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Summary

The main contribution of this work are methodological and empirical, very
useful for practitioners. On the one hand, we develop a complete procedure
to calibrate the daily parameters in the Jarrow and Yildirim (2003) model,
which enables us to value inflation-indexed swaps. On the other hand, we
develop the corresponding algorithm in Matlab that provides the calibration
and the simulation procedures in order to calculate for each derivative, the
expected positive exposure, the Credit Valuation Adjustment (CVA), the
97.5% positive exposure and the expected shortfall with a confidence level
of 97.5%. The results show that our methodology is very accurate and
competitive with the valuation made by external consultancies.
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Introduction

In recent years the trade of derivatives linked to inflation has increased
through the developed economies. Inflation is defined as the increment in
percentage terms, of a reference index defined as the price of a basket of
goods and services. The more relevant indexes to measure inflation are the
retail price index (RPI, related with a basket of goods and services that
represent the total cost of a typical family) and the Consumer price index
(CPI, which differs from RPI due to that the costs related to housing have
been dropped out). In the European derivative markets, the CPI is the
usual index, and the inflation is measured as the annual percentage change
of this index. In the Eurozone, the most used index is de HICP (Harmonised
Indices of Consumer Prices) or the HICP-x, similar to the previous one, but
taking the tobacco out. There are other indexes, as in USA where there are
the CPI-U (for all urban consumers), CPI-W (for Urban Wage Earners and
Clerical Workers), CPI-E (for the elderly) and C-CPI-U (chained CPI for
all urban consumers) or in France, the FCPI ( Consumer Price Index for all
France) and the FCPI-x (Consumer Price Index Ex-tobacco).

From an investing point of view, pension funds or any other financial
institutions whose abilities are linked to an inflation index, find in those
derivatives the most efficient way of hedging these flows.
The investors appetite on Inflation Linked (IL from now on) derivatives is
proportional to the increasing IL government bonds issued by many coun-
tries. For example, the Spanish government issues IL bonds with maturities
November 2024 and November 2033, among others. As IL bonds coupons
are variables, some investors prefer to enter in a IL swap to exchange the
IL coupons to fixed cash flows. Others prefer to enter in a swap to change
the coupons for a fixed rate, or even for a mixed flow, with both fixed and
variable flows.

This work has been proposed and developed under a fellowship program,
because Laboral Kutxa was interested on reviewing the properties of infla-
tion derivatives from both methodological and empirical point of view.

iv



Introduction v

Laboral Kutxa was interested in analyse not only the present valuation,
but also the future evolution of the inflation derivatives, including the evo-
lution of the future valuation under different parameter hypothesis. This
motivation comes from deep conviction on the importance of modelling all
the assets in the ballance sheet under reliable metrics. Firstly, thinking from
a risk management point of view, internal metrics under different macro
scenarios are crucial for developing internal stress test exercises. For exam-
ple, during the ICAAP/ILAAP processes of Basileas Pillar II. Furthermore,
supervisory stress test exercises require for the estimation of the future mar-
ket value of all the assets, including these derivatives under the parameters
stated by the regulators.

The empirical analysis covers the evolution of the future values that is
compulsory from a market risk management point of view. Also, estimating
good future values is necessary for an appropriate estimation of the liquidity
ratios as in many cases these trades are collateralized through liquid assets.
From a regulatory point of view, Expected shortfall and CVA are inputs for
the capital requirements.

Financial literature deals with different models to encompass the uncer-
tainty caused by the inflation index interest rate evolution. We will use
the Yarrow and Yildirim (2003) model, focusing on the sensitivity of the
valuation of some standard derivatives to the change on the key parameters
of the model, and computing also the simulated expected shortfall and the
Credit Valuation Adjustment (CVA).

This work is organized as follows. Chapter 1 includes the basic defini-
tions of products, the closed valuation formulas and a detailed derivation of
the Jarrow and Yildirim (2003) model.

Chapter 2 focuses on the calibration techniques to obtain the parameters
of the model. We present the empirical results that provide a comparison
between the different calibration alternatives already studied in the litera-
ture. Finally, we propose an alternative method that improves the goodness
of fit to market data.

Chapter 3 covers the valuation of some IL derivatives, calculating also
the expected positive exposure, the CVA, the 97,5% positive exposure and
the expected shortfall with a confidence level of 97,5%. To check the accu-
racy of the calibration, the results have been tested against those provided
by an external consultancy firm. Moreover, we study the stability of the
valuation by analysing the sensitivity of the actual and future valuation to
changes of the parameters. Analysing the sensitivity, we account for the
importance of calibrating the parameters adequately.
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Finally, the conclusions and further ideas for possible extensions of this
work are provided, suggesting different hypothesis about the parameters of
the model.

Further details and the main proofs are relegated to the appendixes.



Chapter 1

Definitions and methodology

In this chapter we give the definitions of the main financial instruments re-
lated with inflation and provide the closed formulas for the derivatives we
are interested in. See [1] and [2] for details.

1.1 Definitions

Let us consider the subindexes n and r for nominal and real, respectively.

• Pn(t, T ) : price in t of a nominal zero-coupon bond with maturity T

• Pr(t, T ) : price in t of a real zero-coupon bond with maturity T

• I(t) : value of the inflation index in t

• fk(t, T ): instantaneous forward rate in t for any date T with k ∈ {n, r}.
The equation of prices is as follows

Pk(t, T ) = e−
∫ T
t fk(t,s)ds (1.1)

• k(t) = fk(t, t) : instantaneous spot rate in t for k ∈ {n, r}, what gives
us

Pk(t, T ) = E(e−
∫ T
t k(s)ds|Ft) (1.2)

• Bk(t) : money market account value in t for k ∈ {n, r} with,

dBk(t) = k(t)Bk(t)dt (1.3)

1



Chapter 1. Definitions and methodology 2

1.1.1 Inflation Linked Bonds

An inflation-linked zero-coupon bond is a bond that pays a single cash flow
at maturity T , which is the ratio of a reference index between T and t0 = 0,
with a nominal value of N . The value is denoted as ZCILB(t, T, I0, N), in
nominal basis, and the payment in T is

I(T )

I0
N (1.4)

nominal units at maturity. The corresponding real payment is obtained by
normalizing through the value of the index in T . So that, the real payment
in T is

N

I0
(1.5)

real units at maturity. We see that while the nominal payment in T is un-
known the real one is known.

The real value in t of the payment of the inflation-indexed zero-coupon
bond is

E(e−
∫ T
t r(s)dsN

I0
|Ft) =

N

I0
Pr(t, T ) (1.6)

Taking into account that the real value in t of the ZCILB is obtained by
normalizing the nominal value with the index in t, the next equation has to
be fulfilled.

ZCILB(t, T, I0, N)

I(t)
=
NPr(t, T )

I0
. (1.7)

Defining the bonds unit value as PIL(t, T ) := ZCILB(t, T, 1, 1) we get

PIL(t, T ) = I(t)Pr(t, T ). (1.8)

It is seen that the inflation linked zero-coupon bond is dependent of the
inflation index in t and the real zero-coupon bond. Usually, the bonds are
not zero-coupon, but it is straightforward to obtain the value in t of the
coupon bonds using the expression of the zero-coupon bonds. Denoting C
the annual coupon rate (assuming annual coupon frequency), the nominal
value in t of a inflation-linked coupon bond with payments in T1, T2, ..., TM
(where TM = T ) is

ILB(t, TM , I0, N) =
N

I0

[
C

M∑
i=1

PIL(t, Ti) + PIL(t, TM )

]

=
I(t)

I0
N

[
C

M∑
i=1

Pr(t, Ti) + Pr(t, TM )

]
.

(1.9)
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1.1.2 Inflation-Indexed Swaps

Given a set of dates {T1, ..., TM} an Inflation-Indexed Swap (IIS) is an in-
strument where the party A pays to B the predefined inflation rate of a
period and the party B pays A a fixed rate. The inflation rate is the per-
centage return of the CPI, but instead of being in a year, it is calculated in
the period that we are interested in. The most traded swaps are the zero
coupon inflation-indexed swaps (ZCIIS) and the year on year inflation-
indexed swaps (YYIIS).
The payments in the ZCIIS are:

• Party A pays to B in TM the floating amount

N
[I(TM )− I(T0)

I(T0)

]
, (1.10)

where T0 is the reference date.

• Party B pays in TM a fixed amount

N [(1 +K)TM − 1], (1.11)

where K is the agreed fixed rate and N the nominal value.

The payments in the YYIIS are:

• In each time Ti ∈ {T1, ..., TM}, A pays the floating amount

Nτi,A
[I(Ti)− I(Ti−1)

I(Ti−1)

]
, (1.12)

where τi,A is the year fraction of the floating-leg in the interval [Ti−1, Ti].

• In each time Ti ∈ {T1, ..., TM}, B pays to A the fixed amount

Nτi,BK, (1.13)

where τi,B is the year fraction of the fixed-leg in the interval [Ti−1, Ti].

To make things easier, we fix T0 = 0. It is important to remark that both
swaps are quoted in the market, each of them with its corresponding fixed
rate K.
The next step is to give a value to these derivatives using the no-arbitrage
pricing theory.

Regarding the zero coupon inflation-indexed swaps, the value of the
floating-leg in 0 ≤ t ≤ TM is

ZCIIS(t, TM , I(0), N) = NEn

(
e−

∫ TM
t n(u)du

[I(TM )− I(0)

I(0)

]
|Ft
)
, (1.14)
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where n(t) is the nominal rate. To understand how to get a equivalent ex-
pression for this value, we use the methodology proposed by Jarrow and
Yildirim (2003) for modelling inflation and nominal rates, which is based
on a foreign-currency equivalence. Real rates are viewed as foreign prices
and nominal rates as domestic prices. The CPI is seen as the exchange rate
between the nominal and real ”currencies”.

The nominal interest rate is the agreed interest between both parts of a
loan, and this is equal to the sum of the real and inflation rates. Taking into
account the foreign-currency analogy (Appendix A.3), the nominal price of
a real zero-coupon bond equals the nominal price of the contract paying
off one unit of the CPI index at the bond maturity. This implies that for
t < TM ,

I(t)Pr(t, TM ) = I(t)Er

(
e−

∫ TM
t r(u)du|Ft

)
= En

(
e−

∫ TM
t n(u)duI(TM )|Ft

)
.

(1.15)
Using this, the expresion (1.14) can be rewritten as

ZCIIS(t, TM , I(0), N) = N
( I(t)

I(0)
Pr(t, TM )− Pn(t, TM )

)
, (1.16)

where Pr(t, TM ) and Pn(t, TM ) are the discount factors related to the real
and nominal rates. Taking into account that the value of the market swap at
the beginning is zero, one could use this to obtain an expression of Pr(t, TM ).
It is important to remark that we have to discount the value of the fixed-leg
with the nominal rate. At t = 0:

N [(1 +K)TM − 1]Pn(0, TM ) = N [Pr(0, TM )− Pn(0, TM )] =⇒

Pr(0, TM ) = Pn(0, TM )(1 +K)TM . (1.17)

Similar to the ZCIIS, the value of the payment of the floating leg in Ti
of the YYIIS in 0 ≤ t < Ti is

Y Y IIS(t, Ti−1, Ti, τi,A, N) = Nτi,AEn

(
e−

∫ Ti
t n(u)du

[I(Ti)− I(Ti−1)

I(Ti−1)

]
|Ft
)
,

(1.18)
where n(t) is the nominal rate. If t > Ti−1, I(Ti−1) is known so the pricing
is similar to the Zero Coupon Inflation-Indexed Swap,

En

(
e−

∫ Ti
t n(u)du I(Ti)

I(Ti−1)
|Ft
)

=
Pr(t, Ti)I(t)

I(Ti−1)
=⇒

Y Y IIS(t, Ti−1, Ti, τi,A, N) = Nτi,A

[
Pr(t, Ti)I(t)

I(Ti−1)
− Pn(t, Ti)

]
.

(1.19)
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If t < Ti−1, using conditional expectations the expression (1.18) can be
written as

Y Y IIS(t, Ti−1, Ti, τi,A, N) =

= Nτi,AEn

(
e−

∫ Ti−1
t n(u)duEn

(
e
−

∫ Ti
Ti−1

n(u)du
[I(Ti)− I(Ti−1)

I(Ti−1)

]
|FTi−1

)
|Ft
)
.

(1.20)

Looking at the formula, it is easily seen that we can rewrite this in terms
of ZCIIS(Ti−1, Ti, I(Ti−1), N) as

Y Y IIS(t, Ti−1, Ti, τi,A, N) =

= τi,AEn

(
e−

∫ Ti−1
t n(u)duZCIIS(Ti−1, Ti, I(Ti−1), N)|Ft

)
= Nτi,AEn

(
e−

∫ Ti−1
t n(u)du[Pr(Ti−1, Ti)− Pn(Ti−1, Ti)]|Ft

)
= Nτi,AEn

(
e−

∫ Ti−1
t n(u)duPr(Ti−1, Ti)|Ft

)
−Nτi,APn(t, Ti). (1.21)

Using the expression (1.21), the value in t of the YYIIS if we consider
that we pay the fixed rate is

Y Y IIS(t, TM , N,K) =

N

TM∑
i=1

[
τi,AEn

(
e−

∫ Ti−1
t n(u)duPr(Ti−1, Ti)|Ft

)
−Nτi,APn(t, Ti)−τi,BKPn(t, Ti)

]
.

(1.22)

It is appreciated that the expression of the YYIIS is model dependent.

1.1.3 Inflation Linked Cap/Floor

An inflation linked cap can be seen as a series of caplets, and similarly, the
floor as a series of floorlets. An inflation linked caplet (ILCPT) is a call
option on the net increase in forward inflation index and an inflation linked
floorlet (ILFLT) the same but instead of a call, with a put. At time Ti the
payout of any of them is:

Nτi

[
ω
( I(Ti)

I(Ti−1)
− 1− κ

)]+
, (1.23)

where κ is the strike of the caplet or floorlet, τi is the contract year fraction
for the interval [Ti−1, Ti], N the nominal, ω = 1 for a caplet and ω = −1 for
a floorlet.
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The price in t of a caplet or floorlet (ILCFPT) is

ILCFPT (t, Ti−1, Ti, τi, κ,N, ω)

= NτiEn

[
e−

∫ Ti
t n(u)du

[
ω
( I(Ti)

I(Ti−1)
− 1− κ

)]+
|Ft
]

= NτiPn(t, Ti)E
Ti
n

[[
ω
( I(Ti)

I(Ti−1)
− 1− κ

)]+
|Ft
]
,

(1.24)

where ETin is the expectation under the nominal Ti forward measure. In the
T-forward measure, instead of using the money market account as numeraire
like in the risk neutral measure, it is used a zero coupon bond with maturity
T , Pn(t, T ). The price of the cap/floor is the sum of the price of all the
caplets/floorlets. Clearly this price is also model dependent.

1.2 Methodology. Closed valuation formulas

In the literature there are some alternative models that could describe the
evolution of the financial variables involved in the prices of inflation-linked
derivatives such us the Libor Market Model (1997) (see [3] for more details),
or the Two-process Hull and White Model (for further details see [4] section
3.3), in this case we focus on the Jarrow and Yildirim model (2003), (JY
from now on). Being one of the most popular models, it is also the one
that provides closed formulas for some derivatives, so that the sensitive of
the derivatives to the parameters gives errors limited to the evolution of the
inflation rates.

The Libor Market Models (LMM) are popular due to the coherence
between such models and the well-established market formulas for caps
and swaptions. In this type of models, both derivatives are priced with
the Black’s formula, a very important fact since these derivatives become
the most traded in the fixed income market. In the LMM, rather than in
short rate or instantaneous forward rate models (like in Jarrow and Yidilirm
(2003)), a set of forward rates are modelled, which have the advantage of
being directly observed in the market. For more information see [5], chapter
6.

The Two-process Hull and White Model ignores the existence of a real
economy, only assuming dynamics for the nominal instantaneous short rate
and the inflation index. It is assumed a Hull and White model (see [6] for
more details about the model) for both the nominal instantaneous short rate
(n) and the inflation rate (i), where the inflation level is defined by

I(t) = I(T0)e
∫ T
T0
i(s)ds
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being I(T0) the reference inflation index.

In this chapter we develop the JY model (see [7]) to evaluate inflation-
linked derivatives. We derive detailed analytical expressions for the valu-
ation of those derivatives whose behaviours will be analysed in Chapter 2
of empirical applications. As it will be seen later, the JY model assumes a
Hull and White model for nominal and real interest rates, and a Geometric
Brownian Motion for the Inflation Index.

All the development made in this chapter is based in [2], some calculus
are based in the ones made in this article, and others have been developed
by us. The detailed explanation is in the Appendix B.

It is important to emphasize that JY (2003) use a foreign currency anal-
ogy, where real prices are seen as foreign prices, nominal prices correspond
to domestic prices and the inflation index is viewed as the spot exchange
rate from foreign to domestic currency.

Under the real world probability space (Ω, F, P ) with associated filtra-
tion {Ft : t ∈ [0, T ]}, the model proposed by JY for the nominal and real
instantaneous forward rates and for the CPI is

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dWP
n (t)

dfr(t, T ) = αr(t, T )dt+ σr(t, T )dWP
r (t)

dI(t) = I(t)µ(t)dt+ σII(t)dWP
I (t),

(1.25)

where,

• I(0) = I0 > 0

• fk(0, T ) = fMk (0, T ), k ∈ {n, r}, being fMn (0, T ) and fMr (0, T ) the
nominal and real instantaneous forward rates observed in the market
in 0 for the date T

• (WP
n ,W

P
r ,W

P
I ) is a Brownian motion with correlations

dWP
n (t)dWP

r (t) = ρnrdt

dWP
n (t)dWP

I (t) = ρnIdt

dWP
r (t)dWP

I (t) = ρrIdt

• αn, αr and µ are adapted processes∗

∗An adapted process is a process in which the possible events until a time t only depend
on past events and the process can not anticipate the future.



Chapter 1. Definitions and methodology 8

• σn and σn are deterministic functions

• σI is a positive constant

The dynamics of the nominal and real instantaneous forward rates follow
the model Heath, Jarrow and Morton [8].

JY show that the evolutions introduced are arbitrage free and that the
market is complete using the existence and uniqueness of an equivalent mar-
tingale probability measure Q such that

Pn(t, T )

Bn(t)
,
I(t)Pr(t, T )

Bn(t)
and

I(t)Br(t)

Bn(t)
are Q martingales, (1.26)

where Bn(t) and Br(t) are the nominal and real money market account.
In fact, using Girsanov’s theorem, being {dWP

n (t), dWP
r (t), dWP

I (t)} a P-
Brownian motion and given that Q is a equivalent probability measure,
then exists market prices of risk {λn(t), λr(t), λI(t)} such that

WQ
l (t) = WP

l (t)−
∫ t

0
λl(s)ds, l ∈ {n, r, I} (1.27)

are Q-Brownian motions. We check that the instantaneous nominal and real
rate dynamics follow the model of Hull and White, under the martingale
measure Q, which is an arbitrage-free model (see the Appendix B). The
formulas of the dynamics are

dn(t) = [νn(t)− κnn(t)]dt+ σndW
Q
n (t)

dr(t) = [νr(t)− ρrIσIσr − κrr(t)]dt+ σrdW
Q
r (t),

(1.28)

with

νl(t) =
∂fl(0, t)

∂T
+ κlfl(0, t) +

σ2l
2κl

(1− e−2κlt), l ∈ {n, r}, (1.29)

where ∂fl
∂T denotes partial derivative of fl with respect to its second argument.

This type of dynamics are built so that they replicate exactly the prices
of the zero-coupon bonds and the plain vanilla options on interest rates
(caps, floors and swaptions). Then, if there are no arbitrage opportunities,
any two actives must have the same market price of risk (λ(t)) in any time t.

Next proposition provides us the necessary and sufficient conditions
needed on the bond prices evolution so that the economy is arbitrage free.
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Proposition 1.2.1. (Proposition 2.2.1 in [2]) Pn(t,T )
Bn(t)

, I(t)Pr(t,T )Bn(t)
and I(t)Br(t)

Bn(t)
are Q martingales if and only if

αn(t, T ) = σn(t, T )

(∫ T

t
σn(t, s)ds− λn(t)

)
, (1.30)

αr(t, T ) = σr(t, T )

(∫ T

t
σr(t, s)ds− σI(t)ρrI − λr(t)

)
(1.31)

µI(t) = n(t)− r(t)− σI(t)λI(t). (1.32)

The proof is in Appendix (B.1).
Using the dynamics of the nominal and real instantaneous forward rates

and the notation

al(t, T ) = −
∫ T

t
σl(t, u)du, (1.33)

bl(t, T ) = −
∫ T

t
αl(t, u)du+

1

2
a2l (t, T ), l ∈ {n, r} (1.34)

we state the next proposition.

Proposition 1.2.2. (Proposition 2.3.1 in [2]) Under the martingale mea-
sure the price processes are

dfn(t, T ) = −σn(t, T )an(t, T )dt+ σn(t, T )dWQ
n (t) (1.35)

dfr(t, T ) = −σr(t, T )[ar(t, T ) + σI(t)ρrI ]dt+ σr(t, T )dWQ
r (t) (1.36)

dI(t)

I(t)
= [n(t)− r(t)]dt+ σI(t)dW

Q
I (t) (1.37)

dPn(t, T )

Pn(t, T )
= n(t)dt+ an(t, T )dWQ

n (t) (1.38)

dPr(t, T )

Pr(t, T )
=
[
r(t)− σI(t)ρrIar(t, T )

]
dt+ ar(t, T )dWQ

r (t) (1.39)

dPIL(t, T )

PIL(t, T )
:=

d(I(t)Pr(t, T ))

I(t)Pr(t, T )
= n(t)dt+ σI(t)dW

Q
I (t) + ar(t, T )dWQ

r (t)

(1.40)

For more details of how to obtain these expressions see Appendix (B.1).
Note that the nominal and real forward rates are normally distributed and
that the inflation index is log-normally distributed.

1.2.1 Nominal and Real bonds

For the volatility functions σn(t, T ) and σr(t, T ) Jarrow and Yildirim chose
an exponentially declining volatility with the expression

σl(t, T ) = σle
−κl(T−t), l ∈ {n, r} (1.41)
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where σl and κl are positive constants.
This yields,

al(t, T ) = −σl
∫ T

t
e−κl(u−t)du = −σlβl(t, T ), (1.42)

where

βl(t, T ) =
1

κl
[1− e−κl(T−t)]. (1.43)

Under the condition (1.41), it can be proofed that the dynamics of the nom-
inal and real instantaneous short rates follow a Hull and White structure,
the ones that we have defined in (1.28) with the mean reversion level (1.29).
It can be also proofed that the expressions of the nominal and real bonds in
terms of the nominal and real short and forward rates are

Pn(t, T ) =
Pn(0, T )

Pn(0, t)
exp

(
βn(t, T )[fn(0, t)−n(t)]− σ2n

4κn
βn(t, T )2(1−e−2κnt)

)
,

(1.44)
and

Pr(t, T ) =
Pr(0, T )

Pr(0, t)
exp

(
βr(t, T )[fr(0, t)− r(t)]−

σ2r
4κr

βr(t, T )2[1− e−2κrt]

)
.

