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Abstract

The unsecured positions and the biased allocation between banking and trading book
derived in huge losses due to credit risk that the banking framework of the time of
the previous financial crisis could not contain. Since then and still in force, Basel
II.5 implemented the Incremental Risk Charge adding the information that credit risk
entails on a market risk measurement in order to hold capital against default and credit
migration. Based on Creditmetrics methodology, and taking Vasicek’s Gaussian model
as a starting point, this master’s thesis aims to go deeper in the credit risk modelling.
It will compare an estimated Student-t copula with the last ECB’s requirement to
outdo the flaws of the basic Gaussian model of the ASRF of Vasicek. Additionally, we
will develop a Clayton copula model to catch up with the empirical evidence drew by
the default and migration risk correlation among issuers causing left-asymmetry.

Keywords: Basel, Incremental Risk Charge, market risk, credit risk, default, credit
migration, factor copula.
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Introduction

Basel framework

The Basel Committee on Banking Supervision (the Committee or BCBS) have been
proposing the regulatory international banking frame since its inception in 1974 from
the quest of closing gaps in banking matters as the financial risks that it involves. The
main financial risks adressed by the regulation are credit risk, operational risk and
market risk.

As Bill Maris said, “the reality is regulation often lags behind innovation” so
that the lack of scope will be shown in each agreement of banking regulation due
to the performance that the financial sector does both in terms of side-stepping the
regulation and the empirical evidence drew. The breakdown in 2007 resulted a severe
proof of that since it meant an inflection point within the financial sector and its
consequent regulation. It supposed an enormous source of losses mainly in the trading
book1 due to its increasingly exposures to unsecuritized credit products. There was
an important factor that did not contain this problem: the market risk framework
of Basel II, based on the 1996’s amendment. This regulatory framework computed
the necessary capital using VaR based on long smooth period prior to the crisis. The
situation concluded that the models used clearly underestimated the losses and risks
and that the regulatory capital for trading was much lower than the banking book.

Even before the financial crisis of 2008, the weakness of Basel II had severely
manifested by itself so as stop-gap response, the Committee introduced a revision to
the Basel II market risk framework known as Basel II.5 —BCBS (2009)[8]. Both
in terms of standarised and internal model approach (SA and IMA, respectively),
it involved some key points to surpass the shortcomings of the VaR itself such an
incremental charge for credit risk, an stressed VaR and other additional ones.

Considering that the main source of losses were emerging from the credit risk, the
Committee led up in 2009 to a revised framework for computing the charge for this
risk –see BCBS(2009)[9]– under the IMA range. It brought a novel framework’s risk
coverage in certain areas with a particular focus on the trading instruments exposed
to credit risk.

1The trading book is held to speculate or to hedge as well as marked to market daily while the banking
book is composed by the banking products held until its maturity and carried at amortized cost.
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The IRC interest lies into manifest quantitatively a risk measure that it may keep
capital in case of financial disturbance which can severely affect the certainty of the
ordinary activity of the bank.

Aim and motivation

This study deals with the challenge of the manner that the credit risk can be modelled
in order to add it on a market risk measurement under the current framework named
Incremental Risk Charge (IRC) that will be valid until the end of 20222. From that
year on, it is estimated that the Fundamental Review of Trading Book set basis on the
new market risk regulation framework replacing the IRC by the Default Risk Charge
(DRC).

The credit risk models proposed by the regulator are based on a factor copula
approach. In such context, the Vasicek’s model is applied in our work as the basis
model. Despite this, the approach manifested several flaws, being the contagion the
one addressed by this master’s thesis. It uses a Gaussian copula approach not allow-
ing dependence beyond the middle percentiles of the variables. Additionally, to give
more realism to the structures of dependence within the factor model, we will fit the
empirical distribution of the variables by which such dependence is obtained. It will
allow to put aside the normality with the exception of the basis model.

The main objective of this study, hence, falls to make certain assumptions in the
modelling of credit risk with the purpose of capturing more accurately the previously
stated empirical evidence that the financial performance extracts: increasingly left-tail
dependence in periods of market turmoil. It will take advantage of the last require-
ment made by the European Central Bank of including a Student-t copula within the
implementation model to finally extending it through other copulas. Henceforth, the
ECB’s requirement stated in the Targeted Review of Internal Models3 (TRIM) – ECB
(2017)[19]–, will be mentioned as the ECB’s proposal.

Finally, due to the lack of default data to estimate the needed dependence pa-
rameters, we will make use of stock data for corporate issuers and the yield of 1-year
sovereign bond for sovereign. The proposed IRC models will be implemented through
six portfolios with different risk composition.

The IRC consists on model specific risk and hold a capital buffer against default
risk that escape from the VaR scope. IRC not only captures the credit risks due
to default but also credit migrations combined with widening of credit spreads and
the loss of liquidity. Preventing capital arbitrage between banking and trading book
is another goal sought by the IRC, setting consistent charges for similar positions
held in both mentioned books. The Committee assessed a quantitative impact study
–BCBS (2009)[10]– to measure the impact the IRC charge on market risk changes

2See BCBS (2019)[6] page 1, first paragraph of ”Introduction”.
3See page 119, paragraph 152.
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which concluded that new requirements will increase the trading book market risk
capital requirements by two or three times on average.

The background literature for the quantitative modelling of the credit risk form
a group of three discernible models: structural (Moody’s KMV model and Credit-
Metrics), macro-factors (Econometric model) and actuarial models (CreditRisk+).
This master’s thesis is focused on the structural models which are based on the Mer-
ton’s model –Merton (1974)[41]– and in the Credit-Metrics model –Gupton and Finger
(2007)[31]– in particular, since it takes into account not only the default probability
but also the rating migration.

Structure definition

This research is organized in three parts. Base line the firt one, provides an explanation
of the regulation’s framework starting by giving a brief glance of the agreement periods
and their coverings. After that, from the bottom to the top, the correspondent Basel
accord at which this master’s thesis is based (Basel II and its enhancements) will be
described to finally end up with the exposition of the basis model of Vasicek.

The second part named Methodology is devotedly focused on describing the as-
sumptions and methods whereby the model is based on. To capture default and
migration risk with increasing robustness several statistical techniques are explained.
It is divided in four parts where the definition, other considerations in terms of reg-
ulation procedures, a model explanation and a different background theory with the
use of copulas are addressed.

The last one, Empirical analysis, presents different model applications. Firstly
the data sources are described, following with the methodology carried out to finish
with the results obtained through the model implementation.

3



1 Base line

1.1 Market risk framework

The first permission of using internal models –or recognised as Value-at-Risk models–
arose with little importance in Basel I as foundation for measuring the buffer capital
for market risk. These internal models developed by banks since then were subject to
strict quantitative and qualitative standards.

Under this approach, the equation for computing the total capital into the Basel
II.5 market risk framework is the sum of the five components as follows Brunac –
(2012)[13]–:

Market risk capital = VaR + Stressed VaR + IRC + CRM + SC (1.1)

where

VaR is the standard value-at-risk daily measured at 99.9% of confidence level over
an horizon of 10 days. It is the result of the higher VaR between the previous
calculation or the average of the value-at-risk measures on each preceding sixty
business days multiplied by a factor mc ≥ 3 set on the basis of the quality of
the bank’s risk management system. Basicaly, it will depend on the ex-post
performance of the model that will be check by the so-called backtesting1.

VaR = max

(
V aRt−1,mc ·

60∑
i=1

V aRt−i
60

)

Stressed VaR is a similar to the previous value-at-risk measure but at least weekly
calculated and with model inputs calibrated to historical data from a continu-
ous 12-month period of a notable financial stress. It is intended to replicate a
calculation that would be presented in a bank’s portfolio if market risk factors
had such a stressed influence as well as to ameliorate the procyclicality of the
minimum capital requirements.

Stressed VaR = max

(
SV aRt−1,ms ·

60∑
i=1

SV aRt−i
60

)
1The multiplicative factors (mc and ms) are between 0 and 1. They will depend on the performance

of the model during the last 250 business days in accordance with EUR-lex(2013)[21] (See the
Table 3.17 by which they are selected).
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IRC is an incremental charge to the market risk due to credit risk. It is similar to the
VaR charge as has herein-above been stated but in this case the average built
on the previous twelve business weeks and weekly calculated. It will be vastly
outlined in the section 2.2.

IRC = max

(
IRCt−1,mc ·

12∑
i=1

IRCt−i
12

)

CRM is another incremental charge for correlating and securitised trading activities
(at least weekly computation).

SC is sandardised charge on securitisation exposures not covered by CRM and com-
parable to the banking book.

1.2 IRC and the Committee’s proposal

According to the proposals made by the Committee and once the European Banking
Authority (EBA)2 was established, a guidelines on the IRC modelling were provided
to set guidance. It is not a batch of rules but a break new ground as a high level
principles to develope models for calculating the IRC by those banks with a wide
extensive trading activities.

Consequently, to construct our model proposal to the IRC, the most relevant
aspects have to be expounded3.

Scope of application

The calculation will be applied to unsecuritised credit products held in the trading
book. Unsecuritised positions liable to IRC calculation should include long and short
positions subject to:

• Specific interest rate risk

Within this item are included sovereign bonds, other structured bonds, money
market loans and covered bonds simply collateralised but not asset-backed.

• A listed equity and derivatives positions based on such listed equity

Compulsorily these related positions have to be jointly managed by a predeter-
mined trading unit.

2The EBA took responsability of all existing and ongoing tasks and responsabilities from the prede-
cessor Committee of European Banking Supervisors (CEBS) since 1th January 2011. The EBA
is in regard to monitor and to draw up the guidelines to a level playing field in the EU. Further-
more, transposes the BCBS amendments through their Directives to enhance alignment among
the national banking authorities.

3See guidance in EBA (2012)[18] and the proposals BCBS (2009)[9] by which this section is taken.
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Needless to say that securitised products and n-th-to-default credit derivatives 4 are
excluded over the IRC scope.

Individual Modelling

In view of the fact that reducing arbitrage to allocate credit sensitive instrument into
the trading book rather than in the banking book was stated as the main principle
for introducing the IRC, there must be consistency in both capital charges for similar
book’s positions (once adjusted for illiquidity) and sources of model parameters:

• Comparability to the internal ratings based approach (IRB)5 soundness, the IRC
must measure losses from default or migration events at 99.9% confidence interval
over a capital horizon of one year.

• When using internal sources in order to rate obligor’s positions or to estimate
probabilities of loss given default(LGDs) and default(PDs), it should be coherent
with the IRB approach:

– If there are LGDs and PDs internally estimated as part of IRB, this may
be used as source for obtaining LGDs and PDs for IRC purposes.

– If not, LGDs and PDs should be computed using a consistent technique
subject to mandatory approval for IRC application.

Our model proposal will consider a process to calculate the LGDs (= 1 - Recovery
Rate) that is described in the upcoming lines. Similarly, the PDs’ consideration
are addressed in the next part so are included within the migration matrices.

Interdependence

The interdependence is the key element in the risk management field due to the mul-
tivariate nature of risks. We cannot focus on a single risk but on an aggregate risks so
as was quoted by 1998 in Bloomberg Businessweek “[...] synchronized rises and falls in
financial markets occur infrequently but they do occur, [...] in which many things go
wrong at the same time —the perfect storm scenario.”

From this high-dimensional scenario, it can be distinguished interdependence
among obligors and among underlying risk factors:

• Correlations between default and migration events

This type is in regard to the purpose of the IRC, which is to capture the financial
and economic dependence that causes clustering of default and migration events.

4N-th-to-default credit derivative is a credit default swap whose reference is a basket of underlying
credits.

5The IRB is the internal methodology adopted under Basel II with regard to credit risk in the
banking book.
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The approach should be adequate enough to capture the inderdependence among
the risk drivers (obligors) of credit risk events.

• Underlying risk factors

The EBA put a combination of risk factors forward to trace the process of any
firm’s asset value through an idiosyncratic (i.e. individual of each obligor) and
one or multiple systemic factor. In such a way, the authority draws forth the
use of dimension-reductions models to gather high-dimensional nature of risk
into a smaller subsets of essential risk factors. A one-factor model is used in our
follow-up model proposal.

Since this dependence may not share the same structure among all the distribution
quantiles, the institution may select possible copula candidates according to its faculty
to explain default or migration clusters for historical tail events.

Lastly, to model the interdependence structure (i.e. the rating migration process)
must be mentioned the EBA’s proposal with regard to migration matrices:

• Migration matrices

Containing the probabilities of all tranches to migrate from the initial credit
rating to any other (possible downgrade, upgrade and even default-PDs) at a
given time horizon. It is essential to simulate the rating migration process.

– Either internal or external, i.e. rating agencies where internal historical
data is sparse or less than 5 years of observation period.

– Separated migration matrices may be applied depending on (i) portfolio
composition, (ii) possible differences in migration characteristics across is-
suers and geographical areas and (iii) availability. To sovereign obligors,
specific transition matrix should be applied as well.

Constant level of risk over one-year capital horizon

In accordance with the Basel framework, an IRC model should be modelled based
on the assumption of a constant level of risk over a one-year capital horizon. In this
manner, it reflects an appropriate capital to buffer the risk assumed in the trading
book as well as to provide capital capacity to keep fluid the liquidity to the financial
markets in turmoil scenarios. To meet with this constant level risk assumption, a bank
should rebalance, or roll over, those positions in the trading book whose credit rating
have afflicted or ascended to maintain the initial level over one-year horizon. The
liquidity horizon of a given position will condition the frequency of rebalancing.

7



Liquidity horizon

The liquidity horizon indicates the time required to sell a position or to hedge all risks
covered by the IRC in a stressed market scenario. Several aspects have to be exposed:

• It may be defined by position or on an aggregated basis (”buckets”) depending
on the portfolio composition.

• A floor of three months is set.

• Banks should be based on past experience, market structure, the quality of the
product or its complexity in order to select the liquidity horizon.

In our model proposal, the liquidity horizon will be one-year based. So any instrument
within our portfolio must have at least one year of maturity from the valuation date.

P&L valuation

Once the rating migrations have been simulated (i.e. through simulated asset’s returns
and ranked by migration matrices thresholds), it may be converted into price variations
according to market conditions. Three assumption can be made:

• The obligor company presents no credit rating change

No change in the portfolio value is understood.

• The case in which the company’s credit rating migrates

Full recalculation is needed in order to get a vector of prices obtained according
to their new credit quality. It requires the application of the riskless zero coupon
yield plus the interest rate term structure (forward curve) correspondent to each
rating class.

• The default state is triggered for the obligor

Recovery rate (RRs) data should be gathered additionally. Following Credit-
metrics, our model will consider stochastic RRs yet uncorrelated with PDs –see
Altman et al(2001)[3]. Consequently, the LGD = 1 - RR.

Each simulated scenario will extract a portfolio valuation so that a future P&L distri-
bution is obtained available for quantitative analysis.
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1.3 Model foundations

The certainty that came up with the financial crisis of 2008 is that the most of the
losses were mainly caused by downgrades combined with widening of credit spreads
and the loss of liquidity instead of defaults itself. In short, most of the losses were
located in the trading book due to banks have often chosen to hold products dependent
to credit risk within its trading book instead of in the banking book considering that
the previous regulation framework did allow that arbitrage. The instruments allocated
in the banking book were required to hold credit risk capital while those in the trading
book were subject to market risk capital, resulting less regulatory capital as a whole
in this second book

1.3.1 Creditmetrics and asset value models

Most of the credit risk models are based on the fact of obtaining the probability of
the issuers’ default within a loan portfolio, but to calculate the Value-at-Risk founded
on the impact that credit risk’s changes entails in a trading portfolio it is necessary
a methodology that takes into account credit migration besides default. Riskmetrics
Group (A JPMorgan division) primarily developed the technique named Creditmetrics
–Gupton and Finger (2007)[31]– that better fits with the credit migration and the
default risks mentioned. It is recognised as one of the structural models and it is a
Merton-type model.

The Merton asset-value model (AVM) –Merton (1974)[41] is a latent variable
approach, often interpreted as the asset’s value of the firm because of its dynamic
are not observable. It defines that the value of a firm follows a log-normal process
distribution and the defaults occurs when the asset’s value falls below the nominal
value of their debts (Bi) on the date of maturity.

Following Merton’s approach, let V i be the i -th obligor assets’ value, with the
process of a geometric brownian motion (GBM):

dV it
V it

= µidt+ σidWt (1.2)

The asset value V it can be obtained by integrating:

V it = V i0 exp

[(
µi − σ2,i

2

)
t+ σi

√
tXi

]
(1.3)

with Xi ∼ N(0, 1), µi and σ2,i being the mean and variance, respectively, of the
instantaneous rate of return on the firm’s assets dV it /V

i
t .

