous approach, 

the error term decreases as maturity increases.  

 

Figure 10 Splines Interpolation cap volatility one-day variations (NMRFs: ATM-0.005 and ATM +0.035, t=3,5,10) 
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Notes:  One-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(10.1.1,10.2.1,10.3.1) and 

ATM+0.035(10.1.2,10.2.2,10.3.2), maturity 5 years; and error terms. Sample one year, from 31 January 2019 to 31 January 2018. Data is 

expressed as decimals values. 

 

3.3.1.1.3 Simple Linear Regression  

 

Through this approach, it is possible to partially model each NMRF by means of the 

modellable risk factor with which has a high correlation. 

For example, choosing maturity 5 years of implied volatilities of caps reference of 

EURIBOR6M and computing correlation matrix between risk factors, we obtain the 

following heatmap in Figure 11. 

 

Figure 11 Heatmap of correlation between Risk Factors 

 

 

Notes:  Correlation between risk factors (RF) of the entire cap volatility surface (T=5). Data is expressed as decimal values. 
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Figure 11 shows as warm colours higher correlation between two risk factors, being the 

highest in the main diagonal. Cold colours are related to lower correlations. Because 

NMRFs only could be explained by modellable risk factors, selection of the independent 

variable depends on correlations between each non-modellable risk factor and the 

modellable ones, thus, for example, ATM-0.005 can be explained (as best proxy) by ATM 

risk factor, with which hold de maximum correlation among MRF. In the case of 

ATM+0.035, holds a maximum correlation with ATM+0.01. 

 

The approximation to the variation of the partially modelled NMRF chosen, would be as 

follows: 

 

∆𝜎𝑡,𝑡−1
∗ (𝐾𝐴𝑇𝑀−0.005, 𝑇) ≈ 𝛼𝐴𝑇𝑀−0.005 + 𝛽𝐴𝑇𝑀−0.005 ⋅ ∆𝜎𝑡,𝑡−1(𝐾𝐴𝑇𝑀 , 𝑇) (27.a) 

     ∆𝜎𝑡,𝑡−1
∗ (𝐾𝐴𝑇𝑀+0.035, 𝑇) ≈ 𝛼𝐴𝑇𝑀+0.035 + 𝛽𝐴𝑇𝑀+0.035 ⋅ ∆𝜎𝑡,𝑡−1(𝐾𝐴𝑇𝑀+0.01, 𝑇) (27.b) 

 

A summary of the regression results is listed below (Table 5): 

 
Table 5 Linear Regression OLS estimation results 

T= 3 
ATM-0.005 ATM+0.035 

VALUE VALUE 

ALPHA 8.922e-05 -0.0004 

BETA 0.9900 0.9945 

R2 0.926 0.729 

T=5 
ATM-0.005 ATM+0.035 

VALUE VALUE 

ALPHA 5.792e-05 -0.0001 

BETA 0.9740 0.884 

R2 0.970 0.709 

T=10 
ATM-0.005 ATM+0.035 

VALUE VALUE 

ALPHA  2.659e-05 -5.197e-05 

BETA 0.9796 0.9347 

R2 0.985 0.619 
 

Notes:  OLS estimation of each proxy in both cases: ATM -0.005 and ATM +0.035. Data expressed as decimal values. 

 

Linear regression line of each case (ATM -0.005 and ATM+0.035, and T=3,5,10) is 

represented in Figure 12. Although in graphs, mostly the case ATM+0.035, there are 

some outliers that the line does not fit, the result adjusted well to the point cloud in both 

cases 
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Figure 12 Linear Regression line 

 

 
 
Notes: One-day Multiplicative volatility variations of cap EURIBOR6M, on 31 January 2019,. Abscissa axis: ATM (Figures 12.1.1, 12.2.1, 

12.3.1) and ATM+0.01 (Figure 12.1.2, 12.2.2, 12.3.2). Ordinate axis: ATM -0.005 (Figures 12.1.1, 12.2.1, 12.3.1) and ATM+0.035 (Figure 

12.1.2, 12.2.2, 12.3.2). Data expressed as decimal values. 