(1.45)
For more details of how to obtain see B.

1.2.2 Year On Year Inflation Swap

We proceed deriving the closed formula for the floating leg of the YYIIS
using the JY model, since this derivatives are ones of the most traded ones
in the market. Using the forward measure is obtained that

Y Y IIS(t, T, τ,N) = Nτi(t),A

[
I(t)

I(Ti(t)−1)
Pr(t, Ti(t))− Pn(t, Ti(t))

]

+N

M∑
i=i(t)+1

τi,A

[
Pn(t, Ti−1)

Pr(t, Ti)

Pr(t, Ti−1)
eb(t,Ti−1,Ti) − Pn(t, Ti)

]
,

(1.46)

with

b(t, Ti−1, Ti) = σrβr(Ti−1, Ti)

[
βr(t, Ti−1)

(
ρrIσI −

1

2
σrβr(t, Ti−1)

+
ρnrσn
κn + κr

(1 + κrβn(t, Ti−1))

)
− ρnrσn
κn + κr

βn(t, Ti−1)

]
,

(1.47)
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where Γ = {T1, ..., TM} are the payment dates, τA = {τ1,A, ..., τM,A} the
year fraction of the floating leg and i(t) = min{i : Ti > t}. The first cash
flow has the structure of a zero-coupon inflation leg with the formula (1.16),
since the inflation in Ti(t)−1 is known in t. Specifically, at t = 0,

Y Y IIS(0, T, τ,N) = Nτ1,A

[
Pr(0, T1)− Pn(0, T1)

]

+N
M∑
i=2

τi,A

[
Pn(0, Ti−1)

Pr(0, Ti)

Pr(0, Ti−1)
eb(0,Ti−1,Ti) − Pn(0, Ti)

]
.

(1.48)

1.2.3 Inflation Linked Cap/Floor

In Proposition (1.2.2) is seen the dynamics of the inflation index I(t), what
tell us that under the risk-neutral measure Q is log-normally distributed.
Then, the ratio I(Ti)

I(Ti−1)
has also log-normal distribution. The formula (1.24)

for a caplet/floorlet can be calculated using the formulas of generalized
Black-Scholes,

ILCFLT (t, Ti−1, Ti, τi, κ,N, ω) =

wNτiPn(t, Ti)

[
Pn(t, Ti−1)

Pn(t, Ti)

Pr(t, Ti)

Pr(t, Ti−1)
eb(t,Ti−1,Ti)Φ(wdi1(t))−(1+κ)Φ(wdi2(t))

]
,

(1.49)

where

di1(t) =
ln Pn(t,Ti−1)

(1+κ)Pn(t,Ti)
Pr(t,Ti)
Pr(t,Ti−1)

+ b(t, Ti−1, Ti) + 1
2V

2(t, Ti−1, Ti)

V (t, Ti−1, Ti)
(1.50)

di2(t) = di1(0)− V (t, Ti−1, Ti), (1.51)
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being the expression of the variance

V 2(t, Ti−1, Ti) =
σ2n
2κn

βn(Ti−1, Ti)
2[1− e−2κn(Ti−1−t)] + σ2I (Ti − Ti−1)

σ2r
2κr

βr(Ti−1, Ti)
2[1− e−2κr(Ti−1−t)]

−2ρnr
σnσr
κn + κr

βn(Ti−1, Ti)βr(Ti−1, Ti)[1− e−(κn+κr)(Ti−1−t)]

+
σ2n
κ2n

[
Ti − Ti−1 +

2

κn
e−κn(Ti−Ti−1) − 1

2κn
e−2κn(Ti−Ti−1) − 3

2κn

]

+
σ2r
κ2r

[
Ti − Ti−1 +

2

κr
e−κr(Ti−Ti−1) − 1

2κr
e−2κr(Ti−Ti−1) − 3

2κr

]

−2ρnr
σnσr
κnκr

[
Ti − Ti−1 − βn(Ti−1, Ti)− βr(Ti−1, Ti) +

1− e−(κn+κr)(Ti−Ti−1)

κn + κr

]
+2ρnI

σnσI
κn

[Ti − Ti−1 − βn(Ti−1, Ti)]− 2ρrI
σrσI
κr

[Ti − Ti−1 − βr(Ti−1, Ti)].

(1.52)

Finally, the value of the cap would be the sum of all the caplets.

Year on year inflation indexed swaps or inflation linked caps’ market
prices are available. In the next chapter, we will use the formulas derived in
this one to calibrate the real parameters κr and σr.
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Calibration

The main objective of this chapter is to calibrate the JY model, to obtain
the parameters that minimize the difference between today’s market prices
and the prices computed with the selected model. These calibrated parame-
ters will be used to aim the final goal of estimating the daily CVA, through
the calculation of expected values of the derivatives in future dates.

Although it could be considered that calibration is nothing else than a
minimization problem, in practice this part is a very tough challenge for
practitioners. There is a wide range of empirical studies in the literature
analysing the goodness of fit for different alternatives. Unfortunately, nei-
ther of them is valid for any range of derivatives used as inputs, or any time
level of interest rates or maturities. In the case of inflation-linked deriva-
tives, with a smaller market than the one for interest rate derivatives, the
process of finding accurate results becomes much more complicated. See
Damr Tewolde Berhan (2012) [2], Sébastien Gurrieri, Masaki Nakabayashi
and Tony Wong [9], Hongyung Li (2007) [10], Elena Sacardovi [11], for an
overview on some calibration processes.

The JY has eight parameters to be calibrated, {κn, σn, σI , ρnr, ρnI , ρrI , κr, σr}.
One possibility is to calibrate all of them at once, using an inflation linked
instrument, as the YYIIS or the inflation caps. Due to the lack of liquidity
and the high nonlinearity and complexity of the formulas, this method will
not lead to reliable results.

Therefore, we will proceed to the calibration process in several stages.
In particular, we propose to do it using three, each of them using different
instruments according with the parameters to be calibrated.

First, we use interest caps and swaptions to calibrate the daily nominal
parameters κn, σn; second, floors of zero-coupon inflation swaps for the daily
inflation volatility, σI , and third, year on year inflation-indexed swaps or in-
flation caps to calibrate the daily real parameters, κr, σr. The correlations

13
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ρnr, ρnI , ρrI , instead, will be estimated using historical data.

All the instruments mentioned above and those that will be mentioned
later have been download from Bloomberg. When historical data are needed
we have considered the sample from 03/16/2012 to 03/28/2019.

Since the nominal and real zero-coupon curves are needed for calibration,
we first obtain these curves, known as discount factors. Although obtaining
a nominal discount curve is very usual, the real discount curve is uncommon.

Zero-coupon nominal curves

We obtain the zero-coupon nominal curve for each maturity of the swaps,
through the Interest Rate Swaps (IRS) quotes. In the last years, it is com-
mon to use different maturities for the underlying interest rate of the swaps,
as Euribor 3 months, 6 months or 12 months, obtaining different values de-
pending on the selected underlying. Also, we have to decide which curve
to use to discount the payments. In this case, we have taken the 6 months
Euribor to discount the payments, and the same for the underlying interest
rate of the swaps. The fixed leg of the swap is collected from Bloomberg,
with ticker EUSA, and the maturities selected are, in years, 0.5, 1, 1.5, 2,
2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25 and 30 years.
Historical descriptive information of the fixed leg is provided in Figure 2.1.
Median, mean, 95% percentile and 5% percentile are shown throughout the
entire sample. As expected, when the maturity increases the values increase,
tending to be stable in the long run.

Figure 2.1: Fixed leg of 6M Eur swap from 03/16/2012 to 03/28/2019.
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The value of an IRS in t is:

Swap(t) = N
[
S(Ti)

n∑
j=1

τj,BPn(t, Tj)−
m∑
k=1

τk,AF̃ (t, T̃k−1, T̃k)Pn(t, T̃k)
]
,

(2.1)
where S(Ti) is the market fixed rate of 6 months Euribor swap, N is the

notional, τj,B the year fraction of the fixed-leg, τk,A the year fraction of the

floating-leg and being F̃ (t, T̃k−1, T̃k) = ET̃kn (F (T̃k−1, T̃k−1, T̃k)|Ft). Remem-

bering that ET̃kn is the conditional expectation in t under the nominal T̃k
forward measure. The standard market swap, the one we are using, has an
annual payment of the fixed leg, while the floating leg pays semi annually,
and that is why the subscripts of the summation are different. It is impor-
tant to remark that Tn = T̃m = Ti for each maturity of the swaps.

Taking into account the year fraction of the fixed-leg and that the deriva-
tives are market swaps, by definition the value in t = 0 has to be 0, that
is:

S(Ti)

n∑
j=1

Pn(0, Tj) =

m∑
k=1

τk,AF̃ (0, T̃k−1, T̃k)Pn(0, T̃k), (2.2)

In this case where the tenor of the swap and the underlying asset of the
discount factor are the same, F (t, T̃1, T̃2) is martingale under the T2 forward
measure,

F̃ (t, T̃1, T̃2) = ET̃2n (F (T̃1, T̃1, T̃2)|Ft) = F (t, T̃1, T̃2), (2.3)

fulfilling

Pn(t, T̃2) = Pn(t, T̃1, T̃2)Pn(t, T̃1), where

Pn(t, T̃1, T̃2) =
1

1 + τk,AF (t, T̃1, T̃2)
.

(2.4)

Solving F (t, T̃1, T̃2) from the formula is obtained that

S(Ti)
n∑
j=1

Pn(0, Tj) =
m∑
k=1

[
Pn(0, T̃k−1)− Pn(0, T̃k)

]
= 1− Pn(0, Ti). (2.5)

Solving the formula we get

Pn(0, Ti) =
1− S(Ti)

∑n−1
j=1 Pn(0, Tj)

1 + S(Ti)
(2.6)

Pn(0, T̃0) = Pn(0, 0) := 1. (2.7)

Looking at the formula, it is seen that it is necessary to obtain the nominal
discount factor for the previous time to get the next one.
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Figure 2.2: Zero coupon nominal discount factor.

The resulting zero-coupon nominal curves are shown in Figure 2.2, for
different maturities and dates. It is appreciated that for long maturities the
values are clearly time varying. Around the beginning of 2014 a sharp de-
clining of the discount factors is observed, providing the lowest values, with
the highest interest rates. At the end of 2016 a flattened pattern is shown.
This changing behaviour reinforce the argument for a daily calibration of
the model.

Zero-coupon real curves

Once the zero-coupon nominal curve is obtained, it is straightforward to
obtain the zero-coupon real curve. The previous chapter shows the relation-
ship between them,

Pr(0, Ti) = Pn(0, Ti)(1 +K(Ti))
Ti , (2.8)

where K(Ti) is the fixed-rate of the zero-coupon inflation-indexed swaps.
The Bloomberg ticker of these values is EUSWI. If the real discount factors
are needed for other maturities, there have to be used interpolation tech-
niques. A briefly description of the data is shown in Figure 2.3.

As for the nominal curve, Figure 2.4 shows the real zero-coupon curve
around different dates with the maturities 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15.
It is seen that at the beginning of the period, the real zero-coupon curve
decreases when the maturity becomes longer. Nevertheless, at the beginning
of the year 2015 the curve increases notoriously. In the last years the curve
rises with the maturity, but not so quickly as in the year 2015.
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Figure 2.3: Fixed rate of ZC inflation swap from 03/16/2012 to 03/28/2019.

Figure 2.4: Zero coupon real discount factor.
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Mat. EUR 6M swap ZC inf. swap Mat. EUR 6M swap ZC inf. swap

0.5 -0.228 - 11 0.5397 -

1 -0.2307 0.74 12 0.6139 1.2138

1.5 -0.2228 - 13 0.6817 -

2 -0.204 0.8375 14 0.7401 -

2.5 -0.177 - 15 0.7902 1.3025

3 -0.1465 0.895 16 0.8353 -

4 -0.071 0.935 17 0.8729 -

5 0.011 0.9725 18 0.905 -

6 0.097 1.0088 19 0.934 -

7 0.1863 1.0462 20 0.9545 -

8 0.2779 1.0786 25 1.0165 -

9 0.3701 1.1113 30 1.0354 -

10 0.4569 1.1487 - - -

Table 2.1: 6M market IRS and ZCIIS price.

We will develop a daily calibration method and, therefore, the calculator
will be able to do it for any selected day. As an illustration, we will focus on
the date 03/28/2019. Table 2.1 summarizes the data linked to the fixed rate
of EUR 6M swaps and zero-coupon inflation swaps, both in percentages,
that have been used to obtain the nominal and real zero-coupon curves.
As already mentioned, the last column of the table evidence the absence of
market quotes for inflation derivatives in the long run.

Figures 2.5a and 2.5b show the zero-coupon nominal and real discount
factors for our reference day 03/28/2019.
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(a) Nominal curve (b) Real curve

Figure 2.5: Zero coupon nominal and real discount factors for 03-28-2019.

Using the real and nominal zero-coupon curves, is straightforward to
obtain the spot rates

Pk(0, Ti) =
1

1 + τik(Ti)
=⇒ k(Ti) =

1− Pn(0, Ti)

τiPn(0, Ti)
, k ∈ {n, r}. (2.9)

The obtained nominal and real curves for the date 03/28/2019 are shown
in Figure 2.6. Is seen that while the nominal curve is negative for short
maturities but later becomes positive, the real one is negative for all the
maturities.

Figure 2.6: Nominal and Real rates for 03-28-2019.
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2.1 Stage 1. Calibration of {κn, σn}
Recall the stochastic process of the instantaneous nominal rate,

dn(t) = (νn(t)− κnn(t))dt+ σndWn(t),

where,

νn(t) =
∂fn(0, t)

∂T
+ κnfn(0, t) +

σ2n
2κn

(1− e−2κnt),

The first option is to calibrate constant κn and σn simultaneously. The
used instruments are Caps on Euribor 6 months. The data is taken from
Bloomberg with the ticker EUCPAM and are available in Table 2.2. The
prices of the caps are in units per 1, the strikes in percentages and the im-
plied volatility in basic points.

Maturity Market Quote Strike Volatility

3 0.0034 -0.1277 26.7

4 0.0066 -0.0475 32.19

5 0.0109 0.0374 36.35

6 0.0161 0.125 39.86

7 0.0223 0.2153 42.67

8 0.0292 0.3073 44.96

9 0.0367 0.3995 46.74

10 0.0447 0.4858 48.25

12 0.0617 0.6411 50.54

15 0.0889 0.9706 52.11

Table 2.2: 6M Interest Rate market Cap prices and strikes.

The calibration of both parameters simultaneously is not accurate enough,
since the method is not able to obtain good estimations and the parameters
are very dependant on the initial values. Therefore, we propose a method
to estimate them separately. The methodology is explained in S.Gurrieri,
M. Nakabayashi, T. Wong, Calibration Methods of Hull-White model, with
reference [9]. Using implied volatilities of swaptions, it is possible to calcu-
late an approximate constant κn and with the prices of interest rate caps
(Table 2.2) calibrate σn.
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2.1.1 Constant calibration of κn and σn

Calibration of κn

To obtain a constant κn are needed instruments that does not include σn
in their theoretical expression. As it is proposed in [9], we use the ratio of
implied volatilities of swaptions with the same maturity but different tenor.
This method is only an approximation to calibrate κn. Once σn is calibrated
using market interest rate caps, we recalibrate κn.

We summarize the steps to be followed to obtain the calibration of the
mean reversion speed (κn), for further details of the procedure see Appendix
C.1. To explain them, we denote the variance of the instantaneous short
rate as Vn(0, t) = V (n(t)) = (σ2n/2κn)e−2κnt), and βn(t, T ) = (1/κn)(1 −
e−κn(T−t)).

The procedure is as follows:

(i) Considering the dynamics of the nominal bond (1.38), obtain d(Pn(t, T1)/Pn(t, T2))
being T1 < T2,

d
Pn(t, T1)

Pn(t, T2)
=
Pn(t, T1)

Pn(t, T2)
σ2n[β2n(t, T2)− βn(t, T2)βn(t, T1)]dt

+
Pn(t, T1)

Pn(t, T2)
σn[βn(t, T2)− βn(t, T1)]dW

Q
n (t).

(2.10)

(ii) Using Proposition A.1, obtain the drift under the forward measure

µT2(t) = µQ(t)− Pn(t, T1)

Pn(t, T2)
σn[βn(t, T2)−βn(t, T1)](−an(t, T2)). (2.11)

(iii) Obtain the dynamic of the bond ratio

d
Pn(t, T1)

Pn(t, T2)
=
Pn(t, T1)

P 2
n(t, T2)

σn[βn(t, T2)− βn(t, T1)]dW
T2
n (t). (2.12)

(iv) Obtain the integrated variance of the bond ratio

Vp(0, T1, T2) =

∫ T1

0
σ2n[βn(u, T2)−βn(u, T1)]

2du = Vn(0, T1)βn(T1, T2)
2.

(2.13)

(v) Consider

S̃(t, T0, Tn) =
Pn(0, Tn)∑n

i=1 τi,BPn(0, Ti)

[Pn(t, T0)

Pn(t, Tn)
− 1
]
, (2.14)
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as the approximation of the market IRS fixed rate

S(t, T0, Tn) =
Pn(t, T0)− P (t, Tn)∑n

i=1 τi,BPn(t, Ti)
, (2.15)

where T0 is the initial reference day and Tn the tenor of the swap.
Assume that the approximated swap fixed rate has log-normal distri-
bution under the annuity measure A (Proposition A.2.1).

(vi) Consider the dynamics of the approximated swap fixed rate under the
forward measure

dS̃(t, T0, Tn)

S̃(t, T0, Tn)
=
S(0, T0, Tn)

S̃(t, T0, Tn)

Pn(0, Tn)Pn(t, T0)

[P (0, T0)− Pn(0, Tn)]Pn(t, Tn)

·σn[βn(t, Tn)− βn(t, T0)]dW
Tn
n (t).

(2.16)

(vii) Substitute in (2.16), the approximated swap fixed rate and the bond
prices by their initial values and change to the annuity measure A,

dS̃(t, T0, Tn)

S̃(t, T0, Tn)
' drift+ Pn(0, T0)

P (0, T0)− Pn(0, Tn)
σn[βn(t, Tn)−βn(t, T0)]dW

A
n (t).

(2.17)

(viii) Obtain the integrated volatility of the previous expression using (2.13),
as

IVswap(T0, Tn) =

∣∣∣∣∣ Pn(0, T0)

P (0, T0)− Pn(0, Tn)

∣∣∣∣∣√Vp(0, T0, Tn), (2.18)

where Vp(0, T0, Tn) = Vn(0, T0)βn(T0, Tn)2.

(ix) Since the only term depending on σn is Vn(0, T0), take the ratio of dif-
ferent implied volatilities with the same maturity (Mi) for the swap-
tions, but different tenors (Tj and Tk) to estimate κn. That is,

IVswap(Mi, Tj)

IVswap(Mi, Tk)
=

∣∣∣∣∣ [Pn(0,Mi)− Pn(0, Tk)]β(Mi, Tj)

[Pn(0,Mi)− Pn(0, Tj)]β(Mi, Tk)

∣∣∣∣∣. (2.19)

To do the calibration, we denote IVi,j as the market implied volatility
of a swaption with maturity Mi and tenor Tj and minimize the sum of the
different ratios for all the tenors and maturities that are available.

min{κn}

nm∑
i=1

nl−1∑
j=1

wi,j+1

wi,j

(
IVswap(Mi, Tj+1)

IVswap(Mi, Tj)
− IVi,j+1

IVi,j

)2

, (2.20)
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where wi,j are the weights given to the variances, nm the number of matu-
rities and nl the number of tenors.

There is a problem in using this method. Since the distribution of (2.14)
under the annuity measure is log-normal, the implied volatilities have as
well log-normal distribution. Because of this, there are only available mar-
ket implied volatilities for those swaptions where the underlying interest rate
is positive, what it is a problem in the current situation with negative inter-
est rates. As it is being implemented an automatic calculator to calibrate
every day, it is necessary to chose a group of maturities and tenors that
are going to have always data for the implied volatility available. The cho-
sen maturities are 3, 4, 5, 7, 10, 15 and the tenors for the swap 7, 8, 9, 12, 15.

Tenors

Mat. 7 8 9 10 15

3 64.16 57.55 52.68 49.04 39.35

4 54.13 50.45 47.45 45.18 38.08

5 47.7 45.49 43.67 42.25 36.89

7 41.16 40.27 39.5 38.88 35.98

10 37.91 37.84 37.87 37.91 36.97

15 39.8 40.39 40.99 41.55 41.22

Table 2.3: EUR 6M linked market Swaptions implied volatility

The ticker for the swaptions implied volatility is EUSV and the values
are given in percentages. The market values are shown in Table 2.3. To cal-
ibrate the parameter κn we have used the command fminsearch in Matlab,
using different initial points for the calibration, the resultant κn that gives
the minimum objective function for the date 03/28/2019 is: κn = 0.1077.

Calibration of σn

The first thing to note is that Bloomberg prices of caps are calculated
with Black’s formula, and this assumes log-normality for the interest rate
EUR 6M. Some of the obtained strikes, normally for short maturities, are
negative, what is not compatible with the Black model. These prices could
be consistent with a Black shifted model, that consists on adding a constant
value to the interest rates and strikes to become them positive (for further
information see [12]). This assumption is widely used between market prac-
titioners.
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The calibration of σn is made using market cap prices and theoretical cap
formulas when the short rate is modelled with Hull and White. Under the
Hull and White model the short rate is normally distributed, then, to ob-
tain closed formulas it is used the price of a bond, since this is log-normally
distributed. The expressions for the interest rate caps are from the book
Interest Rate Models-Theory and Practice, with reference [5].

It is important to remark that the caps can be seen as a portfolio of
European zero-coupon calls on EUR 6M. We denote by D = {d1, d2, ..., dn}
the payment dates of the cap, τ = {τ1, ..., τn} the year-fraction between di−1
and di and T = {t1, t2, ..., tn} the difference between di and the valuation
day t with t0 as reference day (in this case t0 = 0). N is the nominal value
of the contract and X is the strike. The cap is composed of n caplets and
the value of the i-th caplet in t is

Cpl(t, ti−1, ti, τi, N,X) = N ′iZBP (t, ti−1, ti, X
′
i), (2.21)

where,

N ′i =
1

1 +Xτi
,

N ′i = N(1 +Xτi),

(2.22)

being the formula of the European put option with maturity T and strike
X on a unit-principal zero-coupon bond with maturity S > T (ZBP),

ZBP (t, T, S,X) = XPn(t, T )Φ(−h+ σp)− Pn(t, S)Φ(−h), (2.23)

where

σp = σn

√
1− e−2κn(T−t)

2κn
βn(T, S),

h =
1

σp
ln

Pn(t, S)

Pn(t, T )X
+
σp
2
.