The probability of default of the i -th obligor is given by:

pDEF = P [V it < Bi] = P [Xi < ζi] = N(ζi)
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where N(·) is the cumulative normal distribution, Bi is the debt value and

ζi =
ln(Bi)− ln(V it )− (µi − 1

2σ
2,i)t

σi
√
t

The term firm refers to the obligor which issue the asset position held in the
trading book (issuer). Since the issuer may signal the likelihood of non-dealing with
the obligation’s payment taken, the credit risk is inherent in the portfolio and the
credit quality of the firm can vary. In that case, the probability of default or that
the credit rating changes (migrates) entails credit migrations producing a market risk
fluctuation.

According to that, the credit quality categories {CRj}j=1,2,...,8 that Creditmetrics
considers are given by seven credit ratings besides the default state which the external
credit agency Standard & Poors establishes:

AAA - AA - A - BBB - BB - B - CCC - DEF (default)

where AAA refers to extremely reliable with regard to financial obligations there-
fore the best credit rating, CCC indicates the worst credit rating and currently vul-
nerable to non-payment before DEF rated, when default has actually occured meaning
also an absorbing state.

1.3.2 Factor model. Application of Vasicek

The high-dimensional field of risk management commented on in section 1.2 is ad-
dressed with techniques of dimension reduction such as factor modelling and principal
components. In Creditmetrics methodology, the factor model is applied.

Factor models are techniques from multivariate statistics that allows to tackle the
randomness of a countless components that explain a d -dimensional vector by reduc-
ing these into a set of common factors. In our Merton’s context, the d -dimensional
vector may be a butch of firm’s asset values which processes are dependent on under-
lying common factors such as industrial, regional influences likewise general economic
situation with regard to drive the financial future of the firms.

Retrieving the Merton’s model jointly with the factor model application and af-
ter standardization of the asset value log-returns, it admits a linear representation
according to Bluhm et al (2003)[11]:

ln

(
V it
V i0

)
≡ ri = RiF + εi (1.4)

The asset value log-returns are normally distributed, so due to that standardiza-
tion we have

ri ∼ N(0, 1), F ∼ N(0, 1), and εi ∼ iid N(0, 1)
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where R2
i quantifies the volatility of ri that can be explained by the volatility of F and

can be written as

R2
i =

β2
i Var(F)

V ar(εi)
= β2

i =

(
ρ
σFσri
σ2
F

)2

= ρ2

Among the Merton-type factor models in the context of Creditmetrics is located
the Aymptotic Single Risk Factor (ASRF) model –Vasicek (2002)[54]–, with a wide
range of applications in the Basel regulatory framework. It is a factor copula model
since it relies on linear structure dependence among the obligors by describing the
asset’s returns with two principal elements. It has a market-dependent common factor
and an idiosyncratic element (or non-systematic) driving the i -th return, hence, the
main property of the model is its implicit Gaussian copula.

Described by the specializing equation 1.4 and following the derivation in the
Appendix B, then it can be written:

ln

(
V it
V i0

)
≡ ri =

√
ρ · F +

√
1− ρ · ξi (1.5)

where

{ri}i=1,2,...,n are jointly standard normal firm’s asset returns

ρ is the uniform asset’s pair-wise correlation among firms

F is the portfolio systematic factor usually represented by a market factor

{ξi}i=1,2,...,n are independent and identically standard normal distributed, is the
idiosyncratic component inherent at each asset firm’s return

F ⊥ ξi are uncorrelated and independent random variables

In addition, ρ measures the sensivity of the systematic risk so that
√
ρ · F can be

the firm’s exposure to the common factor and
√

1− ρ · ξi represents the firm’s specific
risk.
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1.3.3 IRC basis model proposal

Once the described methodology is taken together, the model proposal allow to derive
an analytical formula for credit IRC calculation based on the following assumptions:

• default-mode (Merton-type) model extended to a migration-mode based on Cred-
itmetrics

• unique systematic factor considered (single factor model)

• an infinitely granular trading portfolio (i.e. composed by a large amount of
positions of differents products to diversify the idiosyncratic risk)

• dependence structure among firms described by the Gaussian copula (Vasicek
basis model)

• returns on the firm’s stocks as principal variable (i.e taken as a consistent variable
that describes the credit structure among asset value of the firms)

For the purpose of avoiding committing calculus that extracts complex numbers
in case of negative correlation as well as using a more pragmatical approach, the basis
model equation turns into as follows:

ri = ρ · F +
√

1− ρ2 · εi (1.6)

Summing up, giving a process for the latent variables as Merton’s model does,
permits to approximate the firm’s asset value with firm’s stock value, and moreover,
the derivative ASRF (Vasicek) of factor model approaches accordingly the dependence
among the latent variables as an approximation to model the credit risk dependence
among issuers (i.e. dependence of default or credit downgrades).

The crucial point of the factor model is that the entire dependence structure
among issuers is given by the common factor, see next Figure 1.1. For the simplified
example of two firms, A and B, the dependence structure between them is expressed
uniquely by means of their correlation with the shared factor, having each firm a
direct dependence of the common factor while creating through an indirect way the
dependence structure between A and B (i.e. gaussian in this basis point).
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Figure 1.1: Factor model performance

Since Merton approach is a two-stated model (defaul/no-default) besides it could
be easily generalised to more-state models with the credit classes above mentioned,
Creditmetrics is extended to include them by slicing the distribution of the asset return
into eight bands according to the S&P qualifications. If we draw randomly from the
distribution, it will get reproduced the migration frequencies shown in a transition
matrix.

Given that the migration and default probabilities are pre-determined for any
given issuer-rated by the migration matrices, the model interest lies into delimiting
the thresholds for each credit rating. To do that, it turns into simply establish-
ing {VCRj}j=1,2,...,8 as the firm value at any eight of the credit categories reachable,
{ZCRj}j=1,2,...,7 as their corresponding thresholds, and then using the inverse of the
probability of ending up in one of them allows to extract the thresholds as follows:

prCRj→DEF = prCRj<DEF = prDEF

= P [Vt < VDEF ] = P [ri < N−1(prDEF )]

= P [ri < ZDEF ]

ZDEF = N−1(prDEF )

prCRj→CCC = prDEF<CRj<B

= P [VDEF < Vt < VCCC ] = P [ZDEF < ri < ZCCC |F ]

= P [ri < ZCCC ]− P [ri < ZDEF ]

= prCCC − prDEF =

ZCCC = N−1(prDEF + prDEF<CRj<B)

13



and similarly

ZB = N−1(prCCC + prCCC<CRj<BB)

ZBB = N−1(prB + prB<CRj<BBB)

ZBBB = N−1(prBB + prBB<CRj<A)

ZA = N−1(prBBB + prBBB<CRj<AA)

ZAA = N−1(prA + prA<CRj<AAA)

The following Figure 1.2 shows an example of the normalized asset’s return distri-
bution for a given BB-rated issuer delimited by its corresponding thresholds (ZCRj ).
These credit ratings thresholds correspond to the transition probabilities for a BB-
rated issuer and are the same for any issuer within the same rating qualification.

Figure 1.2: Example of the thresholds and the return’s classification following Credit-
metrics methodology.
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Model extension

The Vasicek’s model of ASRF has shown some weaknesses on its hypothesis so that
our model proposal based on it can be a starting point in credit risk modelling that
may be extended to outdo the following shortcomings:

• Name concentration

It makes reference to the imperfect diversification of the idiosyncratic risk, i.e.
the above-mentioned infinite granularity in the trading portfolio does not hold
in possible cases.

• Sector concentration

It refers to the imperfect diversification across systematic components of risk.

• Contagion

Exposures to independent issuers have increasingly exhibited default or down-
grades dependencies in turmoil periods so that the losses also exceeds the ones
expected in those cases. This is well known as the asymmetric (or skewed) dis-
tribution of instruments subjet to credit risk.

Pykhtin (2004)[50] introduced the Multi-Factor Merton model in order to address
both name and sector concentration. In his work is employed a combination of inde-
pendent factors such as industry, geography or economic drivers creating a composite
factor that may affect obligor’s defaults in a systematic manner.

The third item, contagion, is the shortcoming addressed by this master’s thesis.
It can be tackled by extending the Gaussian-copula-based model proposal to other
factor copula model that better fits with the fatter tails in the distribution of credit
risk as a Student-t or Clayton copula could do.
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2 Methodology

This chapter describes the entire process of obtaining the IRC through our model
proposal from the first step of getting the model dependence structure to producing
the trading portfolio loss distribution. It also goes deeper in several considerations
explaining their academical background which has been used to generate the results.

2.1 Dependence structure

As it has been exposed in section 1.2 (interdependence), in risk management field,
the multivariate dimension and its (inter)dependence is a decisive facet. For that very
reason it has became the first step and the most important one in the IRC process (and
also in every risk management model). This section is developed through three parts
considered to completely understand the process of generating correlated migration
events.

2.1.1 Driving factor

High dimensional financial risk applications often requires strong simplifications in
order to keep the aim tractable. The use of factor modelling is one of such techniques
of dimension reduction that results a essential tool to explain the multi-dimensional
randomness in the components of a trading portfolio. The factor methods tries to run
with a reduced set of risk sources or just with a single common factor a wide range of
assets. It works well where the goal is to explain the equity returns or to predict them
in order to simulate future dependent structure scenarios. That allows us to describe
the firm’s asset value process as a risk driver of the default or credit downgrades in a
portfolio.

Factor models are not only computationally simpler but also they make it possible
to derive scenarios to the wide range of portfolio assets besides keeping their statistical
properties. Particularly, the computational gain is due to all calculus can be made by
considering the covariance matrix of the factor model, instead of the high-dimensional
matrix covariance of the original assets. In case of interest in such an original matrix,
it can be effortlessly extracted.
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In the factorial methods when modelling equity returns, is habitual the use of
macroeconomic factors such as inflation rates to incorporate inflation risk, industrial
production index or the employment rates to incorporate cyclical drivers. Additionally,
it may be added other financial indicators.

As the purpose of our IRC model is to simulate equity returns (i.e. a proxy for
the latent firm’s asset value processes) as driver of the default or migration events, our
model will use a financial-indicator-type factor as driver of systematic risk. They are
the followings:

• An European equity index leading the global behaviour of the european economies
(i.e. the risk inherent in all of them).

• A principal component derived from the PCA (Principal Component Analysis)
of the twelve eurozone national equity indices plus two European bond’s indices.

The PCA is the second method of dimension reduction of a system of variables.
In this case, the system is a butch of the twelve national market indices plus two
European bond’s indices where our issuer are listed. In short, the method is based
on certain linear combinations capable of explaining the most variability of con-
sidered variables. The variables’ variability runs into the variances-covariances
matrix so that the PCA are constructed based on such matrix while keeping
the same statistical information as the principal variables contain. The output
it provides is a matrix with as many observations and series (principal compo-
nents) as the original variables have. With a reduced selection of this principal
components it may be explained the most of their variances.

Once the factors are specified, and reminding that our interest rely on the prediction or
simulation of the future equity returns, it is first needed to predict the future process
(i.e. fit the empirical distribution) of the financial indicators. In the macroeconomic
factor model, the factor data is observable so it does not mean a problem in order to
fit a distribution for then simulate them.

At this point, it can be made two assumptions concerning different levels of real-
ism:

1. Standard normal distribution

The simplest consideration so the most unrealistic one at the same time is fitting
a standard normal distribution for the factor1. Even so, this is the primar-
ily assumption made by the Gaussian factor model (see Vasicek on its ASRF
(2002)[54], page 105 of McNeil et al (2005)[40] or page 78 of Bluhm et al
(2003)[11]). Thus, it will be our first fitted factor distribution in our basis IRC
model.

1There is no need to estimate the parameters in this case due to both factor will have zero mean
and unit variance
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2. Fitting a distribution to the factor

Going further in the robustness of the model and according to the figures an-
nexed (see QQ-plot Figure 3.18 for Stoxx factor and 3.19 for PCA factor in the
Appendix C), a Student-t distribution may be accepted where the degrees of
freedom of the factor are estimated by maximum likelihood estimation (MLE).

2.1.2 Copula assumption

Let us say that we are studying a trading portfolio with n counterparties. From that
basis and over a year, every n-th rated-obligor may have changed its creditworthiness
meaning a market impact (i.e. a loss in case of long position) ending up at default or
other ratings considered. Since it is tried to model the credit dependence structure
among all the issuers in the portfolio (i.e. trading book), such dependence is caused
by the latent variable of the obligor’s assets value. It is explained as previously stated
through a common factor and an idiosyncratic element.

Following Merton’s approach it can be written that:

rn = f(F, εn), n = 1, 2, ..., N

rn ∼ Grn , F ∼ GF , εn ∼ iid Gε and F ⊥ εn∀n (2.1)

[r1, r2, ..., rn]′ ≡ R ∼ FR = C(G1, ..., Gn)

implicitly from Fbivariate = C(Grn(rn), GF (F ))

Signifying that any individual issuer’s stock return is a function of a common
factor and an idiosyncratic element, where from now on Gri , GF and Gε are the
marginal distribution, respectively, of the i-th return distribution, the common factor
(systematic risk) and the idiosyncratic one, respectively.

Since all individual issuer’s returns are described by the same common risk, a
copula will be fit for them but with the indirect manner of a bivariate copula between
the factor and the return. FR is the supposed multivariate joint distribution in general
terms and Fbivariate the bivariate copula running such implicit dependence of the
trading portfolio.

The most commonly and simplest technique to study dependence among variables
is to calculate the Spearman’s linear correlation but this approach is problematic and
limited. It cannot establish the quantile-dependence structure beyond giving a scalar
measure of the general dependence so the asymmetry besides different dependencies
over quantiles are not managed. The reason by which copulas are used is that luckily
they can overcome such these limitations.
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Definition and basic properties

Copulas have been used as an statistical tool for constructing multivariate distributions
and they have been increasingly applying since their discovery as a valuable technique
in risk management. It is the most natural way in static distributional context of
treating dependence in multivariate risk models and help to overcome the pitfalls of
dependence that only focus on correlation allowing alternative measures ones. Copulas
express dependence on a quantile scale being very much useful paying attention at
the extremes outcomes that credit risk entails. Even more where Value-at-Risk or
Expected-Shortfall measures has led us to think of risk in terms of extreme quantiles.

The multivariate joint distribution implicitly contains both the characterization
of the marginal behaviour of individual obligor’s credit process and a description of
their dependence structure. The copula, therefore, provides a manner of isolating
the description of that structure dependence among the variables r1, ..., rn within our
portfolio.

In the academic field of copulas it is found the well-kwon Sklar’s Theorem which
states that all multivariate distribution functions contain copulas and that copulas may
be used alongside with univariate distribution functions (i.e. marginal distribution) to
construct multivariate distribution functions.

Sklar’s Theorem. Considering our model, let FR be the portfolio joint df with
continuous marginals G1, ..., Gn. Then there exist a unique copula C : [0, 1]n → [0, 1]
if considered in Rn (e.g. n obligors) such that

FR(r1, ..., rn) = C (G1(r1), ..., Gn(rn)) (2.2)

where r1, ..., rn ∈ R

and conversely, if C is a copula and G1, ..., Gn are univariate marginal dfs, then
equation (2.2) defines the multivariate df FR with margins G1, ..., Gn.

If we denote the uniformly distributed variables as r1 = G−11 (u1), ..., rn = G−1n (un),
given the marginals Gi, every multivariate distribution defines an implicit copula:

C (u1, ..., un) = FR
(
G−11 (u1), ..., G−1n (un)

)
(2.3)

so that there is an implicit copula at any multivariate df. This is the very used
method on the copulas construction.
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Before listing the copulas used in this master’s thesis it is necessary to point
out two of the groups that we will consider in this master’s thesis: elliptical and
archimedean2. The elliptical copulas (Gaussian and Student-t) are the ones that share
a linear dependence among the marginals dfs., they are copulas implicitly taken from
their corresponding multivariate distributions due to there is no closed-form for them.
These distributions have elliptical equi-probability lines (i.e. symmetric) and it is
only needed to apply the Cholesky decomposition in order to simulate them. On the
other hand, archimedean copulas share a non-linear dependence meaning asymmetry
besides that the linear correlation coefficient does not make sense in these cases. They
do have closed-form named as generating function to simulate them. Clayton, Gumbell
or Frank’s copula are a few of this group.