 

Figure 13 yields similar conclusions as previous cases in terms of a worsening on the 

accuracy of the approach in points allocated far away from MRF. It is worth mentioning 

that, so far, linear regression is the worst proxy within the first case: ATM-0.005. 

 
Figure 13  Linear Regression cap volatility one-day variations (NMRFs: ATM-0.005 and ATM +0.035, t=3,5,10) 
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Notes:  One-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(13.1.1,13.2.1,13.3.1) and 
ATM+0.035(13.2.1,13.2.2,13.3.2), maturity 5 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is expressed as decimal 

values. 
 

3.3.1.1.4 Multi-factor model applying PCA 

 

 

Following methodology explained at previous point (4), Figure 14 shows the eigenvectors 

related to the correlation matrix of 𝑽, where is easy to see the interpretation of each one: 

fthe irst eigenvector refers to level, second to the slope and third to the curvature.  
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Figure 14 Eigenvectors related to MRF matrix 

 
Notes: Eigenvectors related to the original MRF matrix. Data used: Cap volatilities variations with strikes ATM-0.01, ATM and ATM+0.01. 

T=5 years. Sample: one year, from 31 January 2019 to 31 January 2018. 
 

Table 6 summarises the cumulative variance explained from each principal component at 

each tenor.  As mentioned in the methodology section (see point 4), we have decided to 

choose the three CP, because the dimensionality problem is not a reality in our context.  

Including these three new variables, we avoid the multicollinearity problem, while the 

model will explain 100% of the variance of the original variable matrix 𝑿. 

 

Table 6 Cumulative variance explained from each CP 

 
Cumulative variance explained MATURITY 3 MATURITY 5 MATURITY 10 

CP1 86.3886 93.5105 96.9292 

CP2 97.989 99.434 99.5903 

CP3 100 100 100 
     

      Notes: quantities expressed in percentage. Each cumulative variance computed as: 

      𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 
𝜆𝑖⋅100

100⋅∑ 𝜆𝑖
3
𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 1, 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 2, 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 3 

 

 

Results of this methodology are exhibit in Figure 15, in accordance with the format that 

has been taken from previous approaches. 
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Figure 15 PCA cap volatility one-day variations (NMRFs: ATM-0.005 and ATM +0.035) 

 
 

 
Notes: One-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(15.1.1,15.2.1,15.3.1) and 

ATM+0.035(15.2.1,15.2.2,25.3.2), maturity 5 year; and error terms. Sample one year, from 31 January 2019 to 31 January 2018. Data is 
expressed as decimal values. 

 

 

As could be expected, PCA approaches yield the most accurate results among all methods 

set out above. This model constructed on the basis on PCA, it is using all the information 
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between the three modellable risk factors, besides avoiding multicollinearity problem. 

For this reason, the error term over ATM-0.05 and ATM+ 0.035 is virtually zero.  

 

3.3.1.1.5 Jacobian 

 

The methodology implemented is the one explained at the previous methodology point 

(6). In a nutshell, it has been computed the Jacobian matrix to finally achieve approaching 

variations of SABR parameters 𝜎𝐴𝑇𝑀 , 𝜌, 𝜈. By calculating the new values at time 𝑡 of 

these parameters as it is exhibited before, the new volatilities surfaces have been built. 

Later, one-day variations have been calculated and they are which have been plotted in 

figures below. 

 

Figure 16  shows how the Jacobian approach achieves a good fitting of one-day volatility 

variations in both cases, mostly within ATM-0.005 related to tenors 5 and 10 years. 

Although both NMRF cases related to maturity 3 year does not really perform well, those 

results are good news, because, as it is summed up at the end of the section in Table 8, 

this approach allows us to get a coherent volatility Surface, that means not arbitrability. 

