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Abstract

This work provides numerical solutions for American options under the mean-reversion stochas-
tic volatility Heston model. Firstly, the spatial cross-derivative of the partial differential equation
(PDE) is removed by the classical technique for reduction of second-order linear PDE to canon-
ical form, achieving a diffusion-advection-reaction (DAR) problem. Later, the DAR problem
solution is constructed starting with a semi-discretization approach followed by a full discretiza-
tion using an exponential time differencing (ETD) scheme. Since a good model can be wasted
with a careless numerical method, numerical analysis is studied including the positivity and sta-
bility of the solution. Finally numerical experiments were computed to prove its competitiveness
with other relevant methods in the literature.
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1 Introduction
The classic Black-Scholes model makes assumptions that are not empirically valid. The model
is widely employed as a useful approximation to reality, but proper application requires under-
standing its limitations and constant volatility of the stock returns is one of them. In fact, this
assumption is one of the biggest source of weakness, because the variance has been observed
to be non-constant leading to models, such as GARCH, to model volatility changes. There are
other approaches to model the asset volatility, as consider that follows a random process or,
in other words, consider the volatility as a stochastic process. This point of view lead us to
a Partial Differential Equation (PDE) different from the classic Black-Scholes, now there are
involved two different variables, apart of the time: asset level S and variance ν. Deal with this
PDE and the presence of cross-derivatives is a challenging task. It is even more difficult to deal
with American options which allows to exercise the option at any time before the expiration
date. But the solution to this problem is of great interest to the financial markets.

The main objective of this work is to present a numerical method, based on finite differences,
to obtain solutions for the valuation of American put options under stochastic volatility. The
tools that we have used to solve the problem are:

• Penalty term to deal with American options.

• Transformation of the problem to remove the cross-derivatives.

• Use of the method of lines, also called semi-discretization, that lead us to a system of
Ordinary Differential Equations (ODE).

• Exponential Time Differencing method (ETD) to provide solution to the ODEs system.

Also numerical analysis of the proposed method is studied to guaranteed the goodness of the
numerical solutions. This work is organized as follows. In the remainder of the Introduction
section we present properly the details of dealing with American options and stochastic volatility.
Section 2 addresses the problem transformation, which has the aim of remove cross derivatives
and explain the new rhomboid numerical domain. The semi-discretization and the proposed
ETD scheme are included in Section 3. In Section 4 the positivity, stability and boundedness of
the numerical solution will be studied. Section 5 compare numerical results with other authors
and compute the numerical order of convergence.

1.1 American options

Options contract gives its holder the right, but not the obligation, to buy or sell an underlying
asset at a specified strike price during a certain period of time or on a specific date. Options
have a limited life time, the maturity date fixes the time horizon. At this date the rights of the
holder expire, and for later times the option is worthless. We talk about American options when
the holder can exercise the option on any trading day on or before the maturity and, about
European options, when the option can only be exercised at the maturity. For the valuation of
European option on a non-dividend paying asset we have the classic model Black and Scholes
(1973). This model led to a boom in options trading and provided mathematical legitimacy to
the activities of the Chicago Board Options Exchange and other options markets around the
world.

So, given that American options can be exercised at any time to maturity, they provide its
holder greater rights than the European options, where early exercise is not allowed. Therefore
American options prices have potentially higher value than the European. The following arbi-
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trage argument shows how this can happen.

We consider a put option on a non-dividend paying asset. For every time before the maturity,
there is a large range of asset value S for which the value of European put option is less
than its intrinsic value (the payoff function). For example, the European put price for S = 0
is P (0, t) = Ee−r(T−t) that is below the payoff function evaluated at S = 0 whose value is
the strike price E. We can see that at Figure 1. Suppose that S lies in this range, so that
P (S, t) < max(E − S, 0), and consider the effect of exercising the option. There is an obvious
arbitrage opportunity: we can buy the asset S and the option for P and, if we immediately
exercise the option, we thereby make a risk-free profit of E − S − P . Of course, such an
opportunity would not last long before the value of the option was pushed up by the demand
of arbitragers. We conclude that when the early exercise is permitted we must impose the
constraint:

P (S, t) ≥ max(E − S, 0). (1)
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Payoff
Option value

Figure 1: European put option with r = 0.1, σ = 0.4, t = T-1, E = 10 and the payoff function

We can also see that American options have different value than the European if we consider a
call option on a dividend-paying asset. For a large values of S, the dominant behavior of the
European option is

C(S, t) ∼ Se−D0(T−t).

This is because in the limit S → ∞ the European call option becomes equivalent to the asset
but without its dividend income. As we can see, for large S, European call lies below the payoff
function max(S − E, 0). See Figure 2. If the early exercise is allowed there is an arbitrage
opportunity: buying the option, exercising it and selling the asset we obtain another risk-free
profit of S − E − C. Therefore the American version of this call option must also be more
valuable than the European, so it must satisfy the constraint:

C(S, t) ≥ max(S − E, 0). (2)
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Figure 2: European call option with r = 0.1, σ = 0.4, t = T-1, E = 10, q = 0.17 and the payoff
function

In both of these cases, there must be some values of S for which it is optimal, from the holder’s
point of view, to exercise the American option. The valuation of American options is therefore
more complicated, since at each time we have to determine the option value and, for each value
of S, whether or not the option should be exercised. This is what is known as a Free Boundary
Problem (FBP). Typically, there exists at each time t a value of S which marks the boundary
between two regions: to one side one should hold the option (continuation region) and to the
other side one should exercise it (early exercise region). We denote this value, which in general
varies with time, by S∗(t), and refer to it as the optimal exercise price. McKean (1965) and van
Moerbeke (1976) showed that this price varies with time until expiration. When we are dealing
with European options we know which boundary conditions to apply and where to apply them,
but with American options we do not know where to apply them. The unknown boundary S∗(t)
is for this reason called free boundary. This situation is common to many financial and physical
problems.

An American option pricing problem can be specified by a set of four constraints:

1. Option value must be greater than or equal to the payoff function.

2. Black-Scholes equation is replaced by an inequality.

3. Option value must be a continuous function of S.

4. Option delta (its slope) must be continuous.

The first of this constraints has already been commented and it was due to the condition of ab-
sence of arbitrage opportunities. So that, if the option value is the same as the payoff function,
the option should be exercised. But if it exceeds the payoff, the option satisfies the Black-Scholes
equation. It turns out that these two statements can be combined into one inequality for the
Black-Scholes equation, which is the second constraint.

Before going ahead, taking the time to maturity date τ = T − t as time variable, we define the
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Black-Scholes operator:

L(U) ≡ ∂U

∂τ
− 1

2σ
2S2∂

2U

∂S2 − rS
∂U

∂S
+ rU.

And our second constraint:
L(P ) ≥ 0. (3)

Is easy to verify it. Consider an American put option, when P = E−S, for S ≤ E, substitution
in (3) gives L(P ) = rE > 0.

The third constraint follows from simple arbitrage. If there were a discontinuity persisted for
more than an infinitesimal time, a portfolio of options only would make a risk-free profit if the
asset price ever reach the value at which discontinuity occurred.

