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Abstract

Over the last few years, after the credit crunch, interest rates derivatives

pricing has become an arduous task due to the negative interest rates

policy introduced by the European Central Bank. The benchmark SABR

model has evolved to cope with this environment. As is widely known,

SABR formulas have approximation errors for extra low or even nega-

tive strikes leading to arbitrage opportunities. Thesis’s aim to provide a

detailed description about the Arbitrage-Free SABR framework to deal

with the arbitrage trouble including a full review of previous approaches,

partial differential equations and market’s caps and swaptions are used to

test the Arbitrage-Free SABR context.
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Introduction

The negative interest rates policy issued by the European Central Bank is a very con-

troversial issue that currently affects banks and financial markets in general. With

this policy, banks must face to make profits due to their business model and, on the

other hand, all models in order to value interest rate derivatives were designed for

positive interest rates. An interest rate is the price of money, and therefore it was

never thought that the price of money could be negative. In this sense, all valuation

models had to be rethought to see how the context of negative interest rates would

affect the price of financial derivatives on interest rates.

The SABR model designed by Hagan et al. in 2002 is the star model for valuing

financial products such as caps, floors or swaptions. Its motivation was to try to

correct the well-known problem of the volatility smile. In this way, the objective of

this model is to fit the volatility smile for the simplest options on the market, such as

vanilla options. Therefore, in this model an implied volatility can be obtained from

market prices.

The approach provided by them presents a problem related to such implied volatil-

ity. This matter comes from Taylor’s approximations, and they did not take into

account that for certain parameters of the SABR model, such as the expiration of

an option or very low strikes (even negative), the implied volatility obtained was not

correct leading to arbitrage opportunities. The way to determine the failure is by

means of the probability density function of the interest rate at maturity. That is, for

options with long maturity and with strikes close to zero or even negative as is the

current context, this density function is negative leading to arbitrage opportunities

in the market.

The main objective of this Thesis is to develop a complete understanding of this is-

sue and to present in detail the solution to the problem which consists of an approach

based on solving a partial differential equation using the Crank-Nicholson scheme.

This approach was developed by Hagan et al. (2014) and this Thesis aims to test this

1



Introduction 2

approach with market data for caps and swaptions.

This MSc Thesis is divided into two main parts. The first one focuses on the

theory. Chapter 1, places the reader in the current context of interest rates,the policy

adopted by the European Central Bank and the impact on the interest rate derivatives

valuation. Chapter 2 introduces the mathematical concepts necessary to develop the

interest rate models which will be presented in Chapter 3, reviewing different previous

models. Finally, in Chapter 4 the Arbitrage-Free SABR model proposed by Hagan

et al. in 2014 is discussed in detail.

The second one is devoted to the practical part, starting with chapter 5 describ-

ing the data used in this Thesis. Chapter 6 comments on some detailed procedures

that are prior to solving the partial differential equation (PDE). All calculations in

this Thesis have been made in Python 3.7 programming language, including the cal-

ibration procedure and the resolution of the PDE. In addition, the Crank-Nicholson

scheme is tested with market data for caps and swaptions. Conclusions are presented

in the final part where the work performed is commented and suggestions of possible

lines of research or extensions to this work are discussed, followed by two appendices

with some explanatory theoretical notes.



Part I

Theoretical Background
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Chapter 1

Context of Negative Interest Rates

In this chapter we will review some history about why a negative interest rate en-

vironment has been created in Euro zone. This is a concept which was developed a

long time ago and due to the credit crunch in mid 2007, the European Central Bank

decided to implement this negative interest rate policy.

1.1 History

A first idea of imposing a negative interest rate comes from an economist called Sil-

vio Gesell (1862-1930) who was born in Germany and grew up in Argentina. The

main concept of his theory is about fixing taxes on money, specifically, he created a

special money apart from the legal tender in circulation with the aim of spurring the

economy and the important issue is that the special money had an expiration date.

In this way, as time was going by, the money was becoming worthless and therefore

merchants had to keep money circulating.1

By 1970s, the Swiss National Bank introduced negative interest rates to weaken

swiss francs for the first time. Switzerland had a stable currency while the U.S and

other countries had very unstable currencies. In this manner, investors saw the swiss

franc as a safe-haven currency, they started buying francs and it was strengthened

making exports less competitive. For that reason, a negative interest rate environ-

ment was necessary to make the swiss franc an unstable currency and purchases of

francs less desirable.2

In recent years, because of the financial crisis, several central banks of different

1See [1] for further information.
2The interested reader can find more details in (for example) [2] or [3].

4



1.2. Causes and impact on the economy 5

countries have adopted negative rate policies. Some of those banks will be chrono-

logically listed below:3

1. Riksbank: Sweden’s central bank was the first bank to try out with negative

interest rates policy by fixing the rate payed on commercial bank depositis to

-0.25% in 2009.