 

 Figure 16 Jacobian cap volatility variations (NMRFs: ATM-0.005 and ATM +0.035) 
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Notes: One-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(16.1.1,16.2.1,16.3.1) and 

ATM+0.035(16.2.1,16.2.2,16.3.2), t=3,5,10 years respectively) and error terms. Sample one year, from 31 January 2019 to 31 January 2018. 

Data is expressed as decimal values. 

 

3.3.1.2 Comparison between every approach 

 

Points above have shown steps computed along each proxy to finally get NMRF partially 

modellable. To complete the analysis, there are provided different figures related to 

absolute error terms of each proxy among the two cases of NMRFs chosen to tenors 3,5 

and 10 years. 

 

Moreover, to illustrate a general view of all the methods, the figures below (Figure 23, 

Figure 24 and Figure 25) exhibit the new volatility smiles formed on the basis of 

approached variations. This analysis is complemented by plotting the error term in time 

of the two NMRF chosen. 
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The plots below in Figures from Figure 17 to Figure 22, represent the absolute error term 

of each approximation to facilitate comparison.  

 

Figure 17 Absolute error term of each proxy in time. (T=3) 

 

Notes: Absolute error term of one-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(17.1) and 
ATM+0.035(17.2), maturity 3 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is expressed as decimal values.  

 

Figure 18 Absolute error term: mean and standard deviation. (T=3) 

 

Notes: Mean of absolute error term and standard deviation of error term of one-day multiplicative volatility variations of cap EURIBOR6M 

with strike ATM-0.005(18.1) and ATM+0.035(18.2), maturity 3 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is 
expressed as decimal values. 
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Figure 19 Absolute error term of each proxy in time. (T=5) 

 

Notes: Absolute error term of one-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(19.1) and 
ATM+0.035(19.2), maturity 5 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is expressed as decimal values.  

 

Figure 20 Absolute error term: mean and standard deviation. (T=5) 

 

Notes:  Mean of absolute error term and standard deviation of error term of  one-day multiplicative volatility variations of cap EURIBOR6M 

with strike ATM-0.005(20.1) and ATM+0.035(20.2), T=5 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is expressed 

as decimal values. 

 

Figure 21 Absolute error term of each proxy in time. (T=10) 

 

Notes: Absolute error term of one-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(21.1) and 

ATM+0.035(21.2), maturity 10 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is expressed as decimal values. 
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Figure 22 Absolute error term: mean and standard deviation. (T=10) 

 

Notes:  Mean of absolute error term and standard deviation of error term of  one-day multiplicative volatility variations of cap EURIBOR6M 

with strike  ATM-0.005(22.1)  and ATM+0.035(22.2), T=10 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is 

expressed as decimal values. 

 

From Figure 17 to Figure 22, it is shown the marked contrast between approaching non-

modellable risk factors allocated near the modellable ones, and approaching those non-

modellable risk factors away from them. The most notable aspect is the evolution of the 

error with spline interpolation approach. While in the first case, ATM -0.005, performs 

practically perfect, in the second case, it becomes the worst approach mostly in maturities 

5 and 10 years. By contrast, in the case of maturity 3 years, mainly, and 10 years, the 

Jacobian approach presents a high error rate, positioning at the same level of splines 

interpolations in terms of accuracy.  

 

Paying attention to the rest of the proxies, Linear regression approach becomes the worst 

in the case of ATM-0.005 related to maturity 5 years. In contrast, PCA is, without a doubt, 

the best approach between all cases.  

 

Seeing pictures temporally, it is remarkable how the magnitude of the error term 

decreases as maturity increases, reconfirming previous conclusions.   

 

Overall, it is possible to conclude that the error term increases as NMRF move away from 

the modellable point available.   

 

Figure 23, Figure 24, Figure 25 and Figure 26, complete the analysis representing the 

result of the new volatility surfaces and error term of each proxy, respectively, once one-

day variations of each RF have been approached in order to achieve modellability 

requirements.  
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Figure 23 Cap volatility surfaces under PLAT (T=3) by comparing all approaches 

 

Notes: Data: Cap EURIBOR6M new volatility surfaces on 31 January 2019, related to each proxy.  Data is expressed as decimal values. 