We do not know the position of S∗(t) but we must impose two conditions to: the option value
at S∗(t) and the position of S∗(t). The continuity of the option value, also at the free boundary
(third condition), provides us the first condition:

P (S∗, t) = max(E − S∗, 0), C(S∗, t) = max(S∗ − E, 0). (4)

The fourth constraint, which imposes the continuity of option delta, even at S∗(t), provides us
the second condition. Using (1), (2) and arbitrage arguments it can be shown that the slope is
-1 for puts and +1 for calls. More details at (P.Wilmott et al., 1995, section 7.4).

∂P

∂S
(S∗, t) = −1, ∂C

∂S
(S∗, t) = 1. (5)

In summary, for an American put option, the valuation problem can be written as a free bound-
ary problem as follows. For each time t, we must divide the S axis into two distinct regions.
The first, 0 ≤ S < S∗(t), is where early exercise is optimal and:

P = E − S, L(P ) ≥ 0.

In the other region, S∗(t) < S <∞, early exercise is not optimal and:

P > E − S, L(P ) = 0.

The boundary conditions at S = S∗(t) are that P and its slope (delta) are continuous:

P (S∗, t) = max(E − S∗, 0), ∂P

∂S
(S∗, t) = −1. (6)

We can think of these as being one boundary condition to determine the option value on the
free boundary, and the other to determine the location of the free boundary.

Usually explicit exact solutions of free boundary problems are not available.. The hard question
is not only finding a solution but also find one that include the free boundary. Several references
show us about two different methodologies to find this free boundary: one analytical and other
numerical. About the first one, Geske and Johnson (1984) obtained closed-form solution for
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American put options by a series of compound functions. The numerical approach, which is
widely used, obtain the free boundary discretizing the continuous problem by finite differences.
There is a lot of research about the different numerical schemes but one of the first was Brennan
and Schwartz (1978). This scheme allows different types of finite differences: explicit, implicit,
Runge-Kutta, etc. Other related researches are Hull and White (1990), Duffy (2006), Tangman
et al. (2008), Zhu and Chen (2011) and Kim et al. (2013).

It is clear that free boundary calculus greatly increases the problems difficulty. So, it is worth
the effort of attempting to reformulate the problem in such a way as to eliminate any explicit
dependence on the free boundary. One way is consider a Linear Complementarity Problem
(LCP) and look for an analogy to American pricing problem. For a put option value P , we
have:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
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Payoff
Option value

Figure 3: American put option problem

If P > max(E − S, 0), then BS equation L(P ) = 0.

If P = max(E − S, 0), then BS equation L(P ) > 0.

Therefore we can rewrite the American option pricing problem as a linear complementary prob-
lem: 

L(P )(P −max(E − S, 0)) = 0

L(P ) ≥ 0

P −max(E − S, 0) ≥ 0

(7)

With the following boundary conditions:
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P (S, T ) = max(E − S, 0)

P (0, t) = E

P (S, t) = 0, S →∞

(8)

Even though LCP is not the only way to avoid the calculus of S∗(t). There are alternatives as, for
example, the penalty methods. See Forsyth and Vetzal (2002) and Nielsen et al. (2002). Penalty
method applied on American options is based on the simple idea of replacing the Black-Scholes
inequation (3) by the following Partial Differential Equation (PDE):

∂U

∂t
+ 1

2σ
2U2∂

2U

∂S2 + rS
∂U

∂S
− rU + f(U) = 0 (9)

Where f(U), called penalty term, is a non linear function of U . There are many options to
choose a penalty term. One of them, for American put options, is take a similar form as in
Forsyth and Vetzal (2002):

f(E,S, U) = λ max(E − S − U, 0) =


0 if U > E − S

λ(E − S − U) if U ≤ E − S
(10)

Where λ ≥ 0 and, when λ→∞, the solution satisfy the constraint U − (E − S) ≥ 0. Note that
the penalty term is only active when the option value is less than the payoff and his objective is
push the option value up to the payoff function. Other option is choosing a penalty form as in
Nielsen et al. (2002):

f(U) = εC

U + ε− (E − S)

Where C ≥ rE is a positive constant and 0 < ε� 1 is the regulation term.

It is important to note that the both approaches LCP and penalty method avoid the calculation
of S∗(t) and the complexity that this entails. In our work, we choose a penalty method with
the form (10) to solve American option pricing problems.

1.2 Stochastic volatility

The classic Black-Scholes model makes the strong assumption of constant volatility of the stock
returns. Several works show that volatility has a lot of properties and behaviors, but also that
it is not exactly constant. The principal fact to prove it is the existence of the called "volatility
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smile" (Hull, 2018, chapter 20). This phenomenon arise when we try to fit de Black-Scholes
equation to market option prices. The only unknown parameter in the model, given market
data, is the volatility. So, if we extract from the model the called implied volatility from a group
of options which only differs in the strike price, we will see that this volatilities are not constant.
In fact, if we graph implied volatilities against strike prices for a given expiry yields to skewed
"smile" instead of the expected flat surface.

A related concept is the so called term structure of volatility, which describes how (implied)
volatility differs for related options with different maturities. An implied volatility surface is
a 3-D plot that plots volatility smile and term structure of volatility in a consolidated three-
dimensional surface for all options on a given underlying asset.

Modelling the volatility smile is an active area of research in quantitative finance, and better
pricing models such as extensions of Black-Scholes model partially address this issue. Generally
there are three main approaches.

Local volatility model treat volatility as a function of both the current asset level S(t) and time t.
The concept was developed in continuous-time by Dupire (1994) and in discrete-time by Derman
and Kani (1994). Jump diffusion models, where the stock returns are a non-continuous function
of time, allows big changes to asset prices. The first jump diffusion model was introduced by
Merton (1976). Finally, the Stochastic Volatility (SV) models provides dynamics to volatility or
variance by an Stochastic Differential Equation (SDE). One of the most widely used is Heston
model (1993) which provides a closed-form solution for European options on a non-dividend
paying asset.

SV models are useful because they explain in a self-consistent way why options with different
strikes and expirations have different Black-Scholes implied volatilities. Moreover, unlike alter-
native models that can fit the smile, SV models assume realistic dynamics for the underlying
asset.

Consider the daily log returns of an arbitrary asset. For large periods, the histogram of this
log returns will be highly peaked and fat-tailed relative to the normal distribution. A Q-Q plot
would show us just how extreme the tails of the empirical distribution of returns are relative to
the normal distribution. Another feature that we could see is the so-called volatility clustering:
"large changes tend to be followed by large changes, of either sign, and small changes tend to
be followed by small changes" Mandelbrot (1967).

Fat tails and the high central peak are characteristics of mixtures of distributions with different
variances. This motivates us to model variance as a random variable. The volatility clustering
feature implies that volatility (or variance) is auto-correlated. In the model, this is a conse-
quence of the mean reversion of volatility. Note that simple jump-diffusion models do not have
this property: after a jump, the stock price volatility does not change.