(2.24)

Using the previous information, the valuation formula for the cap in t is

Cap(t, T,N,X) = N

n∑
i=1

(1 +Xτi)ZBP (t, ti−1, ti,
1

1 +Xτi
),

= N
n∑
i=1

[Pn(t, ti−1)Φ(−hi + σip)− (1 +Xτi)Pn(t, ti)Φ(−hi)],
(2.25)
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where,

σip = σn

√
1− e−2κn(ti−1−t)

2κn
βn(ti−1, ti),

hi =
1

σip
ln
Pn(t, ti)(1 +Xτi)

Pn(t, ti−1)
+
σip
2
.

(2.26)

For further details see Appendix C.2.

The calibration of constant σn is made using market prices of 6M interest
rate caps and the expressions just obtained. The used Matlab command is
lsqnonlin and as we have done for κn we have used different initial points
and taken as σn the one that has given the minimum objective function (the
minimum error). The optimum σn is 0.0038.

The method proposed by [9] to calibrate κn is just an approximation.
Once σn is calibrated, κn is recalibrated using market interest rate caps ob-
taining κn = 0.078.
In order to check the accuracy of the calibration, we have iterated the cal-
ibration procedure, obtaining as final κn and σn the ones that appear in
Table 2.4.

κn σn

0.078 0.00356

Table 2.4: Calibrated constant κn and σn.

Table 2.5 shows the market and estimated quotes, together with the
calibration error.

The most accurate prices are those for short and long maturities, except
for the last one. The worst approximated are for the medium ones.

Since the purpose is calibration of the parameters to value inflation linked
instrument in future dates, it is important to improve the accuracy. It seems
clear that the prices obtained with constant σn are not good, so we propose
a piece-wise approach for σn. The implied volatility is a key parameter to
give value to the different options as a measure of the uncertainty involved
in the market, so it makes sense to maintain κn constant and use a σn piece-
wise, trying to collect this uncertainty.
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Maturity Market Quote Model Quote Error

3 0.0034 0.00338 0.000016

4 0.0066 0.00838 -0.00179

5 0.0109 0.0139 -0.003

6 0.0161 0.02 -0.0039

7 0.0223 0.0265 -0.0042

8 0.0292 0.0334 -0.0042

9 0.0367 0.0406 -0.0039

10 0.0447 0.0478 -0.0031

12 0.0617 0.0615 0.00016

15 0.0889 0.079 0.0099

Table 2.5: 6M Interest Rate Caps price.

2.1.2 Piece-wise calibration of σn

To obtain a piece-wise σn(t), we use today’s prices of the caps with maturi-
ties 3, 4, 5, 6, 7, 8, 9, 10, 12, 15 shown in Table 2.2.
As in Chapter 3 we will proceed to the valuation of instruments in future
dates, the expression of the nominal instantaneous short rate in those dates
is needed. For this, is necessary an expression of σn in that dates. This does
not mean that is a time-dependent function changing our calibrating date
(03/28/2019), but using today’s data for different maturities, is given the
desired temporality to σn. As there are obtained more than one value for
σn, we expect to collect better market data since we give more flexibility to
this parameter.

Using the method of bootstrapping, an expression of σn(t) is obtained
recursively. With the price of each cap is derived a value, obtaining a piece-
wise σn(t) with intervals 0− 3− 4− 5− 6− 7− 8− 9− 10− 12− 15.

The procedure goes as follows.

(i) Using the theoretical formulas of cap prices and today’s data for the
3 years cap, calibrate a constant value of σn(t) for the period [0,3].

(ii) Using the value in (i) and the strike of the cap with maturity 4 years,
compute the value of the caplets up to 3 years of this second cap
(maturity 4 years).

(iii) Using the values at (ii), calibrate the value of σn(t) for the period (3,4].
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(iv) Using the values at (i) and (iii), obtain the values of the caplets of the
next cap (maturity 5 years) until 4 years, using the first σn for the
caplets of the period [0,3] and the second value for the caplets of the
period (3,4]. Using the market price of the cap with maturity 5 years,
calibrate the expression for (4,5].

(v) Obtain the entire expression recursively.

In each step of the process there is one equation with one parameter to
be calibrated, so the produced errors are due to the complexity and non-
linearity of the formulas. The resultant values are shown in Figure 2.7. It
is appreciated that the implied volatility of the nominal short rate does not
follow any specific dynamics. The new prices and the error are shown in
Table 2.6.

Figure 2.7: Piece-wise σn in the date 03/28/2019.

We realize that the values for σn in the period (3, 7] are very small, then,
when we make different simulations of the nominal instantaneous short rate
along the time, there will not be significant difference between them. To
avoid this, we decide to take the values for the periods [0, 3] and (8, 15] and
obtain new values for the leftover periods using cubic interpolation. The new
σn is shown in Figure 2.8 and the numeric values and cap prices in Table 2.7.
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Maturity σn(t) Market Quote Model Quote Error

3 0.0036 0.0034 0.0034 −1.07 · 10−8

4 1.4607 · 10−4 0.0066 0.0078 -0.0012

5 1.9113 · 10−5 0.0109 0.0127 -0.0018

6 6.2027 · 10−6 0.0161 0.018 -0.0019

7 2.1306 · 10−5 0.0223 0.0236 -0.0012

8 0.0012 0.0292 0.0294 -2.3 · 10−4

9 0.0062 0.0367 0.0367 −6.43 · 10−8

10 0.0071 0.0447 0.0447 −2.91 · 10−8

12 0.0074 0.0617 0.0617 −4.49 · 10−9

15 0.0087 0.0889 0.0889 −5.168 · 10−7

Table 2.6: 6M Interest Rate Caps price.

With these new σn the errors are bigger than with the previous piece-wise
function but smaller than with the constant value, except for the penultimate
cap price. We have decided to use this new σn from now on to give more
uncertainty to the dynamics of n(t).

Figure 2.8: Transformed piece-wise σn in the date 03/28/2019.
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Maturity σn(t) Market Quote Model Quote Error

3 0.0036 0.0034 0.0034 −1.07 · 10−8

4 0.0017 0.0066 0.0079 -0.0013

5 0.001 0.0109 0.0128 -0.0019

6 0.0011 0.0161 0.0181 -0.002

7 0.0018 0.0223 0.0238 -0.0015

8 0.0012 0.0292 0.0299 -0.0007

9 0.0062 0.0367 0.0376 -0.00089

10 0.0071 0.0447 0.0459 -0.0012

12 0.0074 0.0617 0.063 -0.0013

15 0.0087 0.0889 0.0901 -0.0013

Table 2.7: 6M Interest Rate Caps new volatility and price.

2.2 Stage 2. Calibration of σI

The dynamics of the inflation-index HCIP is,

dI(t)

I(t)
= [n(t)− r(t)]dt+ σIdW

Q
I (t).

Our first option to do the calibration is to use floors of zero-coupon inflation
indexed swaps to calibrate a constant σI and if we do not get good results,
a piece-wise function as it has been done with σn.
As mentioned before, some days is not possible to obtain market data of
the inflation instruments to do the market calibration. For those cases, we
propose two methods to calibrate σI :

• Use the data of the index to obtain a constant historical value for σI .

• Use an e-garch model to obtain a time-dependent expression for σI .

Using floors

Fortunately, data for the date 03/28/2019 is available in Bloomberg for
the floors of zero coupon IL swaps. The maturities are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15
and all of them have the strike equal to 0, the ticker is EUIZF0. The used
data is in Table 2.8, the values are in basic points.
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Maturity Market Quote

1 5.6

2 6.1

3 5.8

4 6.4

5 6.6

6 7.4

7 8.7

8 9.7

9 12.6

10 13.6

12 13.2

15 13.3

Table 2.8: Market zero-coupon inflation indexed swaps floors.

Taking into account that the pay-off in Ti of the annual zero-coupon
inflation swap is

Nω

[(I(Ti)

I0
− 1
)
−
(

(1 +K(i))Ti − 1
)]
, (2.27)

where ω = 1 if you pay the fixed leg and ω = −1 if you pay the variable leg.
Assuming that N = 1, the actual value off each pay-off of the floor is

E

[
e−

∫ Ti
t n(s)ds

[
ω
(I(Ti)

I0
− 1
)
− ω

(
(1 +K)Ti − 1

)]+
|Ft

]
. (2.28)

Introducing the definition of the forward HCIP at time t to time T as

FI(t, T ) =
I(t)Pr(t, T )

Pn(t, T )
,

it is easily seen that FI(t, T ) is log-normally distributed, since the inflation
index and the nominal and real bonds are log-normally distributed as well.
Using Blacks formula the price of each floor in t is

Pn(t, Ti)

[
(1 +K(i))TiN(−d2)−

FI(t, T )

I0
N(−d1)

]
, (2.29)
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where

di1 =
ln
(

FI(t,T )

I0(1+K(i))Ti

)
+

σ2
ITi
2

σI
√
Ti

, (2.30)

di2 = di1 − σI
√
Ti. (2.31)

To calibrate σI the formula in t = 0 is needed,

Pn(0, Ti)

[
(1 +K(i))TiN(−d2)−

Pr(0, Ti)

Pn(0, Ti)
N(−d1)

]
, (2.32)

where

di1 =
ln
(

Pr(0,Ti)

Pn(0,Ti)(1+K(i))Ti

)
+

σ2
ITi
2

σI
√
Ti

, (2.33)

di2 = di1 − σI
√
Ti. (2.34)

Trying with different initial points the calibrated parameter is σI = 0.0073.
The accuracy of the calibration is not appropriate, since the difference be-
tween the market data and the estimated prices is very big. As explained
before, calibration is very important because these are the parameters used
for actual and future valuation of the derivatives. Then, we have decided to
calculate a piece-wise function in a similar way as described in the case of
nominal σn. Remark that there are available floor prices for 1 and 2 years so
the intervals will be 0-1-2-3-4-5-6-7-8-9-10-12-15 (for the interest rate caps
the first maturity available was 3 years, so the first interval was [0,3]). The
resultant function is shown in Figure 2.9.

Figure 2.9: Piece-wise σI in the date 03-28-2019.
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Table 2.9 shows the prices of market floors for different maturities for the
date 03/28/2019, the obtained values with the formula (2.32) with constant
and piece-wise σI and the corresponding error. For all the floors it is seen
that the error is smaller when using the piece wise σI , so whenever possible
we will use this expression instead of the constant one.

Maturity Market Quote Quotes ctant σI Error Quotes p-w σI Error

1 5.6 · 10−4 6.0096 · 10−4 4.0956 · 10−5 5.6005 · 10−4 5.2099 · 10−8

2 6.1 · 10−4 8.4143 · 10−4 2.3143 · 10−4 6.1462 · 10−4 4.6193 · 10−6

3 5.8 · 10−4 9.2509 · 10−4 3.4509 · 10−4 6.1462 · 10−4 3.4619 · 10−5

4 6.4 · 10−4 9.5355 · 10−4 3.1355 · 10−4 6.471 · 10−4 7.0996 · 10−6

5 6.6 · 10−4 9.615 · 10−4 3.015 · 10−4 6.6994 · 10−4 9.9393 · 10−6

6 7.4 · 10−4 9.6352 · 10−4 2.2352 · 10−4 7.4022 · 10−4 2.1838 · 10−7

7 8.7 · 10−4 9.6397 · 10−4 9.3967 · 10−5 8.7126 · 10−4 1.2617 · 10−6

8 9.7 · 10−4 9.6406 · 10−4 −5.944 · 10−6 9.717 · 10−4 1.703 · 10−6

9 0.0013 9.6407 · 10−4 −2.9593 · 10−4 0.0013 2.0523 · 10−7

10 0.0014 9.6407 · 10−4 −3.9593 · 10−4 0.0014 1.815 · 10−6

12 0.0013 9.6407 · 10−4 −3.5593 · 10−4 0.0014 4.1815 · 10−5

15 0.0013 9.6407 · 10−4 −3.6593 · 10−4 0.0014 3.1815 · 10−5

Table 2.9: Inflation indexed swaps floors price.

In case of not available market data, as an alternative we shortly explain
two methods that can be used to calibrate σI .

One could compute the historical volatility of the Eurostat Eurozone
HICP (Harmonised Indices of Consumer Prices) Ex Tobacco (ticker CPT-
FEMU) with monthly frequency and a lag of 3 months from the data series
available on Bloomberg. The value is given the last working day of the
month and as our reference date is 03/28/2019, the March data is not avail-
able. The used data is from 03/31/2012 to 02/28/2019.

Taking into account the dynamics of the inflation index (1.37), is ob-
tained that

Vt

(dI(t)

I(t)

)
= σ2Idt.

As the frequency of the data is monthly, to get the historical estimation of
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σI is used the formula

σI =

[
1

∆
V
(∆I(t)

I(t)

)] 1
2

, where ∆ =
1

12
.

The resultant parameter is σI = 0.0016, much more smaller than the con-
stant and piece-wise calibrated values using floors of zero-coupon inflation
swaps, showing that market valuations of the derivatives also includes higher
degree of uncertainty for the future.

Another way of modelling the volatility of the index is through a time
series model.
Between the garch family models, we have decided to use an egarch(1,1) (for
more details of the egarch model see [13]) model because its flexibility to
capture and model asymmetric effects in the volatility, that is, if the effect
of positive and negative yields is the same or not. The parameter that mea-
sures that effect is γ; since negative yields use to have a bigger impact, we
expect γ to be negative.

The estimated parameters and their corresponding significance are shown
in Table 2.10. The only parameters that are significant with a confidence
level of 95% are the last two ones, since it is necessary to be the second
parameter bigger than 1.96 in absolute terms (normal distribution).

Even if the parameter α1 is not significant, since γ it is, we maintain
α1 in the equation. With the obtained expression, is possible to get an
estimation of the future implied volatility of the inflation index using this
formula recursively.

Parameters Estimation Significance

µ 0.00057 0.94

α0 -1.799 -0.701

α1 5.78 · 10−6 0.057

β 0.827 3.359

γ -0.39 -6.02

Table 2.10: Egarch(1,1) parameters for the inflation index HCIP.
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2.3 Stage 3. Calibration of {κr, σr}
Once the nominal and inflation parameters are calibrated, is time to obtain
the real ones, κr and σr. For this, we have tried with two different type of
instruments, and chosen the ones that approach better the corresponding
market quotes.

• The first instruments are inflation indexed caps. The prices are from
an inflation linked cap calculator (in Bloomberg). Remark that all
the chosen caps are at the money. Both, the prices and strikes, are
in percentages and the values are in the first and second columns of
Table (2.11).

Maturity Caps Market Quote Caps Strike YYIIS MQ

1 0.2277 0.941 0.74

2 0.6061 0.985 0.83692

3 1.0238 1 0.89403

4 1.4976 1.015 0.93372

5 2.0319 1.035 0.97059

6 2.5957 1.064 1.0061

7 3.1954 1.096 1.0428

8 3.7473 1.13 1.0743

9 4.3157 1.165 1.1062

10 4.9058 1.197 1.1421

12 6.0373 1.2529 1.204

15 7.8172 1.3217 1.2875

Table 2.11: market inflation indexed ATM Caps and YYIIS.

• The second instruments are year on year inflation-indexed swaps and
the market fixed rates are available in the last column of Table 2.11,
in percentages. The prices have been taken from Bloomberg.

In the formulas obtained in the previous chapter for the YYIIS and infla-
tion caps also appear the correlations between nominal and real spot rates
ρnr, and the correlation of both of them with the Inflation index CPI (Con-
sumer Price Index), ρnI and ρrI . We have decided to obtain the estimation
of all of them historically, to not stress more the model.
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2.3.1 Correlations {ρnr, ρnI , ρrI}

We have decided to calculate all the correlations as piece-wise functions, to
take into account the data available for different maturities in the case of the
nominal and real zero-coupon curves. The data range is from 03/16/2012 to
03/28/2019. Using the values for the 12 maturities in common for the nom-
inal and real discount factors 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, the implied
discount factors for each date of the range are calculated. The piece-wise
function for ρnr is easily obtained calculating the correlation factor between
the arithmetic yields of those implied discount factors. The values are shown
in the second column of the Table 2.12. It is easily seen that the correlation
is very high, and gets bigger as the maturity increase, staying around 0.91
in the long run.

To obtain ρnI and ρrI , the data related to the inflation index used to
calculate the historical estimation of σI is needed. Since the frequency of
the HCIP is monthly, is necessary to obtain the nominal and real implied
discount factors with monthly periodicity. Later, calculate the correlation
between the arithmetic yields of each implied value and the arithmetic yields
of the HICP obtaining a piece wise function. The results are shown in the
last two columns of Table 2.12.

Period ρnr ρnI ρrI

[0,1] 0.457 -0.05 0.175

(1,2] 0.887 -0.01 -0.031

(2,3] 0.928 -0.058 -0.055

(3,4] 0.932 -0.018 0.002

(4,5] 0.932 -0.098 -0.048

(5,6] 0.899 -0.1 -0.069

(6,7] 0.921 -0.093 -0.062

(7,8] 0.904 -0.137 -0.081

(8,9] 0.912 -0.119 -0.068

(9,10] 0.9 -0.186 -0.16

(10,12] 0.914 -0.19 -0.155

(12,15] 0.929 -0.2 -0.187

Table 2.12: Historical correlations.
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2.3.2 Calibration with Caps

Using the market quotes of Table 2.11 and the formulas developed in the
second chapter the parameters κr and σr are calibrated. For each caplet is
used the valuation formula (1.49) in t = 0 and with the notional N = 1.
Supposing that there is a caplet each {T1, ..., TM}, the theoretical formula
of a cap is

M∑
i=1

τiPn(0, Ti)

[
Pn(0, Ti−1)

Pn(0, Ti)

Pr(0, Ti)

Pr(0, Ti−1)
eb(0,Ti−1,Ti)Φ(di1(0))−(1+k)Φ(di2(0))

]
,

(2.35)
where

di1(0) =
ln Pn(0,Ti−1)

(1+κ)Pn(0,Ti)
Pr(0,Ti)
Pr(0,Ti−1)

+ b(0, Ti−1, Ti) + 1
2V

2(0, Ti−1, Ti)

V (0, Ti−1, Ti)
(2.36)

di2(0) = di1(0)− V (0, Ti−1, Ti), (2.37)

being

b(0, Ti−1, Ti) = σrβr(Ti−1, Ti)

[
βr(0, Ti−1)

(
ρrIσI −

1

2
σrβr(0, Ti−1) (2.38)

+
ρnrσn
κn + κr

(1 + κrβn(0, Ti−1))

)
− ρnrσn
κn + κr

βn(0, Ti−1)

]
, (2.39)

and V (0, Ti−1, Ti) the variance of the logarithm of the ratio I(Ti)
I(Ti−1)

de-

fined in (1.52).

κr σr

0.9202 0.0036

Table 2.13: Calibrated κr and σr.

The obtained estimated parameters are in Table 2.13. Trying with dif-
ferent initial points is seen that the calibration is unstable since depending
on the initial point the optimum parameters are different. In addition, the
errors between the market quotes and the estimated cap prices are very big.
The problem may be that the used formulas are very complex. Another
option could be the little precision of Bloomberg prices due to lack of liq-
uidity. To avoid both problems, we have decided to calibrate with year on
year inflation-indexed swaps, since the formulas are easier and the liquidity
is bigger.
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2.3.3 Calibration with YYIIS

For the calibration with YYIIS, is minimized the difference between the for-
mula (1.48) for the floating leg and the expression

∑i
j=1 Pn(0, Tj)K(Ti) for

the fixed leg. The values of K(Ti) are in Table 2.11 in percentages. We have
tried to calibrate both parameters at the same time using different initial
points, but the estimation is very unstable. Trying to obtain a stable cali-
bration, we have thought to use historical data of the real bonds to calibrate
the parameters κr, σr historically, and use them to calibrate separately the
definitive parameters.

The first step is to calculate the variance of the dynamic (1.39) of the
real bond

dPr(t, T )

Pr(t, T )
= [r(t)− σIρrIar(t, T ))]dt+ ar(t, T )dWQ

r (t)

=⇒ V (
dPr(t, T )

Pr(t, T )
) = a2r(t, T )dt =

σ2r
κ2r

(1− e−κr(T−t))2dt.
(2.40)

Setting dt = (1/365) since the periodicity of the discount factors is daily,
is possible to calibrate the parameters κr and σr. For each maturity of the
real bond 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, the left part of the equation is
obtained as the historical variance of the arithmetic yields of the real dis-
count factors. Calculating the difference between this value and the right
part, is obtained the vector to be minimized to calibrate historically the
parameters. The estimated values are shown in Table 2.14.

κr σr

0.0012 0.0089

Table 2.14: Historically calibrated κr and σr.

These historical values are going to be used to calibrate separately κr
and σr using market prices of year on year inflation-indexed swaps. Assum-
ing σr = 0.0089, can be calibrated κr using market quotes of the YYIIS,
obtaining κr = 0.766. Using this value for κr, σr is recalibrated using also
the market prices of the YYIIS getting σr = 0.0091. To check the accuracy
of the calibration, we recalibrate both parameters obtaining the definite ones
shown in table 2.15. The obtained values for the fixed and floating legs and
the errors are shown in Table 2.16. It is important to remark that the error
is the difference between the value of the floating leg and the fixed leg, since
in this case is minimized the difference between them because being market
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swaps, the value in t = 0 has to be equal to 0.

κr σr

0.79 0.0093

Table 2.15: Calibrated κr and σr using YYIIS.

Maturity Floating leg Fixed leg Error

1 0.0075 0.0075 1.8301 · 10−16

2 0.0169 0.0169 6.825 · 10−6

3 0.0271 0.0271 1.223 · 10−5

4 0.0377 0.0377 2.7 · 10−6

5 0.0488 0.0488 −4.919 · 10−6

6 0.0606 0.0606 −7.487 · 10−

7 0.073 0.073 −2.139 · 10−5

8 0.0856 0.0856 −3.793 · 10−5

9 0.099 0.099 −3.545 · 10−5

10 0.113 0.113 −3.106 · 10−5

12 0.141 0.141 2.5434 · 10−5

15 0.184 0.184 7.0383 · 10−5

Table 2.16: Calibration of YYIIS.

As it can be seen in Table 2.16, with the constant calibrated parame-
ters the errors are more or less small, so we have decided not to calibrate a
piece-wise σr. If someone wanted to calculate the piece-wise function, the
technique is the one used previously. It has the particularity that if there
is only one payment, the expression is Pr(0, T1) − Pn(0, T1), that does not
include the parameter σr, so the first value of the piece-wise function would
be for the period [0, 2]. We have done this analysis to see what is the result
and if there is a big difference in the precision comparing with the constant
value. The sum of the squared errors is very similar so we have decided to
use the constant σr, since in this way we do not stress the model much and
the calibration is still good.
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In summary, it has been shown that calibration is not trivial. In Stage
1, calibration of {κn, σn}, the first option has been calibration of both pa-
rameters together using interest rate caps, as proposed in [1],[2] and [11].
As the results were not good, we have decided to calibrate κn as proposed
in [9]. To calibrate σn, instead of a constant value, we have decided to ob-
tain a piece-wise value, greatly improving the accuracy of the calibration.
To calibrate the rest of parameters, in [1],[2] and [11] is proposed to use
inflation-indexed cap/floors, but we have decided to calibrate them sepa-
rately. To obtain values for the correlations, we have done historically as
proposed in [10]. To calibrate κr and σr, we have obtained a first approach
historically as proposed in [10], and obtained the definitive parameters using
YYIIS.