 

Figure 24 Cap volatility surfaces under PLAT (T=5) by comparing all approaches 

 

 

 

 

 

 

 

 

 

 

 

Notes: Data: Cap EURIBOR6M new volatility surfaces on 31 January 2019, related to each proxy. Data is expressed as decimal values. 

 

Figure 25 Cap volatility surfaces under PLAT (T=10) by comparing all approaches 

 

Notes: Data: Cap EURIBOR6M new volatility surfaces on 31 January 2019, related to each proxy. Data is expressed as decimal values. 
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Figure 26 Mean and standard deviation of error term between all approaches across new volatility surfaces  

 

 

Notes:  Absolute error term mean (26.1.1, 26.2.1, 26.3.1) and error standard deviations (26.1.2 ,26.2.2, 26.3.2) of one-day multiplicative 
volatility variations approached of cap EURIBOR6M on 31 January 2019, maturity 5 years. Data is expressed as decimal values. 

  

In accordance with the conclusions above, spline interpolation becomes the worst 

methodology. This is justified by its poor precision among NMRFs not enclosed by 

MRFs.  By contrast, PCA turns into the best approach across the entire volatility surface. 

Linear interpolation, Linear Regression and Jacobian yields similar outcomes along with 

maturities 5 and 10 years. As mentioned before, the Jacobian approach is preferable for 

the reasons about not arbitrability on the new volatility surface, as long as, this approach 

yields similar accurate results than other approaches. 

 

3.3.2. PLAT metrics results under FRTB 

 

At this point, results related to the fulfilment of the P&L attribution test are summarised 

to analyse how well each proxy works. As mentioned in the theoretical framework part,  

PLAT is a crucial point that enables a trading desk to go for the IMA, or not, for 

calculating capital requirements.  

 

Table 7 exhibit the results of the comparison between HPL and RTPL vectors assessed 

in the frame of FRTB, that is to say, to applying to HPL and RTPL vectors the two metrics 

required in PLAT.   
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 Table 7  Spearman correlation and Kolmogorov Smirnov statistic under PLAT test metrics  

 
Notes: Maturity 3 years 

 

 
Notes: Maturity 5 years 

 

 

Notes: Maturity 10 years 

 

Colours in  Table 7 are in line with the three zones established in this test according to 

the thresholds related to each measure. By this way, the green cells mean endorsement to 

apply IMA. 

 

Most of the findings are located in green zone according to PLAT thresholds, but extreme 

risk factors related to splines interpolation among shorter tenors do not fulfil the 

requirements.  

 

Consequently, Splines Interpolation is not a good alternative to modellability assessment 

in this case, due to it is necessary to meet the requirements under PLAT and being 

allocated in the green zone or at least, in the amber zone with some specifications18. By 

contrast, Linear interpolation, linear regression and multi-factor model provide similar 

                                                 
18 Please see (Minimum capital requirements for market risk -BCBS (2019). Section MAR32, paragraphs 

32.22 and 32.4)) 

SPEARMAN CORRELATION ATM-0.01 ATM-0.005 ATM ATM+0.005 ATM+0.01 ATM+0.015 ATM+0.02 ATM+0.025 ATM+0.03 ATM+0.035 ATM+0.04 ATM+0.045 ATM+0.05

LINEAR INTERPOLATION 1 0,9888 1 0,9990 1 0,9901 0,9768 0,9642 0,9511 0,9378 0,9243 0,9094 0,8950

SPLINES INTERPOLATION 1 0,9979 1 0,9983 1 0,9824 0,8834 0,6745 0,4337 0,2741 0,1826 0,1391 0,1200

LINEAR REGRESSION 1 0,9525 1 0,9805 1 0,9901 0,9768 0,9642 0,9511 0,9378 0,9243 0,9094 0,8950
PCA 1 0,9997 1 0,9999 1 0,9998 0,9993 0,9986 0,9975 0,9960 0,9944 0,9921 0,9899