There is a simple economic argument that justifies the mean reversion of volatility. If volatility
were not mean reverting the probability of the volatility of any asset being between 1% and
100% would be rather low. Since we believe that it is overwhelmingly likely that the volatility
in fact lie in that range, we deduce that volatility must be mean reverting.
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In this work we choose a SV model with mean reversion, the famous Heston model, to price
American put options. Heston model, with real-world dynamics is specified as follows:

dS(t) = µS(t)dt+
√
ν(t)S(t)dW1,

dν(t) = κ(θ − ν(t))dt+ σ
√
ν(t)dW2,

dW1dW2 = ρdt.
(11)

With non-negative constants κ, θ, σ and instantaneous correlation ρ ∈ (−1, 1). The variance
process thus follows a square root process, also known as a CIR process from its use as a model
for short-term interest rates by Cox et al. (1985) although the square root process goes back to
Feller (1951). This kind of processes are bounded below by zero and, if the Feller condition is
satisfied: 2κθ ≥ σ2, the boundary cannot be achieved.

Applying Itô lemma and standard arbitrage arguments to (11) we acheieve a partial differential
equation for the price U = U(S, ν, t) of a contingent claim:

∂U

∂t
+ 1

2νS
2∂

2U

∂S2 + ρσνS
∂2U

∂S∂ν
+ 1

2σ
2ν
∂2U

∂ν2 + rS
∂U

∂S
+
(
κ(θ − ν)− φ

)∂U
∂ν
− rU = 0. (12)

Where φ represents the market price of volatility risk, and must be independent of the partic-
ular asset. Heston (1993) specifies that φ = λν for some constant λ, so κ(θ − ν) − λν is the
risk-neutral drift rate. Recall that the risk-neutral drift of the underlying asset is r and not µ.
When it comes to pricing derivatives, it is the risk-neutral drift that matters and not the real
drift, whether it is the drift of the asset or of the volatility.

Thus, in the risk neutral probabilities Heston model is presented as follows:

dS(t) = rS(t)dt+
√
ν(t)S(t) ˜dW1,

dν(t) = κ̄(θ̄ − ν(t))dt+ σS(t) ˜dW2, (13)
˜dW1 ˜dW2 = ρdt,

κ̄ = κ+ λ, θ̄ = κθ

κ+ λ
. (14)

When the contingent claim is an European vanilla put option with strike price E and maturity
at T , the function U(S, ν, ) satisfies the PDE (12) subject to the following boundary conditions:

U(S, ν, T ) = max(E − S, 0), (15)
U(0, ν, t) = E, (16)
∂U

∂S
(∞, ν, t) = −1, (17)

∂U

∂t
(S, 0, t) + rS

∂U

∂S
(S, 0, t) + κθ

∂U

∂ν
(S, 0, t)− rU = 0, (18)

U(S,∞, t) = 0. (19)
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In our problem, the contingent claim is an American put option, so, as we have said, we must
add a penalty term f(E,S, U) equal to (10) that push up the option value U(S, ν, t) to the payoff
function for avoid arbitrages opportunities.

∂U

∂t
+ 1

2νS
2∂

2U

∂S2 + ρσνS
∂2U

∂S∂ν
+ 1

2σ
2ν
∂2U

∂ν2 + rS
∂U

∂S
+ κ̄(θ̄− ν)∂U

∂ν
− rU + f(E,S, U) = 0, (20)

0 < S <∞, 0 < ν <∞, 0 ≤ t < T. (21)

For the writing of this section I have consulted the previous citations and Gatheral (2006), Wong
and Heyde (2006), Pascucci (2011) and Wilmott (2006).

1.3 Option pricing under stochastic volatility

There are some approaches for this kind of problems, such a tree-based method Vellekoop and
Nieuwenhuis (2009), PSOR method Cryer (1971), sparse wavelet Hilber et al. (2005) or finite-
difference methods. As we have said earlier, our problem is summarized in solve the PDE (20)
subject to the boundary conditions (15) to (19).

Note that (20) is a time dependent two-dimensional Diffusion-Advection-Reaction (DAR) equa-
tion that includes mixed spatial derivative. Dealing with finite-difference methods, the presence
of this cross-derivatives involves the existence of negative coefficient terms into the numerical
scheme and deteriorates the quality of the numerical solution. Details at the introduction of
Zvan et al. (2003). Furthermore, finite difference schemes in the presence of a mixed spatial
derivative produces four more terms in the numerical scheme with the corresponding additional
computational cost and possible rounding accumulation error.

For this reasons it seems appropriate transform the problem in order to remove cross derivatives,
however, as it is said in the introduction Zvan et al. (2003): "Such transformations do not ap-
pear to be possible". Despite the previous words, a section of this work addresses to remove this
cross-derivatives in (20) by means of the classical technique for the reduction of second-order
linear PDE in two variables to canonical form. This transformation have consequences, the
problem domain changes and some considerations must be taken into account.

Once we have achieve it, we derive a pure DAR equation with the transformed boundary con-
ditions. Only in some particular cases it is possible to solve the DAR equations exactly, as in
Cokca (2003). For a more general situation, numerical techniques are required and one common
methods is the semi-discretization or also known as Method Of Lines (MOL). This method lies
in discretize the spatial derivatives leaving alone time derivatives and this leads to a system
of Ordinary Differential Equations (ODE) that must be solved numerically. There are many
methods available, such as Runge–Kutta Calvo et al. (2001) or the further time discretization
deriving many types of finite difference schemes Hundsdorfer and Verwer (2003); Kaya (2015);
Macías-Díaz and Puri (2012).

An alternative approach, used in this work, is the exact integration of the ODE system using
the Exponential Time Differencing method (ETD), Cox and Matthews (2002), Company et al.
(2018). ETD scheme results in an integral term that needs to be approximated because it is
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expressed in terms of the unknown solution of the semi-discretized system of ODEs, that it has
been recently treated in de la Hoz and Vadillo (2016). This approach has to afford the compu-
tation challenge of the inverse matrices, not always well conditioned when eigenvalues are close
to zero, Kassam and Trefethen (2005).

When we are dealing with numerical finite difference methods, even the best model may be
wasted with careless analysis, so it is convenient to study the numerical solution stability as all
the stepsizes tend to zero. However, while the spatial stepsize tends to zero the matrix dimension
of the semi-discretized system of ODE grows without end, becoming a mathematical challenge.
Apart from the stability, positivity of the solutions is also a necessary requirement because they
represent prices, so guarantee it is another challenge too.

In this study a MOL method to solve (20), subject to (15)-(19), is presented together with a ETD
scheme. About this last, to avoid the computation of inverse matrices, that arise from solving
the ODE system integral term, we use the accurate Simpson’s rule. Furthermore, taking ad-
vantage of logarithmic matrix norm and exponential matrix properties a stability and positivity
analysis is performed to guarantee conditionally the boundedness of the solution independently
of the semi-discrete system step-size.