2. Danmarks Nationalbank (DNB): In July 2012 this bank set the interest

rate to -0.20% and a few years later in 2015 it went this rate down to -0.75%.

3. Swiss National Bank (SNB): It introduced the negative interest rate policy

(-0.25%) by December 2014 and one month later the rate was reduced down to

-0.75%.

4. European Central Bank (ECB): By 2014, the European Cental Bank de-

cided to fix the interest rate to -0.2% and it has been decreasing until it reached

the minimum historical of -0.4% since 2015.4 Currently, the ECB announced

on June 6 20195 that this rate will keep the level of -0.4% at least through the

first half of 2020.

5. Bank of Japan (BoJ): Japan was the last country to adopt the negative

interest rate policy by 2016 and it was set to -0.1%. Currently, BoJ keeps its

monetary policy to -0.1%.6

1.2 Causes and impact on the economy

It is a fact that financial crisis, which occurred in August 2008, was due to a combina-

tion of factors affecting the whole financial system. One of the main factors was the

credit risk, a significant element that had not been taken into account at that point.

That is, banks created huge sums of new money by making loans without taking into

consideration whether the loan was going to be repaid by the counterparty. As a

result, largest financial companies collapsed and the credit standards became a key

3See https://www.bankofgreece.gr/Pages/en/Bank/News/Speeches/DispItem.aspx?Item_

ID=347&List_ID=b2e9402e-db05-4166-9f09-e1b26a1c6f1b for additional information about de-
cisions has been made.

4It is necessary to bear in mind that ECB has three official interest rates: the interest rate on
the main refinancing operations, the interest rates on the marginal lending facility and the interest
rates on the deposit facility. The interest rate at which we refer here in the text is on the deposit
facility.

5The interested reader can find the press release at https://www.ecb.europa.eu/press/

pressconf/2019/html/ecb.is190606~32b6221806.en.html.
6The press release issued on March 15 2019 can be found at https://www.cnbc.com/2019/03/

15/asia-markets-us-china-trade-boj-decision-brexit-in-focus.html.

https://www.bankofgreece.gr/Pages/en/Bank/News/Speeches/DispItem.aspx?Item_ID=347&List_ID=b2e9402e-db05-4166-9f09-e1b26a1c6f1b
https://www.bankofgreece.gr/Pages/en/Bank/News/Speeches/DispItem.aspx?Item_ID=347&List_ID=b2e9402e-db05-4166-9f09-e1b26a1c6f1b
https://www.ecb.europa.eu/press/pressconf/2019/html/ecb.is190606~32b6221806.en.html
https://www.ecb.europa.eu/press/pressconf/2019/html/ecb.is190606~32b6221806.en.html
https://www.cnbc.com/2019/03/15/asia-markets-us-china-trade-boj-decision-brexit-in-focus.html
https://www.cnbc.com/2019/03/15/asia-markets-us-china-trade-boj-decision-brexit-in-focus.html


1.3. Impacts on interest rate derivatives pricing 6

factor of the market risk.

To avoid a similar situation in the future, policy makers took matter into their

own hands by imposing negative interest rates to banks for depositing its money at

the central banks. These exceptional measures were managed by the ECB (among

other central banks reviewed in the previous section) and it was about fixing a nega-

tive value (since 2014) for the deposit facility rate, below the theoretical lower bound

of zero percent.7 The main goal of this measure consists of simulating the economy

growth by encouraging banks to lend or invest excess reserves rather than experience

a guaranteed loss. Namely, a negative interest rate environment will reduce the costs

to borrow for companies and households, driving demand for loans and incentivizing

investment and consumer spending.8

Due to this measure, some banks (for instance, Royal Bank of Scotland in 2016,9

some German banks in 2016,10 BBVA and Santander Banks in 201611) have also

charged a negative interest rate to big and corporative clients with large balances.

1.3 Impacts on interest rate derivatives pricing

The use of financial derivatives has experienced a significant growth as shown in

BIS.12 The trading total amount (mainly in Europe) was about $72 trillion in 1998

in terms of notional amount for FX, equity and interest rate derivatives and it rose

up to $594 trillion in the half first of 2018.

7In a sense it is a theoretical lower bound because this means that banks would have to pay to
keep their excess reserves stored at the central bank rather than receive positive interest income. In
other words, a lender can choose not to lend or just participate on any funds and this is comparable
with getting an interest rate of zero. This is not the best idea, but better than an interest rate below
zero.