JACOBIAN 0,8595 0,949 1 0,960 0,935 0,914 0,887 0,864 0,839 0,821 0,807 0,800 0,794

K-S STATISTIC ATM-0.01 ATM-0.005 ATM ATM+0.005 ATM+0.01 ATM+0.015 ATM+0.02 ATM+0.025 ATM+0.03 ATM+0.035 ATM+0.04 ATM+0.045 ATM+0.05

LINEAR INTERPOLATION 0 0,027 0 0,019 0 0,031 0,039 0,047 0,047 0,054 0,062 0,070 0,074
SPLINES INTERPOLATION 0 0,023 0 0,027 0 0,035 0,043 0,074 0,112 0,163 0,244 0,291 0,322

LINEAR REGRESSION 0 0,043 0 0,031 0 0,043 0,050 0,058 0,074 0,070 0,074 0,081 0,081
PCA 0 0,023 0 0,019 0 0,019 0,023 0,023 0,027 0,035 0,047 0,043 0,043

JACOBIAN 0,0976 0,047 0,008 0,035 0,051 0,070 0,066 0,074 0,082 0,098 0,098 0,105 0,102

SPEARMAN CORRELATION ATM-0.01 ATM-0.005 ATM ATM+0.005 ATM+0.01 ATM+0.015 ATM+0.02 ATM+0.025 ATM+0.03 ATM+0.035 ATM+0.04 ATM+0.045 ATM+0.05

LINEAR INTERPOLATION 1 0,9966 1 0,9993 1 0,9923 0,9738 0,9558 0,9409 0,9254 0,9102 0,8939 0,8767

SPLINES INTERPOLATION 1 0,9996 1 0,9996 1 0,9973 0,9868 0,9499 0,8514 0,6863 0,5311 0,3967 0,3021
LINEAR REGRESSION 1 0,9815 1 0,9879 1 0,9923 0,9738 0,9558 0,9409 0,9254 0,9102 0,8939 0,8767

PCA 1 0,99997 1 0,9999 1 0,9999 0,9998 0,9996 0,9993 0,9988 0,9981 0,9969 0,9957
JACOBIAN 0,9957 0,9975 1 0,9967 0,99137204 0,9823 0,9801 0,9720 0,9635 0,9544 0,9451 0,9353 0,9270

K-S STATISTIC ATM-0.01 ATM-0.005 ATM ATM+0.005 ATM+0.01 ATM+0.015 ATM+0.02 ATM+0.025 ATM+0.03 ATM+0.035 ATM+0.04 ATM+0.045 ATM+0.05

LINEAR INTERPOLATION 0 0,0233 0 0,0271 0 0,0233 0,0349 0,0388 0,0543 0,0581 0,0543 0,0581 0,0620

SPLINES INTERPOLATION 0 0,0116 0 0,0116 0 0,0233 0,0349 0,0543 0,0814 0,0504 0,0775 0,1318 0,2093
LINEAR REGRESSION 0 0,0388 0 0,0310 0 0,0310 0,0349 0,0349 0,0426 0,0426 0,0465 0,0504 0,0659

PCA 0 0,0233 0 0,0233 0 0,0233 0,0233 0,0310 0,0194 0,0233 0,0233 0,0349 0,0388
JACOBIAN 0,0390 0,0234 0,0078 0,0273 0,0391 0,0234 0,0352 0,0391 0,0469 0,0508 0,0508 0,0586 0,0625

SPEARMAN CORRELATION ATM-0.01 ATM-0.005 ATM ATM+0.005 ATM+0.01 ATM+0.015 ATM+0.02 ATM+0.025 ATM+0.03 ATM+0.035 ATM+0.04 ATM+0.045 ATM+0.05

LINEAR INTERPOLATION 1 0,9978 1 0,9995 1 0,9848 0,9642 0,9505 0,9384 0,9282 0,9176 0,9066 0,8942

SPLINES INTERPOLATION 1 0,9999 1 0,9990 1 0,9991 0,9986 0,9964 0,9911 0,9780 0,9478 0,8892 0,8239

LINEAR REGRESSION 1 0,9926 1 0,9958 1 0,9848 0,9642 0,9505 0,9384 0,9282 0,9176 0,9066 0,8942
PCA 1 0,9999972 1 0,99999092 1 0,99996646 0,99991964 0,9996604 0,99945007 0,99929774 0,99892809 0,99824958 0,99761021