2 Transformation of the problem
Firstly, we reformulate the problem with the new variable

τ = T − t, (22)

obtaining the following PDE

∂U

∂τ
= 1

2νS
2∂

2U

∂S2 + ρσνS
∂2U

∂S∂ν
+ 1

2σ
2ν
∂2U

∂ν2 + rS
∂U

∂S
+ κ̄(θ̄ − ν)∂U

∂ν
− rU + f(E,S, U). (23)

Option pricing problems have the payoff as a final condition for t = T . With τ we emphasize
the time remaining until expiration. Now, the problem has the payoff as initial condition, that
is when τ = 0. We want obtain solutions at the present moment, that is when τ = T . So, for
an American put option value U(S, ν, τ) we have the new boundary condition instead of (15):

U(S, ν, 0) = max(E − S, 0). (24)

2.1 Motivation

Recently, the authors Casabán et al. (2011); Company et al. (2009, 2010) used space-centered
forward in time explicit finite difference schemes for the computation and numerical analysis of
several one-dimensional option pricing problems. Following these ideas for the two-dimensional
problem (23) on gets the following:
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U(Si, νj , τn) ≈ uni,j , (25)

∂U

∂τ
(Si, νj , τn) ≈

un+1
i,j − uni,j

k
, (26)

∂U

∂S
(Si, νj , τn) ≈

uni+1,j − uni−1,j
2h1

; (27)

∂U

∂ν
(Si, νj , τn) ≈

uni,j+1 − uni,j−1
2h2

, (28)

∂2U

∂S2 (Si, νj , τn) ≈
uni−1,j − 2uni,j + uni+1,j

h2
1

, (29)

∂2U

∂ν2 (Si, νj , τn) ≈
uni,j−1 − 2uni,j + uni,j+1

h2
2

, (30)

∂2U

∂S∂ν
(Si, νj , τn) ≈

uni+1,j+1 + uni−1,j−1 − uni−1,j+1 − uni+1,j−1
4h1h2

, (31)

where τn = nk, Si = ih1, νj = jh2, k = ∆τ, h1 = ∆S, h2 = ∆ν.

Discretizing (23) when the penalty term is active (U < E−S), one achieves the following scheme:

un+1
i,j =λ(E − Si) + uni,j

(
1− k(λ+ r)− k

h2
1
νjS

2
i −

k

h2
2
νjσ

2
)

+ uni+1,j

(
νjSi
h2

1
+ r

h1

)
k

2Si + uni−1,j

(
νjSi
h2

1
− r

h1

)
k

2Si

+ uni,j+1

(
σ2νj
h2

2
+ κ̄(θ̄ − νj)

h2

)
k

2 + uni,j−1

(
σ2νj
h2

2
− κ̄(θ̄ − νj)

h2

)
k

2

+ k

4h1h2
ρσνjSi

(
uni+1,j+1 + uni−1,j−1 − uni−1,j+1 − uni+1,j−1

)
(32)

Note that in the last term of the right hand side of the scheme (32) there are two negative coeffi-
cients. This is so bad for our numerical scheme because we cannot guarantee that this negativity
spreads all the scheme. Remember that schemes are recursive methods, therefore if we achieve
a negative value our solution will be infected and we cannot allow this because we are talking
about prices. Furthermore, the coefficients that multiply the parenthesis do not allow us ensure
the positivity with some condition for the step-sizes. This fact motivates the transformation of
(23) into an equivalent one where the mixed spatial derivatives term disappears.

2.2 The new variables

As we have said in the introduction, following the classical techniques for reduction of second
order linear PDE in two independent variables to canonical form, see for instance (Garabedian,
1998, chapter 3), we proceed to classify the right-hand side of (23) by the discriminant sign:

∆ = B2 − 4AC = σ2ν2S2(ρ2 − 1), (33)

B = ρσνS, A = 1
2νS

2, C = 1
2νσ

2. (34)
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Assuming correlated variables with −1 < ρ < 1, right side of (23) becomes of elliptic type and
the suitable substitution for eliminating the mixed spatial derivative term is given by solving
the following ordinary differential equation where A = a, B = 2b, C = c:

dν

dS
= b+ i

√
ac− b2

a
=
σ
(
ρ+ i

√
1− ρ2

)
S

= σ(ρ+ iρ̃)
S

, (35)

ρ̃ =
√

1− ρ2. (36)

Solving (35) one gets:

dν = σ(ρ+ iρ̃)dS
S
, (37)

ν + Z0 = σ(ρ+ iρ̃)lnS. (38)

And the integration constant Z0 is related to the new variables by

Z0 = y + ix. (39)

Hence, from (38) and (39) we achieve to our new variables:

x = ρ̃σlnS, y = ρσlnS − ν. (40)

Now, we can express (23) with the new variables x and y by the chain rule. Denoting U(S, ν, τ) =
P (x, y, τ) we derive the following equivalent PDE:

∂P

∂τ
= 1

2 ρ̃
2σ2ν

(
∂2P

∂x2 + ∂2P

∂y2

)
+ ρ̃σ

(
r− 1

2ν
)
∂P

∂x
+
(
ρσ

(
r− 1

2ν
)
− κ̄(θ̄−ν)

)
∂P

∂y
−rP+f(E,S, P ).

(41)

Where, now, f(E,S, P ) is:

f(E,S, P ) = λ max(E − e
x
ρ̃σ − P, 0). (42)

12



We want to remark that the previous substitution not only allows us to ensure positivity but
also has computational advantages. The elimination of cross derivatives simplify our scheme
because the stencil has now five points and not nine. See Figure 4

i, j

i, j+1

i, j-1

i-1, j

i-1, j+1

i-1, j-1

i+1, j

i+1, j+1

i+1, j-1

Figure 4: Five-point versus nine-point stencils

2.3 Artificial Boundary conditions

Now, we should show the new boundary conditions of the transformed problem, but it will
not be necessary. Inside a bounded domain, the PDE numerical solution will not be crucially
affected by artificial boundary conditions, then some simplified strategies can be taken into
consideration, see (Jaillet et al., 1990, proposition 4.1). In this work we choose the artificial
boundary conditions at the bounded numerical domain boundaries to be equal to the values at
τ = 0, i.e. the payoff function, for more see Kovalov et al. (2007). Explicitly:

lim
S→0

U(S, ν, τ) = E, (43)

lim
S→∞

U(S, ν, τ) = 0, (44)

lim
ν→0

U(S, ν, τ) = max(E − S, 0), (45)

lim
ν→∞

U(S, ν, τ) = max(E − S, 0). (46)

We have decided this boundary conditions but other authors as Zhu and Chen (2011) choose
another ones different:

lim
ν→0

U(S, ν, t) = 0, lim
ν→∞

U(S, ν, t) = E. (47)

And other authors as Yousuf and Khaliq (2013) or Düring and Pitkin (2019) use another one.
Typically there are a combination of Neumann boundary conditions. The choice of one or other
set of boundary conditions it is not crucial, the critical fact is that the limits are very far from

13



the area where we want to obtain solutions.