Elliptical copulas. Following the Creditmetrics method based on Gaussian cop-
ula, the aim is to apply that copula to our basis model before extending it to the
Student-t copula as the EBA have proposed.

If we consider that [r1, r2, ..., rN ]′ ≡ R ∼ NR(0,Γ)3, following equation (2.3) the
copula will be

C (u1, ..., un; Γ) = P (Φ1(r1) ≤ u1, ...,Φn(rn) ≤ un) = ΦR
(
Φ−11 (u1), ...,Φ−1n (un)

)
(2.4)

where ΦR(·) is the multivariate standard normal distribution and Φn(·), n = 1, ..., N
are likewise the univariate standard normal marginals.

Otherwise, if we face [r1, r2, ..., rN ]′ ≡ R ∼ TR,ν(0,Γ)4 and again with (2.3) we
have

C (u1, ..., un; Γ) = P (T1,ν(r1) ≤ u1, ..., Tn,ν(rn) ≤ un) = TR,ν
(
T−11,ν (u1), ..., T−1n,ν(un)

)
(2.5)

respectively as in the gaussian copula case, but here TR,ν(·) is the multivariate Student-
t distribution and Tn,ν(·), n = 1, ..., N the correspondent Student-t univariate distri-
bution.

Before concluding this theoretical subsection, it is important to note that in order
to build multivariate elliptical distributions there is the possibility to assume other
marginal distribution than its respectively same univariate creating meta-distributions.

2There exists other copulas distinctions as Extreme Value Theory copulas (ETV).
3Variables jointly standard normally distributed where Γ is the correlation matrix due to standard-

ization.
4Standardized variables jointly Student-t distributed.
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Archimedean copulas. Unlike elliptical case with its inversion-obtention mode,
archimedian copulas do have an alternative method using a generating function Ψ(u) :
[0, 1]→ [0,∞]. It is defined then an archimedean copula as

C (u1, ..., un; θ) = Ψ−1R (Ψ(u1) + ...+ Ψ(un))) (2.6)

Considering [r1, r2, ..., rN ]′ ≡ R ∼ with a Clayton copula, the expression (2.6)
takes the particular form of

C (u1, ..., un;α) =

(
1 + αα−1

(
N∑
n=1

u−αn −N

))−1/α
=
(
u−α1 , ..., u−αN −N + 1

)−1/α
(2.7)

Meta-distributions. Taking advantage of the Sklar’s Theorem (2.2) through its
useful contribution to obtain probability multivariate distributions from whatsoever
marginals with the use of a copula, one can assume that to define a multivariate df
there is only needed a copula and any type of marginals. In terms of density function
is as follows

fR(r1, ..., rn) = c (G1(r1), ..., Gn(rn)) · g1(r1), ..., ·gn(rn) (2.8)

resulting very flexible when one desires to make a better empirical fit of its model
without making any unrealistic assumption.

Conditional copulas and factor models

Gathering the reduction-dimension technique of factor model with its characteristic of
creating the interrelated relation of the high-dimensional scheme mainly depending on
that common factor, we locate the factor copula models.

By using copula models conditional on the common factors, it may be estab-
lished the dependence relationship between the stock returns. It allows us to use the
marginals distribution of the common factor (besides the marginal distribution of the
idiosyncratic risk) instead of directly applying the marginals of every stock return.

To focus solely on the interactions among the returns, the factor copula corre-
lations conditional on the common factors tackles more accurately the dependence
structure among multiple variables. With such bivariate copula it may be derived two
conditional distribution fuctions but only resulting in our use the second one:

CF |ri(GF (F )|Gri(ri)) = CF |ri(uF |uri) = P (UF < uF |Uri < uri)

Cri|F (Gri(ri)|GF (F )) = Cri|F (uri |uF ) = P (Uri < uri |UF < uF )
(2.9)
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From that consideration it is found that there is an implicit copula through the
specification of the factor model. Considering again the linear factor model, f(F, εi),
this master’s thesis firstly develops the IRC model having chosen to work with the
elliptical copulas implicitly inherent in the kind of multivariate distribution that may
be considered as a natural alternative models for asset values. It would then be also
possible to work with the archimedian family copulas in order to catch up with the
asymmetry and the non-linearity as Clayton copula does –see Nadaraja et al (2017)[43]
or Novales (2017)[44].

Gaussian factor copula model. The less reasonable one due to in the academic
word it is known that the probability dfs of financial series tend not to be normally
distributed as the data frequency increases. Even worse when that data is related to
credit risk returns extracting fat-tailed and non-symetrical distributions that gaussian
copula does not consider because of its zero tail dependence. Anyhow, Creditmetrics
and KMV model are based on that copula and for that reason it will be our basis
model.

In this Gaussian bivariate case with µF = µri and unit variance by construction
(i.e. after an standardization of the data), we know that the univariate distribution of
ri conditional to F = F, is univariate standard normal with:

E(ri|F = F ) = ρ · F, V ar(ri|F = F ) = 1− ρ2

so that, conditioned on F=F, the random variable Z =
ri − ρF√

1− ρ2
∼ N(0, 1)

After some trivial calculus, it can be expressed from the quantile curve already in
returns terms:

1. With standard normal marginals as showed before in equation (1.6) so ri, F and εi ∼
N(0, 1)

rgaussi = ρ · F +
√

1− ρ2 · εi

2. Student-t marginals, then a meta-distribution with ri and F ∼ T (ν), while
εi ∼ N(0, 1)

rstud−ti = T−1νri

[
Φ
(
ρ · Φ−1[TνF (F )] +

√
1− ρ2 · εi

)]
(2.10)

where Φ(·) is the general univariate standard normal distribution, Tνri the
univariate Student-t distribution of the i -th return and TνF their correspondent
univariate of the common factor.

See both previous representations in the appendix C (Figure 3.15).
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The study will consider two assumptions of the marginals distribution increasing
the model realism from normality to contemplate Student-t distribution fitting the
degrees of freedom to the equity and factor data. Nevertheless, as explained before, in
the case of simulating a meta-distribution copula (Clayton with Student-t marginals),
the dependence structure does not vary but consistency will improve.

Student-t factor copula model. The financial crisis of late 2007 came up with
the surprise of the most assets that had previously behaved mostly independently sud-
denly moved together with crashes being more correlated than booms. Only left-tailed
dependence could better fit with that, but in order to start the following modification
of Creditmetrics by systematically moving away from normality, it will be employed the
Student-t copula by decreasing the degrees of freedom with its symmetrical imposition
of tail dependence.

Considering now that (ri, F ) follows a Student-t bivariate distribution with ν de-

grees of freedom, then, conditioned on F=F, the random variable T =

√
ν + 1

ν + F 2

ri − ρF√
1− ρ2

∼

T (ν + 1).

Again with few steps we have our return’s simulation process:

1. With Student-t marginals so that ri and F ∼ T (ν), while εi ∼ T (ν + 1)

rstud−ti = ρ · F +

√
(1− ρ2)

ν + F 2

ν + 1
εi (2.11)

2. Standard normal marginals, then a meta-distribution with ri, and F ∼ N(0, 1),
while εi still ∼ T (ν + 1)

rgaussi = Φ−1ri

Tν
ρ · T−1ν [ΦF (F )] +

√
(1− ρ2)

ν + T−1ν [ΦF (F )]2

ν + 1
εi

 (2.12)

where Tν(·) is the general univariate Student-t distribution, Φri(·) and ΦF (·) the uni-
variate standard normal of the i -th return and the common factor, respectively.

See the representation in the appendix C (Figure 3.16). Note than we present the
Gaussian and Student-t meta-distributions but this work will not use it.
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Clayton copula factor model. Additionally, the use of IRC model is intended
to estimate measures of tail risk as Value-at-Risk and Expected-Shortfall, then we
should be concerned with the Clayton copula that properly estimate the left tail of
the portfolio loss distribution. Otherwise, they might underestimate these measures.
Furthermore, this copula seems to capture the left-asymmetric behaviour of the credit
risk’s returns as next figure shows.

Figure 2.1: Comparison of typical market and credit returns.

The conditional copula of this case with any marginal distribution (i.e. Gaussian
or Student-t) for the common factor F ∼ GF or for the i -th return ri ∼ Gri results

ri = G−1ri

[(
1 +GF (F )−α(q−α/(1+α) − 1)

)−1/α]
(2.13)

where α is the driving parameter of the left tail’s positive dependence and q is
the q-quantile of any distribution, in this case, q = Gε(εi) ≡ U(0, 1).

See the representation in the appendix C (Figure 3.17).
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Making use of these copulas conditioned on the common factor with yet no meta-
distribution considered, for any random-pair of returns we have the next example:

Figure 2.2: Conditional copula comparison, M = 100000, ρ = 0.7, ν = 8 and α = 0.87.

2.1.3 Issuer correlation

The issuer correlation is also a key point in the model since it is an input parameter
necessary to the copula in order to simulate the creditworthiness’ process of each
obligor. As it has already been stated before, the conditional driving factor traces the
general economic situation which may affect the issuer’s credit behaviour. Therefore,
it is needed an exposure parameter quantifying that effect (i.e. correlation coefficient).

Purely, it should be calibrated from default data due to that way the factor
copula model will describe straightforwardly the credit process imputing the default
correlation. Unfortunately, there exist a lack of such data so insted of that we will use
the next one described in the upcoming paragraphs.

Even so, Merton’s model exhibits the first flaw assuming the credit behaviour ran
through the asset value, and as a consequence of these latent variables nature, the
model ends up having as a proxy of default correlation the equity correlation making
finally the flaws double.
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The literature in this regard is varied, but it seems to agree with Frye (2008)[28]
and Düllmann et al (2008)[17] as they state the vast difference when using the equity
or default correlation besides the higher values obtained by the first type of data. Qi
et al (2010)[51] find the equity correlation as a proxy for unobservable asset correla-
tion not valid, while on the other hand Düllmann et al (2008)[17] justify the more
effectiveness of using equity finding, moreover, the differences caused by substantial
downward bias characteristic of estimates based on default data. Other investigations
carried out by Hull and White (2001)[34], Overbeck and Schmidt (2001)[48] or Ce-
deno and Jansson (2018)[14] uses joint default probabilities5 in order to obtain default
correlations. However, that approaching does not hold since it is a pair-based default
correlation among issuers and our need claims for pair-based correlation between the
driving factor and the equity issuer’s data according to the factor model structure.

Finally, our model proposal will fit the default correlations assuming:

1. Estimates from asset correlation as Zhou (2001)[59] or Frey et al [25] do, while
taking advantage of this last work by using a factor model to describe asset
correlations.

2. Following Creditmetrics —Gupton and Finger (2007)[31]— with its narrowed
assumption of asset correlation equal to equity return correlation if leverage
levels (i.e. debt ratio over capital share) are low and horizons are short6.

Conversely for sovereign issuers, there is also the necessity for a dynamic’s credit qual-
ity descriptor but the equity national indices no longer hold in such case. The reason
is countered by Aslanidis et al(2018)[5] so the two most traded in investment markets
–bond and stock market– have evidenced opposite perfomances in a macroeconomic
sphere creating a trade-off: there are simultaneous episodes of large negative bond
returns and large positive stock return. At this point, it doesn’t exist valid driver of
credit worthiness dynamic through stock market but in the corporate case.

For that very reason and given availability, the sovereign correlation is deduced
from constructed series deriving prices through daily 1-year7 sovereign bond yields:

price =
100

1 + ydaily
(2.14)

where ydaily is the daily yield of the sovereign bond issued to a 1-year maturity.

The data considered in this subsection is shown in the Table 3.1 (Appendix C).

5To calculate the default-paired correlation %jk between obligor j and k, with pjk = P (τj < t0, τk <
t0) as the joint default probability between times 0 and t0, and pj ,pk the univariate probability

of default, they use
pjk − pj · pk√

pj(1− pj)pk(1− pk)
6Mainly the reason why Creditmetrics is used by the common industry models (i.e. our master

thesis proposal) over a one-year horizon. Otherwise, longer horizons based on Merton’s approach
encounter inconsistency (Zhou, 2001)[59].

7According to the capital horizon made by our model. It will not be any rebalanced position in a
one-year horizon so that the default’s event may take place once reached that space of time.
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2.2 Model inputs

In accordance with Creditmetrics methodology, several inputs have to be gathered to
our IRC model such as a rating system, transition matrices and PDs, interest rates
term structures for each rating class or the mean and standard deviation of RRs if
they are stochastic. They are cleared up in this section through the following four
parts.

2.2.1 Migration matrices

The migration matrices or also named transition probability matrix (TPM) serves as a
primarily input in the IRC model. The approach made by Creditmetrics set basis of the
market risk due to credit risk descending not only from default but also from changes
in value due to downgrades. Thus, the credit migration matrix is the specification of
magnitude that any individual credit product in the portfolio may default or migrate
its creditworthiness in a pre-specified time horizon.

From a given initial rating which classifies the credit quality of a counterpary into
seven states, the entries in the matrix denote what is the likelihood to migration to
another credit rating or the default. Since our assumption lies into one-year capital
horizon, the TPMs are selected consistently with the likelihood of having a rating
migration for one-year based.

As already mentioned herein-above (check the guidelines concerning migration
matrices section 1.2, there exist various methodologies in the estimation of the TPM
drawing estimates that can vary substantially. According to the EBA’s guidelines it
may be considered either internal or external sources of such data.

External ratings

Due to the narrow scope of data availability, our model proposal consider both corpo-
rate and sovereign TPM from external data sources. Concretely besides in accordance
with Creditmetrics, from Standard & Poors Global Ratings –see Vazza and Kraemer
(2017)[55] for corporate and Witte (2017)[57] for sovereign data–, even though several
other credit rating agencies are gathering that data as Moody’s Investors Service or
Fitch Ratings.

The migration data has been adjusted from the one disclosed by S&P in its annual
report of default study by assembling the credit final ratings of (+) and (-) into the
middle-rated. For example, the probabilities of AAA+, AAA and AAA- have been
uniquely gathered to AAA. The matrix for both corporate and sovereign issuers can
be seen in the Appendix c (Table 3.7 and 3.8, respectively) where additional tables
and figures are attached.
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Internal estimation

When institutions meet the requirements, an internal estimation of the TPM may be
carried out. There are two main different methodologies estimations based on Markov
chains –see Christensen et al (2004)[15] for further detail– that could have been tackled
in this master’s thesis if we had had acces to historical migration data. Nonetheless,
we give a dub explanation following Gunnvald (2014)[30] and Van Der Stel (2010)[53].

Applying Markov chain model. A Markov chaing model theory can be used
to build up a theorical framework around credit migration estimates. Let N be the
number of states for the credit rating framework (i.e. the number of possibly ratings),
M the TPM and the corresponding P in the Markov chain theory where entries pij
denotes the probability of transition from initial rating i to rating j during a given
time horizon8.

Also let G be the generator matrix, corresponding to Q in the continuous time
Markov chain (CTMC) framework. Composed by its analogous entries qij , where it
have an initial state i and a final one j. The default state D is assumed as an absorbing
state, therefore, once reached it cannot leave.

M =


p11 · · · p1(N−1) p1N
...

. . .
...

...
p(N−1)1 · · · p(N−1)(N−1) p(N−1)N

0 · · · 0 1


and

G =


q11 · · · q1(N−1) q1N
...

. . .
...

...
q(N−1)1 · · · q(N−1)(N−1) q(N−1)N

0 · · · 0 1


The two most commonly methods of estimating the entries of M referred to are

the so called cohort and duration, in discrete and continuous time, respectively.

Cohort method. The first approach and the most widely used by the industry
due to its simplicity. It employs a discrete-time setting by letting t0, t1, ..., tn be the
discrete-time points with an arbitrary and constant time interval tk+1 − tk = ∆tk.

The estimator of pij over one period is

p̂ij(tk) =
nij(∆tk)

ni(tk)
(2.15)

with nij(∆tk) the number of counterparties that have migrate from state i to j
between tk and tk+1, and ni(tk the number of companies in the initial state i at initial
time tk.
8The sum by rows has to be the unit.
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Duration method. In accordance with Lando and Skødeberg (2002)[35], with
the assumption of time-homogeneity and in a continuous time range, the matrix M
can be obtaining by first applying the ML estimation to the generator matrix G.

The ML estimates the elements qij in a time horizon between t and T following

q̂ij(t, T ) =
nij(t, T )∫ T
t
Yi(s)ds

for i 6= j (2.16)

where nij(t, T ) is the number of companies migrated from state i to j during the
period of [t,T] and Yi(s) the number of issuers remaining in the initial rating i at time
s.