Chapter 3

Valuation

In Chapter 3 the main objective of this work is attained, the valuation of
different inflation indexed swaps, the expected positive exposure and the ex-
pected shortfall with a confidence level of 97.5%. Also, sensitivities of those
values with respect to the model parameters are given. Finally, the CVA of
each swap separately and the CVA of the whole portfolio are calculated.
In Section 3.1 the different type of inflation swaps are presented, together
with the method to implement the simulation and the valuation procedure.
In Section 3.2 the obtained valuations for the different swaps and the sensi-
tivity analysis are provided.
In Section 3.3 the CVA is explained and calculated, for each swap and for
the whole portfolio.

3.1 Present and future valuation

Two type of swaps will be valued. The first ones are the YYIIS, explained
in Chapter 1. The second ones are particular swaps, of interest for Laboral
Kutxa, the provider of data and supporter of this work. These derivatives
are a kind of mixture of the derivatives described in Chapter 1.

In this derivative, one part pays the ratio of the inflation index of the
moment between an initial reference inflation index multiplied by a coupon
on certain dates, and the other part pays a fixed rate, the Euribor 12 months
plus a spread, or a mixture between both of them, at the same dates.

Using the expression of the zero-coupon inflation-indexed swaps, the
value in t of one payment made in T of the inflation leg of these swaps is

NinfLPr(t, T )q
I(t)

I0
, (3.1)

where NinfL is the notional of the inflation leg, Pr(t, T ) the price in t of a
zero-coupon real bond with maturity T , q the coupon of the inflation leg,
I(t) the inflation of the valuation moment t and I0 the inflation taken as

40
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reference.
The value in t of a payment made in T of the second leg depends on the
type of swap:

• If the other party pays a fixed rate, then the value is

NnomLPn(t, T )d,

where NnomL is the notional of this second leg, Pn(t, T ) the price in t
of a zero-coupon nominal bond with maturity T and d the fixed rate.

• If the other party pays Euribor 12 months rate + spread agreed one
year before T , the value is

NnomLPn(t, T )[eur(T − 1, T ) + d],

where d is the spread added to the value of the Euribor 12 months
eur(T − 1, T ), fixed in T − 1. eur(T − 1, T ) is obtained from the
simulated value Pn(12)(T − 1, T ) as

eur(T − 1, T ) =
1− Pn(12)(T − 1, T )

Pn(12)(T − 1, T )
.

It is important to remark that as Euribor 12 months is needed, Pn(12)(T−
1, T ) has to be built with 12 month Interest Rate Swaps instead of with
6 months IRS (the ones used until now). So, as done previously with
the 6M IRS, use the fixed rate of 12M IRS to obtain the zero coupon
discount factors Pn(12)(0, T ) and using these ones obtain the implied
factors Pn(12)(T − 1, T ).

• If it is a mixed swap, the other party pays a fixed rate until a date
previously set, called type change date (mixed swap). From that date
until maturity, pays Euribor 12 months + spread.

Usually, the inflation swaps also have a final exchange, where the leg
that pays the inflation index pays a final amount of

NinfLmax
(I(Tfinal)

I0
, 1
)
, (3.2)

where Tfinal denotes the time to maturity, and the other leg a final amount
of NnomL.

As an example, for an inflation swap where we pay a fixed rate and
receive the inflation leg, the value in any date t is:

M∑
i=1

[
NinfLPr(t, Ti)q

I(t)

I0
−NnomLPn(t, Ti)d

]

+

[
NinfLmax

(I(Tfinal)

I0
, 1
)
−NnomL

]
Pn(t, Tfinal),

(3.3)
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where TM = Tfinal and there is a exchange of flows in each time Ti.
All the elements of this expression are known in t = 0, except I(Tfinal), that
can be obatined by simulation. For t > 0, it is also necessary to obtain the
expressions of Pr(t, Ti), Pn(t, Ti) and I(t), that will be computed by simula-
tion.

It is interesting to remark that to get the present value, (not for future
ones) we could alternatively use the closed formula and, similarly to Black-
Scholes formula for a call option, we could obtain the value of the final
amount in (3.2), without using the simulated values.

Before explaining the simulation method, Table 3.1 summarizes all the
calibrated parameters from Chapter 2.

Constant parameters

κn κr σr
0.078 0.79 0.0093

Piece-wise parameters

period σn σI ρnr ρnI ρrI

[0,1] 0.0036 0.0071 0.457 -0.05 0.175

(1,2] 0.0036 0.0056 0.887 -0.01 -0.031

(2,3] 0.0036 0.001 0.928 -0.058 -0.0548

(3,4] 0.0017 0.0075 0.932 -0.018 0.0024

(4,5] 0.001 0.0081 0.932 -0.098 -0.048

(5,6] 0.0011 0.0103 0.899 -0.1 -0.069

(6,7] 0.0018 0.012 0.921 -0.0925 -0.062

(7,8] 0.0012 0.0127 0.904 -0.137 -0.081

(8,9] 0.0062 0.0156 0.912 -0.119 -0.068

(9,10] 0.0071 0.0146 0.9 -0.186 -0.16

(10,12] 0.0074 0.001 0.914 -0.192 -0.155

(12,15] 0.0087 0.001 0.929 -0.2 -0.187

Table 3.1: Calibrated parameters.

For the future valuation, nominal and real discount factors in any time
t are required, recall the expressions

Pl(t, T ) =
Pl(0, T )

Pl(0, t)
exp

(
βl(t, T )[fl(0, t)− l(t)]−

σ2l
4κl

βl(t, T )2(1− e−2κlt)

)
,
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with

βl(t, T ) =
1

κl
(1− e−κl(T−t)), where l ∈ {n, r}.

There have to be calculated for any time t, fl(0, t) and l(t).
To obtain l(t) in any time t, it must be discretized the corresponding

dynamics. For the instantaneous nominal rate,

dn(t) = [νn(t)− κnn(t)]dt+ σndW
Q
n (t)

=⇒ n(t+ dt) = νn(t)dt+ n(t)[1− κndt] + σn
√
dtεt,

where εt are i.i.d. N(0, 1) and

νn(t) =
∂fn(0, t)

∂t
+ κnfn(0, t) +

σ2n
2κn

(1− e−2κkt).

Since the Eonia is the market interest rate that is more similar to the
instantaneous one, we have decided to take the Eonia interest rate of our
valuation date as n(0). For fn(0, t), we have used the Eonia zero-coupon
curve (from Bloomberg). We use the approximation,

Pn(0, t+ ∆t)

Pn(0, t)
= Pn(0, t, t+ ∆t) ≈

1

1 + ∆tfn(0, t)

=⇒ fn(0, t) =
1

∆t
(

Pn(0, t)

Pn(0, t+ ∆t)
− 1)

To compute the partial derivative, we use backward finite numerical dif-
ferences, considering (fn(0, t)− fn(0, t−∆t))/∆t.

Using the Eonia zero-coupon discount factors (Pn(eon)(0, t)) and the
equality (2.8), Pr(0, t) is obtained. Using the same technique as for the
nominal case, get fr(0, t) and the partial derivative. To obtain the dynam-
ics of the instantaneous real rate along the time, do the same discretization
as for the nominal rate. To obtain r(0), it must be used the Inflation index
HCIP of the previous chapter and the expression 1+n(0) = (1+r(0))(1+π),
where π is the inflation rate calculated as the division between the last two
inflation values.

Finally, to obtain the value of the Inflation index along the time it may
be used the same discretization getting

I(t+ dt) = [n(t)− r(t)]I(t)dt+ I(t) + σII(t)
√
dtεt,

where εt are i.i.d. N(0, 1) and I(0) is the last available value of the Inflation
index.
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To do the simulation of the nominal and real instantaneous short rates
and the inflation index, take into account that the random normal variables
are correlated with each other as follows

dWQ
n (t)dWQ

r (t) = ρnrdt

dWQ
n (t)dWQ

I (t) = ρnIdt

dWQ
r (t)dWQ

I (t) = ρrIdt

(3.4)

To generate correlated normal random variables, we use the Cholesky de-
composition.

3.2 Numerical valuation and sensitivity analysis

As explained in the previous section, there are different types of inflation
swaps, in this case, it is done the valuation and sensitivity analysis of 2 that
the second leg is a fixed rate, 2 with a Euribor12 months+ spread, a mixed
one and finally the valuation of a year on year inflation-indexed swap. More
explicitly, inflation swaps that cover different IL- Spanish treasury bonds
have been valued, those swaps terminate at Nov 2024 and Nov 2033.

In addition to the valuation, for each swap it has be done the calcula-
tion of the expected positive exposure on each future valuation date, that
is, the mean of all the simulations that gave a positive value. This values
are necessary to calculate the CVA of the derivatives later.
We also calculate the percentile 97.5 of those positive exposures and the
mean of all the values that are above that percentile, thus obtaining the
expected shortfall. The expected shortfall is calculated since is the calcula-
tion base according to the capital requirements of the internal model of the
FRTB (Fundamental Review of Trading Book). When doing the sensitiv-
ity analysis with respect to the expected shortfall, it is possible to see how
changes in the model parameters affect the capital requirements.
These values are shown for each swap in different tables one year after the
reference day 03/28/2019, and at times to maturity Tfinal/5 and Tfinal/3.

In order to understand the risk involved in some inflation derivatives, it
have been done a sensitivity analysis focusing on the influence of the cali-
brated parameters on the estimated values. That is, we have changed all of
them to see how this affects the values achieved.

To check the accuracy of the model, that is, if the calibrated parameters
are accurate enough and the chosen model is appropriate, after valuating
the swaps we have compared some of the obtained values with an external
consultancy.
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We have decided to fix ∆t = 1/12, in this way the simulations of the
dynamics will be done every month, and consequently we have the value of
the swaps the day 28 of each month until maturity. To obtain the instan-
taneous forward rates, we have fixed ∆t = 1/365. Regarding the number
of simulations, we have set N=1000. In this way, the Montecarlo error of
calculating the valuation by simulation is 1/

√
N = 1/

√
1000. Therefore, the

higher the number of simulations, the more accurate will be the value of the
derivative we are calculating.
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3.2.1 The cases of Inflation vs fixed and Inflation vs variable

Inflation vs variable 2033 counterparty CaixaBank

Suppose an inflation-indexed swap where the first party pays the ratio
the inflation index of the moment between a reference value and the second
one the Euribor 12 months + spread with counterparty CaixaBank. The
details of the swap are in Table 3.2.

SWAP INFLATION/VARIABLE 2033

Tfinal TT Type of swap Swap rate 1 Swap rate 2 Type change date (Mixed swap) Inflation coupon Payer Inf0 NinfL NnomL Counterparty

14.688 14.667 2 1.2% 0 0 0.7% -1 102.02533 50,000,000 50,193,149.18 CaixaBank

Table 3.2: Information of the variable swap with Counterparty CaixaBank.

Where Tfinal is the time to maturity; TT is the last valuation time, the
last day 28 before maturity; Type of swap is 1 if the second leg is fixed, 2 if
is variable, 3 if is mixed and 5 if is YYIIS; when type swap is 1 or 5, Swap
rate 1 is the fixed rate and Swap rate 2 is 0, when is 2 Swap rate 1 is the
spread of the Euribor 12 months and Swap rate 2 is 0, when is 3, Swap rate
1 is the fixed rate until the Type change date and Swap rate 2 the spread
on the Euribor after the Type change date; Type change date is 0 except
when Type of swap is 3, that is the time when the second party starts to pay
Euribor 12 months plus spread instead of a fixed rate; Payer is 1 if we receive
the inflation leg and -1 if we give it; Inf0 is the Inflation reference value;
NinfL is the notional of the inflation leg; NnomL the notional of the second
(nominal) leg and Counterparty indicates who is the second part of the swap.

Table 3.3 is organized as follows: the first row is the original value, the
second row is per million, that is, the value divided by NnomL and multiplied
by a million. The rest of the rows are the percentage increment on the
value of the considered swap (fair value, expected positive exposure, 97.5%
positive exposure and expected shortfall) with respect to the original value,
obtained when each parameter is changed the indicated quantity. The last
rows are the percentage increment when instead of using the piece-wise for
the indicated parameter, the calibrated constant values are used. We have
done that change in the parameters values with the intention of comparing
the sensitivities of different swaps with respect to the same parameter.
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Inflation vs fixed 2024 counterparty JP Morgan

Now, suppose a swap where the first part pays as well the division of
the inflation index of the moment between a reference value and the second
one a fixed rate with counterparty JP Morgan. The details are in Table 3.5.
The valuation and the rest of calculated values are in Table 3.4.

SWAP INFLATION/FIXED 2024

Tfinal TT Type of swap Swap rate 1 Swap rate 2 Type change date (Mixed swap) Inflation coupon Payer Inf0 NinfL NnomL Counterparty

5.6822 5.667 1 0.993% 0 0 1.8% -1 100.05803 50,000,000 59,463,157.1 JP Morgan

Table 3.5: Information of the fixed swap with Counterparty JP Morgan.

Inflation vs fixed 2033 counterparty Morgan Stanley and infla-
tion vs variable counterparty BBVA

There is available the valuation and sensitivity of another swap where
the second party pays a fixed leg with maturity Nov 2033 and counterparty
Morgan Stanley. Also, another one that the second party pays Euribor 12
months + spread with maturity Nov 2024 and counterparty BBVA. The
descriptive data and sensitivity information of these swaps are in Appendix
E.

The conclusions of the sensitivity analysis of the 4 explained swaps, the
two fixed and the two variables, are presented below.

Valuation sensitivity

Is clearly seen that the parameters that affects more the actual and fu-
ture value when the maturity is Nov 2033 for both cases, fixed and Euribor
12 months + spread, is σn. The impact of increasing σr by 50% is more
or less similar to the impact of raising κr by 50%. For the case of inflation
versus variable swap, the impact of κn is similar but in the opposite sense,
for example, when κn is increased by 50% the actual value is decreased by
3.91%. For the inflation versus fixed swap, changes in κn affect more the
actual value and the value one year later than changes in σr or κr. For
future valuations, the impact of κn decreases a little bit.

For short maturities, Nov 2024, the parameter having a bigger impact
is κr, for example, in the case of the fixed swap, when κr is increased by
50% the valuation one year later is decreased by 3.3%. The impact of σn
and σr is more os less similar. For both cases, variable and fixed, when both
parameters increase the actual and future valuation decreases.
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For the four swaps, the sensitivity with respect to the parameter σI and
the correlations ρnr, ρnI , ρrI is small. In addition, when all the volatilities
are increased by 10%, the actual and future valuations are not very affected.

In general, comparing the swaps with maturity 2024 and 2033, the im-
pact of all the parameters is bigger for long maturities. Except for κr, that
affect more in short maturities.

Expected positive exposure, 97,5% positive exposure, expected
shortfall sensitivity

For the inflation versus variable swaps, the impact of increasing σn and
κn is not very big. However, the sensitivity with respect to σr, σI and κr is
bigger than when analysing the impact on the actual and future valuation.
For both maturities, σr is the parameter with a bigger effect. For example,
for the maturity Nov 2033 when σr is increased by 50%, the expected short-
fall within a year is increased by 29.1%.

Regarding the inflation versus fixed swaps, for long maturities the pa-
rameter having a bigger impact is σn. Secondly, there are the parameters
σr, κn and κr. For the maturity Nov 2024, the biggest sensitivity is with
respect to the parameters σn and κr. Note that while the effect of the
volatilities is positive, the impact of the mean reversion speeds is negative.
In general, the values are not strongly influenced when changing the infla-
tion volatility σI .

Is important to remark that the effect of changing κn is always small,
except for the expected positive exposure in the inflation versus fixed swap
with maturity 2033.

The expected positive exposure, 97.5% positive exposure and expected
shortfall are not strongly influenced when changing the correlations. Note
that the correlation between the nominal and real bonds ρnr is the one hav-
ing a bigger impact for all the swaps.

Sensitivity to using the constant calibrated parameters

Instead of using the piece-wise parameters to do the valuation, we could
use the calibrated constant ones. In the previous chapter have been ex-
plained how hard is to calibrate the parameters accurately. Here, we have
calculated the percentage increment in the valuation when using the con-
stant parameters instead of the piece-wise ones to see if it is worth the
piece-wise calibration or not.
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For the maturity Nov 2033 the sensitivity in the actual and future val-
uation is bigger with respect to σn. In addition, the impact of having all
constant is similar to the impact of having constant only σn. For the matu-
rity Nov 2024, the sensitivity is not big with respect to any parameter.

When changing the piece-wise functions to constant ones, is appreciated
that depending on the swap the impact in the expected positive exposure,
97,5% positive exposure and expected shortfall is bigger with respect to
some parameters than others. Emphasising that when all the parameters
are constant, the effect of some of them is counteract with the effect of others
for the swaps with maturity Nov 2024, reducing in general the sensitivity to
low levels. For the maturity Nov 2033, the impact of having all the param-
eters constant is greater than having any of them constant. Notting that
for the inflation versus variable with maturity 2033 the impact of having σI
constant is notoriously significant.

3.2.2 The case of Inflation vs mixed counterparty BBVA

The information below corresponds to the inflation versus mixed swap with
maturity 2024 and counterparty BBVA. The second leg pays a fixed rate up
to three years before maturity, and after pays Euribor 12 months + spread.
The information about the swap is in the Table 3.6.

SWAP INFLATION/MIXED 2024

Tfinal TT Type of swap Swap rate 1 Swap rate 2 Type change date (Mixed swap) Inflation coupon Payer Inf0 NinfL NnomL Counterparty

5.6822 5.667 3 1.30% 1.10% 2.6822 0.70% -1 100.05803 50,000,000 51,463,157.1 BBVA

Table 3.6: Information of the mixed swap with Counterparty BBVA.

The valuation and sensitivity analysis for the mixed swap are in Table
3.7. Note that the sensitivity is really big with respect to the parameter
κr. While in the actual and future valuation the impact is positive, in the
expected positive exposure, 97.5% positive exposure and expected shortfall
the effect is negative, when κr increases all the values decrease. With respect
to the sensitivity in future dates, changes in σr and σI increase strongly the
values. For example, when σr is raised by 50%, the expected positive expo-
sure in Tfinal/3 is increased by 37.47%.
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3.2.3 The case of YYIIS counterparty Goldman Sachs

Once carried out the sensitivity analysis of the fixed, variable and mixed
swaps, is time to analyse the YYIIS with maturity Nov 2024 and counter-
party Goldman Sachs. The descriptive data is in Table 3.8.

SWAP YYIIS 2024

Tfinal TT Type of swap Swap rate 1 Swap rate 2 Type change date (Mixed swap) Inflation coupon Payer Inf0 NinfL NnomL Counterparty

5.6822 5.667 5 0.993% 0 0 100% -1 102.02533 332,000,000 345,495,687.98 Goldman Sachs

Table 3.8: Information of the swap with Counterparty Goldman Sachs.

The obtained percentage increments due to changes in the model param-
eters can be seen in Table 3.9.

Valuation Sensitivity

As happened with the fixed and variable swaps with maturity 2024, the
sensitivity is great with respect to the parameter κr. For example, the fu-
ture valuation within a year increases 25.2% when κr is raised by 50%. The
valuation is not strongly influenced by changes in κn.
The impact of both, changes in σn and σr have the same behaviour. The
impact becomes smaller when the valuation is done at a further future date.

When changing the piece-wise function to the calibrated constant pa-
rameters, the valuation is more affected with σI , but all the sensitivities are
small in general. If all the parameters are constant, the effect of ones is
counteract with the effect of others, since there is not a big change.

Expected positive exposure, 97,5% positive exposure, expected
shortfall sensitivity

In these cases, there is a bigger sensitivity to increments in all the volatil-
ities, specifically to changes in σn and σr. However, the impact of changing
them together is not so remarkable. The sensitivity with respect to the
reversion speeds is bigger when both of them are increased. For example,
when both of them are increased by 50% the expected shortfall in Tfinal/3
is decreased 11.4%. The impact of changing the correlations is not very big.

Regarding to use the constant calibrated parameters instead of the piece-
wise functions, the biggest impact is seen when σI is constant. As happened
before, the impact of having all of them constant is smaller than when only
some of them are constant. When calculating the expected shortfall, the
effect of having only σI constant or all of them constant is similar.



Chapter 3. Valuation 54

S
W

A
P

Y
Y

II
S

2
0
2
4

V
a
lu

a
ti

o
n

E
x
p

e
c
te

d
p

o
si

ti
v
e

e
x
p

o
su

re
9
7
.5

%
p

o
si

ti
v
e

e
x
p

o
su

re
E

x
p

e
c
te

d
sh

o
rt

fa
ll

t=
0

t=
1

t=
T
f
in
a
l/

5
t=
T
f
in
a
l/

3
t=

1
t=
T
f
in
a
l/

5
t=
T
f
in
a
l/

3
t=

1
t=
T
f
in
a
l/

5
t=
T
f
in
a
l/

3
t=

1
t=
T
f
in
a
l/

5
t=
T
f
in
a
l/

3

or
ig

in
al

4,
33

6,
94

7.
0

5,
10

5,
58

0.
1

5,
10

5,
58

0.
1

6,
29

6,
03

0.
0

14
,5

8
9,

68
6.

8
14

,5
89

,6
86

.8
15

,2
68

,3
3
9
.3

3
5
,9

7
9
,9

7
3
.5

3
5
,9

7
9
,9

7
3
.5

3
7
,7

6
9
,7

9
6
.8

4
1
,0

8
7
,9

2
3
.6

4
1
,0

8
7
,9

2
3
.6

4
4
,2

6
4
,8

5
9
.3

p
er

m
il
li
on

13
,0

63
.1

15
,3

78
.3

15
,3

78
.3

18
,9

63
.9

43
,9

44
.8

43
,9

44
.8

45
,9

89
.0

1
0
8
,3

7
3
.4

1
0
8
,3

7
3
.4

1
1
3
,7

6
4
.4

1
2
3
,7

5
8
.8

1
2
3
,7

5
8
.8

1
3
3
,3

2
7
.9

σ
n
*(

1+
0.

5)
10

.4
%

7.
0%

7.
0%

4.
6%

19
.5

%
1
9.

5%
19

.9
%

2
8
.7

%
2
8
.7

%
2
3
.7

%
2
7
.7

%
2
7
.7

%
2
2
.8

%
σ
n
*(

1+
0.

1)
1.

6%
1.

0%
1.

0%
0.

6%
3.

3%
3.

3%
2
.9

%
3
.0

%
3
.0

%
4
.1

%
5
.0

%
5
.0

%
4
.4

%
σ
r
*(

1+
0.

5)
7.

1%
5.

1%
5.

1%
4.

5%
20

.4
%

2
0.