2.4 Domain assumptions

Note that ν from (40) takes the expression in terms of x and y as follows:

ν = ρ

ρ̃
x− y. (48)

The previous expression is very relevant because specifies a relationship between ν and the new
variables. This means that, for a given ν, the new variables are related by a linear equation,
with ρ/ρ̃ as slope and ν as vertical intercept. Thus, the problem transformation changes the
domain, from a square to rhomboid domain and this linear relation is the reason. It is also
relevant that this expression shows us the relation between x and y:

∆y
∆x = m, m = ρ

ρ̃
. (49)

The domain defined at (21) has been changed by the new variables (40). So the domain of the
transformed problem for variables x and τ is:

−∞ < x < +∞, 0 < τ ≤ T. (50)

Remember that ν means the underlying asset variance, so it has to be positive and to ensure
that we achieve from (48) the expression (ρ/ρ̃)x − y > 0. Hence, to ensure this positivity the
variable y must be upper bounded:

−∞ < y < mx. (51)

Thus the domain of the transformed problem is as follows:

D = {(x, y, τ); x ∈ R, y < mx, 0 < τ ≤ T} . (52)

It is easy to see that our new domain (52) is not bounded, so an exact numerical calculus is
impossible. Then, for obtain solutions to the PDE (41), we must choose a bounded numerical
domain where we can solve the PDE by approximations with finite differences. Working with
the original variables, we must choose a rectangle [S1, S2] × [ν1, ν2]. With S1 and ν1 close to
zero and S2 and ν2 far enough from zero, see Kangro and Nicolaides (2000).

Remark 1. Because of the spatial variables transformation (40) a rectangle [S1, S2] × [ν1, ν2] is
transformed into rhomboid ABCD where the sides are described by the following:
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AD =
{

(x, y) ∈ R2 | x = a = ρ̃σlnS1, y = ma− ν, ν1 ≤ ν ≤ ν2
}
,

AB =
{

(x, y) ∈ R2 | a ≤ x ≤ b = ρ̃σlnS2, y = mx− ν2,
}
,

BC =
{

(x, y) ∈ R2 | x = b, y = mb− ν, ν1 ≤ ν ≤ ν2
}
,

CD =
{

(x, y) ∈ R2 | a ≤ x ≤ b, y = mx− ν1
}
. (53)

Remark 2. In case S and ν are fully correlated: |ρ| = 1. From (33) the discriminant ∆ = 0
and the right side of (23) become a parabolic PDE. Following the techniques for reduction to
canonical form, an appropriate substitution is x = S; y = ν − ρσ nd the transformed equation
takes the following form:

∂P

∂τ
= 1

2νx
2∂

2P

∂x2 + rx
∂P

∂x
+
(
σρ

(1
2ν − r

)
− κ̄(θ̄ − ν)

)
∂P

∂y
+ f(E,S, P ) (54)

3 Semi-discretization and ETD scheme
In this section we are going to define the relations between the differents step-sizes of the
discretizations and the numerical methods developed to propose a solution to the problem.

3.1 Discretization

Using the classical step-size discretizations, the transformation (40) and Remark 1, we use a
discretization where the step-sizes of x and y are related by m.

In accordance with (53) we discretize the variable x

xi ∈ [a, b] , h = ∆x, Nx = b− a
h

,

xi = a+ ih, 0 ≤ i ≤ Nx (55)

variable y

yij ∈ [y1 = mx− ν1, y2 = mx− ν2] , mh = ∆y, Ny = y1 − y2
mh

= ν2 − ν1
mh

. (56)

Let us denote
y0 = ma− ν2. (57)

The first element of each row is:
yi0 = y0 + (xi − a)m = y0 + imh. (58)

Then, all the mesh-points with the same i index are:
yij = y0 + (i+ j)mh, 0 ≤ j ≤ Ny. (59)
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And we discretize τ

τn = kn, 0 ≤ n ≤ Nτ , ∆τ = k = T

Nτ
. (60)

Thus, we guarantee that the numerical rhomboid domain includes all the mesh-points of the
discretization. Now, the rhomboid boundary sides are partitioned in the following way:

P
(
AB

)
= {(xi, yi0) | 0 ≤ i ≤ Nx, j = 0} ,

P
(
BC

)
= {(xNx , yNxj) | i = Nx, 0 ≤ j ≤ Ny} ,

P
(
CD

)
=
{
(xi, yiNy) | 0 ≤ i ≤ Nx, j = Ny

}
,

P
(
AD

)
= {(x0, y0j) | i = 0, 0 ≤ j ≤ Ny} . (61)

Figure 5: Rhomboid domain

Let us denote the set of all mesh points by Γ, the subset located at the numerical domain
boundary by ∂Γ and the interior nodes by Γ̇ = Γ− ∂Γ.

3.2 New variable

For these mesh-points, located by their i and j value, we can create a new variable that depends
of both previous variables.

ξD = (xi, yj). (62)

Henceforth we denote yij as yj if the i value is defined previously by xi. All the mesh-points ξ
involve the combinations of xi and yj , so ξ is related with the total number of points and the
variables i and j. For each pair of indices [i, j] the index D is
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D = (Ny + 1)i+ j, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny. (63)

The total number N + 1 of points ξ in the mesh-grid is

N + 1 = (Ny + 1)(Nx + 1). (64)

Then, the index D defined by (63) takes N + 1 integer values, 0 ≤ D ≤ N . Order in the set of
mesh points ξ is established by (63) in the following way:

D = 0 (0, 0) D = Ny + 1 (1, 0) D = Nx(Ny + 1) (Nx, 0)
D = 1 (0, 1) D = Ny + 2 (1, 1) D = Nx(Ny + 1) + 1 (Nx, 1)
D = 2 (0, 2) D = Ny + 3 (1, 2) . . . D = Nx(Ny + 1) + 2 (Nx, 2)

...
...

...
...

...
...

D = Ny (0, Ny) D = 2Ny + 1 (1, Ny) D = (Ny + 1)(Nx + 1) (Nx, Ny)

If we have an arbitrary ξD, taking into account (63), value we can recover the xi and yj corre-
sponding values with the quotient and rest of a division:

D Ny + 1
i j

(65)

Henceforth, for given point ξD, we define the recovered points as xD and yD. We derive xD by
(55):

xD = a+ E

[
D

Ny + 1

]
h, (66)

where E[·] means the integer part of D
Ny+1 division. Knowing that j = D − (Ny + 1)i by we

derive an expression for yD from (56):

yD = ma− ν2 +
(
D + E

[
D

Ny + 1

]
− (Ny + 1)E

[
D

Ny + 1

])
mh. (67)

We can also derive an expression for νD from (48):

νD = ν2 − jmh. (68)

3.3 Derivatives

Once we have defined ξD and we know recover xi, yj and νD we can approximate the spatial
derivatives of (41) using centered differences approximations and ξD.