Then, having the entries estimates of the generator G, the matrix M can be
calculated as follows for all t ≥ 0

M(t) = etG =

∞∑
k=0

(tG)k

k!
(2.17)

Inherently, the entries of the generator matrix G describe the probabilistic behaviour
of the remain time in state i as an exponential distribution with parameter λ = qii

and the probability of migrate from rating state i to j is given by
qij
qii

=
λij
λii

for i 6=j.

This duration method ameliorate the shortcomings of the cohort method but, on
the other hand, it induces to a hard estimation of the bands of confidence and the
standard errors for the migration probabilities.

2.2.2 Credit curves

The present value of a financial instrument is nothing else but its future payment
updated to valuation date. Specially from the last financial crisis, every instrument
has to be valued according its creditworthiness depending on its ensuing counterparty
credit quality. From that basis, there exist a different interest rate term structure or
the so called forward zero curves for each rating class that uniquely discernible by
applying different (credit) spreads.

This zero curves are a riskless yield curve plus a credit spread according to the
quality, following

f jt,k = frisk−freet,k + sCR
j
m (2.18)

where t is the valuation time, k is the future cash flow payment date and j the
credit rating ∀j = 1, ..., 8 of the m simulated scenario.

As we want an updated capital measurement (IRC) for the date on which the
model is calculated9, there is no need to extract forward curves.

9We recall the weekly frequency of the IRC calculation.
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Summing up, each future cash flow (FCF) of the bond (i.e. coupon or coupon
plus nominal) have to be valued according to its correspondent issuer’s credit quality.
Following the financial literature of the money markets, the lower rating, the higher
spread applied –see Galliani et al (2014)[29] or Livingston et al (2018)[37]– in order
to premium the increase in risk, otherwise the instrument will not be negociated.

2.2.3 Recovery rates

If the credit risk move to default, the RRs are applied to the face value of the bond. At
this point, and following the approach that was stated in the section 1.2, we will use a
stochastic process for dynamic of the RRs. In accordance with Fisher et al (2016)[23],
Frye (2000) and Altman et al(2002), the RRs values may be obtained from the beta
distribution. This distribution function allows to extract values between the range of
zero and one, besides, through its parameters alpha and beta permits us to give the
shape that better fits with the seniority or industry of the bond.

In relation to this, there exist several works which have carried out investigations
to measure the distribution of the RRs. The papers of Renault and Scaillet (2004)[52],
Bruche and Gonzalez-Aguado (2009)[12] and Altman and Kalotay (2014)[1] provide
the data concerning the RRs.

As Renault and Bruche data gathering is prior to the financial crisis of 2007, we
choose the RRs data presented by Altman and Kalotay in order to simulate the process
of the RR accordingly with the most current market situation.

To do that, the beta distribution paramaters have to be derived. It may be done
by applying the mean and the standard deviation to the next formulas:

α = (
1− µ
σ2

− 1

µ
)µ2

β = α(
1

µ
− 1)

(2.19)

The RRs simulated depending on the industry of the issuer are attached in the
Appendix C (Figure 3.26).

Based on Frye (2000)[28], Ojea (2016)[22] also stated the link that stochastic RRs
have with PDs by correlating them through another factor copula model 10. It goes
beyond our data availability so its correlation parameter has to be estimated strictly
with default data. Moreover, Creditmetrics does not consider such dependence so we
only apply to our models stochastic RRs uncorrelated with the PDs.

10RRi =
√
ρrecoveryF +

√
1− ρrecoveryεi
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2.2.4 Portfolio and model selection

IRC models

The models developed in this master’s thesis are succinctly attached in the next table.

Copula Marginal distributions (r,F) Factor Copula d.o.f.

Model 1
Gaussian Standard normal European Index –
Gaussian Standard normal PCA –

Model 2
Student-t Student-t standardized European Index Estimated
Student-t Student-t standardized PCA Estimated

Model 3
Student-t Student-t standardized European Index Imposed 8
Student-t Student-t standardized PCA Imposed 8

Model 4
Clayton Student-t standardized European Index –
Clayton Student-t standardized PCA –

Table 2.1: Model proposals

In this master’s thesis, we have tested a group of 4 model proposal for modelling
the credit risk. They all set basis in the Model 1 that is just the Vasicek’s approaching
presented in the base line section –1.3.3 IRC basis model proposal–.

To continue adding soundness gradually to our framework, we have developed
next an IRC model based on Student-t copula. It aims to better catch up with the
extreme-values dependence that the general returns on financial markets performances.
It is the Model 3 where the copula parameters have been estimated from the market
data in compliance with our research.

Model 4 starts up the herein-above cited ECB’s proposal of imposing eight degrees
of freedom to the factor Student-t copula model. In the forward analysis is proved the
capital requirement of this proposal compared to the other models.

Lastly, in our seek for presenting a model that better agrees with the left-skewed
distribution of credit instruments as was displayed in past Figure 2.1, we formulate a
factor Clayton copula approaching.

In order to distinguish which factor is being used by any model, it will be defined
as Stoxx the European equity index and as PCA the factor derived from the PCA of
the mentioned indices.
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Bonds portfolios composition

In order to test our IRC measurement, several hypothetical trading portfolios should
be built. We have build six different portfolios with only long positions taken.

The first two portfolios are very basic and only incorporate corporate and sovereign
bonds positions meeting with the minimum denomination requirement on each posi-
tion. With pie charts we present the credit rating percentage in each portfolio. Port-
folio 1 and 2 are presented in the Figure 3.20 and 3.21., both with a vast accumulation
in the BBB rating.

The next four portfolios have been formed in order to make an study of the
IRC demand when the risk differs. Therefore, the Portfolio 3 conforms a high in-
vestment grade portfolio (is attached in the Figure 3.22). The next one, Portfolio
4, decreases to lower-medium investment grade (check Figure 3.23). Finally, to show
how a highly risk concentration could rise the capital requirement, we form a non-
investment grade/speculative and an extremely speculative portfolios (Portfolio 5 and
6, respectively in Figure 3.24 and 3.25).

2.3 Marked-to-market valuation

Once stated the likelihood of credit migration for any rated issuer, the simulation
process take place following Merton’s approach. It is accomplish through the factor
copula model which will determine possible upgrades, downgrades or even default’s
triggered given the TPM. Accordingly, if the credit quality move is to another credit
rating rather than default, the exposure should be revaluated as follows:

Bit(CR
j
m) =

M∑
k

FCF ik
(1 + f jt,k)k−t

=

M∑
k

FCF ik
(1 + f jt,k)DCF

∀k ≥ 1year,∀j = 1, ..., 7 (2.20)

where Bit(CR
j
m) is the bond value of the issuer i, valued at time t (in our case t =

0 = IRC calculation day) and given the credit rating j in the m future 1-year scenario.

Otherwise, if default state is triggered, the marked-to-market valuation will result
simply by:

Bt(CR
8
m) = Bt · (1− LGDind) = Bt ·RRind (2.21)

where ind is the company’s industry, therefore RRind is subject to the industry
to which the defaulted issuer belongs.

Therefore, each bond will present a valuation table like the next. Only one value
will coincide with its initial, apart from the defaulted valuation because of such state
is an absorbing one meaning that any defaulted bond can be initially considered.
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Year-end rating Value

AAA Bt(CR
1
m)

AA Bt(CR
2
m)

A Bt(CR
3
m)

BBB Bt(CR
4
m)

BB Bt(CR
5
m)

B Bt(CR
6
m)

CCC Bt(CR
7
m)

DEF Bt(CR
8
m)

Table 2.2: Example of the bond valuation

where here the m simulated scenario does not matter.

2.4 Portfolio loss distribution and IRC

Simulating new asset returns will end up generating new creditworthiness for each
obligor once classified by thresholds. After that, we can map the into new bond prices
that will cause portfolio value movements.

Let us now introduce the portfolio value as the PFV acronym and make a simple
example to show how the IRC is calculated given 3 issuers with one bond each.

PFVt,m =

3∑
i=1

Bit(CR
j
m)

∆PFVt,m = PFVt,m(CRjm)− PFVt,0(CRj0) = P&Lt,m

(2.22)

Resulting PFVt,m and ∆PFVt,m, respectively, the portfolio value and the change
presented in the portfolio in relation to its initial value at time t and in the m scenario.

To show an IRC calculation, let us also simplify it to B(CRj) and take this
portfolio example with three bonds position and five scenarios simulated:

Scenarios Issuer 1 Issuer 2 Issuer 3 PFV P&L

0 (Initial) B(CR3) B(CR5) B(CR1) PFVt,0 –
1 B(CR1) B(CR3) B(CR6) PFVt,1 ∆PFVt,1
2 B(CR4) B(CR2) B(CR3) PFVt,2 ∆PFVt,2
3 B(CR5) B(CR2) B(CR1) PFVt,3 ∆PFVt,3
4 B(CR2) B(CR2) B(CR7) PFVt,4 ∆PFVt,4
5 B(CR8) B(CR4) B(CR1) PFVt,5 ∆PFVt,5
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As it can be seen, the asset value’s simulation primarily mapped with its new
issuer’s credit rating turns out to generate possibly different market-to-marked bonds
positions B(CRj) with j =1,...,8 (from AAA to DEF). At any scenario the PFV and
its respective ∆PFV are calculated so that it will get a couple of vectors with five
different scenarios where the distribution of the values could therefore be analysed.

Recalling the IRC measure defined in one of the initials sections –1.1 Market risk
framework–, it concerns the Value-at-Risk of the P&L distribution at 99.9% confidence
level (i.e. the 0.1% percentile).

We would like also to propose the IRC measurement based on the Expected Short-
fall (ES) following Artzner et al (1999)[4] instead of only the VaR. The Committee
already shifted it in its consultative document – BCBS (2013)[7]– due to the flaws of
the VaR: “A number of weaknesses have been identified with using VaR for determining
regulatory capital requirements, including its inability to capture tail risk”.

In agreement with its proposal for internal models, we derived a renovated IRC
measurement under the ES at same confidence level besides the stated VaR. Taking
both measures of the portfolio P&L and in terms of losses (- P&L):

V aR99.9% = inf{P&L : P (Loss > P&L) ≤ (100− 99.9)%}
ES99.9% = E[P&L|P&L ≥ V aR99.9%]

(2.23)

at a given time horizon, in our case one-year capital horizon.

Hence, the IRC will be based on the Value-at-Risk measure unless otherwise
stated.
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3 Empirical analysis

The empirical analysis has required different steps to obtain the final IRC value. At
this section, it is first justified the data sources used through the three main steps
carried out: first the valuation of the each bond’s position at any credit rating possible,
second the estimation of the parameters which are utilized in the factor copula model,
till third make use of them to simulate an accordingly migration structure following
the actual market performance. Lastly, the results of the model proposal are presented
respectively.

3.1 Data sources

In accordance with the generation’s steps of the IRC models, several types of data
have been used:

• General model inputs

– TPM. As before commented, this data is extracted from S&P report up-
dated to 2017 from estimates between 1981-2017 for global corporates.

– Credit curves. Following subsection 2.2.2, the riskless yield curve plus the
credit spread are obtaining from Reuters Eikon Database.

– RR. From the given data of Altman and Kalotay (2014)[1] for either indus-
try or seniority. Although in our model we simulate the RRs according to
the industry of the issuer.

• Dependence structure

The dependence structure (section 2.1) is an important aspect in the IRC mod-
elling. In order to catch up with the market features1, the estimates may be
extracted according to such data. For our model proposal, the selected sample
data comprises 251 business days prices from our valuation date on 26th April
backwards. We have gathered data from Thomson Reuters Eikon for the factor
copula model need. It means data for the factor besides for each issuer’s credit
driver in order to obtain their dependence.

1Although it is more interesting to estimate the model from turmoil periods as was the last financial
crisis that started in 2007, due to limits of historical data extraction, we finally considered another
more recent data period.
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Two factors are minded:

– Stoxx Europe 50 EUR Price Index (Europe, .STOXX50)

– The first component of the PCA from the following national equity in-
dices: Amsterdam Exchanges Index (Netherlands, .AEX), Athex Compos-
ite Share Price Index (Greece, .ATG), Austrian Traded Index (Austria,
.ATX), BEL 20 Index (Belgium, .BFX), CAC 40 Index (France, .FCHI),
FTSE Italia All-Share Index (Italy, .FTITLMS), Deutsche Boerse DAX
Index (Germany, .GDAXI), IBEX 35 Index (Spain, .IBEX), ISEQ Overall
Price Index (Ireland, .ISEQ), OMX Helsinki 25 Index (Finland, .OMXH25),
OMX Stockholm 30 Index (Sweden, .OMXS30) and Euronext Lisbon PSI
20 Index (Portugal, .PSI20); and from the European Debt indices of FTSE
MTS Eurozone Government Bond Index (EXEG5=) and EURO STOXX
50 Corporate Bond (.SX5BPI).

• Marked-to-market valuation

Bond features from Reuters Eikon Database are noted down as it is shown from
Table 3.2 to 3.5. The complete range of bonds start by considering an unique
bond for each corporate issuer. In the sovereign case, from twelve different
countries where the corporate issuers are headquartered, we only have eight
country issuers for data reasons. We finally have 117 corporate and 97 sovereign
bonds making a sum of 214 valued instruments and 125 counterparties credit
processes’ analysed.

3.2 Valuation

The valuation step has been performed following the section 2.3 formulas. As it is
necessary the bond price for all eight possible final credit class, the formula (2.20) is
taken to the valuation among AAA - CCC simply by updating the future cash flows
of the instrument with the correspondent interest rates term structure. In the eighth
state –defaulted–, the formula followed is (2.21) applying the RR to the bond notional
amount.2.

3.3 Estimation

The estimation comprehends two encompassing parts or levels. It mainly lies into first
fit a distribution (i.e. estimate its parameters) to the factors and to the issuer’s credit
driver. The next level is to estimate the factor copula model. In other words, first
is estimated the marginals of the copula distribution and then, the copula itself as a

2It has to be pointed out that in the valuation procedure it was taken into account the +2 business
days proceedings, real coupon frequencies and the correspondent DCF conventions of each bond.
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multivariate distribution function.

• Driving factor

Following subsection 2.1.1, two factors will describe the credit process of the
companies. When normality assumption is outdone by the model 2, 3 and 4,
there is a distribution estimation process.

– Stoxx Europe 50 EUR Price Index

As it may be checked in the quantile-quantile plot (QQ-plot) with a normal
theoretical distribution (see Figure 3.18), this index data no longer seems to
fit empirically with normality –both upper and lower values extracts longer
probabilities (i.e. fatter tails than the normal distribution).

A Student-t univariate distribution is fitted for this serie. The degrees of
freedom estimated are 13.183.

– First principal component derived from PCA

Once the study of the principal components are done, the serie of the first
component is selected as our second factor. It inherently have the higher
variance explanation resulting in about 40% of the total original variables’
variance (See Figure 3.19).

After the selection of this factor, the analysis of its quantiles behaviour in
a QQ-plot guides by itself to a Student-t copula as well. Its estimation of
the degrees of is 12.526.

• Issuer’s credit driver

Already justified in the subsection 2.1.3, our IRC model uses the issuer’s stock
prices as creditworthiness’ driver. Analogously as in the driving factor case, with
the exception of Model 1 following Vasicek’s approach using normal marginals,
the fitted distribution for each of the issuer’s series are Student-t univariate
distributions with the degrees of freedom estimated.

It makes sense since all data sources are financial series, hence, when increasing
the data frequency which distances it from normality in most of the cases – see
Figure 3.27 (corporate issuers) and Figure 3.28 (sovereign). When the degrees of
freedom increases above 30-40 it may be supposed as normality (also delimited
in the figures mentioned).

• Bivariate copula

Once the marginals distributions are estimated, next step is the copula estima-
tion. Since our credit risk approach is modelled by a factor copula model, we use
the bivariate copula. More precisely, the conditional bivariate copula as shown
in subsection 2.1.2 ,conditional copulas and factor models.

At this point, it has to be brought up that following our model concerns, the bi-
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variate copula estimation changes over the model proposals (Gaussian, Student-t
and Clayton). Therefore, the estimates of the copulas will output the maximum-
likelihood value reached by the optimization plus the correspondent parameters.

Even in the Gaussian copula where there is no need to estimate the parameter
(correlation’s parameter), it will be used the estimator.