4%
19

.0
%

2
2
.8

%
2
2
.8

%
2
5
.0

%
1
9
.6

%
1
9
.6

%
1
9
.0

%
σ
r
*(

1+
0.

1)
1.

1%
0.

7%
0.

7%
0.

7%
5.

4%
5.

4%
3
.6

%
3
.2

%
3
.2

%
3
.6

%
3
.9

%
3
.9

%
3
.0

%
σ
I
*(

1+
0.

5)
1.

30
%

-0
.0

6%
-0

.0
6%

0.
84

%
9.

0%
9.

0%
6
.1

%
5
.5

%
5
.5

%
4
.9

9
%

1
1
.6

%
1
1
.6

%
7
.4

%
σ
I
*(

1+
0.

1)
0.

1%
-0

.1
%

-0
.1

%
0.

1%
1.

6%
1.

6%
0
.9

%
-0

.5
%

-0
.5

%
0
.2

%
1
.7

%
1
.7

%
1
.3

%
σ
n
,σ

r
,σ

I
*(

1+
0.

1)
3.

0%
1.

8%
1.

8%
1.

5%
9.

0%
9.

0%
7
.5

%
8
.8

%
8
.8

%
8
.8

%
9
.7

%
9
.7

%
8
.6

%

κ
n
*(

1+
0.

5)
-0

.6
%

-0
.2

%
-0

.2
%

0.
04

%
-1

.9
%

-1
.9

%
-2

.3
%

-3
.4

%
-3

.4
%

-3
.7

%
-3

.4
%

-3
.4

%
-3

.2
%

κ
r
*(

1+
0.

5)
13

.9
%

25
.2

%
25

.2
%

16
.4

%
-5

.0
%

-5
.0

%
-5

.4
%

-5
.9

%
-5

.9
%

-6
.3

%
-2

.8
%

-2
.8

%
-7

.8
%

κ
n
,κ

r
*(

1+
0.

5)
13

.6
%

25
.3

%
25

.3
%

16
.6

%
-7

.5
%

-7
.5

%
-8

.3
%

-1
0
.7

%
-1

0
.7

%
-1

0
.3

%
-6

.9
%

-6
.9

%
-1

1
.4

%

ρ
n
r
*(

1-
0.

3)
0.

2%
0.

2%
0.

2%
0.

1%
0.

5%
0.

5%
0
.5

%
0
.8

%
0
.8

%
0
.8

%
0
.6

%
0
.6

%
0
.6

%
ρ
n
I
*(

1-
0.

3)
0.

00
6%

0.
00

2%
0.

00
2%

0.
00

4%
0.

01
3
%

0.
01

3%
0
.0

08
%

0
.0

3
4
%

0
.0

3
4
%

-0
.0

0
2
%

0
.0

2
3
%

0
.0

2
3
%

0
.0

0
4
%

ρ
r
I
*(

1-
0.

3)
-0

.0
67

%
-0

.0
10

%
-0

.0
10

%
0.

02
8%

0.
03

1
%

0.
03

1%
0
.0

21
%

0
.0

2
7
%

0
.0

2
7
%

0
.0

2
9
%

0
.0

4
8
%

0
.0

4
8
%

0
.0

1
9
%

co
n
st

an
t
σ
n

0.
9%

0.
7%

0.
7%

0.
6%

0.
8%

0.
8%

0
.1

%
-0

.5
%

-0
.5

%
-0

.6
%

0
.9

%
0
.9

%
0
.2

%
co

n
st

an
t
σ
I

-1
.4

%
-1

.3
%

-1
.3

%
-0

.9
%

4.
4%

4.
4%

1
.0

%
5
.8

%
5
.8

%
2
.5

%
5
.1

%
5
.1

%
3
.3

%
co

n
st

an
t
ρ
n
r

0.
2%

0.
1%

0.
1%

0.
0%

-0
.6

%
-0

.6
%

-0
.6

%
-1

.3
%

-1
.3

%
-0

.5
%

-1
.3

%
-1

.3
%

-0
.8

%
co

n
st

an
t
ρ
n
I

-0
.1

%
-0

.0
2%

-0
.0

2%
-0

.0
3%

0.
0
1%

0
.0

1%
-0

.1
%

-0
.4

%
-0

.4
%

-0
.2

%
-0

.3
%

-0
.3

%
-0

.2
%

co
n
st

an
t
ρ
r
I

0.
1%

0.
4%

0.
4%

0.
5%

0.
8%

0.
8%

0
.4

%
0
.5

%
0
.5

%
0
.4

%
0
.4

%
0
.4

%
0
.2

%
al

l
co

n
st

an
ts

-0
.4

%
-0

.0
4%

-0
.0

4%
0.

08
%

2.
4%

2.
4%

0
.9

%
2
.6

%
2
.6

%
2
.9

%
5
.3

%
5
.3

%
2
.7

%

T
a
b

le
3.

9
:

O
b

ta
in

ed
va

lu
es

fo
r

th
e

Y
Y

II
S

sw
ap

w
it

h
co

u
n
te

rp
a
rt

y
G

ol
d

m
an

S
ac

h
s.



Chapter 3. Valuation 55

3.2.4 Model check

As mentioned before, we have compared some obtained values with the ones
obtained by an external consultancy. The compared swaps are the inflation
versus variable with maturity Nov 2033 and counterparty CaixaBank and the
inflation versus fixed with maturity Nov 2024 and counterparty JP Morgan.
This external consultancy gives the cash flows in each payment date for
both, inflation and nominal leg. Also gives the discount factors to calculate
the present value of each leg. Calculating the implied discount factors, we
are able to obtain also an approximate future valuation according to the
external consultancy. The obtained values are shown in Table 3.10.

SWAP INF/VARIABLE 2033 SWAP INF/FIXED 2024

Consultancy Our model Consultancy Our model

03/28/2019
nominal leg 1.53 · 107 1.346 · 107 3.334 · 106 3.34 · 106

variable leg 5.72 · 106 5.53 · 106 5.803 · 106 5.76 · 106

11/30/2019
nominal leg 1.47 · 107 1.29 · 107 2.77 · 106 2.77 · 106

variable leg 5.35 · 106 5.12 · 106 4.85 · 106 4.77 · 106

11/30/2020
nominal leg 1.42 · 107 1.23 · 107 2.21 · 106 2.2 · 106

variable leg 4.97 · 106 4.74 · 106 3.89 · 106 3.82 · 106

Table 3.10: Valuation according to the external consultancy and our model.

Since the external consultancy only gives the discount factors from the
payment dates to the actual valuation date (03/28/2019), using the appli-
cation it is possible only to obtain an approximated future value in the
payment dates, assuming that the exchange of flows has already happened.

Is seen that for the inflation versus fixed swap with maturity 2024, the
obtained values are really similar, both in the actual valuation and in the
future one. For the inflation versus variable swap with maturity 2033, the
obtained values are approximate each other, but the difference is bigger
than with the previous swap. This may be because in our model we have
simulated the value of the future Euribor 12 months, and the external con-
sultancy uses simply the implicit value.

Despite the differences, the obtained values are similar to the values
of the external consultancy, meaning that the used model and calibrated
parameters are reliable.
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3.3 Credit Valuation Adjustment (CVA)

CVA is one of the consequences of the changes in the market after the credit
crisis. Before the crisis, very few people include in the valuation the corre-
sponding part to the CVA. CVA puts market price to the risk that has an
entity with it’s counterparty. That is, CVA is the difference between the
risk-free value of a derivative and the real value, which takes into account
the possibility of the counterparty’s default. In fact, not only banks are
taking into account the counterparty credit risk, also regulators are asking
to include a quantity in the bank’s results which corresponds to that risk.
For further information see [14].

CVA is calculated every day taking into account the recovery of the
counterparty in case of default, the default probability of the counterparty,
and the expected positive exposure each day until maturity. The recovery
of each counterparty is calculated with historical information. In the pre-
vious section there have been obtained the monthly values for the expected
positive exposure for each swap. The default probability is calculated using
credit defaults swaps (CDS) of the counterparty.

3.3.1 Default probability

The CDS are instruments between two parties, one buys coverage on a de-
fault and the other sells it. This contract has a notional N . Is the natural
instrument to cover the counterparty risk of a bond and the counterparty
of the CDS must not be correlated with the issuer of the bond. The party
that sells protection pays (1−R)N when the default occurs (since the coun-
terparty of the bond pays RN) and the party that buys protection pays
and spread of the notional in each predetermined date. Usually, the spreads
are paid the 20 of March, June, September and December. The equilibrium
spread is the one that makes the value of the CDS 0 when entering on it.

Defining τ as the default time, in the short rate models the default
intensity λ(t) is defined as

P (τ ≤ t+ dt|τ > t|Ft0) = λ(t)dt, (3.5)

where t0 is the reference day. Using the definition of the default intensity,
the survival function is defined as

P (τ > t|Ft0) = 1τ>t0e
−

∫ t
t0
λ(s)ds

. (3.6)

Using this, the distribution and density functions are easily calculated
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• Distribution function

Fτ (t) = P (τ ≤ t|Ft0) = 1− 1τ>t0e
−

∫ t
t0
λ(s)ds

. (3.7)

• Density function

ητ (t) = 1τ>t0λ(t)e
−

∫ t
t0
λ(s)ds

. (3.8)

To see how to obtain the survival function see Appendix D. Using this
definitions, the price in t of a CDS with maturity T is

CDS(t, T ) = SCDSN

M∑
i=1

γiPn(t, Ti)P (τ > Ti|Ft)

+ SCDSN

∫ T

t
Pn(t, s)(s− Tβ(s))ητ (s)ds− (1−R)N

∫ T

t
Pn(t, s)ητ (s)ds,

(3.9)

where Tβ(s) = max{Ti|Ti ≤ τ} and TM is the last payment day. The first
summary corresponds to the payments of the spread until the default day,
the second part corresponds to the accrued interest from the last date where
the spread has been paid until the default date. The last part corresponds
to the payment of the counterparty of the CDS in case of default.

For the 6 inflation swaps that have been done the sensitivity analy-
sis, there were five different counterparties, CaixaBank, Morgan Stanley,
JP Morgan, BBVA and Goldman Sachs. In our portfolio, apart of those
6 swaps, there are 6 other inflation swaps, therefore, in total the portfolio
consists of 12 swaps. The details of the 12 swaps are in Table 3.11.

There are 2 new columns, in Start is indicated the effective date of the
swap. In the column initial period is expressed the day count fraction for
those swaps in which the first payment has not yet occurred . In that cases,
in the first exchange date the nominal leg pays only the corresponding part
of the coupon. For the rest of them the value is 1.

The valuation, expected positive exposure, 97.5% positive exposure and
expected shortfall for all the swaps of the portfolio are shown in Table 3.12.
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For the six counterparties, the maturities of the market CDS are the
20 of June of the years 2020, 2021, 2022, 2024, 2026 and 2029 (more or
less 1, 2, 3, 5, 7, 10). The information about the recovery rate, in units
per 1, and spread, in basic points, of the CDS is in Table 3.13. Using mar-
ket prices of CDS, is possible to obtain λ(t) using a bootstrapping technique.

CaixaBank Morgan Stanley JP Morgan BBVA Goldman Sachs Santander

Recovery

0.4 0.4 0.4 0.2 0.4 0.4

Spread CDS

1 Year 50,9434 32,0273 26,0273 37,5022 36,9744 12.521

2 Years 63,3187 40,4445 32,1418 56,2841 47,3862 22.365

3 Years 75.1612 51,3707 39,2668 77,1471 60,8137 32.197

5 Years 104,1856 73,0448 56,7288 114,7156 89,0949 59.359

7 Years 123,6635 98,2416 79,3366 144,376 114,6748 81.12

10 Years 133,47 116,08 95,65 162,39 132,43 100.99

Table 3.13: Recovery and spreads of market CDS.

For each counterparty, to calculate a piece-wise function for λ(t) the
procedure is similar to the one used to calculate σn(t). Having market CDS,
the value in the expiration day (03/28/2019) has to be zero. As in the
expression of the value of the CDS appear integrals, the first thing is to do
the discretization of that formula. The spread of the CDS are paid every 3
months, so is set γi=1/4. For the integrals, we have decided to discretize
obtaining values for the day 20 of each month and summing all of them.
The discretized formula in t = 0

CDS(0, T ) = SCDSN
M∑
i=1

1

4
Pn(0, Ti)P (τ > Ti|F0)

+SCDSN
N∑
j=1

Pn(0, Tj)(Tj−Tβ(Tj))ητ (Tj)
1

12
−(1−R)N

N∑
j=1

Pn(0, Tj)ητ (Tj)
1

12
,

(3.10)

where TN is the last day 20 before maturity. Using a Matlab function that
gives the value of λ making the value of the CDS with maturity 1 year zero,
is possible to obtain the value for the period [0,1]. Using the obtained ex-
pression for λ(t) until t=1 and the spread of the market CDS with maturity
2 years, is possible to obtain λ(t) for the period (1,2]. Using the same pro-
cedure, is obtained the piece-wise function for λ(t) for each counterparty
for the period [0,10]. As the expression until the maturity of the swaps is
needed, being the longer one 14,688, is supposed that the value for the last
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period (7,10] is valid until maturity. The obtained values are in units per 1
in Table 3.14.

Default intensity

CaixaBank Morgan Stanley JP Morgan BBVA Goldman Sachs Santander

1 Year 0,0085 0,00534 0,00446 0,0047 0.0062 0.0021

2 Years 0,013 0,0085 0,0065 0.01 0.01 0.0058

3 Years 0,017 0,013 0.0092 0.0157 0.0153 0.0091

5 Years 0,026 0,0184 0.0144 0.0226 0.0232 0.018

7 Years 0,031 0,0294 0.0246 0.0294 0.0324 0.024

10 Years 0,027 0,028 0.0239 0.027 0.0311 0.027

Table 3.14: Default intensity.

3.3.2 Stand alone CVA and CVA of the whole portfolio

The CVA of each derivative, is calculated taking into account the quantity
that can be lost when the counterparty makes default. Therefore, only
the positive expected values of the derivative are taken into account. The
numeric formula to calculate the CVA is

CV A(t) = (1−R)E

[
e−

∫ τ
t n(s)dsV +

τ 1τ≤T |Ft

]
, (3.11)

where T is the maturity of the derivative and V +
τ is the positive value of the

derivative in the default time for us. The formula is discretizated to obtain
todays CVA, what yields that in t = 0

CV A =
M∑
i=1

(1−R)Pn(0, Ti)E(V +
Ti

)∆Pi (3.12)

=
M∑
i=1

(1−R)Pn(0, Ti)E(V +
Ti

)[P (τ > Ti−1|F0)− P (τ > Ti|F0)].

(3.13)

For our portfolio, the expected positive exposure has been computed for
each month until maturity . Thus, each addend represents a month. Then,
using the default intensities, the survival function is calculated for each
month using (3.6). Using the expected positive exposure at the different
future times and the survival function, the CVA for each swap is obtained.
The CVA of the day 03/20/2019 for each swap of the portfolio taking into
account its corresponding counterparty is shown in Table 3.15.
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Swap number Swap code CVA CVA per million Percentage of the value

1 CBEUR101833 221,174.22 4,423.48 15%
2 MSFIX091833 2,181,798.59 6,571.68 9%
3 JPFIX011824 149,352.34 2,987.05 5%
4 BBVAMIX031824 54,252.09 1,085.04 10%
5 GSYYIIS031824 859,639.03 2,589.27 12%
6 BBVAEUR08182024 286,170.09 5,723.40 14%
7 JPEUR021930 1,326,312.29 5,305.25 82%
8 CBMIX03192030 386,294.26 7,725.89 236%
9 JPMIX031930 308,190.36 6,163.81 71%
10 STDEUR031830 465,935.27 4,659.35 14%
11 JPMIX091830 166,599.43 6,663.98 21%
12 STDMIX061830 164,821.97 6,592.88 30%

Table 3.15: CVA.

The Table 3.15 also includes the CVA value per million of notional for
comparison reasons, taking into account that except for the case of BBVA
as counterparty, the recovery rate is 0.4. It is seen that the smallest CVA
per million is for the mixed swap 2024 with counterparty BBVA, and the
biggest one for the mixed swap 2030 with counterparty CaixaBank (Swap
number 8). If the maturity of the swap is bigger, it makes sense that the
CVA is grater, since there are more payment dates. It is seen that the low-
est values for the CVA are for those swaps with shorter maturity. Another
important aspect is if there is a big probability of having a positive value in
the derivative for us or not. The more paths have positive value for us in
the simulation, the higher is the CVA.

It could have be done a sensitivity analysis of the CVA with respect to
the model parameters, but as the CVA is proportional to the expected pos-
itive exposure, the conclusions are analogous.

To see the importance of taking into account the CVA at the time of
giving a value to a derivative, in the last column of Table 3.15 is seen the
percentage in absolute terms that represents the CVA from the theoretical
value.
For example, for the mixed swap 2030 with counterparty CaixaBank, the
absolute value of the CVA is more than twice the actual value of the swap.
This indicates that taking into account the CVA at the time of valuing the
derivatives is something really important. In the rest of the cases, the value
of the CVA is always smaller than the actual value in absolute terms. For
both fixed swaps, maturity 2024 and 2033 the CVA is a small percentage of
the actual value.

To calculate the CVA of the whole portfolio, an option could be to sum
all the stand alone CVA-s, obtaining that the CVA is EUR 6,501,401.37.
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Generally, there are netting agreements and collateralization. The netting
agreement consists on considering all the derivatives related with the same
counterparty together. Thus, in each valuation date is not considered the
individual value of each swap, but the sum of all the values together. By
this way, the resultant CVA is always smaller since

( N∑
i=1

valuei(τ)
)+
≤

N∑
i=1

valuei(τ)+, (3.14)

where N is the number of swaps with that counterparty. Then, in case of
default, the losses are always smaller or equal if there is a netting agreement.

Once done the netting agreement, usually a collateral agreement is also
considered when trading the derivatives . If the present value of the deriva-
tive is bigger than a fixed value, the party for which the value is positive
receives a guarantee, this procedure is usually checked in daily, weekly, or
monthly basis. By these way, the counterparty risk is reduced, since we are
exposed to the change in valuation during only the period considered for
collateralization.

In our case the collateral agreement is done as follows: with today’s
calibrated parameters, are calculated the values of the swaps previously
netted in each future calculation date (for each date there are 1000 values
since there are 1000 simulations). As well, is calculated the value one day
earlier. For each path, is made the difference between the value of that
date and the value one day before. With the 1000 obtained values for each
valuation future date t, the expected positive exposure is done and whit this
the CVA is calculated. To obtain the CVA of the whole portfolio, the CVA-s
obtained for each counterparty are added.

Then, the CVA with one counterparty is

M∑
i=1

Pn(0, Ti)E

[
(1−R)

(
N∑
j=1

VTi −
N∑
j=1

VTi−1

)+

∆Pi

]
, (3.15)

where M represents the number of dates where the valuation is made in
the future and N the number of swaps with that counterparty.

∑N
j=1 VTi−1

is the value of the netted swaps one day earlier.

The obtained CVA for the date 03/28/2019 with netting and collateral
agreement is EUR 3,106,056.35. The value is much more smaller than the
sum of the stand alone CVA-s, but still big, what means that taking into
account the CVA when valuing inflation derivatives is important.



Conclusions

In this work we have developed a complete procedure to value inflation
indexed swaps and their daily Credit Valuation Adjustment. This is a chal-
lenging task, since the practical calibration of the parameters involved be-
comes a very complicated issue. For this reason, Laboral Kutxa proposed
this objective for this work, since it is a big, and expensive task for practi-
tioners, that needs a very deep knowledge of the main financial instruments,
their dynamics, the related formula for valuation and the development of
computing algorithms.

To obtain the daily calibration of the parameters, we have used different
financial instruments. For the nominal parameters, {κn, σn}, we have used
interest rate swaptions and caps. For the inflation volatility, {σI}, we have
used floors of zero-coupon inflation indexed-swaps. For the real parameters,
{κr, σr}, we have tried with inflation caps and year on year inflation-indexed
swaps. For the correlations, we have assumed that they are piece-wise con-
stant and they have been estimated using historical data of the nominal and
real bonds, and the inflation index.

The nominal and real instantaneous rates have been modeled through
the Hull and White model and the inflation index with a Geometric Brow-
nian Motion, as in Jarrow and Yildirim (2003).

Our calibration proposal is based in several techniques, proposed by some
authors as [9] or [10].

As remarked in all related works, the calibration becomes a cumbersome
procedure and we must adjust the methodology in order to obtain reason-
able results. In our case, it becomes clear that the best results are attained
when the nominal and inflation volatilities, {σn, σI}, are considered to be
piece-wise functions instead of a constant, accounting for different risks de-
pending on time to maturity. The results obtained in Chapter 2 show that
the procedure is able to calibrate in an appropriate manner.

Once the parameters are calibrated, in Chapter 3, a simulation proce-
dure has been developed to value the derivatives we are interested on. In
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total, we have valued four types of inflation indexed swaps. In the first 3
swaps one party pays the division of the inflation index between a fixed value
multiplied by a factor and the other one a fixed, variable or mixed value. In
the last type, one party pays the division of the inflation index between the
inflation index one year before and the other party pays a fixed rate.

For all the derivatives, we have derived several measures of risk exposure,
expected positive exposure, 97,5% positive exposure and expected shortfall
for future dates. Moreover, we have made an analysis of the sensitivity of
this risk measures to changes in the calibrated parameters.

Finally, we approach the main goal of calculating the daily CVA. To do
that, we still need the intensity of default, which has been obtained using
market CDS and a bootstrapping technique.
The results indicate that the CVA is a very important measure, representing
a big percentage of the theoretical value. In fact, for the mixed swap 2030
with counterparty CaixaBank is more than twice the obtained value with
the theoretical formula.

Of course, all the results highly depend on the accuracy of our esti-
mations. Therefore, it is important to remark that we have compared the
results of this work, when we had the same product, with the results given
by an external firm that provides consultancy to Laboral Kutxa and, there-
fore, the risk measures used in practice. The results were very similar.

As the main conclusion we can say that we have developed a complete
procedure to calculate the main risk measures associated to inflation index
derivatives. This is an initial work that opens future challenges for research.
One is to use different products for calibration, as interest rate swaptions to
calibrate the parameters κn and σn, or fixing the mean reversion speed (κn)
with historical values and calibrate alone the parameter σn. Also, we could
calibrate daily correlations using market prices instead of doing it histori-
cally. In case of using another models, an option could be to use the Libor
Market Models to value the inflation linked instruments, or the Two-process
Hull and White model. In the current situation with negative interest rates,
is quite common to obtain negative values for the mean reversion speed. For
those cases, we propose to analyse a model without a drift.

Another possible future lines of research is to study the evolution of
parameters along the time and search for an econometric model that relates
a high percentage of the variations of the swaps value with respect to the
evolution of market prices of inflation derivatives, or the evolution of the
nominal interest rates.
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Appendix A

Concepts and definitions

A.1 Change of Numeraire

This proposition has been taken from [5], page 33.