Knowing that that P (x, y, τ) = P (ξD, τ) and that derivatives for a given function f(x) and
variable x can be approximated by:
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∂f

∂x
≈ f(x+ h)− f(x− h)

2h ,
∂2f

∂x2 ≈
f(x+ h)− 2f(x) + f(x− h)

h2 .. (69)

We can write the derivatives that involves x and y of (41) with ξD. If we are moving over the
x-axis, ξD is affected increasing D around Ny, and over y-axis, ξD increases only one point.
Therefore we can derive the derivatives approximations, omitting τ argument, as follows:

∂2P

∂x2 (ξD) ≈
P (ξD+Ny)− 2P (ξD) + P (ξD−Ny)

h2 , (70)

∂2P

∂y2 (ξD) ≈ P (ξD+1)− 2P (ξD) + P (ξD−1)
(mh)2 , (71)

∂P

∂x
(ξD) ≈

P (ξD+Ny)− P (ξD−Ny)
2h , (72)

∂P

∂y
(ξD) ≈ P (ξD+1)− P (ξD−1)

2mh . (73)

Applying (70)-(73) to (41) and denoting P (ξD±z) as PD±z we achieve the following system of
Ordinary Differential Equations (ODE):

∂P

∂τ
(ξD) =

(
−2αD

h2 −
2αD

(mh)2 − r
)
PD +

(
αD

(mh)2 + γD
mh

)
PD+1 +

(
αD

(mh)2 −
γD
mh

)
PD−1

+
(
αD
h2 + βD

h

)
PD+Ny +

(
αD
h2 −

βD
h

)
PD−Ny + f(PD), (74)

Where

αD =1
2 ρ̃

2σ2νD (75)

βD =1
2 ρ̃σ

(
r − 1

2νD
)

(76)

γD =1
2

(
ρσ

(
r − 1

2νD
)
− κ̄(θ̄ − νD)

)
(77)

3.4 System of ODEs

The previous system (74) can be presented in the following vectorial form

dP

dτ
= A(ξ)P (τ) + f (ξ, P ) . (78)

Where P = P (τ) ∈ RN+1 denotes the vector of all values P0, · · · , PN , such that P =
[P0, . . . , PN ]T and f(ξ, P ) = [f0, . . . , fN ]T is the penalty term vector for every PD. Matrix
A(ξ) = (aDL)ND,L=0 ∈ R(N+1)×(N+1) is a singular matrix whose non-zero entries are
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aD,D = −
(

2αD
h2 + 2αD

(mh)2 + r
)

aD,D±1 = αD
(mh)2 ± γD

mh

aD,D±Ny = αD
h2 ± βD

h

 if ξD ∈ Γ̇. (79)

Note that the rows of A(ξ) corresponding to boundary points ξD ∈ ∂Γ are zero rows.

denoting f(ξ, P )D as the Dth element of vector f(ξ, P ), one gets

f(ξ, P )D =
{

0 if ξD ∈ ∂Γ
f(PD) if ξD ∈ Γ̇ . (80)

Matrix A(ξ) ∈ R(N+1)×(N+1) dimension depends on h:

(N + 1) = (Nx + 1)(Ny + 1) =
(
b− a
h

+ 1
)(

ν2 − ν1
mh

+ 1
)

= O

( 1
h2

)
→∞, h→ 0. (81)

The previous system (78) is equivalent to a non-linear integral equation (semigroups approach,
see Pazy (1983)):

P (τ) = eA(τ−τ0)P (τ0) +
∫ τ

τ0
eA(τ−v)f(ξ, P (v)) dv, τ > τ0. (82)

3.5 ETD method

The Exponential Time Differencing (ETD) method, see Cox and Matthews (2002), lies in develop
numerical methods to solve (82). It is now when we introduce the temporal discretization defined
in (60). For each sub-interval

[
tn, tn+1] of length k, we approximate:

P (τn+1) = eAkP (τn) +
∫ τn+1

τn
eA(τn+1−v)f(ξ, P (v)) dv. (83)

And now, with the new variable s = tn+1 − v, we achieve:

P (τn+1) = eAkP (τn) +
∫ k

0
eAsf(ξ, P (τn+1 − s)) ds. (84)

This exact solution is given by Cox and Matthews (2002)[Section 2.1]. Note that the solution
is also function of himself, therefore we need to make some assumptions to provide solutions.
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Company et al. (2018) propose a first explicit integral approximation by replacing P (τn+1 − s)
by the known value P (τn) corresponding to s = k:

P (τn+1) = eAkP (τn) +
(∫ k

0
eAsds

)
f(ξ, P (τn)) (85)

In accordance with Cox and Matthews (2002)[Section 2.1] the local truncation error is O(k2).

It is well known that when A is a regular matrix,
∫ k

0 e
Asds = A−1

(
eAk − I

)
but this exact

solution can be problematic because of A−1 calculus. A matrix can be singular or ill-conditioned
in this kind of problems (as ours) therefore @A−1 but

∫ k
0 e

Asds exists. So, instead of solving the
integral, we use the accurate Simpson’s rule, see Atkinson (1989).

∫ k

0
eAsds = kϕ(A, k) +O(k5), ϕ(A, k) = 1

6
(
I + 4eA

k
2 + eAk

)
. (86)

Letting us denote P (τn) as Pn we propose the numerical solution to (41) by the following
scheme:

Pn+1 = eAkPn + k ϕ(A, k) f(ξ, Pn). (87)

4 Positivity and stability
In this section we pay attention to the scheme stability and positivity, i.e. that the numerical
solution Pn remains bounded at each point.

Letting us denote the infinite vector norm as:

For v ∈ Rn,
‖ v ‖∞= max

n
|vn|. (88)

We are going to show that ‖ Pn ‖∞≤ E, 0 ≤ n ≤ Nt, where E (the strike price) is independent
of the spatial and temporal step-size h and k, and that for each level n also Pn ≥ 0. For the
proposed scheme, stability analysis is a challenging task, because the matrix A dimension grows
as step-sizes decrease.

The positivity can be assured if all the matrix elements of eAk and ϕ(A, k) are positives. Before
starting and for the sake of clarity, in this work we recall some definitions and results that might
be found in Kaczorek (2002). A matrix A ∈ Rn×n is called Metzler if its off-diagonal elements
are non-negative i.e. ai,j ≥ 0, 1 ≤ i 6= j ≤ n.

If A is Metzler, then eAt ≥ 0 for t ≥ 0. It can be showed taking a0 = min
D

aD,D :
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eA = ea0I eA−a0I ≥ 0, because
ea0I = I ea0 ≥ 0 and
eA−a0I ≥ 0.

(89)

4.1 Positivity

Hence if we demonstrate that our matrix A is Metzler, we can assure that eAt ≥ 0 and
ϕ(A, k) ≥ 0. To do it, we take aD,D±1 and aD,D±Ny from (79) and we study how they change
with h. If the stepsize h is rightly select the coefficients will be positive, and A will be Metzler:

aD,D±1 = 1
mh

(
αD
mh
± γD

)
, aD,D±Ny = 1

h

(
αD
h
± βD

)
, (90)

aD,D±1 ≥ 0⇒
{

αD
mh + γD ≥ 0
αD
mh − γD ≥ 0

{
−αD ≤ mhγD
αD ≥ mhγD

, (91)

− αD ≤ mhγD ≤ αD, mh |γD| ≤ αD, h ≤ αD
m |γD|

. (92)

Analogously, aD,D±Ny ≥ 0⇒ h ≤ αD
|βD|

. (93)

We can combine both conditions to h by

β = max
D
|βD|, γ = max

D
|γD|, α = min

D
αD = 1

2 ρ̃
2σ2ν1, (94)

δ = max {β, mγ} , (95)

h ≤ α

δ
. (96)

Therefore taking an h that satisfy (96) we are in position to affirm that the numerical solution
positivity is guaranteed.