Maximum-likelihood estimator. According to the estimation process of the
copulas, we use the second strategy based on two-stage estimation method instead of
the first one, canonical maximum likelihood (ML). This strategy is named inference
function for margins (IFM) and consists of two steps3 :

1. Estimating the parameters of each univariate density function (marginal density)
using the maximum likelihood method

Max
αi

T∑
t=1

ln fi(xi,t;αi) (3.1)

where αi are the degrees of freedom estimate of the Student-t univariate dis-
tribution case.

2. Estimating the parameters of the copula solving the optimization problem, con-
ditioned to the univariate parameter’s estimates

Max
θ

T∑
t=1

ln c(F1(x1,t; α̂1), F2(x2,t; α̂2); θ) (3.2)

where θ contains a scalar or vector of copula parameters and α̂1 and α̂2 are the
estimates in the previous step.

3.4 Simulation and thresholds

In the aftermath of the factor copula estimation it follows the simulation process of
the asset values returns. In this regard, it should take into account as many differ-
ent simulation processes and thresholds sorting as models defined in subsection 2.2.4.
100,000 simulations have been carried for every bond scenario to consequently obtain
a vector of 100,000 P&L.

Again, we recall the factor models (see 1.3.2 Factor model. Application of Va-
sicek) together with the conditional copulas presented in subsection 2.1.2. Taking
both approaches, we could construct factor copula models by conditioning the simu-
lated return to the explainer factor. As a result, it forms a bivariate copula where the
simulation draws returns conditioned to the factor at the same time. Both marginals,
the issuer’s asset returns and the driving factor are required, as well as the one of the
idiosyncratic risk that is not a marginal for the copula input per se.
3As the maximum likelihood is applied to the density function of the bivariate copula (2.8), once

taken the logarithm it is shown the possible maximization through the two addend.
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Model 1

Formula used:

rgaussi = ρi · F +
√

1− ρ2i · εi

where in this particular case ri ∼ N(0, 1), F = N−1(seed1), εi = N−1(seed2)4 and ρi
is the pair-wise dependence between the factor and the issuer.

The thresholds obtaining may be derived from two methods: considering the
probabilities in the TPMs as unconditionally or transform them to conditionally inde-
pendent.

Unconditionally. If it is considered the approach applied by Gupton and Fin-
gers (2007)[31], Van der Stel (2010)[53] and Forsman (2012)[24] the thresholds are
calculated by simply applying the univariate inverse distribution to the probabilities
in the entries of the TPMs. It should be the respective through which the asset’s
returns of every issuer are distributed.

Since this Model 1 is the basis model of Vasicek’s approach, the thresholds have
already been expressed in subsection 1.3.3.

Conditionally. On the other hand, several research works have utilized the con-
ditionally independent probabilities when considering the common factor fixed. See
Vasicek(2002)[54], Mosconi (2015)[42], Martin et al(2011)[39] or Zhang and Jiao(2012)[58].
The main purpose of this master’s thesis does not rely on take the common factor as
fixed. Even though, we will develop an analysis taking advantage of such derivation in
order to differentiate how the IRC value could vary depending on the economic cycle.

In such context, the conditional thresholds are obtained as it follows5:

prCRj→DEF |F = prCRj<DEF |F = prDEF |F

= P [Vt < VDEF ] = P [ri < N−1(prDEF )|F ]

= P [ρi · F +
√

1− ρ2i · εi < ZDEF |F ]

= P

[
εi <

ZDEF − ρi · F√
1− ρ2i

|F

]

= N

(
ZDEF − ρi · F√

1− ρ2i

)
= N

(
ZDEF |F

)
ZDEF|F = N−1(prDEF |F )

4To reduce the variability of the Monte Carlo simulation, we use the same seed in all the models.
One vector of uniform variables for the factor –seed1– and a matrix of them –seed2– for the
idiosyncratic risk.

5It is only given an example in the default’s case. By accumulating the probabilities from DEF to
AAA can be derived all seven thresholds.
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It can be simply and equally as:

ZDEF|F =
N−1(prDEF )− ρ · F√

1− ρ2
(3.3)

Model 2

The general formula results

rstud−ti = ρi · F +

√
(1− ρ2i )

νi + F 2

νi + 1
εi

but in order to get the simulated values according to the univariate Student-t marginals
estimated, we have made used of the next formula which is the same as the equation
(2.12), but in this case with the marginals sought according to the univariate estimation

rstud−ti = T−1νri

Tνi
ρiT−1νi (TνF (F )) +

√
(1− ρ2i )

νi + T−1vi (TνF (F ))2

νi + 1
εi

 (3.4)

where

F ∼ T(νF ) estimated

ri ∼ T (νri) fitted and estimated for each issuer’s returns,

νi the degrees of freedom estimates from the i-th Student-t bivariate copula 6,
and

εi = T−1νi+1(seed2).

Consistently, the thresholds are derived as follows for those either unconditionally
or conditionally independent.

Unconditionally. From the point that ri is Student-t distributed with νri de-
grees of freedom, we obtain the thresholds by applying the respective Student-t distri-
bution with its correspondent degrees of freedom to the given probabilities.

For instance, in the case of default:

prCRj→DEF = prCRj<DEF = prDEF

= P [Vt < VDEF ] = P [ri < T−1νri
(prDEF )]

= P [ri < ZDEF ]

= Tνri (ZDEF )

ZDEF = T−1νri
(prDEF )

6Point out that νri 6= νi, since the first one is the univariate serie estimation of the issuer’s return
and the second is the degrees of freedom estimated in each Student-t bivariate copula.
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Conditionally. Following the explanation of the Model 1, it can be obtained the
pertinent conditional thresholds given a fixed factor.

The derivation in this case and model is such as:

prCRj→DEF |F = prCRj<DEF |F = prDEF |F

= P [Vt < VDEF ] = P [ri < T−1νri
(prDEF )|F ]

= P

ρi · F +

√
(1− ρ2i )

νi + F 2

νi + 1
εi < ZDEF |F



= P

εi < ZDEF − ρi · F√
(1− ρ2i )

νi + F 2

νi + 1

|F



= Tνi+1

 ZDEF − ρi · F√
(1− ρ2i )

νi + F 2

νi + 1


= Tνi+1

(
ZDEF |F

)
ZDEF|F = T−1νi+1(prDEF |F ) =

ZDEF − ρi · F√
(1− ρ2i )

νi + F 2

νi + 1

(3.5)

(3.6)

Model 3

This model implements the proposal made by the ECB of imposing eight degrees
of freedom in the Student-t copula. As the simulation and thresholds are analogously
to the previous model, only one consideration has to be metioned according to the
bivariate copula parameter.

Thus, we will follow the previous formulas yet with νi = 8 for every copula
simulated, hence, εi = T−1νi+1(seed2) will also change.

Model 4

rclaytoni = T−1νri

[(
1 + TνF (F )−αi(q−αi/(1+αi) − 1)

)−1/αi]
(3.7)

where q = Tνi+1(εi) and αi is the only parameter estimate in any bivariate Clayton
copula.

In this instance, the non-linear dependence between the common factor and each
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issuer’s returns is held by that parameter. Indeed, from the point that the Clayton
copula catches up with the left-asymmetry among variables, αi is the decisive param-
eter in the left-tailed dependency that equals to λ = 2−1/αi when it is greater than
zero.

Thresholds derivation.

Unconditionally. Although this model put into practice a bivariate Clayton
copula, we have still imposing the marginals distribution that we had estimated in such
section. Due to from the Model 3 onwards the marginals distribution are univariate
Student-t, the unconditional thresholds case follow accurately the formula (3.6).

Conditionally. The Clayton’s copula thresholds derivation are carefully calcu-
lated following the next steps: first the conditional probabilities are generated, and
then, its respective thresholds. As any of the previous demonstrations.

prCRj→DEF |F = prCRj<DEF |F = prDEF |F

= P [Vt < VDEF ] = P [ri < T−1νri
(prDEF )|F ]

= P

[
T−1ri

[(
1 + TνF (F )−αi(q−αi/(1+αi) − 1)

)−1/αi]
< ZDEF |F

]
= P

[(
1 + TνF (F )−αi

(
q−αi/(1+αi) − 1

))−1/αi
< Tνri (ZDEF )|F

]
= P

[
1 + TνF (F )−αi

(
q−αi/(1+αi) − 1

)
< Tνri (ZDEF )

−αi |F
]

= P
[
TνF (F )−αi

(
q−αi/(1+αi) − 1

)
< Tνri (ZDEF )

−αi − 1|F
]

= P
[
q−αi/(1+αi) − 1 <

[
Tνri (ZDEF )

−αi − 1
]
· TνF (F )

αi |F
]

= P
[
q−αi/(1+αi) <

[
Tνri (ZDEF )

−αi − 1
]
· TνF (F )

αi + 1|F
]

= P

[
Tνi+1(εi) <

([
Tνri (ZDEF )

−αi − 1
]
· TνF (F )

αi + 1
)−(1+αi)/αi

|F
]

= P

[
εi < T−1νi+1

(([
Tνri (ZDEF )

−αi − 1
]
· TνF (F )

αi + 1
)−(1+αi)/αi)

|F
]

= Tνi+1

(
T−1νi+1

(([
Tνri (ZDEF )

−αi − 1
]
· TνF (F )

αi + 1
)−(1+αi)/αi))

= Tνi+1(ZDEF |F )

ZDEF|F = T−1νi+1(prDEF |F ) = T−1νi+1

(([
Tνri (ZDEF )

−αi − 1
]
· TνF (F )

αi + 1
)−(1+αi)/αi)

(3.8)

(3.9)
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3.5 Results

3.5.1 Statistical adequacy to data

Prior to show the results of our model proposals, we want to analyse the statistical
adequacy to our data ir order to ascertain which best fits. Though, on the back pages
are attached all the results with no discrimination of adequacy. It is simply to make
a study on which features could explain better the considered data.

Driving factor choice

Given that in our model proposals there is a unique driving factor, the importance
falls on its selection. To measure the ability to explain the complete range of variables
selected (i.e. the credit process of corporate and sovereign issuers) we have calculated
the pair-wise dependence between the respective factor (recall from subsection 2.1.1
our two considerations) and each of the issuer’s data series driving the credit process.

Hence, the interest lies into compare the dependency parameters that both Gaus-
sian and Student-t bivariate copula extracts while maximizing the log-likelihood. In
the Copula Clayton cases, the parameter only focus on the left-tailed positive depen-
dence in accordance to its properties. Such left-dependence parameter is obtained
through the unique alpha parameter that the algorithm optimizes7.

In the tables below, we have displayed through a stacked bar graphs the depen-
dency parameters both in relation to the Euro Stoxx and PCA factor, in orange and
blue, respectively. Moreover, the mean among all pair-wise dependencies in order to
show which factor better fits with the data on average.

7λri = 2−1/αi if αi > 0 and λri = 0 otherwise
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Figure 3.1: Dependency parameter from Gaussian copula between factors and corpo-
rate issuer’s data

Figure 3.2: Dependency parameter from Student-t copula between factors and corpo-
rate issuer’s data
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Figure 3.3: Left-tailed dependency parameter from Clayton copula between factors
and corporate issuer’s data

Figure 3.4: Dependency parameter from Gaussian, Student-t and Clayton between
factors and sovereign issuer’s data
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As it can be seen, the PCA from the equities national indices plus the two Eu-
ropean debt indices could explain better the corporate credit process. On the other
hand, when we compare the dependency of the two factors in relation to the sovereign
data, the capacity to better explain such processes is not that clear. Even though,
when we put aside the Gaussian copula to move towards the Clayton copula, again
the PCA gains explanatory ability in detriment of the Euro Stoxx factor.

Therefore, we believe that an IRC model proposal based on one-factor approach
has more accuracy if it is employed a PCA for the factor.

Copula selection

It is important to remember that the simulation process (section 3.4) is a crucial step
within the IRC model. In accordance, an estimation process of the data has to be
carried out as explained in section 3.3 (bivariate copula). A natural way of comparing
copulas is through the maximum value reached by the maximum-likelihood estimator.
Taking also the number of parameters input, there exist two possibilities to make a
comparison among each pair-wise data: the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC).

AIC = 2k − 2l̂nL

BIC = T−1(k · lnT − l̂nL)
(3.10)

where k are the number of parameters and T the number of observations.

As stated in Novales (2017)[44], the lower value of the information criteria, the
higher copula adequacy.

Following the higher adequacy values of the PCA factor, the copula comparison is
based on the information criteria of the bivariate copula between issuer’s data and the
PCA factor uniquely. In the next tables, we attached three stacked bar graphs with
the AIC and BIC for each bivariate copula. The first two for corporate data while the
third one for sovereign. The x-axis indicates the
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Figure 3.5: AIC of the bivariate corporate-PCA copulas

Figure 3.6: BIC of the bivariate corporate-PCA copulas
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Figure 3.7: AIC and BIC of the bivariate sovereign-PCA copulas

In accordance with the results, several considerations can be made. While in the
corporate-PCA copulas the conclusion is quite clear, on the sovereign side there is
controversy once again.

From the corporate-PCA it seems obvious that the Clayton copula engages the
worst. If we look through the figure 3.5 (AIC), the Student-t copula fits better in 78
cases out 117 over the three others. In the case of the bayesian criteria (figure 3.6)
the fraction increases to 106 for the Student-t copula again. So within this pair-wise
relation, it seems clear that the Student-t bivariate copula better explains the relation
between corporate data and the factor.

On the sovereign-PCA side, the clearest conclusion is that the Clayton copula
does not explain well its relation either. The AIC and BIC extract conflicting values:
the Gaussian copula gets the lower AIC value in all pair-wise relations, while the
Student-t in 6 out 8 according to the BIC. Only for the first issuer conditioned to the
PCA copula (i.e. Germany) seems to fit well a conditional copula to the PCA. If we
only consider the BIC, the values would be closer to the corporate-PCA case and the
conclusion will be that the Student-t copula explain better their dependence than the
others, followed by the Gaussian and finally the Clayton copula.

The last consideration is in relation to the Clayton copula. It has the worst ability
to explain the pair-wise relation in all the cases contra prognosis (considering we are
within a credit risk model). This is due to the type of data by which the model is based
on to drive the credit issuer’s process and the factor. Such data is mainly equity prices
(subsection 2.1.3) because of the lack of default data. Besides that reason, the limit
of historical data extraction forced us to select the data sample of an stable period.
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If it had been data availability since 2007, the Clayton copula might have explained
better the dependence. Moreover, we also could have observed this fit if we had used
credit data in our model, specially because our portfolios are based on long positions
only. It would mean that it does not take advantage of the opportunity to partially
offset losses due to downgrades or default by gains from upgrades on other bonds.
Such tail events may be avoided through semi-active approach whereby large positions
are combined with short positions. Even though, the probability of a sudden default
or downgrade remains and the left-skewed distribution as well –see ECB (2007)[20]–.

Without this two limitations, and as it was displayed through figure 2.1, we had
demonstrated the higher left-tailed dependence due to a credit instrument returns and
the estimation of the model within a turmoil period.

Otherwise, the estimation is one step among several other. It does not mean that
Clayton copula is not valid to simulate the factor copula model in order to correlate
the default events among issuers within our portfolios.

3.5.2 Factor copula model analysis

The main objective of this master’s thesis is to propose several factor copula models and
their implementation according to the IRC obtaining as was described in subsection
2.2.4. Consequently, the comparison among such factor copula models is the most
important part.

Within this subsection, we show the most remarkable aspects to take into account
derived from the use of different copulas among the factor models. It is also needed to
point out that the following results concerns the factor copula models based on PCA
factor, stochastic RRs and unconditional thresholds. Moreover, in order to simplify
the results, the following figures are from the portfolio 1 (Figure 3.8, 3.9 and 3.10), the
portfolio 2 (Figure 3.11) and both of them (Figure 3.12). To check the entire range of
results see the annexed tables at the appendix C (Table 3.12).

In the following two graphs it can be demonstrate the use of all copula range, since
the basis factor model of Vasicek (Model 1) until the factor model using a Clayton
copula (Model 4). To display the key aspects of these models, we show the histogram
of the distribution of the P&L scenarios (Portfolio 1) through two graphs, the first
one focused on the left tail (scenarios lower than the percentile 0.1%) and the second
one on the right tail (scenarios upper than the percetile 50%).
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Figure 3.8: Histogram of the P&L scenarios lower than the 0.25% percentile

Figure 3.9: Histogram of the P&L scenarios upper than the 50% percentile

In the previous figure 3.8 can be demonstrate that the Clayton-based model
(Model 4) has the most lower values of the future portfolio changes but the least
higher as well (observed in figure 3.9). It would be in accordance with the
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The Student-t-based model with the parameters proposed by the ECB (Model 3)
would result the next in extracting lower values of the future portfolio P&L (both in
the left and right tail) then followed by our estimated Student-t-based model (Model
2). Finally, the basis model (Model 1) would perform the most P&L values grouped
around the middle percentiles.