JACOBIAN 0,9628 0,9889 0,9989 0,9904 0,9631 0,9409 0,9158 0,8856 0,8605 0,8375 0,8155 0,7981 0,7882

K-S STATISTIC ATM-0.01 ATM-0.005 ATM ATM+0.005 ATM+0.01 ATM+0.015 ATM+0.02 ATM+0.025 ATM+0.03 ATM+0.035 ATM+0.04 ATM+0.045 ATM+0.05

LINEAR INTERPOLATION 0 0,0155 0 0,0194 0 0,0194 0,0271 0,0349 0,0426 0,0349 0,0349 0,0349 0,0426
SPLINES INTERPOLATION 0 0,0116 0 0,0078 0 0,0194 0,0194 0,0233 0,0310 0,0349 0,0465 0,0504 0,0581

LINEAR REGRESSION 0 0,0465 0 0,0310 0 0,0271 0,0310 0,0388 0,0504 0,0504 0,0465 0,0465 0,0581
PCA 0 0,02325581 0 0,0233 0 0,0271 0,0233 0,0155 0,0194 0,0349 0,0233 0,0310 0,0310

JACOBIAN 0,0507 0,0391 0,0234 0,0273 0,0586 0,0508 0,0508 0,0391 0,0352 0,0391 0,0508 0,0508 0,0508
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results, and also the Jacobian approach performs accurately with the exception of a few 

points in the first maturity (3 years). 

 

3.3.3. IMCC Results 

 

To further our analogy between Front Office and Risk, results have been computed the 

stress scenarios necessary to the ES measure, which is an input in the calculation of capital 

requirements under the FRTB internal model approach. Despite the fact that FRTB does 

not establish the need to compare the P&L vectors related to IMCC calculation from F.O 

and Risk, we decided to provided results from F.O, as every RF was originally 

modellable, and from Risk, where there are MRF and NMRF, that has been transformed 

into partially modellable; in order to provide a comparison between each proxy. 

FRTB requires to calibrate ES to a period of stress, on a daily basis, using a 97.5th 

percentile one-tailed confidence level.  It is worth mentioning that along with this 

research, calculations have not been made over a stressed window, we have used the 

current window. As the base horizon is settled in 10 days, we have computed 10-days 

variations once we have modelled non-modellable risk factors acquiring the entire surface 

as modellable. By this way, the following figures show each stressed scenario, the ones 

computed by FO and the other ones computed by Risk, with each scenario base. Recall 

that base scenario, under this perspective, is always settled in 𝑡0. 

 

Figure 27, Figure 28 and Figure 29, represent volatilities surfaces stressed by 10-day 

variations on current window, from FO, considering all RF originally modellable, and 

form Risk, with MRF and partially modellable NMRF. Moreover, it is plotted the base 

scenario which allows a clear view of the evolution of volatilities surfaces once have been 

shocking.   
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Figure 27 Stressed Scenarios from FO and Risk, maturity 3 years 

 

Notes: Data: Cap EURIBOR6M new stressed volatility surfaces on 31 January 2019, related to t= 3 years, among all approaches and under 

IMCC perspective. Data is expressed as decimal values. 

 

 

Figure 28 Stressed Scenarios from FO and Risk, maturity 5 years 

 

Notes: Data: Cap EURIBOR6M new stressed volatility surfaces on 31 January 2019, related to t= 5 years, among all approaches and under 

IMCC perspective. Data is expressed as decimal values. 
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Figure 29 Stressed Scenarios from FO and Risk, maturity 10 years 

 
 

Notes: Data: Cap EURIBOR6M new stressed volatility surfaces on 31 January 2019, related to t= 10 years, among all approaches and under 

IMCC perspective. Data is expressed as decimal values. 