Proposition A.1.1. Consider a diffusion process whose dynamics under
QS is given by

dX(t) = µSX(t) + σX(t)dWS(t), (A.1)

where WS is a standard Brownian motion and µSX(t),σX(t) are scalars.
Let us assume that the two numeraires S and U evolve under QU according
to

dS(t) = (· · · )dt+ σS(t)dWU (t)

dU(t) = (· · · )dt+ σU (t)dWU (t),
(A.2)

where WU is a standard Brownian motion and σS(t), σU (t) are scalars.
Then, the drift of the process X under the numeraire U is

µUX(t) = µSX(t)− σX(t)ρ
(σS(t)

S(t)
− σU (t)

U(t)

)
, (A.3)

where ρ is the correlation factor between dWS(t) and dWU (t).

Usually, this proposition is used to change from the risk neutral measure
Q to the nominal forward T1 measure. The numeraire of the measureQ is the
money market account, with the dynamic dBk(t) = k(t)Bk(t)dt, k ∈ {n, r},
so in this case σS(t) = 0. With the T1 forward measure, the numeraire is
Pn(t, T1) with the dynamic dPn(t, T1) = (· · · )dt+an(t, T1)Pn(t, T1)dW

T1
n (t),

then, σU (t)
U(t) = an(t, T1).

1
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A.2 Annuity measure

Proposition A.2.1. The annuity measure A is the measure in which

Nt :=
n∑
k=1

(Tk − Tk−1)P (t, Tk), (A.4)

is taken as numeraire, where P (t, T1), ..., P (t, Tn) are bond prices with ma-
turities T1 < T2 < · · · < Tn.

A.3 Foreign currency analogy

Consider a foreign market where the price of an asset is Xf under the as-
sociated martingale measure Qf . The foreign and domestic money market
accounts are Bf and Bd respectively. The process of exchange is modelled
by H, where 1 unit of the foreign currency are H(t) units of the domestic
currency in t. If we think in Xf as a derivative which pays Xf (TM ) in TM ,
the price in t should be:

Vf (t) = Bf (t)Ef

(Xf (TM )

Bf (TM )
|Ft
)
. (A.5)

If is wanted the price at t in the domestic currency, it has to be used the
relation Vd(t) = Vf (t)H(t) −→ Vf (t) = Vd(t)

H(t) . Then,

Vd(t) = H(t)Bf (t)Ef

(Xf (TM )

Bf (TM )
|Ft
)
. (A.6)

If it is a domestic investor who buys the derivative, the payout in TM is
H(TM )Xf (TM ). Let consider now a domestic derivative that pays
H(TM )Xf (TM ) at tM , the price in t is

Vd(t) = Bd(t)Ed

(Xf (TM )H(TM )

Bd(TM )
|Ft
)
. (A.7)

To avoid arbitrage, the price (in the domestic currency) of both terms
in t has to be the same:

Vd(t) = H(t)Bf (t)Ef

(Xf (TM )

Bf (TM )
|Ft
)

= Bd(t)Ed

(Xf (TM )H(TM )

Bd(TM )
|Ft
)
.

(A.8)
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Development of the formulas
of JY model

In this chapter are developed the formulas to obtain Propositions and ex-
pressions of the section 1.2 of Chapter 1.

B.1 Propositions (1.2.1) and (1.2.2)

In this section are developed the processes to obtain the expressions and
dynamics of the Propositions 1.2.1 and 1.2.2. To obtain the conditions of
the first proposition the technique is the same for all of them, so the proof
is shown only for the first one.

Using the general expressions

dfk(t, T ) = αk(t, T )dt+ σk(t, T )dWP
k (t) =⇒

fk(t, T ) = fk(0, T ) +

∫ t

0
αk(s, T )ds+

∫ t

0
σk(s, T )dWP

k (s)
(B.1)

and
Pk(t, T ) = e−

∫ T
t fk(t,s)ds, k ∈ {n, s}, (B.2)

3
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is obtained that the log-bond price process is

lnPk(t, T ) = −
∫ T

t
fk(t, u)du

= −
∫ T

t
fk(0, u)du−

∫ t

0

[∫ T

s
αk(s, u)du

]
ds−

∫ t

0

[∫ T

s
σk(s, u)du

]
dWP

k (s)

= lnPk(0, T ) +

∫ t

0
fk(0, u)du−

∫ t

0

[∫ T

s
αk(s, u)du

]
ds

−
∫ t

0

[∫ T

s
σk(s, u)du

]
dWP

k (s).

(B.3)

Using the notation (1.33) expression (B.3) can be rewritten as

lnPk(t, T ) = lnPk(0, T ) +

∫ t

0
[k(s) + bk(s, T )]ds− 1

2

∫ t

0
a2k(s, T )ds+∫ t

0
ak(s, T )dWP

k (s).

(B.4)

So,

dlnPk(t, T ) =
[
k(t) + bk(t, T )− 1

2
a2k(t, T )

]
dt+ ak(t, T )dWP

k (t). (B.5)

To get the process of dPk(t, T ) apply the Ito’s lemma with the function
f(lnPk(t, T )) = f(x) = ex = Pk(t, T ) and this yields

dPk(t, T ) = Pk(t, T )[k(t) + bk(t, T )]dt+ Pk(t, T )ak(t, T )dWP
k (t). (B.6)

What it can be expressed as

dPk(t, T ) = Pk(t, T )

[
k(t)−

∫ T

t
αk(t, u)du+

1

2
a2k(t, T )

]
dt+Pk(t, T )ak(t, T )dWP

k (t),

(B.7)
The equation (B.7) is used to proof Proposition (1.2.1). The first thing to
do is to express the process of fn(t, T ) under the risk-neutral measure Q,

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dWP
n (t)

= [αn(t, T ) + λn(t)σn(t, T )]dt+ σn(t, T )dWQ
n (t)

(B.8)

We need to proof that d(Pn(t, T )/Bn(t)) it can be expressed as a stochas-
tic integral, i.e., the drift is equal to 0.
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d
Pn(t, T )

Bn(t)
=

1

Bn(t)
dPn(t, T )− Pn(t, T )

Bn(t)2
dBn(t)

− 1

B2
n(t)

dPn(t, T )dBn(t) +
Pn(t, T )

Bn(t)3
dB2

n(t)

=
1

Bn(t)
dPn(t, T )− Pn(t, T )

Bn(t)2
n(t)Bn(t)dt.

(B.9)

Using (B.7), (B.9) can be rewritten as

d
Pn(t, T )

Bn(t)
=
Pn(t, T )

Bn(t)

[
n(t)−

∫ T

t
αn(t, u)du+

1

2
a2n(t, T )

]
+

Pn(t, T )

Bn(t)

[
an(t, T )dWP

n (t)− n(t)dt

]
.

(B.10)

Next step is to express this process under the risk-neutral measure Q,

d
Pn(t, T )

Bn(t)
=
Pn(t, T )

Bn(t)

[
−
∫ T

t
αn(t, u)du+

1

2
a2n(t, T ) + λn(t)an(t, T )

]

+
Pn(t, T )

Bn(t)
an(t, T )dWQ

n (t).

(B.11)

As said before, (Pn(t, T )/Bn(t)) is Q martingale if and only if the drift
of d(Pn(t, T )/Bn(t)) is equal to 0. This yields,∫ T

t
αn(t, u)du =

1

2
a2n(t, T ) + λn(t)an(t, T ) =⇒

αn(t, T ) =
1

2

∂a2n(t, T )

∂T
+
∂an(t, T )

∂T
λn(t)

= σn(t, T )

∫ T

t
σn(t, s)ds− σn(t, T )λn(t),

(B.12)

what gives us the aspect that has to have the drift under the real world
probability measure so that the evolutions are arbitrage free and the market
is complete.

Using the expression (B.7) and the proposition just proofed, the dynam-
ics of the nominal and real bonds of the Proposition (1.2.2) are obtained.
Using the nominal drift condition (B.12), under P the dynamics of the nom-
inal zero-coupon bond is

dPn(t, T )

Pn(t, T )
=
[
n(t)−1

2
a2n(t, T )−λn(t)an(t, T )+

1

2
a2n(t, T )

]
dt+an(t, T )dWP

n (t),

(B.13)
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and under Q
dPn(t, T )

Pn(t, T )
= n(t)dt+ an(t, T )dWQ

n (t). (B.14)

As done with the nominal drift condition, using the expression of the real
drift, ∫ T

t
αr(t, u)du =

1

2
a2r(t, T ) + [λr(t) + σI(t)ρrI ]ar(t, T ),

the dynamics of the real zero-coupon bond under P is

dPr(t, T )

Pr(t, T )
=
[
r(t)− 1

2
a2r(t, T )− [λr(t) + σI(t)ρrI ]ar(t, T ) +

1

2
a2r(t, T )

]
dt

+ar(t, T )dWP
r (t),

(B.15)

and under Q

dPr(t, T )

Pr(t, T )
=
[
r(t)− σI(t)ρrIar(t, T )

]
dt+ ar(t, T )dWQ

r (t). (B.16)

The dynamics of the instantaneous forward rates and the inflation index un-
der the risk neutral measure Q are easily obtained using the drift conditions
of the proposition (1.2.1). To obtain the dynamic of the inflation bond apply
multivariate Ito’s lemma to the function f(t, Pr(t, T ), I(t)) = I(t)Pr(t, T ),

d(I(t)Pr(t, T )) = Pr(t, T )dI(t) + I(t)dPr(t, T ) + dI(t)dPr(t, T )

= [n(t)− r(t)]I(t)Pr(t, T )dt+ σI(t)I(t)Pr(t, T )dWQ
I (t)

+[r(t)− σI(t)ρrIar(t, T )]I(t)Pr(t, T )dt+ ar(t, T )I(t)Pr(t, T )dWQ
r (t)

+Pr(t, T )I(t)ar(t, T )σI(t)ρrIdt

= n(t)I(t)Pr(t, T )dt+ σI(t)I(t)Pr(t, T )dWQ
I (t) + ar(t, T )I(t)Pr(t, T )dWQ

r (t).

B.2 Nominal instantaneous rate and bond

Using the expression (1.43) and the dynamics (1.35), the forward rate under
Q evolves as

fn(t, T ) = fn(0, T ) + σ2n

∫ t

0
βn(s, T )e−κn(T−s)ds+ σn

∫ t

0
e−κn(T−s)dWQ

n (s).

(B.17)
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Then, the instantaneous spot rate evolves as

n(t) = fn(t, t)

= fn(0, t) + σ2n

∫ t

0
βn(s, t)e−κn(t−s)ds+ σn

∫ t

0
e−κn(t−s)dWQ

n (s)

= fn(0, t) +
σ2n
2
βn(0, t)2 + σn

∫ t

0
e−κn(t−s)dWQ

n (s).

(B.18)

To obtain the dynamics of dn(t), take differences in the previous expression,

dn(t) =

[
∂fn(0, t)

∂t
+
σ2n
2

2βn(0, t)
∂βn(0, t)

∂t

]
dt

+σndW
Q
n (t) + σn

∫ t

0
e−κn(t−s)(−κn)dWQ

n (s)dt.

Then, substitute

−κn

[
σn

∫ t

0
e−κn(T−s)dWQ

n (s)

]
by

−κn

[
n(t)− fn(0, t)− σ2n

2
βn(0, t)2

]
and using (B.18) obtain the dynamics of the nominal instantaneous rate.

dn(t) =

[
∂fn(0, t)

∂t
+
σ2n
2

2βn(0, t)
∂βn(0, t)

∂t
− κnn(t) + κnfn(0, t)

+κn
σ2n
2
βn(0, t)2

]
dt+ σndW

Q
n (t)

=

[
∂fn(0, t)

∂t
+ κnfn(0, t)− κnn(t) +

σ2n
2κn

[1− e−2κnt]

]
dt+ σndW

Q
n (t).

(B.19)

Therefore, the dynamics of the nominal instantaneous short rate follows a
Hull and White model with κn as the mean reversion speed and

νn(t) =
∂fn(0, t)

∂t
+ κnfn(0, t) +

σ2n
2κn

[1− e−2κnt]

as the mean reversion level.
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To obtain the expression of the nominal zero-coupon bond, it has to be
developed the integral of (B.18),∫ t

0
n(u)du = −lnPn(0, t)+

σ2n
2

∫ t

0
βn(0, s)2ds+σn

∫ t

0

[∫ u

0
e−κn(u−s)dWQ

n (s)

]
du.

(B.20)
To solve the double integral define a new variable,

Y (t) =

∫ t

0
eκnsdWQ

n (s),

and using Ito’s lemma

d(e−κntY (t)) = −κne−κntY (t)dt+ e−κntdY (t) = −κne−κntY (t)dt+dWQ
n (t).

Integrating the obtained expression,

e−κntY (t) = −κn
∫ t

0
e−κnuY (u)du+WQ

n (t).

If we take the definition of Y (t) the expression above yields

e−κnt
∫ t

0
eκnsdWQ

n (s) = WQ
n (t)− κn

∫ t

0

[
e−κnu

∫ u

0
eκnsdWQ

n (s)

]
du.

So, the double integral is

κn

∫ t

0

[
e−κnu

∫ u

0
eκnsdWQ

n (s)

]
du =

∫ t

0
(1− e−κn(t−s))dWQ

n (s)

= κn

∫ t

0
βn(s, t)dWQ

n (s).

Taking into account the expression of the double integral, the equation
(B.20) can be rewritten as∫ t

0
n(s)ds = −lnPn(0, t) +

σ2n
2

∫ t

0
βn(0, s)2ds+ σn

∫ t

0
βn(s, t)dWQ

n (s).

(B.21)
Using the dynamics (1.38) of the nominal zero-coupon bond that the nominal
forward rate has a normal distribution, is easy to demonstrate that the bond
price has log-normal distribution. Using the Black-Scholes solution for log-
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normal distributions,

Pn(t, T ) = Pn(0, T )exp

(∫ t

0

(
n(s)− an(s, T )2

2

)
ds+

∫ t

0
an(s, T )dWQ

n (s)

)

= Pn(0, T )exp

(∫ t

0

(
n(s)− σ2nβn(s, T )2

2

)
ds−

∫ t

0
σnβn(s, T )dWQ

n (s)

)

=
Pn(0, T )

Pn(0, t)
exp

(
σ2n
2

∫ t

0

(
βn(0, s)2 − βn(s, T )2

)
ds+ σn

∫ t

0
(βn(s, t)− βn(s, T ))dWQ

n (s)

)
.

(B.22)

Is necessary to do some calculus to represent the expression above with-
out stochastic integrals. Use the representation (B.18) of n(t) to solve the
integral. Being

βn(s, t)− βn(s, T ) =
1

κn
(e−κn(T−s) − e−κn(t−s))

and

βn(t, T )n(t) = βn(t, T )fn(0, t) +
σ2n
2
βn(t, T )βn(0, t)2

+
σn
κn

∫ t

0
(e−κn(t−s) − e−κn(T−s))dWQ

n (s),

the part of the stochastic integral of the equation (B.22) can be represented
as

σn

∫ t

0
(βn(s, t)− βn(s, T ))dWQ

n (s) = βn(t, T )[fn(0, t)− n(t)]

+βn(t, T )βn(0, t)2
σ2n
2

= βn(t, T )[fn(0, t)− n(t)]

+
σ2n
2κ3n

[
1− 2e−κnt + e−2κnt − e−κn(T−t) + 2e−κnT − e−κn(T+t)

]
.

(B.23)

Next step is to develop the first part of the expression (B.22)

σ2n
2

∫ t

0

(
βn(0, s)2 − βn(s, T )2

)
ds =

σ2n
2κ3n

[
2e−κnt − 2− 1

2
e−2κnt +

1

2

2e−κn(T−t) − 2e−κnT − 1

2
e−2κn(T−t) +

1

2
e−2κnT

]
.

(B.24)

Taking into account the obtained expressions for the integrals of (B.22) and
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simplifying some terms,

Pn(t, T ) =
Pn(0, T )

Pn(0, t)
exp

(
βn(t, T )[fn(0, t)− n(t)]+

σ2n
4κ3n

[
− 1 + 2eκn(T−t) − e−2κn(T−t) + e−2κnt − 2e−2κn(T+t) + e−2κnT

])

=
Pn(0, T )

Pn(0, t)
exp

(
βn(t, T )[fn(0, t)− n(t)]

− σ2n
4κ3n

[
(1− 2eκn(T−t) + e−2κn(T−t))(1− e−2κnt)

])

=
Pn(0, T )

Pn(0, t)
exp

(
βn(t, T )[fn(0, t)− n(t)]− σ2n

4κn
βn(t, T )2(1− e−2κnt)

)
.

(B.25)

B.3 Real instantaneous rate and bond

In this case the dynamics of fr(t, T ) has one more term, but the procedure
is going to be equal to the nominal case. Using the equation (1.36) and
assuming a constant volatility for the inflation index, σI , the instantaneous
real spot rate evolves as

r(t) = fr(t, t) = fn(0, t) + σ2n

∫ t

0
βn(s, t)e−κn(t−s)ds

−σrσIρrI
∫ t

0
e−κr(t−s)ds+ σn

∫ t

0
e−κn(t−s)dWQ

n (s)

= fn(0, t) +
σ2n
2
βn(0, t)2 − σrσIρrIβr(0, t) + σn

∫ t

0
e−κn(t−s)dWQ

n (s).

(B.26)

Using this and the dynamics of the nominal instantaneous short rate, is
easily obtained the dynamic for the real one

dr(t) =

[
∂fr(0, t)

∂t
+
σ2r
2

2βr(0, t)
∂βr(0, t)

∂t
− σrσIρrI

∂βr(0, t)

∂t
− κrr(t) + κrfr(0, t)

+κr
σ2r
2
βr(0, t)

2 − κrσrσIρrIβr(0, t)

]
dt+ σrdW

Q
r (t)

=

[
∂fr(0, t)

∂t
+ κrfr(0, t)− κrr(t) +

σ2r
2κr

[1− e−2κrt]− σrσIρrI

]
dt+ σrdW

Q
r (t).
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Therefore, the dynamics of the real instantaneous short rate follows a Hull
and White model as

dr(t) = [νr(t)− σrσIρrI − κrr(t)]dt+ σrdW
Q
r (t), (B.27)

where the mean reversion level is

νr(t) =
∂fr(0, t)

∂t
+ κrfr(0, t) +

σ2r
2κr

[1− e−2κrt].

To obtain a closed formula for the real bond is used that∫ t

0
r(s)ds = −lnPr(0, t) +

σ2r
2

∫ t

0
βr(0, s)

2ds

−σrσIρrI
∫ t

0
βr(0, s)ds+ σr

∫ t

0
βr(s, t)dW

Q
r (s).

(B.28)

Knowing that the real forward rate has a normal distribution, it can be
easily demonstrated that the bond price has log-normal distribution. Using
the Black-Scholes solution for log-normal distributions is obtained that

Pr(t, T ) = Pr(0, T )exp

(∫ t

0

(
r(s)− ar(s, T )σIρrI −

ar(s, T )2

2

)
ds

+

∫ t

0
ar(s, T )dWQ

r (s)

)

= Pr(0, T )exp

(∫ t

0

(
r(s) + βr(s, T )σrσIρrI −

σ2rβr(s, T )2

2

)
ds

−
∫ t

0
σrβr(s, T )dWQ

r (r)

)

=
Pr(0, T )

Pr(0, t)
exp

(
σ2r
2

∫ t

0

(
βr(0, s)

2 − βr(s, T )2
)
ds

+σrσIρrI

∫ t

0
(βr(s, T )− βr(0, s))ds+ σr

∫ t

0
(βr(s, t)− βr(s, T ))dWQ

r (s)

)
.

(B.29)

Using the solution obtained for the nominal bond with the real expressions

Pr(t, T ) =
Pr(0, T )

Pr(0, t)
exp

(
σ2r
2

∫ t

0

(
βr(0, s)

2 − βr(s, T )2
)
ds

+σrσIρrI

∫ t

0
(βr(s, T )− βr(0, s))ds+ βr(t, T )[fr(0, t)− r(t)]

+
σ2r
2
βr(t, T )βr(0, t)

2 − σrσIρrIβr(t, T )βr(0, t)

)
.

(B.30)



Appendix B. Development of the formulas of JY model 12

Developing the second integral of (B.30) (the first one is known since is
equal to the expression of the nominal bond),

σrσIρrI

∫ t

0
(βr(s, T )− βr(0, s))ds = σrσIρrI

∫ t

0

1

κr
(e−κrs − e−κr(T−s))ds

= σrσIρrI
1

κ2r
[−e−κrt + 1− e−κr(T−t) + e−κrT ] = σrσIρrIβr(0, t)βr(t, T ).

(B.31)

Using the expression (B.31) and the ones obtained when calculating the
nominal bond,

Pr(t, T ) =
Pr(0, T )

Pr(0, t)
exp

(
βr(t, T )[fr(0, t)− r(t)]−

σ2r
4κr

βr(t, T )2[1− e−2κrt]

)
.

(B.32)

B.4 Year on Year Inflation Swap

In this section is explained how to obtain the closed formulas for the YYIIS
using the T-forward measure. In this way, one could express (1.21) as

Y Y IIS(t, Ti−1, Ti, τi,A, N) = Nτi,APn(t, Ti−1)E
Ti−1
n (Pr(Ti−1, Ti)|Ft)−Nτi,APn(t, Ti).

(B.33)
To use these expression is necessary to put the dynamics of the real bond
under the T1 forward measure. Using Proposition (A.1.1) with S(t) as the
real market account Br(t), and U(t) as the nominal bond Pn(t, T1),

dPr(t, T2)

Pr(t, T2)
=
[
r(t)−σI(t)ρrIar(t, T2)+ρnrar(t, T2)an(t, T1)

]
dt+ar(t, T2)dW

T1
r (t)

(B.34)
As said previously, the real bond is log-normally distributed. Then, the
solution is

Pr(t, T2) = Pr(0, T2)exp

(∫ t

0
(r(s)− σIρrIar(s, T2) + ρnrar(s, T2)an(s, T1))ds

−
∫ t

0

a2r(s, T2)

2
)ds+

∫ t

0
ar(s, T2)dW

T1
r (s)

)
(B.35)
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And the ratio of two real bonds with different maturities

Pr(t, T2)

Pr(t, T1)
=
Pr(0, T2)

Pr(0, T1)
exp

(∫ t

0
σIρrI(ar(s, T1)− ar(s, T2))

+ρnran(s, T1)(ar(s, T2)− ar(t, T1))ds−
∫ t

0
(
a2r(s, T2)

2
)− a2r(s, T1)

2
))ds

+

∫ t

0
(ar(s, T2)− ar(s, T1))dW T1

r (s)

)
.

(B.36)

Next step is to evaluate the expression in T1 but under the real world filtra-
tion Ft, since our intention is to calculate Pr(T1, T2) for later evaluate the
forward measure expectation

Pr(T1, T2)|Ft =
Pr(t, T2)

Pr(t, T1)
exp

(∫ T1

t
σIρrI(ar(s, T1)− ar(s, T2))

+ρnran(s, T1)(ar(s, T2)− ar(t, T1))ds−
∫ T1

t
(
a2r(s, T2)

2
)− a2r(s, T1)

2
))ds

+

∫ T1

t
(ar(s, T2)− ar(s, T1))dW T1

r (s)

)
.