Through the next bar graph (figure 3.10) we would also demonstrate the effect
of the different factor copula models selection. Based on Portfolio 1 results, it can be
checked that Model 1 requires the lowest IRC from the 4.88% of the portfolio value
until the highest 10.61%, more than doubled.

Figure 3.10: IRC values depending on the factor copula model (Portfolio 1 - PCA
factor)

The next figure 3.11 is similar than the previous one, but here the results are
obtained from the Portfolio 2 where all the positions held are sovereign issuers. It calls
the attention that almost in every factor copula model the IRC percentage is the same,
in between the 3.62% (Model 1) and the 4.07% (Model 3). So the copula assumption
at this point is not such relevant.

It is due to sovereign issuers are unlikely to default with the exception of an initial
BB-rated or lower –see the table 3.6 of the TPMs of sovereign issuers–. Besides, the
considered initial rating of sovereign issuers are BBB or above (i.e. zero probability
of default). By not having a probability of default, it means that although there are
extreme scenarios simulated, these will not be classified as such. Therefore, the factor
copula models do not vary their IRC requirements to a large extent.
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Figure 3.11: IRC values depending on the factor copula model (Portfolio 2 - PCA
factor)

To finish with this section, we display in the next figure a graphical measurement
of the distance performed by the IRC based on a Expected Shortfall over the IRC
based on a Value-at-Risk. The middle dots crossed by the sticks indicate the IRC
(VaR) while the sticks’ endpoint note the IRC (VaR) plus and less the difference
from the IRC (ES). Even though we are also interested in the upper endpoint, this
MATLAB graph help us out to show relatively how is increasing the distance between
both measures while putting the Gaussian model aside.

In other words, it is just demonstrating us the effectiveness of the factor copula
model when going further than the basis model of Vasicek (M1. Gaussian). The
distance rises from 173 basis points (bp), 262 bp, 356 bp till 608 bp in the M4. Clayton
(Portfolio 1 + PCA). Once again and in accordance with the above-mentioned, the
sovereign-based portfolio (Portfolio 2) does not show any remarkable difference so the
distance does not surpass 62bp in any factor copula model (nor in any factor used).
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Figure 3.12: Distance of ES measure over VaR

3.5.3 Portfolio creditworthiness comparison

The next study we have carried out is how the IRC requirement could vary considering
different concentration of credit ratings within the portfolio. In the subsection 2.2.4.
we presented a group of different formed portfolios. The reason lies in implement to
them our four model proposals in order to verify if the capital required comply with
the credit risks (i.e. rating concentration within the portfolio).

Hence, we test the IRC models to four different portfolios with different ratings
concentration. If we set apart the Portfolio 1 and 2 (they only have one type of
issuer each), Portfolio 3 (see figure 3.22) is the least likely to default since its 79% is
composed by AAA, AA and A issuer’s rated. Portfolio 4 –figure 3.23– increases the
previous probabilities of default so here a 78% is concentrated in BBB debt. Finally,
Portfolio 5 and 6 (see figure 3.24 and 3.25) are much likely to default since they have
reached the non-investment grade (75% of BB and B bonds) and extremely speculative
(74% in CCC) consideration, respectively.

To do that, we present in the next figure the comparison among portfolios but all
of the values extracted from our estimated factor copula model (Model 2 Student-t),
based on PCA factor with stochastic RRs and unconditional thresholds.
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Figure 3.13: IRC comparison among portfolios (Model 3 - PCA factor)

Figure 3.13 justifies that the variation of the predominant credit rating in the
portfolio leads to different capital requirements. We can see that the more risk the
portfolio has, the more IRC requirement demands the model. In fact, such capital
requirement increases exponentially till an approximately 64% of IRC when the 74%
of the portfolio has high likelihood of default (27% for CCC).

3.5.4 Deterministic Recovery Rate assumption

There are three different manners of assuming the RRs in the credit risk models.
The first one lets the RRs be fixed so it accepts a deterministic value for them as
CreditRisk+ (Actuarial model) takes. Another assumes an stochastic process for them,
yet uncorrelated with PDs (Creditmetrics), or also correlating the RRs with PDs as
the last one does.

Rejecting the last one as explained in subsection 2.2.3, and taking the second as
our basis RRs process, we have implemented a 40% deterministic RR following Brunac
(2012)[13] in order to measure such impact in the IRC.

The IRC change is attached in the Table 3.13 of appendix C. Additional tables and
figures. The results have shown that by applying a deterministic RR, as we leave aside
the Gaussian model but still within a portfolio rated as investment grade (Portfolio 1
to 4), the minority of the defaulted scenarios affect increasing the IRC capital required
with regard to stochastic set.

If we have a look at the two speculative portfolios (5 and 6), with a much higher
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percentage of scenarios defaulting, although on average the stochastic process of the
RRs simulation will extract higher values than a 40% (check Table 3.11), the impact
that those lower scenarios make is also higher. It means that as a result of the high
standard deviation of the stochastic RRs, a default scenario extracts much lower P&L
which finally ends up demanding more capital than in the deterministic case (i.e.
negative percentages in the Table 3.13)

3.5.5 Basis point impact

One of the processes carried out by the ECB in order to do the validation of the
internals models is to apply an up and down shift in the PDs. It quantitative impact
on the IRC may, among others processes, determine if they are well specified or not.

To do that, we have implement such proposal in order to get a sensitivity analysis
therefore a measurement of the model itself. Hence, a basis point (up and down) shift
have been implemented in our corporate TPM (only in the default entry).

The sensitivity of our model to an increase of a basis point is attached in the
Table 3.14. From 48 IRC calculations (summing all different portfolios and models),
almost in all of them it has derived in a rise in the capital demand. The ones in the
Model 4 (Clayton copula) that most reaching a 2.88% shift. In four or five of them,
such impact is not so clear observed.

On the other hand, when shifting down a basis point (Table 3.15), the impact is
almost the same as the previous.

3.5.6 Conditional thresholds

Following the approach that several researchers had also carried out, we implement the
thresholds conditional to the factor state as described in the section 3.4. Only in this
subsection has been developed the conditional thresholds to apply into our models.
The portfolio which we have selected to show the comparison is the Portfolio 4, so it
seems quite close to the one that a bank institution could held. The IRC values of
applying conditional thresholds are shown in table 3.14 (Appendix C).

The conditionally thresholds obtaining that we have put into effect is carried out
by conditioning the thresholds derivation to the factor in two opposite cases. The first
one, when our factor is at its low percentile (i.e. 10th percentile) and the second, at
its high percentile (i.e. 90th). The reason of doing this analysis is simply to state how
the IRC could change depending on the economic situation, accordingly, through a
period of turmoil or growth (low and high percentiles, respectively).

Taking advantage of the statistical information of the RRs given by Altman and
Kalotay (2014)[1] we have applied the stochastic RRs values in its 10% and 90%
percentile to our model as well (it can be checked in the Table 3.9).
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In order to demonstrate the differences, the next bar graph displays the values of
the conditional IRC taking the unconditional IRC as 100. Only the models conditioned
to the PCA factor are analysed.

Figure 3.14: IRC values obtained from the conditional thresholds (Portfolio 4 - PCA
factor)

The IRC values conditional to a turmoil economic situation are on average 2.5
times over the unconditional values appart from in the Model 4 where it reaches up to
3.5. On the other hand, when the situation is within a growth period, the conditional
IRC decreases until an approximately tenth of the unconditional values.

Far from being applicable an IRC requirement as the obtained when the PCA
factor is at its 90th percentile (so it results hugely short), we believe that one interest
in this approach could rely on imposing a minimum IRC requirement when the factor
is at its lower percentiles. For instance, imposing a minimum of IRC capital condional
to a factor at its lower percentiles calibrated in the prior crisis of 2007 in order to avoid
the losses that took place at that time.
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Conclusion

One of the main reason why the Committee led to the incorporation of the IRC through
the market risk framework was that Basel II had manifested a weakness by utilizing
only a VaR based measurement. As it was described, in 2009 finally took effect its
demand and the IRC began to be applied. But, it is quite likely that such models were
based on a basis model with a Gaussian copula approach since two years ago was the
time when the ECB disclosed its proposal of computing a Student-t copula. Through
this research, it is demonstrated that such approach based in a Gaussian copula could
hardly keep capital to cope the losses occasioned even when most of the economic
players were being affect by the turmoil at the same time and with much difficulties
to pay their financial obligations.

By implementing the ECB proposal, it may be noticed that the institution have
made both a wise and a conservative suggestion so it has resulted the most stable
capital demand through all our portfolio testing. Even though, our Student-t esti-
mation model results a sensible proposal. It is principally estimate from stock data
and it could also lead to a higher requirements than from default data, meaning a
successful outcome in terms of the regulation interests. It meets with the regulation’s
requirements besides it results a reduction of the needed capital by a bank institution
if compared with the ECB proposal.

The further application of a Clayton copula is the outcome of the robustness
sought by the credit risk evidence. In accordance with the rationality of the economic
players and their risk-aversion, they tend to go together in extreme economic situation.
The peculiarity is that in turmoil periods, such dependence that we have tried to model
is enormously high, even more demonstrated in credit instruments than in others. It
is the main reason of our Model 4 proposal that in concordance demands more capital.

As a result, it is quite proved that the capital requirement increases in order
when a basis model of a Gaussian, our Student-t estimate, then the Student-t ECB
proposal and finally a Clayton is implemented. It is also true that this ordering does
not always hold so when the model is implemented in a highly speculative portfolio,
its IRC stands stable around a 66-67% of its value with whatever model used. On the
other investment side, we can test that in a highly conservative portfolio with only
sovereign debt, the IRC does not discriminate with any copula.

With our simple but useful validation process through the basis point shift ap-
plication, it may be seen that the model does not run as expected in the entire range
of portfolios and factor copula models, but it is also a vast minority. We impute this
to the only one factor that we have considered to our model. Such flaw was assumed
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since other researchers as Pykhtin tackled it in order to cover the sector concentra-
tion (imperfect diversification across systematic components of risk). Nevertheless, we
focused this work on the side of the contagion risk across obligors.

To finish, we want to expose some further work which still present in the master’s
thesis if it is interested to apply more accurately the model or to a wider range of
financial instruments. In accordance with the dependence estimation, as it has already
been stated, it may be obtained from default data if there is availability. Moreover,
if such availability stands, the TPMs can also be obtained internally by following the
methods presented in the subsection 2.2.1. In relation to the liquidity horizon, it could
be reduced to a quarter of year so it would be needed to consider the rebalancing of the
position in order to hold constant the risk in the portfolio during the capital horizon.
This assumption only has to meet with the minimum of three months required.

In addition to that, if a portfolio of derivatives is formed meeting also the scope
of application (section 1.2), the IRC process calculation will require a further study
concerning a stochastic process which defines the “moneyness” of the instrument and
its correspondent credit risk inherent within the capital horizon.

Through the histograms of the distribution of the P&L, it have been noticed
that there are few mode values under certain circumstances. We believe that such
statistical properties are nothing but the result of the high percentages of standing
in its correspondent initial credit rating (with the exception of the CCC where it
decreases) for an issuer8. Moreover, it is specially exhibited in the implementation
of the Model 1 and 2 (See both histograms attached in the Figure 3.29 with the use
of the Portfolio 4). It would mean that in both factor copula models, the scenarios’s
simulation gathers around its correspondent initial thresholds because of the Gaussian
copula has not been left out too far yet strictly in all the Student-t estimated bivariate
copulas (check the degrees of freedom in Figure 3.27 and 3.28). It could set basis of a
deeper study of the IRC through the mixture of normals methodology.

The IRC will keep being implemented till the DRC (Basel IV ) takes effect. Al-
though this master’s thesis is focused on the IRC, the upcoming DRC methodology
also shares a factor copula approach. Hence, this work could result profitable in order
to apply other factor copula models beyond the Gaussian approach that fits better
with the reality of the markets.

8see TPMs in Table 3.7 and 3.8.
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APPENDIX

A. Vasicek derivation

We can express the equity return of the i-th obligor ri with jointly standard normal
varibles (F, ξi)

ri = aF + biξi (3.11)

where F and ξi, i = 1, ..., n, are mutually independent variables following standard
normal distribution.

The derivation of coefficient a begins by examining the correlation of ri and rj :

corr(ri, rj) =
cov(ri, rj)

σFσri
=
E [(ri − E[ri])(rj − E(rj))]

σFσri

=
E[rirj ]

1 · 1
= E [(aF + biξi)(aF + bjξj)]

= a2E[F 2] + abiE[F ]E[ri]

+ abjE[F ]E[rj ] + bibjE[ξi]E[ξj ]

= a2E[F 2]

= a2(V ar[F ] + E[F ]2)

= a2

⇒ a =
√
corr(ri, rj) =

√
ρ

(3.12)

The values for bi may likewise be derived using the variance of ri:

V ar[ri] = E[r2i ]− E[ri]
2

= a2E[F 2] + b2iE[ξ2i ] + 2abiE[F ]E[ξi]

= a2 + b2i

⇒ bi =
√
V ar[ri − a2] =

√
1− ρ

(3.13)

So variables ri can be expressed in the form

ri =
√
ρF +

√
1− ρξi
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B. Copulas extension

Gaussian copula

c(u1, u2; ρ) =
1√

1− ρ
exp

{
−ρ

2Φ−1(u1)2 − 2ρΦ−1(u1)Φ−1(u2) + ρ2Φ−1(u2)2

2(1− ρ2)

}
(3.14)

Student-t copula

c(u1, u2; ν, ρ) = K
1√

1− ρ2[
1 +

T−1ν (u1)2 − 2ρT−1ν (u1)T−1ν (u2) + T−1ν (u2)2

2(1− ρ2)

]− ν+2
2

[
(1 + ν−1T−1ν (u1)2)(1 + ν−1T−1ν (u2)2)

] ν+1
2

(3.15)

where

K = Γ
(ν

2

)
Γ

(
ν + 1

2

)−2
Γ

(
ν + 2

2

)

Clayton copula

c(u1, u2;α) = (α+ 1)
(
u−α1 + u−α2 − 1

)−2− 1
α (u1u2)−α−1 (3.16)
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CODE ISSUER DOMICILE CPN FREQ INDUSTRY RATING MAT YEAR

FR0012386688 ACCOR SA FR (France) 1.679 Annually Other BBB 2022
XS1960353388 ACS ES (Spain) 1.875 Annually Construction and materials BBB 2026
XS1529854793 AEGON NV NL (Netherlands) 1 Annually Financial A 2023
FR0011344076 AIR LIQUIDE FINANCE SA FR (France) 2.125 Annually Utilities A 2021
XS1128224703 AIRBUS SE NL (Netherlands) 2.125 Annually Other A 2029
FI4000167176 AKTIA BANK ABP FI (Finland) 2.5 Annually Financial A 2020
XS0809847667 AKZO NOBEL NV NL (Netherlands) 2.625 Annually Chemicals BBB 2022
FI4000375241 ALANDSBANKEN ABP FI (Finland) 0.125 Annually Financial AAA 2024
XS1921451040 ALLIANZ SE DE (Germany) 1.413 Annually Financial AA 2028
XS1799975765 ALLIED IRISH BANKS PLC IE (Ireland) 1.5 Annually Financial BBB 2023
XS1919894813 ALMIRALL SA ES (Spain) 0.25 Semiannually Drugs BB 2021
XS1762980065 ALPHA BANK SA GR (Greece) 2.5 Annually Financial B 2023
XS1501162876 AMADEUS IT GROUP SA ES (Spain) 0.125 Annually Other BBB 2020
XS1244060486 AMRO BANK NV NL (Netherlands) 0.75 Annually Financial A 2020
BE6285454482 AB INBEV NV BE (Belgium) 1.5 Annually Food A 2025
XS1167308128 ARCELORMITTAL SA ES (Spain) 3.125 Annually Steel BBB 2022
FR0011651389 ARKEMA SA FR (France) 3.125 Annually Chemicals BBB 2023
XS1405774990 ASML HOLDING NV NL (Netherlands) 0.625 Annually Consumer Durables A 2022
FR0012830685 ATOS SE FR (France) 2.375 Annually Other BBB 2020
IT0005108490 AUTOSTRADE PER L’ITALIA SPA IT (Italy) 1.625 Annually Transport BBB 2023
FR0011655612 AXA SA FR (France) 2.625 Annually Financial A 2022
XS1533918584 AZIMUT HOLDING SPA IT (Italy) 2 Annually Financial BBB 2022
XS1876076040 BANCO DE SABADELL SA ES (Spain) 1.625 Annually Financial BBB 2024
ES0413900475 BANCO SANTANDER SA ES (Spain) 0.13 Quarterly Financial BBB 2022
XS0867469305 BANK OF IRELAND IE (Ireland) 10 Annually Financial BBB 2022
ES0413307119 BANKIA SA ES (Spain) 0.875 Annually Financial BBB 2021
ES0413679350 BANKINTER SA ES (Spain) 0.625 Annually Financial BBB 2020
XS0883560715 BASF SE DE (Germany) 1.875 Annually Chemicals A 2021
DE000A2E4GF6 BAYER AG DE (Germany) 0.05 Annually Drugs BBB 2020
XS1105276759 BMW AG NL (Netherlands) 1.25 Annually Automotive A 2022
ES0413211121 BBVA ES (Spain) 3.5 Annually Financial A 2021
FR0013078748 BNP PARIBAS SA FR (France) 0.67 Annually Financial AAA 2023
FR0010379255 BOUYGUES SA FR (France) 5.5 Annually Fabricated products BBB 2026