4.2 Some definitions and properties

Before talking about the stability we should explain some concepts. It is well known that the
exponential matrix norm is bounded by the exponential of logarithmic norm µ[A], see Dahlquist
(1961):

‖eAk ‖ ≤ ekµ[A]. (97)

Denoting the real part of a complex number x by R(x), µ∞[A] can be calculated as follows, see
C.A. Desoer (1975)[p.33],

21



µ∞[A] = max
i

R(aii) +
n∑
j 6=i
|aij |

 . (98)

Knowing the coefficients of matrix A and their sign (79), we can see that the row’s sum only
can have two values:

N+1∑
j=1

aij =
{

0 if ξD ∈ ∂Γ
−r if ξD ∈ Γ̇ , i = 1, 2 . . . N + 1. (99)

So, from (98) one gets µ∞[A] = 0, therefore from (97) ‖ eAk ‖∞ ≤ e0 = 1 and from (86)
‖ ϕ(A, k) ‖∞ ≤ 1. We can see that matrix A has some zero rows, and their corresponding
rows in eAk have only one entry equal to 1 and 0 at the others, consequently we can affirm
‖eAk ‖∞=‖ϕ(A, k)‖∞≥ 1. Then, as we have shown inequality in both directions we can affirm:

‖eAk ‖∞=‖ϕ(A, k)‖∞= 1. (100)

This result will be important to future discussions.

The non-negativity of Pn follows from the Metzler matrix property, that is the non-negative
of eAk and by extension of ϕ(A, k). The boundedness solution PnD ≤ E is proven using the
induction principle.

4.3 Stability

Let us represent each row i of Pn+1 in (87) as a function gi with arguments (Pn0 , · · · , PnN )

Pn+1
i = gi(Pn0 , · · · , PnN ) = (eAk)iPn + kϕ(A, k)i f(ξ, Pn), 0 ≤ i, j ≤ N, 0 ≤ n ≤ Nτ . (101)

Assuming the boundedness of the derivative
∣∣∣∂f(ξi,P )

∂P

∣∣∣ ≤ λ, ξi ∈ Γ̇, 0 ≤ P ≤ E, then from
non-negativity of eAk and ϕ(A, k) one gets

∂gi
∂Pnj

≥ (eAk)ij − λ k ϕ(A, k)ij , 0 ≤ i, j ≤ N. (102)

Letting us denote ψ(A, k) = eAk − λ k ϕ(A, k) (lower bound derivative) and the vector function
gi(Pn0 , · · · , PnN ) as [g0, . . . , gN ]T . Then from (102) the Jacobian matrix ∂g

∂Pn satisfies

∂g

∂Pn
≥ ψ(A, k). (103)
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Note that the non-negativity of ψ(A, k) guarantees the non-negativity of ∂g
∂Pn also, and hence,

gi increase in each direction Pnj . Thus, the next step is verify ψ(A, k) ≥ 0.

Under the assumption (96), B = A− a0I verifies B ≥ 0 in a similar way as in (89). Taking into
account eAk = ea0keBk and eBk = I +

∑∞
s=1

Bsks

s! , we can develop ψ(A, k) in terms of B powers
and write it as

ψ(A, k) = φ0(k) +
∞∑
s=1

φs(k)B
sks

s! . (104)

Where

φ0(k) =ea0k − λ k

6
(
1 + 4ea0

k
2 + ea0k

)
, (105)

φs(k) =ea0k − λ k

6

( 4
2s e

a0
k
2 + ea0k

)
. (106)

Note that φs(k) > φ0(k) for s ≥ 1, then if we show φ0(k) ≥ 0 this means ψ(A, k) ≥ 0 too. Then,
by a Taylor expansion of φ0(k), with 0 < ξ < k, we can write

φ0(k) = φ0(0) + φ′0(0)k + φ′′0(ξ)
2 k2. (107)

Where

φ0(0) = 1, (108)
φ′0(0) = a0 − λ, (109)

φ′′0(ξ) = a2
0 + λ

3 |a0|ea0
ξ
2 + λ|a0|

6 (2− |a0|ξ)(ea0ξ + ea0
ξ
2 ). (110)

Note that the two first terms sum of φ0(k) Taylor expansion is positive if k < 1
λ+|a0| . By (??)

we know that |a0| is

|a0| = 2αm
( 1
h2 + 1

(mh)2

)
+ r (111)

where
αm = max

D
αD (112)
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So, the final stability condition is

k ≤ h2

(λ+ r)h2 + 2αm
(

1+m2

m2

) (113)

Condition (113) implies (2 − |a0|ξ) > 0, so φ′′
0 (ξ)
2 k2 > 0. Thus, Jacobian matrix ∂g

∂Pn is non-
negative and our scheme, initially bounded:

0 ≤ P 0 =
[
P 0

0 , · · · , P 0
N

]T
≤ [E,E, · · · , E]T . (114)

For the sake of clarity we recall the definition of schemes ‖ · ‖∞-stable. We say that the scheme
(87) is ‖ · ‖∞-stable on our domain Γ× [0, T ] if for every domain partition we can verify:

‖ Pn ‖∞≤ K, 0 ≤ n ≤ Nτ . (115)

For some positive constant K independent of h, k, and n.

4.4 Induction principle

Assuming 0 ≤ Pni ≤ E, 0 ≤ i ≤ N and conditions (113) and (96) are satisfied it is guaranteed
that matrix A is Metzler and f(ξ, Pn) ≥ 0, so Pni ≥ 0. In addition, as ∂g

∂Pn ≥ 0 every gi is
increasing in each direction Pnj : gi(Pn0 , · · · , PnN ) ≤ gi(E, · · · , E):

Pn+1
i = gi(Pn0 , · · · , PnN ) = (eAk)iPn + kϕ(A, k)i f(ξ, Pn)
≤ gi(E, · · · , E) = (eAk)iE + kϕ(A, k)i f(ξ,E). (116)

where E = [E, · · · , E]T .

Thus from (116) we can say

(eAk)iE = E
N+1∑
j=1

(eAk)ij
Metz.= E

N+1∑
j=1

∣∣∣(eAk)ij∣∣∣ ≤ E ‖ eAk ‖∞≤ E ekµ∞[A] = E, (117)

because

µ∞[A] = max
i

aii +
∑
j 6=i
|aij |

 = max {0, −r} = 0 (118)
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and
f(ξ,E) = 0. (119)

Then,

Pn+1
i ≤ E, 0 ≤ i ≤ N, 0 ≤ n ≤ Nτ − 1. (120)

And finally we get

‖ Pn ‖∞≤ E. (121)

Note that we have shown not only the positivity and stability of the solution but also that the
solution remain between zero and the strike price as it is expected dealing with put options.

Summarizing all above, the main result of the paper is established as follows.

Theorem 1 With the previous notation under conditions (96) and (113) the numerical solution
Pn of the scheme (87) is non-negative and ‖ · ‖∞-stable, with ‖ Pn ‖∞≤ E for 0 ≤ n ≤ Nτ .