 

At first glance, Splines interpolation appears to be the worst approach, except on the 

volatility surfaces related to maturity 3 years, where Jacobian does not yield very good 

results. Like previous PLAT analysis, these approaches, under IMCC perspective do not 

perform correctly in these particular cases.  

Linear interpolation, linear regression and PCA eclipse the other approaches, having 

small differences regard to FO results. Considering maturity 5 years, Jacobian also 

becomes a good alternative to keep in mind. 

 

Figure 30, Figure 32, Figure 33, Figure 34 and Figure 35, represent the error term between 

all approaches under the IMCC perspective, that is, 10-day volatility variations across the 

new volatilities surfaces once have been approached one-day variations.  Results are 

given to both cases analysed previously (ATM-0.005 and ATM+0.035), and for the entire 

new stressed volatilities surfaces. 
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Figure 30 Error absolute term of each proxy under IMCC perspective(T=3) 

 

Notes:  Absolute error term of 10-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(30.1) and 
ATM+0.035(30.2), maturity 3 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is expressed as decimal values.  

 
Figure 31 Mean and standard deviation of error term between approaches under IMCC: (Entire new volatility 

surface, T=3) 

 

Notes:  Absolute error term mean (31.1) and error standard deviations (31.2) of 10-day multiplicative volatility variations approached of cap 

EURIBOR6M on 31 January 2019, maturity 3 years. Data is expressed as decimal values. 

 
Figure 32 Absolute error term of each proxy under IMCC (T=5)  

 

 Notes:  Absolute error term of 10-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(32.1) and 

ATM+0.035(32.2), maturity 5 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is expressed as decimal values.  
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Figure 33 Mean and standard deviation of error term between approaches under IMCC: (Entire new volatility surface, 

T=5) 

 

Notes:  Absolute error term mean (33.1) and error standard deviations (33.2) of 10-day multiplicative volatility variations approached of cap 
EURIBOR6M on 31 January 2019, maturity 5 years. Data is expressed as decimal values. 

 
Figure 34 Absolute error term of each proxy under IMCC (T=10) 

 

Notes:  Absolute error term of 10-day multiplicative volatility variations of cap EURIBOR6M with strike ATM-0.005(34.1) and 

ATM+0.035(34.2), maturity 10 years. Sample one year, from 31 January 2019 to 31 January 2018. Data is expressed as decimal values. 

 
Figure 35 Mean and standard deviation of error term between approaches under IMCC: (Entire new volatility surface, 

T=10) 

 

Notes:  Absolute error term mean (35.1) and error standard deviations (35.2) of 10-day multiplicative volatility variations approached of cap 

EURIBOR6M on 31 January 2019, maturity 10 years. Data is expressed as decimal values. 

 

Figures above report similarities regarding results obtained under PLAT perspective, one-

day multiplicative variations context. In general, all proxies have actually got worse, by 

means of a rise in the error term, but main conclusions between each one are almost the 

same.  
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• PCA is preserved with its accurate results. 

• Splines interpolation is notable for its weak point between NMRFs far away from 

MRFs.  

• Jacobian, although is the preferred method to provide coherent volatility surfaces, 

along maturities 3 and 10 years, does not perform accurately, but in the case of 

maturity 5 years, the error term is not high.  

• Linear interpolation and linear regression present similar results. 
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Table 8 Advantages and Disadvantages of each approach 

 

 
Methodology Advantages Disadvantages 

1 

In
te

r
p

o
la

ti
o
n

 a
p

p
r
o
a
c
h

 Linear 

Interpolation 

• Accurate methodology: FO and MR risk factors 

aligned to both perspectives, PLAT and IMCC 

• Easy and fast method implementing 

• Also accurate with not so high correlation 

between MR and NMRF 

• The results do not reflect the proper 

behaviour of a volatility surface. Admit 

arbitrability 

• Depends on the location of the points in the 

volatility surface, needs to be enclosed by 

modellable tenors 

• The bigger of an interval between two 

modellable points the worst accurate results 

 