FR0124147135
CAISSE REG CREDIT
AGRIC
AQUITAINE SC

FR (France) 0.36 Annually Financial A 2021

XS1936805776 CAIXABANK SA ES (Spain) 2 Annually Financial BBB 2024
FR0012821932 CAPGEMINI SE FR (France) 1.75 Annually Other BBB 2020
XS0529414319 CARREFOUR SA FR (France) 3.875 Annually Retail BBB 2021
FR0013260379 CASINO GUICHARD PERRACHON SA FR (France) 1.865 Annually Retail BB 2022
XS1468525057 CELLNEX TELECOM SA ES (Spain) 2.375 Annually Other BB 2024
XS0946179529 CITYCON OYJ FI (Finland) 3.75 Annually Retail BBB 2020
XS1513765922 CODERE SA ES (Spain) 6.75 Semiannually Other B 2021
DE000CZ40NS9 COMMERZBANK AG DE (Germany) 1 Annually Financial A 2026
XS1881593971 COMPAGNIE DE S. G. SA FR (France) 1.875 Annually Fabricated products BBB 2028
FR0011442979 COVIVIO SA FR (France) 3.3 Annually Construction and materials BBB 2020
FR0010905133 CREDIT AGRICOLE SA FR (France) 4.5 Quarterly Financial A 2020
DE000A169G07 DAIMLER AG DE (Germany) 0.875 Annually Automotive A 2021
FR0010967216 DANONE SA FR (France) 3.6 Annually Food BBB 2020
DE000DB2GTD0 DEUTSCHE BANK AG DE (Germany) 0.65 Annually Financial BBB 2021
DE000A1RE1W1 DEUTSCHE BOERSE AG DE (Germany) 2.375 Annually Financial AA 2022
XS0503603267 DEUTSCHE TELEKOM AG DE (Germany) 4.875 Annually Other BBB 2025
XS1250867642 DEUTSCHE WOHNEN SE DE (Germany) 1.375 Annually Other A 2020
XS1400342587 DIA SA ES (Spain) 1 Annually Retail CCC 2021
FI4000312095 DNA OYJ FI (Finland) 1.375 Annually Other BBB 2025
XS0388366097 E.ON SE NL (Netherlands) 5.684 Annually Utilities BBB 2022
FR0011244367 EDENRED SA FR (France) 3.75 Annually Financial BBB 2022

XS1222590488
EDP ENER. DE
POR. SA

PT (Portugal) 2 Annually Utilities BBB 2025

FR0013213303 ELECTRICITE DE FR. SA FR (France) 1.875 Annually Utilities A 2036

BE0002629104
ELIA SYSTEM
OPERATOR SA

BE (Belgium) 1.375 Annually Utilities BBB 2026

XS1578886258 ELISA OYJ FI (Finland) 0.875 Annually Other BBB 2024
XS0521000975 ENI SPA IT (Italy) 4 Annually Oil A 2020
XS1647857264 ERG SPA IT (Italy) 2.175 Annually Utilities BBB 2023
AT0000A1GMA0 ERSTE GROUP BANK AG AT (Austria) 1.99 Annually Financial A 2025
XS1709545641 EUROBANK ERGASIAS SA GR (Greece) 2.75 Annually Financial B 2020
XS0940284937 FERROVIAL SA ES (Spain) 3.375 Annually Construction and materials BBB 2021
XS0124085951 FIAT CHRYSLER AUTO. NV LU (Luxembourg) 4 Annually Automotive BB 2021
XS0629937409 FORTUM OYJ FI (Finland) 4 Annually Utilities BBB 2021
XS1554373248 FRESENIUS SE & CO KGAA DE (Germany) 1.5 Annually Other BBB 2024
XS1071419524 GALAPAGOS SA LU (Luxembourg) 5.375 Semiannually Drugs CCC 2021
PTGGDAOE0001 GALP GAS NAT. DISTRIB. SA PT (Portugal) 1.375 Annually Oil BBB 2023
GRC4191173B0 GREEK ORG. OF FOOTBALL PROG. SA GR (Greece) 3.5 Semiannually Other BB 2022
XS1598757760 GRIFOLS SA ES (Spain) 3.2 Semiannually Drugs BB 2025
XS0811554962 HEINEKEN NV NL (Netherlands) 2.125 Annually Food BBB 2020
XS0350850177 IBERDROLA SA ES (Spain) 5.808 Annually Utilities BBB 2023
XS1053594385 ING BANK NV NL (Netherlands) 2 Annually Financial A 2024
XS1539873437 INNOGY SE DE (Germany) 3.5 Annually Consumer Durables BBB 2037

Table 3.2: Corporate bonds considered
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CODE ISSUER DOMICILE CPN FREQ INDUSTRY RATING MAT YEAR

XS0753480457 INTESA SANPAOLO SPA IT (Italy) 5.53 Annually Financial BBB 2020
BE0002272418 KBC GROEP NV BE (Belgium) 0.75 Annually Financial A 2022
XS1531060025 KNORR BREMSE AG DE (Germany) 0.5 Annually Automotive A 2021
XS0811124790 KONINKLIJKE KPN NV NL (Netherlands) 3.25 Annually Other BBB 2021
XS0999654873 LEONARDO SPA IT (Italy) 4.5 Annually Other BB 2021
XS1346762641 MEDIOBANCA BANCA DI CRED. FINAN. SPA IT (Italy) 1.625 Annually Financial BBB 2021
DE000A13R8M3 METRO AG DE (Germany) 1.375 Annually Retail BBB 2021
XS0795500437 METSO OYJ FI (Finland) 3.8 Annually Mining BBB 2022
XS1698932925 NATIONAL BANK OF GREECE SA GR (Greece) 2.75 Semiannually Financial B 2020
XS0981438582 NATURGY ENERGY GROUP SA ES (Spain) 3.5 Annually Utilities BBB 2021

PTPTIUOE0006
NAVIGATOR COMPANY
SA

PT (Portugal) 1.575 Semiannually Fabricated products BB 2021

XS1497527736 NH HOTEL GROUP SA ES (Spain) 3.75 Semiannually Other B 2023
XS1222431097 NIBC BANK NV NL (Netherlands) 0.25 Annually Financial BBB 2022
XS1960685383 NOKIA OYJ FI (Finland) 2 Annually Consumer Durables BB 2026
XS0569852717 NORDEA BANK ABP FI (Finland) 4.16 Annually Financial AA 2022
XS1206510569 OHL SA ES (Spain) 5.5 Semiannually Construction and materials CCC 2023
XS1734689620 OMV AG AT (Austria) 1 Annually Oil A 2026
FR0011798115 PERNOD RICARD SA FR (France) 2 Annually Food BBB 2020
XS1808984501 PIAGGIO & C SPA IT (Italy) 3.625 Semiannually Automotive BB 2025
BE6252911977 PROXIMUS NV BE (Belgium) 2.256 Annually Other A 2023
XS1510547810 RAIFFEISEN BANK INT. AG AT (Austria) 0.695 Annually Financial BBB 2021
FR0011769090 RENAULT SA FR (France) 3.125 Annually Automotive BBB 2021
XS1334225361 REPSOL SA ES (Spain) 2.125 Annually Oil BBB 2020
XS1476654238 ROYAL DUTCH SHELL PLC NL (Netherlands) 0.375 Annually Oil AA 2025
XS1077584024 RYANAIR DAC IE (Ireland) 1.875 Annually Transport BBB 2021
XS1487498922 SAIPEM SPA IT (Italy) 3 Annually Oil BB 2021
FR0012146777 SANOFI SA FR (France) 1.125 Annually Drugs AA 2022
XS1874128033 SIEMENS AG DE (Germany) 1 Annually Consumer Durables A 2027
AT0000A1C741 STRABAG SE AT (Austria) 1.625 Annually Construction and materials BBB 2022
XS0486101024 TELECOM ITALIA SPA IT (Italy) 5.25 Annually Other BB 2022
XS0907289978 TELEFONICA SAU ES (Spain) 3.961 Annually Other BBB 2021
XS0765448757 THYSSENKRUPP AG DE (Germany) 5 Annually Steel BB 2022
XS0661287507 UNICREDIT SPA IT (Italy) 0.5 Annually Financial BBB 2022
IT0005347346 UNIONE DI BANCHE ITALIANE SPA IT (Italy) 1.3 Semiannually Financial BBB 2020
XS1784311703 UNIPOLSAI ASSICURAZIONI SPA IT (Italy) 3.875 Annually Financial BBB 2028
FR0011689033 VALEO SA FR (France) 3.25 Annually Automotive BBB 2024
XS1700480160 VALLOUREC SA FR (France) 6.625 Semiannually Steel B 2022
XS1260665895 VAN LANSCHOT KEMPEN NV NL (Netherlands) 7.3 Annually Financial BBB 2020
XS1167644407 VOLKSWAGEN AG DE (Germany) 0.875 Annually Automotive BBB 2023
DE000A19UR61 VONOVIA SE DE (Germany) 0.75 Annually Other BBB 2024
XS0907301260 WOLTERS KLUWER NV NL (Netherlands) 2.875 Annually Other BBB 2023
PTNOSFOM0000 ZOPT SGPS SA PT (Portugal) 1.125 Annually Other BBB 2023

Table 3.3: Corporate bonds considered (cont.)

CODE ISSUER CPN FREQ RATING MAT. YEAR

DE 2Y BUND DE (Germany) 0 Annually AAA 2021
DE 3Y BUND DE (Germany) 0 Annually AAA 2022
DE 4Y BUND DE (Germany) 0 Annually AAA 2023
DE 5Y BUND DE (Germany) 0 Annually AAA 2024
DE 6Y BUND DE (Germany) 0.5 Annually AAA 2025
DE 7Y BUND DE (Germany) 0.5 Annually AAA 2026
DE 8Y BUND DE (Germany) 6.5 Annually AAA 2027
DE 9Y BUND DE (Germany) 4.75 Annually AAA 2028
DE 10Y BUND DE (Germany) 0.25 Annually AAA 2029
DE 15Y BUND DE (Germany) 4.75 Annually AAA 2034
DE 20Y BUND DE (Germany) 4.25 Annually AAA 2039
DE 25Y BUND DE (Germany) 2.5 Annually AAA 2044
DE 30Y BUND DE (Germany) 1.25 Annually AAA 2048
PT 2Y T-BOND PT (Portugal) 3.85 Annually BBB 2021
PT 3Y T-BOND PT (Portugal) 2.2 Annually BBB 2022
PT 4Y T-BOND PT (Portugal) 4.95 Annually BBB 2023
PT 5Y T-BOND PT (Portugal) 5.65 Annually BBB 2024
PT 6Y T-BOND PT (Portugal) 2.875 Annually BBB 2025
PT 7Y T-BOND PT (Portugal) 2.875 Annually BBB 2026
PT 8Y T-BOND PT (Portugal) 4.125 Annually BBB 2027

Table 3.4: Sovereign bonds considered
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CODE ISSUER CPN FREQ RATING MAT. YEAR

PT 9Y T-BOND PT (Portugal) 2.125 Annually BBB 2028
PT 10Y T-BOND PT (Portugal) 1.95 Annually BBB 2029
PT 15Y T-BOND PT (Portugal) 2.25 Annually BBB 2034
PT 20Y T-BOND PT (Portugal) 4.1 Annually BBB 2037
PT 30Y T-BOND PT (Portugal) 4.1 Annually BBB 2045
ES 2Y T-BOND ES (Spain) 0.05 Annually A 2021
ES 3Y T-BOND ES (Spain) 5.85 Annually A 2022
ES 4Y T-BOND ES (Spain) 5.4 Annually A 2023
ES 5Y T-BOND ES (Spain) 0.35 Annually A 2023
ES 6Y T-BOND ES (Spain) 1.6 Annually A 2025
ES 7Y T-BOND ES (Spain) 1.95 Annually A 2026
ES 8Y T-BOND ES (Spain) 1.5 Annually A 2027
ES 9Y T-BOND ES (Spain) 1.4 Annually A 2028
ES 10Y T-BOND ES (Spain) 1.45 Annually A 2029
ES 15Y T-BOND ES (Spain) 2.35 Annually A 2033
ES 20Y T-BOND ES (Spain) 4.2 Annually A 2037
ES 25Y T-BOND ES (Spain) 5.15 Annually A 2044
ES 30Y T-BOND ES (Spain) 2.7 Annually A 2048
BE 3Y OLO BE (Belgium) 4 Annually AA 2022
BE 4Y OLO BE (Belgium) 2.25 Annually AA 2023
BE 5Y OLO BE (Belgium) 0.2 Annually AA 2023
BE 6Y OLO BE (Belgium) 0.5 Annually AA 2024
BE 7Y OLO BE (Belgium) 1 Annually AA 2026
BE 8Y OLO BE (Belgium) 0.8 Annually AA 2027
BE 9Y OLO BE (Belgium) 5.5 Annually AA 2028
BE 10Y OLO BE (Belgium) 0.9 Annually AA 2029
BE 15Y OLO BE (Belgium) 1.25 Annually AA 2033
BE 20Y OLO BE (Belgium) 1.9 Annually AA 2038
FR 2Y OAT FR (France) 0 Annually AA 2021
FR 3Y OAT FR (France) 0 Annually AA 2022
FR 4Y OAT FR (France) 0 Annually AA 2023
FR 5Y OAT FR (France) 0 Annually AA 2024
FR 6Y OAT FR (France) 0.5 Annually AA 2025
FR 7Y OAT FR (France) 3.5 Annually AA 2026
FR 8Y OAT FR (France) 1 Annually AA 2027
FR 9Y OAT FR (France) 0.75 Annually AA 2028
FR 10Y OAT FR (France) 0.5 Annually AA 2029
FR 15Y OAT FR (France) 1.25 Annually AA 2034
FR 20Y OAT FR (France) 1.75 Annually AA 2039
FR 25Y OAT FR (France) 3.25 Annually AA 2045
AT 2Y BUND AT (Austria) 3.5 Annually AA 2021
AT 3Y BUND AT (Austria) 0 Annually AA 2022
AT 4Y BUND AT (Austria) 0 Annually AA 2023
AT 5Y BUND AT (Austria) 1.65 Annually AA 2024
AT 6Y BUND AT (Austria) 1.2 Annually AA 2025
AT 7Y BUND AT (Austria) 0.75 Annually AA 2026
AT 8Y BUND AT (Austria) 0.5 Annually AA 2027
AT 9Y BUND AT (Austria) 0.75 Annually AA 2028
AT 10Y BUND AT (Austria) 0.5 Annually AA 2029
AT 15Y BUND AT (Austria) 2.4 Annually AA 2034
AT 20Y BUND AT (Austria) 4.15 Annually AA 2037
AT 25Y BUND AT (Austria) 3.15 Annually AA 2044
AT 30Y BUND AT (Austria) 1.5 Annually AA 2047
IE 3Y T-BOND IE (Ireland) 0 Annually A 2022
IE 4Y T-BOND IE (Ireland) 3.9 Annually A 2023
IE 5Y T-BOND IE (Ireland) 3.4 Annually A 2024
IE 6Y T-BOND IE (Ireland) 5.4 Annually A 2025
IE 7Y T-BOND IE (Ireland) 1 Annually A 2026
IE 9Y T-BOND IE (Ireland) 0.9 Annually A 2028

Table 3.5: Sovereign bonds considered (cont.)
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CODE ISSUER CPN FREQ RATING MAT. YEAR

IE 12Y T-BOND IE (Ireland) 1.35 Annually A 2031
IE 15Y T-BOND IE (Ireland) 1.3 Annually A 2033
IE 20Y T-BOND IE (Ireland) 1.7 Annually A 2037
IE 30Y T-BOND IE (Ireland) 2 Annually A 2045
IT 2Y BTP IT (Italy) 0.05 Annually BBB 2021
IT 3Y BTP IT (Italy) 1.2 Annually BBB 2022
IT 4Y BTP IT (Italy) 0.95 Annually BBB 2023
IT 5Y BTP IT (Italy) 1.85 Annually BBB 2024
IT 6Y BTP IT (Italy) 1.45 Annually BBB 2025
IT 7Y BTP IT (Italy) 1.6 Annually BBB 2026
IT 8Y BTP IT (Italy) 2.2 Annually BBB 2027
IT 9Y BTP IT (Italy) 2 Annually BBB 2028
IT 10Y BTP IT (Italy) 3 Annually BBB 2029
IT 15Y BTP IT (Italy) 2.45 Annually BBB 2033
IT 20Y BTP IT (Italy) 2.95 Annually BBB 2038
IT 25Y BTP IT (Italy) 4.75 Annually BBB 2044
IT 30Y BTP IT (Italy) 3.45 Annually BBB 2048

Table 3.6: Sovereign bonds considered (cont.)