5 Numerical experiments
In this section we present numerical results for American put options with three sets of param-
eters. We compare it with other authors and we provide some useful discussions. The prices are
presented for the asset values S = 8, 9, 10, 11, 12, for variance values ν = 0, 0625; 0, 25 and the
common parameters presented at Table 1. To obtain solutions we interpole linearly the ν values
and for asset values we use a cubic spline interpolation. We also plot the numerical solutions
for two sets of parameters at Figures 6 and 7.

Table 1: Common parameters

Parameters Values

S1 0,25
S2 40
ν1 0,002
ν2 1,2
λ 200
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5.1 Results comparison

Table 2: Comparison of the computed option prices under set 1

E = 10; T = 0, 25; r = 0, 1; κ = 5; θ = 0, 16; σ = 0, 9; ρ = 0, 1

ν value (Nx, Ny, Nτ )
Asset values

8 9 10 11 12

ν = 0, 0625 (65, 169, 5000) 1,9941 1,1020 0,5139 0,2122 0,0843
Yousuf and Khaliq (2013)
(400,80,20)

1,9958 1,1051 0,5167 0,2119 0,0815

Clarke and Parrott (1996) 2,00 1,108 0,5316 0,2261 0,0907
Ikonen and Toivanen (2007)
(4096,2048,4098)

2,0000 1,10763 0,52004 0,21368 0,08205

Oosterlee (2003) (256,256) 2,000 1,107 0,517 0,212 0,0815
Persson and von Sydow (2010)
(81,21,21)

1,9976 1,10768 0,51837 0,21424 0,08193

Zhu and Chen (2011)
(100,100,50000)

2,0000 1,0987 0,5082 0,2106 0,0861

Zvan et al. (1998) (177,103) 2,000 1,1076 0,5202 0,2138 0,0821

ν = 0, 25 (65, 169, 5000) 2,0744 1,3291 0,7920 0,4467 0,2437
Yousuf and Khaliq (2013)
(400,80,20)

2,0760 1,3316 0,7945 0,4473 0,2423

Clarke and Parrott (1996) 2,0733 1,3290 0,7992 0,4536 0,2502
Ikonen and Toivanen (2007)
(4096,2048,4098)

2,0784 1,3336 0,7960 0,4483 0,2428

Oosterlee (2003) (256,256) 2,0790 1,3340 0,7960 0,4490 0,2430
Persson and von Sydow (2010)
(81,21,21)

2,0777 1,33219 0,79377 0,44621 0,2417

Zhu and Chen (2011)
(100,100,50000)

2,0781 1,3337 0,7965 0,4496 0,2441

Zvan et al. (1998) (177,103) 2,0784 1,3337 0,7961 0,4483 0,2428
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Figure 6: Numerical solutions with set 1

It can be seen at Table 2 that our results are competitive and efficient in comparison with other
methods . We want to highlight that with this set of parameters (which has been used for the
past thirty years) we do not take advantage of all the potential of the method. Note that |ρ|
is close to zero and that is a situation where the cross-derivative term ∂2U

∂S∂ν of (23) has not a
significant influence in the numerical solution. So it looks like if our effort to remove this term
is useless with this set of parameters. This fact motivates us test the method potency providing
solutions with a higher |ρ| that we do not found in the literature at Table 3.

Table 3: New option prices

E = 10; T = 0, 25; r = 0, 1; κ = 5; θ = 0, 16; σ = 0, 9; ρ = 0, 7

ν value (Nx, Ny, Nτ )
Asset values

8 9 10 11 12

ν = 0, 0625
(150,57,2500)

2,0022 1,1382 0,5163 0,1573 0,0317
ν = 0, 25 2,1160 1,3665 0,7937 0,4062 0,1803

27



S

0 5 10 15 20 25 30 35 40

volatilit
y

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Op
tio

n 
va

lu
e

0

2

4

6

8

Figure 7: Numerical solutions with high |ρ|

5.2 Greeks

We also compute the first order greeks ∆ = ∂P
∂S and ν = ∂P

∂ν for the set 1 values:

S0 5 10 15 20 25 30 35
volatility

0.0
0.2

0.4
0.6

0.8
1.0

1.2

Delta Value

1.0

0.8

0.6

0.4

0.2

Figure 8: ∆ values

As we can see ∆ is, for the first S values close to -1. When S is arriving to the at the money
area (S ≈ E), ∆ moves fast to zero, and then remain there for big values of S.
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Figure 9: ν values

We can see that, in general, if we are not close to the at the money (ATM) area ν is close to
zero. But in the ATM area ν is positive and progressively decays. We can see that for a big
volatility values in the ATM zone ν ≤ 0. This is because we impose as a boundary condition
the payoff function, the to converge to the payoff function that is necessary.

In general, both greeks behave as we expect.

5.3 Numerical convergence

Another important issue for a numerical scheme is the study of the numerical convergence. To
study it, we present a table with the results computed for a sequence of time stepping starting
with k = 0.125 and keep on halving. "Difference" in the convergence table is obtained by
‖ P2k − Pk ‖∞, where Pk and P2k are the consecutive solutions taking values 2k and k for the
time step. "Ratio" is defined as the ratio of consecutive differences: ‖P4k−P2k‖∞

‖P2k−Pk‖∞
. "Order" is

computed as follows:

ε1 =‖ P4k − P2k ‖∞
ε2 =‖ P2k − Pk ‖∞

}
⇒ α = log ε1 − log ε2

log 2 . (122)
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Table 4: Numerical convergence table for successive values of k

k Difference Ratio Order

0,0125 - - -
0,0625 2,87874 - -
0,03125 0,613901 4,68926 2,22936
0,015625 0,108354 5,66572 2,50226
0.0078125 0,0196251 5,52117 2,46497

It is important to show what happened if k is to high and we do not respect (113). We can see
it at Figure 10
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Figure 10: Numerical solutions with high k

Note that there are some asset values that surpass the strike (E = 10), then this solution does
not satisfies the boundedness condition and implies arbitrage opportunities.

6 Conclusions
In this work we have develop a numerical method to solve American options pricing prob-
lems under stochastic volatility, we solve the non-positivity problem of cross-derivatives with
the transformation (40). With the semi-discretization approach and the ETD method and we
achieve a numerical scheme, whose positivity and stability is guaranteed with (96) and (113).
Comparing the results with other authors we can say that we have develop a competitive and
efficient method, but we also test our method and provide solutions for the case where |ρ| is
high, that is a case where any reference of the last thirty years have prove his competitiveness.

In future studies, it can be interesting implement extensions to the Heston model. Integrating
the Bates model, which allow jumps to asset returns. Or the so-called SVCJ model, which allows
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jumps both asset returns and volatility.

Table 5: Models for future works

Model Asset model Volatility model

Heston dS = µSdt+
√
νSdW1 dν = κ(θ − ν)dt+ σ

√
νdW2

Bates dS = µSdt+
√
νSdW1 + dJ dν = κ(θ − ν)dt+ σ

√
νdW2

SVCJ dS = µSdt+
√
νSdW1 + dJ1 dν = κ(θ − ν)dt+ σ

√
νdW2 + dJ2
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