(B.37)

Finally, the nominal expectation under the T1 forward measure is calculated,

ET1n [Pr(T1, T2)|Ft] =
Pr(t, T2)

Pr(t, T1)
exp

(∫ T1

t
σIρrI(ar(s, T1)− ar(s, T2))

+ρnran(s, T1)(ar(s, T2)− ar(t, T1))ds−
∫ T1

t
(
a2r(s, T2)

2
)− a2r(s, T1)

2
)ds

)

·ET1n

(
exp

[∫ T1

t
(ar(s, T2)− ar(s, T1))dW T1

r (s)

]
|Ft

)
.

(B.38)

Solving the expectation with the moment generating function,

ET1n

(
exp

[∫ T1

t
(ar(s, T2)−ar(s, T1))dW T1

r (s)

]
|Ft

)
= exp

[
1

2

∫ T1

t
(ar(s, T2)−ar(s, T1))2ds

]
.

(B.39)
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So, the expectation under the T1 forward measure is

ET1n (Pr(T1, T2)|Ft) =
Pr(t, T2)

Pr(t, T1)
exp

(∫ T1

t
σIρrI(ar(s, T1)− ar(s, T2))

+ρnran(s, T1)(ar(s, T2)− ar(t, T1))ds+

∫ T1

t
(a2r(s, T1)− ar(s, T1)ar(s, T2))ds

)

=
Pr(t, T2)

Pr(t, T1)
exp

(∫ T1

t
[ar(s, T2)− ar(s, T1)][an(s, T1)ρnr − σIρrI − ar(s, T1)]ds

)
(B.40)

What in a reduced way can be expressed as

ET1n (Pr(T1, T2)|Ft) =
Pr(t, T2)

Pr(t, T1)
eb(t,T1,T2), (B.41)

where

b(t, T1, T2) =

∫ T1

t
[ar(s, T2)− ar(s, T1)][an(s, T1)ρnr − σIρrI − ar(s, T1)]ds.

(B.42)
Is seen that the expectation of the future real zero-coupon bond under the
nominal T1 forward measure is equal to the current forward price of the real
bond, multiplied by a correction factor (eb(t,T1,T2)).
Using (B.41) the inflation leg of the year on year swap can be represented
as

Y Y IIS(t, Ti−1, Ti, τi,A, N) = Nτi,A

[
Pn(t, Ti−1)

Pr(t, Ti)

Pr(t, Ti−1)
eb(t,Ti−1,Ti)−Pn(t, Ti)

]
,

(B.43)
where

b(t, Ti−1, Ti) = σrβr(Ti−1, Ti)

[
βr(t, Ti−1)

(
ρrIσI −

1

2
σrβr(t, Ti−1)

+
ρnrσn
κn + κr

(1 + κrβn(t, Ti−1))

)
− ρnrσn
κn + κr

βn(t, Ti−1)

]
.

(B.44)

For further details of how to get to this formula look at B.4.1. The ex-
pression (B.44) is called the convexity adjustment for a year on year inflation
indexed swap.
The value of the inflation leg is obtained by summing up the values of all
the payments.
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B.4.1 Convexity adjustment

In this part is shown how to obtain (B.44).

b(t, T1, T2) =

∫ T1

t
[ar(s, T2)− ar(s, T1)][an(s, T1)ρnr − σIρrI − ar(s, T1)]ds,

(B.45)
where

al(t, T ) =
−σl
κl

(1− e−κl(T−t)) l ∈ {n, r}.

Developing the formula is obtained

b(t, T1, T2) =

∫ T1

t

[
ρnr

σrσn
κrκn

(1− e−κr(T2−s))(1− e−κn(T1−s)) + ρrI
σrσI
κr

(1− e−κr(T2−s))

−σ
2
r

κ2r
(1− e−κr(T2−s))(1− e−κr(T1−s))− ρnr

σrσn
κrκn

(1− e−κr(T1−s))(1− e−κn(T1−s))

−ρrI
σrσI
κr

(1− e−κr(T1−s)) +
σ2r
κ2r

(1− e−κr(T1−s))2
]
ds

=

∫ T1

t

[
ρnr

σrσn
κrκn

(
1− e−κr(T2−s) − e−κn(T1−s) + e−κr(T2−s)−κn(T1−s)

)
+ρrI

σrσI
κr

(1− e−κr(T2−s) − 1 + e−κr(T1−s))

−σ
2
r

κ2r

(
1− e−κr(T2−s) − e−κr(T1−s)e−κr(T1+T2−2s)

)
−ρnr

σrσn
κrκn

(
1− e−κr(T1−s) − e−κn(T1−s) + e−(κr+κn)(T1−s)

)
+
σ2r
κ2r

(
1− 2e−κr(T1−s) + e−2κr(T1−s)

)]
ds.

(B.46)
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Solving the integral and grouping terms,

b(t, T1, T2) = ρnr
σrσn
κrκn

[
− 1

κr
(e−κr(T2−T1) − e−κr(T2−t)) + βr(t, T1)

+
1

κn + κr
(−1 + e−κr(T2−T1) + e−(κn+κr)(T1−t) − e−κr(T2−t)−κn(T1−t))

]
ρrI

σrσI
κr

[
− 1

κr
(e−κr(T2−T1) − e−κr(T2−t)) + βr(t, T1)

]
+
σ2r
κ2r

[
− βr(t, T1) +

1

κr
(e−κr(T2−T1) − e−κr(T2−t))

+
1

2κr
(1− e−2κr(T1−t) − e−κr(T2−T1) + e−κr(T1+T2−2t))

]
= ρnr

σrσn
κrκn

[
− 1

κr
(e−κr(T2−T1) − e−κr(T2−t)) + βr(t, T1)

+
1

κn + κr
(−1 + e−κr(T2−T1) + e−(κn+κr)(T1−t) − e−κr(T2−t)−κn(T1−t))

]

+σrβr(T1, T2)

[
βr(t, T1)

(
ρrIσI −

1

2
βr(t, T1)

)]
.

(B.47)

For the fist part is necessary to do long but straightforward calculations.
We have to obtain

σrβr(T1, T2)ρnrσn
κn + κr

[
βr(t, T1)(1 + κrβn(t, T1))− βn(t, T1)

]
,

what it can be expressed as

σrβr(T1, T2)ρnrσn
κn + κr

[
βr(t, T1)− e−κr(T1−t)βn(t, T1)

]
. (B.48)

Is easy to see that

βr(T1, T2)e
−κr(T1−t)βn(t, T1) =

=
1

κnκr

(
e−κr(T1−t) − e−κr(T2−t) − e−(κn+κr)(T1−t) + e−κr(T2−t)−κn(T1−t)

)
.

(B.49)

The last two terms appear in the formula (B.47), but the first two not, so
summing this first terms (with opposite sign) to the rest of the formula
(B.47) we should get the part of (B.48) not used yet, that is

σrβr(T1, T2)ρnrσn
κn + κr

βr(t, T1).
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The first part of (B.47) yields

ρnr
σrσn
κrκn

[
− 1

κr
(e−κr(T2−T1)−e−κr(T2−t))+βr(t, T1)

]
= ρnr

σrσn
κn

βr(T1, T2)βr(t, T1).

(B.50)
Putting together the terms of (B.47) not used yet and the two that we

have summed to obtain (B.49),

σrρnrσn
(κn + κr)κrκn

[
1− e−κr(T2−T2) + e−κr(T1−t) − e−κr(T2−t)

]
= − σrρnrσnκr

(κn + κr)κn
βr(T1, T2)βr(t, T1).

(B.51)

Adding the two terms (B.50) and (B.51)

ρnr
σrσn
κn

βr(T1, T2)βr(t, T1)−
σrρnrσnκr

(κn + κr)κn
βr(T1, T2)βr(t, T1)

=
σrβr(T1, T2)ρnrσn

κn + κr
βr(t, T1).

(B.52)

Once obtained the last terms, taking out the things that are in common in
all the expressions is obtained the expression (B.44)

b(t, T1, T2) = σrβr(T1, T2)

[
βr(t, T1)

(
ρrIσI −

1

2
σrβr(t, T1)

+
ρnrσn
κn + κr

(1 + κrβn(t, T1))

)
− ρnrσn
κn + κr

βn(t, T1)

]
.

(B.53)

B.5 Inflation Linked Cap/Floor

In this section are obtained the expressions for the inflation cap and floors.
Calling I(t)

I(Ti−1)
= X, E(X) = m and Std[ln(X)] = ν and using the Black-

Scholes generalized formula we get that

E([ω(X −K)]+) = wmΦ
(
w
ln m

(1+k) + 1
2ν

2

ν

)
− ωKΦ

(
w
ln m

(1+k) −
1
2ν

2

ν

)
.

(B.54)

The conditional expectation of I(t)
I(ti−1)

is easily obtained using (B.43). Taking
into account that

Y Y IIS(0, T, τ,N) = Nτ1,A

[
Pn(t, Ti)E

Ti
n

( I(t)

I(ti−1)
|Ft
)
− Pn(t, Ti)

]

= Nτi,A

[
Pn(t, Ti−1)

Pr(t, Ti)

Pr(t, Ti−1)
eb(t,Ti−1,Ti) − Pn(t, Ti)

]
,

(B.55)
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is obtained that

ETin

(
I(Ti)

I(Ti−1)
|Ft

)
=
Pn(t, Ti−1)

Pn(t, Ti)

Pr(t, Ti)

Pr(t, Ti−1)
eb(t,Ti−1,Ti). (B.56)

As a change of measure does not affect the variance, it can be calculated
under the risk-neutral measure Q,

V arTi

(
ln

I(Ti)

I(Ti−1)
|Ft

)
= V 2(t, Ti−1, Ti). (B.57)

B.5.1 Variance of Cap formula

Here is explained how to obtain the expression V 2(t, Ti−1, Ti), it is not dif-
ficult but it is necessary to do some calculus. In order to do things easier,
the final result is obtained part by part. It has to be obtained an analytical
formula for

V arTi

(
ln

I(Ti)

I(Ti−1)
|Ft

)
= V 2(t, Ti−1, Ti). (B.58)

The first step is to get I(Ti)
I(Ti−1)

. Remaining that under the risk-neutral mea-
sure Q the dymanics of the inflation index is

dI(t) = [n(t)− r(t)]dt+ σIdW
Q
I (t),

then,

I(Ti) = I(t)exp

(∫ Ti

t
[n(s)− r(s)− 1

2
σ2I ]ds+ σI

∫ Ti

t
dWQ

I (s)

)
,

what yields that

ln
I(Ti)

I(Ti−1)
=

∫ Ti

Ti−1

[n(s)− r(s)− 1

2
σ2I ]ds+ σI

∫ Ti

Ti−1

dWQ
I (s). (B.59)

In the section B.2 have been obtained that∫ Ti

0
n(s)ds = −lnPn(0, Ti) +

σ2n
2

∫ Ti

0
βn(0, s)2ds+ σn

∫ Ti

0
βn(s, Ti)dW

Q
n (s).

(B.60)
Using this expression is obtained the integral between Ti−1 and Ti as∫ Ti

Ti−1

n(s)ds =

∫ Ti

0
n(s)ds−

∫ Ti−1

0
n(s)ds.
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For the integral of the real rate it has to be made the same, but in this case
the formula is∫ Ti

0
r(s)ds = −lnPr(0, Ti) +

σ2r
2

∫ Ti

0
βr(0, s)

2ds

−σrσIρrI
∫ Ti

0
βr(0, s)ds+ σr

∫ Ti

0
βr(s, Ti)dW

Q
r (s).

(B.61)

Since it has to been calculated the variance of (B.59), we are only interested
in the random parts (the integral between 0 and t is known). In fact, what
we have to obtain is

V ar

[
σn

∫ Ti

t
βn(s, Ti)dW

Q
n (s)− σn

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s)

−σr
∫ Ti

t
βr(s, Ti)dW

Q
r (s) + σr

∫ Ti−1

t
βr(s, Ti−1)dW

Q
r (s)

+σIW
Q
I (Ti − Ti−1)|Ft

]
,

(B.62)

What can be represented as

V ar

[
σn

∫ Ti

t
βn(s, Ti)dW

Q
n (s)− σn

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s)|Ft

]

+V ar

[
σr

∫ Ti

t
βr(s, Ti)dW

Q
r (s) + σr

∫ Ti−1

t
βr(s, Ti−1)dW

Q
r (s)|Ft

]
+V ar(σIW

Q
I (Ti − Ti−1)|Ft)

+2Cov

[
σn

∫ Ti

t
βn(s, Ti)dW

Q
n (s)− σn

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s), σI

∫ T1

Ti−1

dWQ
I (s)|Ft

]

−2Cov

[
σr

∫ Ti

t
βr(s, Ti)dW

Q
r (s) + σr

∫ Ti−1

t
βr(s, Ti−1)dW

Q
r (s), σI

∫ T1

Ti−1

dWQ
I (s)|Ft

]

−2Cov

[
σn

∫ Ti

t
βn(s, Ti)dW

Q
n (s)− σn

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s),

σr

∫ Ti

t
βr(s, Ti)dW

Q
r (s) + σr

∫ Ti−1

t
βr(s, Ti−1)dW

Q
r (s)|Ft

]
.

(B.63)
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The first and the second part are equal, so only the first one is calculated,

V ar

[
σn

∫ Ti

t
βn(s, Ti)dW

Q
n (s)− σn

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s)|Ft

]

= σ2nE

[∫ Ti

t
βn(s, Ti)

2ds+

∫ Ti−1

t
βn(s, Ti−1)

2ds

−2

∫ Ti

t
βn(s, Ti)dW

Q
n (s)

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s)|Ft

]
.

(B.64)

Solving part by part,

σ2nE
(∫ Ti

t
βn(s, Ti)

2ds|Ft
)

=
σ2n
κ2n

∫ Ti

t
(1− 2e−κn(Ti−s) + e−2κn(Ti−s))ds

=
σ2n
κ2n

[Ti − t−
2

κn
+

2

κn
e−κn(Ti−t) +

1

2κn
− 1

2κn
e−2κn(Ti−t)].

(B.65)

Using the expression above is easy to obtain the second part

σ2nE
(∫ Ti−1

t
βn(s, Ti−1)

2ds|Ft
)

=

=
σ2n
κ2n

[Ti−1 − t−
2

κn
+

2

κn
e−κn(Ti−1−t) +

1

2κn
− 1

2κn
e−2κn(Ti−1−t)].

(B.66)

To solve the last part is necessary to take into account that the Brownian
motion is linearly independent when the limits of the integral are disjointed,
this yields

−2σ2nE
(∫ Ti

t
βn(s, Ti)dW

Q
n (s)

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s)|Ft

)
= −2σ2nE

([∫ Ti−1

t
βn(s, Ti)dW

Q
n (s) +

∫ Ti

Ti−1

βn(s, Ti)dW
Q
n (s)

]

·
∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s)|Ft

)
= −2σ2n

∫ Ti−1

t
βn(s, Ti)dW

Q
n (s)

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s)

= −2σ2n

∫ Ti−1

t
βn(s, Ti)βn(s, Ti−1)ds− 2

σ2n
κ2n

[
Ti−1 − t−

1

κn
+

1

κn
e−κn(Ti−1−t)

− 1

κn
e−κn(Ti−Ti−1) +

1

κn
e−κn(Ti−t) +

1

2κn
e−κn(Ti−Ti−1) − 1

2κn
e−κn(Ti+Ti−1−2t)

]
.
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Joining all the parts and simplifying is obtained

V ar

[
σn

∫ Ti

t
βn(s, Ti)dW

Q
n (s)− σn

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s)|Ft

]

=
σ2n
κ2n

[
Ti − Ti−1 − 2t− 2Ti−1 + 2t− 4

κn
+

2

κn
+

1

κn
− 1

2κn
e−2κn(Ti−t)

− 1

2κn
e−2κn(Ti−1−t) +

2

κn
e−κn(Ti−Ti−1) − 1

κn
e−κn(Ti−Ti−1) +

1

κn
e−κn(Ti+Ti−1−2t)

]

=
σ2n
κ2n

[
Ti − Ti−1 +

2

κn
e−κn(Ti−Ti−1) − 1

2κn
e−2κn(Ti−Ti−1) − 3

2κn

]

+
σ2n
κ2n

[
1

2κn
− 1

2κn
e−2κn(Ti−1−t) − 1

κn
e−κn(Ti−Ti−1)

+
1

κn
e−κn(Ti+Ti−1−2t) +

1

2κn
e−2κn(Ti−Ti−1) − 1

2κn
e−2κn(Ti−t)

]
,

where

1

2κn
− 1

2κn
e−2κn(Ti−1−t) − 1

κn
e−κn(Ti−Ti−1)

+
1

κn
e−κn(Ti+Ti−1−2t) +

1

2κn
e−2κn(Ti−Ti−1) − 1

2κn
e−2κn(Ti−t)

=
1

2κn
(1− e−κn(Ti−Ti−1))2(1− e−2κn(Ti−1−t))

=
κn
2
βn(Ti−1, Ti)

2(1− e−2κn(Ti−1−t)).

So, the first three parts of (B.63) can be represented as

σ2n
2κn

βn(Ti−1, Ti)
2(1− e−2κn(Ti−1−t)) + σ2i (Ti − Ti−1)

+
σ2n
2κr

βr(Ti−1, Ti)
2(1− e−2κr(Ti−1−t))

+
σ2n
κ2n

[
Ti − Ti−1 +

2

κn
e−κn(Ti−Ti−1) − 1

2κn
e−2κn(Ti−Ti−1) − 3

2κn

]
σ2r
κ2r

[
Ti − Ti−1 +

2

κr
e−κr(Ti−Ti−1) − 1

2κr
e−2κr(Ti−Ti−1) − 3

2κr

]
.

(B.67)
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Next step is to give a value to the first and second covariances, the structure
of both of them is the same so only the first one is calculated.

+2Cov

[
σn

∫ Ti

t
βn(s, Ti)dW

Q
n (s)− σn

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s), σI

∫ T1

Ti−1

dWQ
I (s)|Ft

]

= 2E

[(
σn

∫ Ti

t
βn(s, Ti)dW

Q
n (s)− σn

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s)

)
· σI

∫ T1

Ti−1

dWQ
I (s)|Ft

]

= 2E

[
σnσI

∫ Ti

Ti−1

βn(s, Ti)dW
Q
n (s)

∫ T1

Ti−1

dWQ
I (s)|Ft

]

= 2σnσIρnI

∫ Ti

Ti−1

βn(s, Ti)ds =
2σnσIρnI

κn

[
Ti − Ti−1 − βn(Ti−1, Ti)

]
.

(B.68)

Finally, with long but standard calculations the last one is obtained.

−2Cov

[
σn

∫ Ti

t
βn(s, Ti)dW

Q
n (s)− σn

∫ Ti−1

t
βn(s, Ti−1)dW

Q
n (s),

σr

∫ Ti

t
βr(s, Ti)dW

Q
r (s) + σr

∫ Ti−1

t
βr(s, Ti−1)dW

Q
r (s)|Ft

]

= −2σnσr

∫ Ti

t
βn(s, Ti)βr(s, Ti)ρnrds− 2σnσr

∫ Ti−1

t
βn(s, Ti−1)βr(s, Ti−1)ρnrds

+2σnσr

∫ Ti−1

t
βn(s, Ti)βr(s, Ti−1)ρnrds+ 2σnσr

∫ Ti−1

t
βn(s, Ti−1)βr(s, Ti)ρnrds.

(B.69)

The first two expressions are obtained in the same way and the third and
fourth similarly.

−2σnσrρnr

∫ Ti

t
βn(s, Ti)βr(s, Ti)ρnrds

= −2ρnr
σnσr
κnκr

∫ Ti

t
1− e−κr(Ti−s) − e−κn(Ti−s) + e−(κr+κn)(Ti−s)ds

= −2ρnr
σnσr
κnκr

[
Ti − t−

1

κr
+

1

κr
e−κr(Ti−t) − 1

κn
+

1

κn
e−κn(Ti−t)

+
1

κr + κn
− 1

κr + κn
e−(κr+κn)(Ti−t)

]
.

(B.70)
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So the second part is

−2σnσr

∫ Ti−1

t
βn(s, Ti−1)βr(s, Ti−1)ρnrds = −2ρnr

σnσr
κnκr

[
Ti−1 − t−

1

κr

+
1

κr
e−κr(Ti−1−t) − 1

κn
+

1

κn
e−κn(Ti−1−t) +

1

κr + κn
− 1

κr + κn
e−(κr+κn)(Ti−1−t)

]
.

(B.71)

Solving the third part is obtained

2σnσr

∫ Ti−1

t
βn(s, Ti−1)βr(s, Ti)ρnrds

= 2ρnr
σnσr
κnκr

∫ Ti−1

t
1− e−κr(Ti−1−s) − e−κn(Ti−s) + e−κnTi−κrTi−1+(κr+κn)sds

= 2ρnr
σnσr
κnκr

[
Ti−1 − t−

1

κr
+

1

κr
e−κr(Ti−1−t) − 1

κn
e−κn(Ti−Ti−1) +

1

κn
e−κn(Ti−t)

+
1

κr + κn
e−κn(Ti−Ti−1) − 1

κr + κn
e−κn(Ti−t)−κr(Ti−1−t)

]
.

(B.72)

Using the previous one is straightforward to obtain the fourth one

2σnσr

∫ Ti−1

t
βn(s, Ti−1)βr(s, Ti)ρnrds = 2ρnr

σnσr
κnκr

[
Ti−1 − t−

1

κn
+

1

κn
e−κn(Ti−1−t)

− 1

κr
e−κr(Ti−Ti−1) +

1

κr
e−κr(Ti−t) +

1

κr + κn
e−κk(Ti−Ti−1) − 1

κr + κn
e−κr(Ti−t)−κn(Ti−1−t)

]
.

(B.73)
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Summing the four parts the expression for the last covariance is obtained

−2ρnr
σnσr
κnκr

[
Ti − Ti−1 −

1

κr
− 1

κn
+

2

κr + κr
+

1

κn
e−κn(Ti−Ti−1) +

1

κr
e−κr(Ti−Ti−1)

+
1

κr + κn

(
− e−(κr+κn)(Ti−t) − e−(κr+κn)(Ti−1−t) − e−κn(Ti−Ti−1) − e−κr(Ti−Ti−1)

)

+e−κn(Ti−t)−κr(Ti−1−t) + e−κr(Ti−t)−κn(Ti−1−t)

)]

= −2ρnr
σnσr
κnκr

[
Ti − Ti−1 − βn(Ti−1, Ti)− βr(Ti−1, Ti) +

1− e−(κn+κr)(Ti−Ti−1)

κn + κr

]

−2ρnr
σnσr

κnκr(κn + κr)

[
e−(κn+κr)(Ti−Ti−1) + 1− e−(κr+κn)(Ti−t) − e−(κr+κn)(Ti−1−t)

−e−κn(Ti−Ti−1) − e−κr(Ti−Ti−1) + e−κn(Ti−t)−κr(Ti−1−t) + e−κr(Ti−t)−κn(Ti−1−t)

]

= −2ρnr
σnσr
κnκr

[
Ti − Ti−1 − βn(Ti−1, Ti)− βr(Ti−1, Ti) +

1− e−(κn+κr)(Ti−Ti−1)

κn + κr

]

−2ρnr
σnσr
κnκr

(1− e−κn(Ti−Ti−1))

κn

(1− e−κr(Ti−Ti−1))

κr
(1− e−(κr+κn)(Ti−1−t))

= −2ρnr
σnσr
κnκr

[
Ti − Ti−1 − βn(Ti−1, Ti)− βr(Ti−1, Ti) +

1− e−(κn+κr)(Ti−Ti−1)

κn + κr

]
−2ρnr

σnσr
κnκr

βn(Ti−1, Ti)βr(Ti−1, Ti)(1− e−(κr+κn)(Ti−1−t)).