Splines 

Interpolation 

• Smooth interpolant between NMRF enclosed by 

MRF 

 

• The worst approach under the two 

perspective, particularly where NMRF move 

away from the modellable ones 

• results do not reflect the proper behaviour of 

a volatility surface. Admit arbitrability 

2 

S
ta

ti
st

ic
a
l 

m
o
d

el
li

n
g
 a

p
p

r
o
a
c
h

 Linear Regression 

• Easy and fast method implementing 

• This does not depend on the location of the 

points in the volatility surface, namely, the non-

modellable points do not necessarily need to be 

enclosed by the modellable ones  

• Only accurate with very high correlation 

• Estimation of the 𝛽 parameter depends on the 

historical window where is computed: if the 

window is tiny 𝛽 not pretty stable, and if the 

window is wide, 𝛽 would be less 

representative 

• Admit arbitrability 
 

Multi-factor model 

applying 

PCA 

• Has more explicative capability than de linear 

regression above due to this methodology uses 

more than one independent variable to explain a 

dependent one 

• Does not depend on the location of the tenors in 

the volatility surface 

• The best approach in both perspectives 

• Admit arbitrability 

 

3 

P
a
r
a
m

e
tr

iz
a
ti

o
n

 

A
p
p
ro

ac
h

 Jacobian SABR 

• Computing the entire Surface could be done 

only with a few modellable points. 

• This approach provides a coherent volatility 

Surface. No admit arbitrability 

• Accurate across long maturities 
 

• Most accurate near the modellable risk 

factors 
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4. Conclusions 

 

Since the introduction of FRTB, modellability has risen to one of the key concepts for 

capital risk requirements computation, banks are challenged on exploring reductions in 

NMRF-related capital by increasing modellability of risk factors. For this reason, through 

this research, we aim to provide a reference framework for this topic introduced by FRTB. 

In this respect, this goal has been carried out through different approximation methods 

based on Interpolation, Statistical Modelling and Parametrization approaches; providing 

results from two perspectives: PLAT, that allows a trading desk to compute capital 

requirements through IMA, and IMCC perspective, how capital requirements must be 

computed.  

 

In our conservative context of interest rate volatility risk, the best approach to partially 

model those NMRF by mean of modellable risk factors, it has proven to be Multi-factor 

model base on a previous Principal Components Analysis (PCA), if we focus on accuracy. 

But if we pay attention to consistency between volatilities surfaces achieved after 

implementing each approach, Jacobian approach is well regarded, since error terms are 

not very large and successfully fulfil PLAT requirements.  

 

By contrast, splines interpolation should not be considered as an alternative to 

modellability assessment. This approach does not yield accurate results in extreme cases, 

where NMRFs are separate from available MRFs, in addition to not meet PLAT 

requirements in those cases.  Linear interpolation and linear regression exhibit similar 

perform throughout the research, passing PLAT requirements in all cases considered. 

 

Outcomes under IMCC perspective are similar that the ones obtained under PLAT 

perspective, reaching the same conclusion about how approaches perform, but in this 

case, the error term has increased. 
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5. Further research 

 

In view of the results and bearing in mind that modellability assessment is a topic that has 

emerged very recently, there are some issues that have been left for further study. There 

are some that could be considered: 

 

1. Computing the capital charge IMCC over a stressed window to compare results, 

as FRTB established, between the ones have been obtained in this research.  

2. Further analysis of the results obtained with a volatility surface considering 

floating strikes, by comparing with results on a volatility surface considering fixed 

strikes, measuring each impact. 

3. As we mentioned in Table 8, in the majority of the methodologies applied it is 

generated volatility surfaces that do not perform coherent, namely, admitting 

arbitrability. In this sense, the research shall be completed with an analysis of the 

arbitrability of volatilities surfaces obtained once proxied variations have been 

computed.  

4. Application of smoothing interpolation in order to improve the results obtained. 

and other parametric approaches (About this last topic see Burden R. and Faires 

J, 2011).  
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