AAA AA A BBB BB B CCC D NR

AAA 86.99 9.11 0.53 0.05 0.08 0.03 0.05 0.01 3.15
AA 0.43 90.37 4.37 0.61 0.1 0.04 0.05 0.02 4.01
A 0.04 0.71 90.56 3.67 0.3 0.12 0.01 0.06 4.53

BBB 0.01 0.08 1.52 89.26 2.38 0.4 0.06 0.17 6.12
BB 0.00 0.05 0.11 2.85 82.72 3.61 0.56 0.56 9.52
B 0 0.02 0.08 0.12 1.58 78.03 4.03 3.6 12.54

CCC 0 0 0.12 0.21 0.59 13.17 43.46 26.82 15.63

Table 3.7: Average one-year transition matrix for global corporates (1981-2017) ad-
justed from Vazza and Kraemer (2017)[55].

AAA AA A BBB BB B CCC D NR

AAA 95.79 4.21 0 0 0 0 0 0 0
AA 0 96.33 2.49 1.18 0 0 0 0 0
A 0 0.73 95.26 3.89 0.12 0 0 0 0

BBB 0 0 1.5 95.69 2.53 0.19 0.09 0 0
BB 0 0 0 0.72 91.39 5.53 0.54 1.63 0.18
B 0 0 0 0 1.79 91.01 2.21 1.1 3.89

CCC 0 0 0 0 0 45.74 39.36 14.89 0

Table 3.8: Average one-year transition matrix for global sovereign (1993-2017) ad-
justed from Witte (2017)[57].
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AAA AA A BBB BB B CCC

0.25 -0.7356 -0.7212 -0.7076 -0.6775 -0.5671 -0.3158 9.2934
0.5 -0.6226 -0.6082 -0.5946 -0.5645 -0.4541 -0.2028 9.4064
1 -0.4474 -0.4302 -0.4111 -0.3797 -0.2645 0.0791 6.0096
2 -0.3325 -0.3027 -0.2725 -0.2163 -0.0004 0.5559 5.1232
3 -0.2592 -0.2107 -0.1684 -0.0825 0.2525 0.9249 5.1663
4 -0.1364 -0.0775 -0.0122 0.1201 0.5741 1.4657 5.5168
5 0.0066 0.0848 0.1595 0.3257 0.8911 1.9498 5.9662
6 0.1636 0.2707 0.3583 0.5566 1.1921 2.3082 5.9328
7 0.3307 0.4667 0.5671 0.7974 1.5031 2.6767 5.9095
8 0.4771 0.6395 0.7399 0.9818 1.6928 2.8740 5.8112
9 0.6115 0.8003 0.9006 1.1543 1.8706 3.0593 5.7009
10 0.7279 0.9431 1.0434 1.3087 2.0304 3.2266 5.5726
12 0.9116 1.1205 1.2341 1.5033 2.2362 3.4808 5.6549
15 1.1517 1.3510 1.4846 1.7596 2.5096 3.8267 5.7430
20 1.4578 1.6680 1.8081 2.0807 2.8510 4.1835 5.7271
25 1.6035 1.8068 1.9380 2.2145 2.9794 4.2931 5.6752
30 1.6122 1.8086 1.9308 2.2114 2.9708 4.2658 5.4864

Table 3.9: Zero corporate rates of credit curves obtained on 26 April 2019 (valuation
day) from Reuters Eikon Database.

AAA AA A BBB BB B CCC

0.25 -0.7390 -0.7197 -0.7020 -0.6753 -0.5686 -0.3398 8.5495
0.5 -0.6260 -0.6067 -0.5890 -0.5623 -0.4556 -0.2268 8.6625
1 -0.5113 -0.4869 -0.4611 -0.4347 -0.3281 -0.0049 5.2496
2 -0.4820 -0.4420 -0.4026 -0.3553 -0.1518 0.3604 4.6153
3 -0.4074 -0.3476 -0.2934 -0.2187 0.1001 0.7282 4.7214
4 -0.2703 -0.1972 -0.1167 0.0038 0.4375 1.2653 5.0784
5 -0.1120 -0.0174 0.0752 0.2310 0.7748 1.7808 5.5816
6 0.0490 0.1719 0.2769 0.4675 1.0789 2.1436 5.5752
7 0.2160 0.3672 0.4847 0.7099 1.3890 2.5123 5.5748
8 0.3679 0.5458 0.6631 0.9004 1.5827 2.7107 5.4906
9 0.5207 0.7254 0.8426 1.0919 1.7774 2.9100 5.4073
10 0.5366 0.7679 0.8851 1.1463 1.8352 2.9724 5.1871
12 0.5578 0.7807 0.9116 1.1761 1.8743 3.0507 5.1114
15 0.5897 0.7997 0.9514 1.2209 1.9330 3.1681 4.9979
20 0.6161 0.8348 0.9948 1.2626 1.9935 3.2302 4.6701
25 0.6458 0.8619 1.0162 1.2858 2.0120 3.2147 4.5325
30 0.6755 0.8890 1.0375 1.3091 2.0305 3.1993 4.3950

Table 3.10: Zero sovereign rates of credit curves obtained on 26 April 2019 (valuation
day) from Reuters Eikon Database.
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Mean Std 10% 90%

Senior Secured 0.635 0.34 0.193 1
Senior Subordinated 0.294 0.335 0 0.823
Senior Unsecured 0.486 0.375 0.014 1
Junior or Subordinated 0.274 0.343 0 0.972

Food 0.692 0.4 0.008 1
Mining 0.623 0.346 0.196 1
Oil 0.545 0.369 0.058 1
Clothes, Textiles and Footware 0.625 0.345 0.156 1
Consumer Durables 0.605 0.396 0.031 1
Chemicals 0.698 0.373 0.1 1
Drugs, soap, perfume, tobacco 0.594 0.422 0.096 1
Construction and Materials 0.584 0.399 0.01 1
Steel 0.551 0.41 0 1
Fabricated Products 0.709 0.376 0.015 1
Machinery 0.624 0.375 0.094 1
Automotive 0.657 0.385 0.007 1
Transport 0.517 0.362 0.037 1
Utilities 0.864 0.259 0.364 1
Retail 0.54 0.403 0.014 1
Financial 0.564 0.417 0.007 1
Other 0.561 0.397 0.009 1

Table 3.11: Recovery rates data obtained from Altman and Kalotay (2014)[1].
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MODEL 1 MODEL 2 MODEL3 MODEL 4
Stoxx PCA Stoxx PCA Stoxx PCA Stoxx PCA

Portfolio 1 value
10,689,760.18 e

IRC (VaR 99.9%)
479,100 e 522,170 e 660,100 e 762,900e 1,072,600 e 911,710 e 949,460 e 1,133,700e

4.48% 4.88% 6.18% 7.14% 10.03% 8.53% 8.88% 10.61%

IRC (ES 99.9%)
613,760 e 707,010 e 913,230 e 1,042,800 e 1,440,000 e 1,292,600 e 1,414,100 e 1,783,500 e

5.74% 6.61% 8.54% 9.76% 13.47% 12.09% 13.23% 16.68%

Portfolio 2 value
9,181,462.21 e

IRC (VaR 99.9%)
348,240 e 339,000 e 330610 e 332,560 e 376,460 e 373,670 e 358,420 e 370,600 e

3.79% 3.69% 3.60% 3.62% 4.10% 4.07% 3.90% 4.04%

IRC (ES 99.9%)
396,130 e 395,530 e 389,880 e 391,420 e 414,980 e 413,150 e 396,920 e 396,860 e

4.31% 4.31% 4.25% 4.26% 4.52% 4.50% 4.32% 4.32%

Portfolio 3 value
67,030,331.05 e

IRC (VaR 99.9%)
2,788,500 e 2,849,200 e 3,515,300 e 3,313,100 e 5,162,500 e 3,573,900 e 3,557,200 e 3,834,500 e

4.16% 4.25% 5.24% 4.94% 7.70% 5.33% 5.31% 5.72%

IRC (ES 99.9%)
4,993,900 e 5,089,000 e 5,078,800 e 5,431,400 e 8,886,800 e 5,864,400 e 5,526,600 e 6,475,200 e

7.45% 7.59% 7.58% 8.10% 13.26% 8.75% 8.24% 9.66%

Portfolio 4 value
69,972,262.37 e

IRC (VaR 99.9%)
5,762,300 e 5,712,100 e 6,788,700 e 6,377,700 e 10,091,000 e 6,386,900 e 7,195,600 e 7,183,500 e

8.24% 8.16% 9.70% 9.11% 14.42% 9.13% 10.28% 10.27%

IRC (ES 99.9%)
8,904,300 e 8,978,600 e 9,624,400 e 9,569,500 e 12,208,000 e 9,745,600 e 11,374,000 e 11,675,000 e

12.73% 12.83% 13.75% 13.68% 17.45% 13.93% 16.26% 16.69%

Portfolio 5 value
73,915,989.95 e

IRC (VaR 99.9%)
11,403,000 e 11,894,000 e 12,860,000 e 13,490,000 e 14,729,000 e 13,823,000 e 13,770,000 e 15,761,000 e

15.43% 16.09% 17.40% 18.25% 19.93% 18.70% 18.63% 21.32%

IRC (ES 99.9%)
13,573,000 e 14,332,000 e 15,573,000 e 16,496,000 e 18,419,000 e 17,425,000 e 17,024,000 e 19,878,000 e

18.36% 19.39% 21.07% 22.32% 24.92% 23.57% 23.03% 26.89%

Portfolio 6 value
71,275,242.17 e

IRC (VaR 99.9%)
45,617,000 e 46,803,000 e 47,720,000 e 48,198,000 e 47,785,000 e 48,571,000 e 46,183,000 e 47,302,000 e

64.00% 65.67% 66.95% 67.62% 67.04% 68.15% 64.80% 66.37%

IRC (ES 99.9%)
49,529,000 e 50,058,000 e 50,528,000 e 50,678,000 e 50,592,000 e 50,805,000 e 49,722,000 e 50,394,000 e

69.49% 70.23% 70.89% 71.10% 70.98% 71.28% 69.76% 70.70%

Table 3.12: Complete range of IRC results (Unconditional thresholds and stochastic
RRs).

MODEL 1 MODEL 2 MODEL 3 MODEL 4
Stoxx PCA Stoxx PCA Stoxx PCA Stoxx PCA

Portfolio 1 0.30% 0.58% 1.42% 1.65% 2.53% 1.96% 3.07% 4.22%
Portfolio 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Portfolio 3 1.21% 1.09% 0.00% 0.00% 0.21% 0.67% 1.91% 0.32%
Portfolio 4 3.07% 3.12% 1.90% 2.44% 1.10% 2.62% 4.82% 4.20%
Portfolio 5 -2.20% -2.45% -2.17% -2.08% -1.51% -0.87% -1.25% -0.12%
Portfolio 6 -19.42% -21.07% -22.34% -22.99% -22.41% -23.51% -20.18% -21.71%

Table 3.13: IRC variation when comparing the model with deterministic and stochastic
RRs.
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MODEL 1 MODEL 2 MODEL 3 MODEL 4
Stoxx PCA Stoxx PCA Stoxx PCA Stoxx PCA

Portfolio 1 -0.02% 0.25% 0.26% 0.19% 0.33% 0.02% 0.85% 1.54%
Portfolio 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Portfolio 3 0.25% 0.49% 0.00% 0.00% 0.07% 0.45% 2.88% 0.12%
Portfolio 4 0.07% 0.23% 0.08% 0.07% 0.16% 0.12% 1.26% 1.40%
Portfolio 5 0.16% 0.01% 0.19% 0.08% 0.81% 0.63% 0.88% 1.43%
Portfolio 6 0.57% 0.03% -1.33% 1.07% 0.14% 0.64% 0.24% 0.41%

Table 3.14: IRC variation when increasing one basis point (0.01%) the probability of
default.

MODEL 1 MODEL 2 MODEL 3 MODEL 4
Stoxx PCA Stoxx PCA Stoxx PCA Stoxx PCA

Portfolio 1 -0.14% -0.09% -0.09% -0.26% -0.11% -0.39% -0.18% -0.31%
Portfolio 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Portfolio 3 -0.34% -0.35% -1.19% -0.80% -2.01% -1.10% -0.75% -0.75%
Portfolio 4 -0.37% -0.30% 0.00% 0.00% -1.22% -1.19% -0.13% -0.92%
Portfolio 5 0.00% -0.26% 0.19% -0.12% 0.69% 0.18% 0.68% 1.21%
Portfolio 6 0.57% 0.03% -1.01% -0.33% -1.26% -0.78% 0.24% -0.42%

Table 3.15: IRC variation when decreasing one basis point the probability of default.

Portfolio 4 value MODEL 1 MODEL 2 MODEL 3 MODEL 4
69,972,262.37 e Stoxx PCA Stoxx PCA Stoxx PCA Stoxx PCA

VaR condit. to F(perc.90%)
380,680 e 501,470 e 477,440 e 545,600 e 633,770 e 575,130 e 3,322,500 e 611,280 e

0.54% 0.72% 0.68% 0.78% 0.91% 0.82% 4.75% 0.87%

VaR condit. to F(perc.10%)
13,624,000 e 13,541,000 e 14,476,000 e 14,325,000 e 21,699,000 e 15,807,000 e 28,325,000 e 25,706,000 e

19,47% 19.35% 20.69% 20.47% 31.01% 22.59% 40.48% 36.74%

Table 3.16: IRC values obtained under the conditional thresholds approach

Number of overshootings Fewer than 5 5 6 7 8 9 10 or more

Addend 0.00 0.40 0.50 0.65 0.75 0.85 1.00

Table 3.17: Applicated addend according to the Article 366 [21].
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Figure 3.15: Conditional Gaussian copula representation with its correspondent com-
mon factor and the returns in a QQ-plot by row.

Figure 3.16: Conditional Student-t copula representation with its correspondent com-
mon factor and the returns in a QQ-plot by row.
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Figure 3.17: Conditional Clayton copula representation with its correspondent com-
mon factor and the returns in a QQ-plot by row.

Figure 3.18: QQ-plot comparing the empirical distribution of Stoxx Europe 50 Index
versus a theoretical standard normal
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Figure 3.19: QQ-plot of the first PCA scores versus a theoretical standard normal
(upper subplot) and the individual explained variance by each PC (lower
subplot).

Figure 3.20: Portfolio 1 - percentage of credit rating
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Figure 3.21: Portfolio 2 - percentage of credit rating

Figure 3.22: Portfolio 3 - percentage of credit rating
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Figure 3.23: Portfolio 4 - percentage of credit rating

Figure 3.24: Portfolio 5 - percentage of credit rating
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Figure 3.25: Portfolio 6 - percentage of credit rating

Figure 3.26: Histograms of RRs simulated by industry
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Figure 3.27: Corporate issuer’s degrees of freedom estimation
.

Figure 3.28: Sovereign issuer’s degrees of freedom estimation
.
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Figure 3.29: Histograms of the application of Model 1 and 2 - Portfolio 4
.
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