(B.74)

Putting together all the variances and covariances the expression (1.52) of
the second chapter is obtained.



Appendix C

Development of the formulas
of the second chapter

C.1 Development of the formulas of the estima-
tion of κn

In this appendix are developed the formulas proposed in [9] to estimate
independently κn.

The first thing to do is defining on a general form the next expressions:

• Variance of the instantaneous short rate:

Vn(s, t) = V (n(t)|Fs),

where Fs is the σ-field that captures the information generated by n(t)
until s.

• E(t) = e
∫ t
0 κn(u)du.

With the second expression one can define the variance of the short rate as

Vn(0, t) =
1

E2(t)

∫ t

0
E2(u)σ2(u)du, (C.1)

and the expression βn(t, T ) as

βn(t, T ) = E(t)

∫ T

t

du

E(u)
. (C.2)

If we take both parameters constant as done in the second chapter, next
expressions are obtianed:

Vn(0, t) =
σ2n
2κn

(1− e−2κnt), (C.3)

βn(t, T ) =
1

κn
(1− e−κn(T−t)). (C.4)

25
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Note that the formula of βn(t, T ) is the one defined in Chapter 1. Recall the
expression nominal bond in time t and maturity T

Pn(t, T ) =
Pn(0, T )

Pn(0, t)
exp

(
βn(t, T )[fn(0, t)− n(t)]− σ2n

4κn
β2n(t, T )[1− e−2κnt]

)

=
Pn(0, T )

Pn(0, t)
exp

(
βn(t, T )[fn(0, t)− n(t)]− 1

2
Vn(0, t)β2n(t, T ]

)
,

and the process of the bond price

dPn(t, T )

Pn(t, T )
= n(t)dt+ an(t, T )dWQ

n (t), (C.5)

where

an(t, T ) = −
∫ T

t
σn(t, u)du = −σnβn(t, T ). (C.6)

The stochastic process of d(Pn(t, T1)/Pn(t, T2)) under the risk-neutral mea-
sure with T1 < T2 is needed to obtain the expression of the implied volatility
of the swaptions. Using the Ito’s Lemma,

d
Pn(t, T1)

Pn(t, T2)
= 0 · dt+

1

Pn(t, T2)
dPn(t, T1)−

Pn(t, T1)

P 2
n(t, T2)

dPn(t, T2)

+
Pn(t, T1)

P 3
n(t, T2)

(dPn(t, T2))
2 − 1

P 2
n(t, T2)

dPn(t, T1)dPn(t, T2)

=
Pn(t, T1)

Pn(t, T2)
[n(t)dt+ an(t, T1)dW

Q
n (t)]− Pn(t, T1)

Pn(t, T2)
[n(t)dt+ an(t, T2)dW

Q
n (t)]

+
Pn(t, T1)

Pn(t, T2)
a2n(t, T2)dt−

Pn(t, T1)

Pn(t, T2)
an(t, T1)an(t, T2)dt

=
Pn(t, T1)

Pn(t, T2)
σn[βn(t, T2)− βn(t, T1)]dW

Q
n (t)

+
Pn(t, T1)

Pn(t, T2)
σ2n[β2n(t, T2)− βn(t, T2)βn(t, T1)].

Next step is to obtain this expression under the forward measure. For this
purpose the Proposition of numeraire change is used, which gives us the new
drift, since the diffusion is the same. The drift under the forward measure
is (Proposition A.1):

µT2(t) = µQ(t)− Pn(t, T1)

Pn(t, T2)
σn[βn(t, T2)− βn(t, T1)](−an(t, T2)). (C.7)

Developing a little bit, the drift is cancelled and the expression above yields

d
Pn(t, T1)

Pn(t, T2)
=
Pn(t, T1)

Pn(t, T2)
σn[βn(t, T2)− βn(t, T1)]dW

T2
n (t), (C.8)
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with integrated variance

Vp(0, T1, T2) =

∫ T1

0
σ2n[βn(u, T2)− βn(u, T1)]

2du

=
σ2n
κ2n

∫ T1

0

[
e−κn(T2−u) − e−κn(T1−u)

]2
du

=
σ2n
κ2n

∫ T1

0

[
e−2κn(T1−u) − 2e−κn(T1+T2−2u) + e−2κn(T2−u)

]
du

=
σ2n
κ2n

(
1

2κn
(e−2κnT1)− 1

κn
(1− e−κn(T2−T1) − e−κn(T1+T2))

)

+
σ2n
κ2n

(
1

2κn
(e−2κn(T2−T1) − e−2κnT2)

)

=
σ2n
2κ3n

(1− e−2κnT1)(1− e−κn(T2−T1))2.

So, the integrated variance of the bond ratio is:

Vp(0, T1, T2) = Vn(0, T1)βn(T1, T2)
2. (C.9)

Using this the swaptions implied volatility is obtained. The idea is to do
an approximation to the fixed rate swap with the intention of obtaining the
stochastic process of it, to finally calculate the implied volatility. Recall the
expression (2.5) but with a general T̃0 = T0 6= 0, taking into account that
we are working with a market swap, what means that the fixed rate swap is
agreed so that the value of the swap is 0, we have:

S(t, T0, Tn) =
Pn(t, T0)− P (t, Tn)∑n

i=1 τi,BPn(t, Ti)
, (C.10)

where T0 is the maturity of the swaption and Tn the tenor of the swap.

We could have written the expression as we did before but we have
decided to put on a more general form without using the assumptions that we
did. To get a formula of the ratio of implied volatilities that do not contain
the parameter σn the approximated fixed swap rate S̃(t, T0, Tn) proposed in
[9] is used. Is also assumed that this rate has log-normal distribution under
the annuity measure A (Proposition A.2.1)

S̃(t, T0, Tn) =
Pn(0, Tn)∑n

i=1 τi,BPn(0, Ti)

[Pn(t, T0)

Pn(t, Tn)
− 1
]
. (C.11)

Knowing the process of d(Pn(t, T0)/Pn(t, Tn)) in (C.8) and using Ito’s Lemma
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it is easy to get:

dS̃(t, T0, Tn)

S̃(t, T0, Tn)
=

1

S̃(t, T0, Tn)

Pn(0, Tn)∑n
i=1 τi,BPn(0, Ti)

d
Pn(t, T0)

Pn(t, Tn)

=
1

S̃(t, T0, Tn)

Pn(0, Tn)Pn(t, T0)

Pn(t, Tn)
∑n

i=1 τi,BPn(0, Ti)
σn[βn(t, Tn)− βn(t, T0)]dW

Tn
n (t)

=
S(0, T0, Tn)

S̃(t, T0, Tn)

Pn(0, Tn)Pn(t, T0)

[P (0, T0)− Pn(0, Tn)]Pn(t, Tn)
σn[βn(t, Tn)− βn(t, T0)]dW

Tn
n (t).

Our intention is to get an approximation of the implied volatility of the
swaptions. For this, our proposal is to substitute the approximated fixed
rate and bond prices by their initial values so that we get a known expression.
The resultant is:

dS̃(t, T0, Tn)

S̃(t, T0, Tn)
' S(0, T0, Tn)

S̃(0, T0, Tn)

Pn(0, Tn)Pn(0, T0)

[P (0, T0)− Pn(0, Tn)]Pn(0, Tn)

·σn[βn(t, Tn)− βn(t, T0)]dW
Tn
n (t)

=
Pn(0, T0)

P (0, T0)− Pn(0, Tn)
σn[βn(t, Tn)− βn(t, T0)]dW

Tn
n (t).

Finally, change to the annuity measure A, since it has been assumed that
under A S̃(t, T0, Tn) has log-normal distribution. There is a drift, but we do
not care about it because we want to calculate the integrated variance and
for this only the diffusion is needed.

dS̃(t, T0, Tn)

S̃(t, T0, Tn)
' drift+

Pn(0, T0)

P (0, T0)− Pn(0, Tn)
σn[βn(t, Tn)− βn(t, T0)]dW

A
n (t).

(C.12)

The expression (C.12) is similar to (C.8), and knowing the resultant inte-
grated variance gotten before, it is easy to find that

Vswap(T0, Tn) =

∫ T0

0

(
Pn(0, T0)

P (0, T0)− Pn(0, Tn)
σn[βn(u, Tn)− βn(u, T0)]

)2

du

=

(
Pn(0, T0)

P (0, T0)− Pn(0, Tn)

)2

Vp(0, T0, Tn),

(C.13)

where Vp(0, T0, Tn) = Vn(0, T0)βn(T0, Tn)2 is the variance of the bond ratio.
It is important to remark that this is only an approximation to do the cal-
ibration of the nominal mean reversion speed κn and so that it can not be
used as real expressions for the implied volatility.
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We realize that the Hull and White implied volatility depends on the
parameter σn only in the term Vn(0, T0). So, if we take the ratio of different
implied volatilities with the same maturity for the swaptions but different
tenors, the result does not depend on σn and it will be possible to estimate
κn.

Taking the ratio of two different implied variances with the characteris-
tics mentioned before,

Vswap(Mi, Tj)

Vswap(Mi, Tk)
=

(
[Pn(0,Mi)− Pn(0, Tk)]β(Mi, Tj)

[Pn(0,Mi)− Pn(0, Tj)]β(Mi, Tk)

)2

. (C.14)

C.2 Development of the cap formula under the
Hull and White model

Since under the Hull and White model the nominal interest rate is log-
normally distributed, the value of each caplet has to be represented in terms
of a European put option on a zero-coupon bond.

Cpl(t, ti−1, ti, τi, N,X) = E

(
e−

∫ ti
t n(s)dsNτi(R(ti−1, ti)−X)+|Ft

)

= E

(
E
(
e−

∫ ti
t n(s)dsNτi(R(ti−1, ti)−X)+|Ft−1

)
|Ft

)

= E

(
e−

∫ ti−1
t n(s)dsNτi(R(ti−1, ti)−X)+E

(
e
−

∫ ti
ti−1

n(s)ds|Ft−1
)
|Ft

)

= E

(
e−

∫ ti−1
t n(s)dsPn(ti−1, ti)Nτi(R(ti−1, ti)−X)+|Ft

)
.

Taking into account that

Pn(ti−1, ti) =
1

1 + τiR(ti−1, ti)
, (C.15)

The value of the caplet in t is

Cpl(t, ti−1, ti, τi, N,X) =

= NE

(
e−

∫ ti−1
t n(s)dsPn(ti−1, ti)

[ 1

Pn(ti−1, ti)
− (1 +Xτi)

]+
|Ft

)

= N(1 +Xτi)E

(
e−

∫ ti−1
t n(s)ds

[ 1

(1 +Xτi)
− Pn(ti−1, ti)

]+
|Ft

)
.

(C.16)
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To obtain closed formulas for the cap are needed the ones for the European
put option with maturity T and strike X on a unit-principal zero-coupon
bond with maturity S > T . The value of this derivative in t is

ZBP (t, T, S,X) = E

(
e
∫ T
t n(s)ds(X − Pn(T, S))+|Ft

)
. (C.17)

The change of numeraire to the forward measure QT allows us to express
the above as

ZBP (t, T, S,X) = Pn(t, T )ET

(
(X − Pn(T, S))+|Ft

)
. (C.18)

What it can be represented as

ZBP (t, T, S,X) = XPn(t, T )Φ(−h+ σp)− Pn(t, S)Φ(−h), (C.19)

where

σp = σn

√
1− e−2κn(T−t)

2κn
βn(T, S),

h =
1

σp
ln

Pn(t, S)

Pn(t, T )X
+
σp
2
.

(C.20)

The valuation formula (C.16) of the caplet is very similar to the one of the
ZBP (C.17). Using the closed formula just obtained for the ZBP is easy to
get the one for each caplet

Cpl(t, ti−1, ti, τi, N,X) = N ′iZBP (t, ti−1, ti, X
′
i), (C.21)

where,

N ′i =
1

1 +Xτi
,

N ′i = N(1 +Xτi).

(C.22)

So, the valuation formula for the cap in t is

Cap(t, T,N,X) = N
n∑
i=1

(1 +Xτi)ZBP (t, ti−1, ti,
1

1 +Xτi
),

= N
n∑
i=1

[P(t, ti−1)Φ(−hi + σip)− (1 +Xτi)Pn(t, ti)Φ(−hi)],
(C.23)

where,

σip = σn

√
1− e−2κn(ti−1−t)

2κn
βn(ti−1, ti),

hi =
1

σip
ln
Pn(t, ti)(1 +Xτi)

Pn(t, ti−1)
+
σip
2
.

(C.24)
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CVA formulas

Survival function

Remembering the definition of the default intensity

P (τ ≤ t+ dt|τ > t|Ft0) = λ(t)dt, (D.1)

the procedure to obtain the survival function is the next one. On the one
hand is the equality

P (τ > t+ dt|Ft0) = P (τ > t+ dt ∩ τ > t|Ft0). (D.2)

On the other hand there is the definition of the conditional probability

P (τ > t+ dt ∩ τ > t|Ft0) = P (τ > t+ dt|τ > t|Ft0)P (τ > t|Ft0)

= (1− λ(t)dt)P (τ > t|Ft0).

So,
P (τ > t+ dt|Ft0) = P (τ > t|Ft0)− λ(t)P (τ > t|Ft0)dt. (D.3)

Using the notation P (t) = P (τ > t|Ft0), the equation can be expressed as

P (t+ dt) = P (t)− λ(t)P (t)dt =⇒ dP (t) = −λ(t)P (t)dt (D.4)

=⇒ dP (t)

P (t)
= −λ(t)dt =⇒ P (t)

P (t0)
= e
−

∫ t
t0
λ(s)ds

. (D.5)

Using the notation defined at the beginning

P (τ > t|Ft0) = P (τ > t0|Ft0)e
−

∫ t
t0
λ(s)ds

= 1τ>t0e
−

∫ t
t0
λ(s)ds

. (D.6)

Price of CDS

The first part of the formula is easily obtained taking into account that
the spread is paid every 3 months as long as default does not occur. The

31
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part that corresponds to the received cash-flow in case of default is obtained
using the iterative law of expectations.

(1−R)E
[
e−

∫ τ
t n(s)ds1τ≤T |Ft

]
= (1−R)E

[
E
(
e−

∫ τ
t n(s)ds1τ≤T |τ = y|Ft

)
|Ft
]

= (1−R)

∫ ∞
t

E
(
e−

∫ τ
t n(s)ds1τ≤T |τ = y|Ft

)
ητ (y)dy

= (1−R)

∫ ∞
t

E
(
e−

∫ y
t n(s)ds1y≤T |Ft

)
ητ (y)dy

= (1−R)

∫ T

t
E
(
e−

∫ y
t n(s)ds|Ft

)
ητ (y)dy = (1−R)

∫ T

t
Pn(t, y)ητ (y)dy.

(D.7)

Finally, is explained how to obtain the part corresponding to the accrued
interest. If the default occurs before the maturity of the derivative and it is
been a while since the last spread was paid, it has to be taking into account
the accrued interest. The value in the default time is

V (τ) = SCDS(τ − Tβ(τ))1τ≤T , (D.8)

where Tβ(τ) is the last day where spread was paid. Then, the value in t is

V (t) = SCDSE
(
e−

∫ τ
t n(s)ds(τ − Tβ(τ))1τ≤T

)
. (D.9)

Using the iterative law of expectations as done previously is obtained

V (t) = SCDS

∫ T

t
Pn(t, s)(s− Tβ(s))ητ (s)ds (D.10)

CVA

To calculate the expression of the CVA is necessary to calculate the value
of the derivative if there is a default or if there is not. V (t, T ) is defined as
the cash-flows between t and T, V +

τ is the value in τ if it is positive for us
and V −τ if it is negative for us, V (τ) = V +

τ + V −τ . Then,

X(t, T ) = 1τ>TV (t, T ) + 1τ≤T [V (t, τ) +RV +
τ + V −τ ] (D.11)

The value in t of the derivative is

V (t) = E
(
e−

∫ T
t n(s)ds1τ>TV (t, T )+e−

∫ τ
t n(s)ds1τ≤T [V (t, τ)+RV +

τ +V −τ ]|Ft
)

(D.12)
Taking into account 1τ>T + 1τ≤T = 1, is obtained V (t, T )1τ>T = V (t, T )−
V (t, T )1τ≤T . Then,

X(t, T ) = V (t, T ) + 1τ≤T [V (t, τ)− V (t, T )] + 1τ≤T [RV +
τ + V −τ + V +

τ − V +
τ ]

= V (t, T ) + 1τ≤T [V (t, τ)− V (t, T )] + 1τ≤T [−(1−R)V +
τ + V (τ)]

(D.13)
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Using the definition of V (τ) and the iterative law of expectations

E
(
V (τ)|Ft

)
= E

(
E[V (τ, T )|Fτ ]|Ft

)
= E

(
V (τ, T )|Ft

)
. (D.14)

Then, calling to E
(
e−

∫ T
t n(s)dsV (t, T )|Ft

)
= V (t)rf

V (t) = V (t)rf + E

(
e−

∫ τ
t n(s)ds1τ≤T [−V (t, T ) + V (t, τ) + V (τ, T )− (1−R)V +

τ ]|Ft

)

= V (t)rf − E

(
e−

∫ τ
t n(s)ds1τ≤T (1−R)V +

τ |Ft

)

Then, the CVA if there is independence between the default probability
and the positive exposure is

CV A(t) = E

(
e−

∫ τ
t n(s)ds1τ≤T (1−R)V +

τ |Ft

)
= (1−R)

M∑
i=1

Pn(t, Ti)E(V +
Ti
|Ft)∆Pt

(D.15)



Appendix E

Extra Tables

Information about the swap inflation versus fixed with maturity Nov 2033
and counterparty Morgan Stanley is in Table E.1. The valuation and sensi-
tivities in Table E.3.

SWAP INFLATION/FIXED 2033

Tfinal TT Type of swap Swap rate 1 Swap rate 2 Type change date (Mixed swap) Inflation coupon Payer Inf0 NinfL NnomL Counterparty

14.688 14.667 1 1.5% 0 0 0.9% -1 102.02533 332,000,000 345,495,688 Morgan Stanley

Table E.1: Information of the fixed swap with Counterparty Morgan Stan-
ley.

Information about the swap inflation versus Euribor 12 months with
maturity Nov 2024 and counterparty BBVA is in Table E.2. The valuation
and sensitivities in Table E.4.

SWAP INFLATION/VARIABLE 2024

Tfinal TT Type of swap Swap rate 1 Swap rate 2 Type change date (Mixed swap) Inflation coupon Payer Inf0 NinfL NnomL Counterparty

5.6822 5.667 2 0.5% 0 0 1.8% -1 100.05803 50,000,000 59,463,157.1 BBVA

Table E.2: Information of the variable swap with Counterparty BBVA.

34
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Appendix F

Used Matlab programs

In this Appendix are explained all the used programs. All the functions are
called from excel using macros, and it is possible to obtain all the calculated
values using only excel buttons. With excel macros, excel and Matlab are
connected so that the inputs for Matlab are inserted from excel, the func-
tions are executed in Matlab and the results are reflected again in excel.

Figure F.1: Excel tab.

In the tab market data is obtained the market data used to calculate
the zero coupon curves and to implement the calibration. In these tab are
the first and second buttons. In the tab calibrated parameters, the nominal,
inflation and real parameters are calibrated. The corresponding buttons are
the third and the fourth. In the third tab the valuation and sensitivities for
the chosen 6 swaps are calculated using the fifth button. In the tab CVA
are calculated the default intensities and the survival functions, using the
sixth and seventh buttons. In the last tab, cartera, the stand alone CVA
for each derivative of the portfolio and the CVA with netting and collateral
agreement are calculated. The corresponding buttons are the eighth and the
ninth.

The first button is used to take from Bloomberg the data for the selected
date.

The second button corresponds to the calculation of the zero coupon
nominal and real curves, and the Matlab function is

curvas_cupon_cero

37
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The third button is used to visualise the calibrated constant and piece-
wise nominal parameters. The Matlab function is

calibracion_nominal

Inside this program different programs are used to do the calibration. The
function to be optimized to calibrate κn is

sacarkappa

The function to be optimized to calibrate constant σn is called

cali

The function to be optimized to calibrate the piece-wise function for σn is

sacarcap_cambiante

For this function, is needed another one that calculates the value of the
caplets until the previous maturity to obtain the new value for σn. That
function is called

valorar_cap_cambiante

The fourth button is to calibrate the inflation and real parameters and
the Matlab function is

calibracion_real

To calibrate the constant inflation volatility σI the function to be optimized
is

cali_sigmaI

To calibrate the piece-wise function

sacarfloor_cambianteI

and to obtain the value of the floorlets until the previous maturity

valorarfloor_cambianteI

To calibrate the real parameters historically the function to be optimized is

cali_real_historico

To calibrate the real parameters using market prices of inflation caps the
function to be optimized is

cali_real
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To calibrate the real parameters using market prices of year on year inflation
indexed swaps separately the used function is

yyiis_calcular

there is a dichotomous variable that indicates if the wanted parameter to be
calibrated is κr or σr. To calibrate the piece-wise function for σr the used
functions are

sacar_r_cambiante, anteriores_yyiis

The fifth button is to calculate the actual and future valuation, expected
positive exposure, 97,5% positive exposure and expected shortfall of the
different swaps and the Matlab function is

simulacion

When sensitivity about different parameters are calculated, is programmed
in excel macros to call the function simulation to obtain the corresponding
values. That is, every time that any parameter is changed, the function
simulacion is called to obtain the values mentioned before.

The sixth button is to calculate the piece-function for the default inten-
sities for each counterparty and the Matlab function is

intesidad_default

Inside this function, the one to be optimized to calibrate the piece-wise
function for λ(t) is

sacar_lambda

The one to calculate the value of the CDS until the previous maturity is

sacar_parte_lambda_anterior

The seventh button is to calculate the survival function using the intensity
of default in some determined dates and the function is

probabilidad

The eighth button is to calculate the CVA of each inflation swap taking into
account the counterparty, and the function is

CVA

The ninth button is to calculate the CVA with respect to each counter-
party, with netting and collateral agreement. The Matlab function is

CVA_net_col
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