8Currently, this is a controversial issue becuase there are some risk associated with a negative
interest rate environment. If banks penalize households for saving, that might not necessarily en-
courage retail consumers to spend more cash. Instead, they may store cash at home. On the other
hand, since it is logistically difficult and costly to transfer and store huge sums of physical cash,
some banks are paying negative interest on their deposits. In [4], recent literature that deals with
how negative interest rates can badly affect banks is reviewed and an empirical study about the sig-
nificance of the various channels through which negative interest rates may cause an adverse effect
on net interest income within the euro area is summarised. This is just for further information and
it is a topic that goes beyond the scope of this Thesis.

9See for more information https://www.theguardian.com/business/2016/aug/22/

rbs-charging-customers-cash-negative-interest-rates
10The briefing can be found at https://business.financialpost.com/news/economy/

german-bank-starts-charging-customers-to-hold-their-cash-in-negative-interest-rate-world
11The press information is at https://www.elperiodico.com/es/economia/20160824/

banca-espanola-cobrar-depositos-grandes-clientes-5341519.
12https://www.bis.org/statistics/about_derivatives_stats.htm

https://www.theguardian.com/business/2016/aug/22/rbs-charging-customers-cash-negative-interest-rates
https://www.theguardian.com/business/2016/aug/22/rbs-charging-customers-cash-negative-interest-rates
https://business.financialpost.com/news/economy/german-bank-starts-charging-customers-to-hold-their-cash-in-negative-interest-rate-world
https://business.financialpost.com/news/economy/german-bank-starts-charging-customers-to-hold-their-cash-in-negative-interest-rate-world
https://www.elperiodico.com/es/economia/20160824/banca-espanola-cobrar-depositos-grandes-clientes-5341519
https://www.elperiodico.com/es/economia/20160824/banca-espanola-cobrar-depositos-grandes-clientes-5341519
https://www.bis.org/statistics/about_derivatives_stats.htm
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The new context has several effects on the financial system. Since an interest rate

is a price, none expected it would have reached negative levels, hence none needed to

explicit a shared way to handle negative rates in collaterals,13 derivative contracts,

bonds and savings.

The consolidated Black (76)14 framework has become unfeasible for interest rate

option valuation, since its assumptions of a log-normal distribution of the underlying

interest rates to be modeled implies positive values which does not capture the cur-

rent situation. Moreover, new models not only has been used to deal with negative

interest rates but also to deal with the “smile problem”. The trouble with these new

models is that in negative interest rates environment, the derivatives pricing reveals

arbitrage opportunities.

The previous paragraph contains a strong motivation for the development of this

Thesis: derivatives pricing within a negative interest rate environment. In Chapter

3 a full detailed list of models which deal with negative interest rates is studied.

Problems and benefits of each model in Chapter 4 will be discussed and an approach

(Arbitrage-Free SABR) that copes with arbitrage opportunities will be studied in

detail.

1.4 EURIBOR/LIBOR role

We have been talking about negative interest rates, but it is time to clarify what the

negative interest rate really is in the market and why it is relevant in global economy.

They are the EURIBOR and LIBOR rate.15

The EURIBOR is the acronym for Euro Interbank Offered Rate and it is based

on the average interest rates at which main european banks borrow funds from one

another for short-term loans. In total there are 6 different Euribor rates depending

13A collateral is very briefly adding an extra money to the price of a derivative in order to mitigate
the credit risk.

14Model which will be studied in Section 3.2.
15These interest rates, in general, the Interbank Offered Rates (IBORs) will be gradually replaced

from October 2019 by a set of overnight risk-free rates (RFRs) in order to achieve more robust and
credible reference rates. The transition will start with overnight rates, which will be replaced by the
definitive euro short-term rates (ESTER). On the website https://www.bis.org/publ/qtrpdf/r_

qt1903e.htm there is a full report dated March 2019 about this (controversial) issue and the reader
can refer to this page for further information.

https://www.bis.org/publ/qtrpdf/r_qt1903e.htm
https://www.bis.org/publ/qtrpdf/r_qt1903e.htm
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on its matuirities: 1 day, 1 week, 1 month, 3 months, 6 months and 12 months. Cur-

rently (on date 16 June of 2019), they are all in negative levels and these data are

published every day morning.

The LIBOR stands for London Interbank Offered Rates and it is the rate of

interest that a set of major banks change each other for short-term loans. It is an

indication of the average rate at which contributor banks can borrow money in the

London interbank market for a particular period and currency.

As we can note, EURIBOR and LIBOR are comparable rates.16 The main differ-

ence is that LIBOR is calculated for 5 currencies (the US dollar, the euro, the British

pound, the Japanese yen and the Swiss franc). The Libor (euro) rate is (on date 17

June 2019) in negative levels for all its maturities. The Euribor/Libor rates are used

worldwide in a extensive variety of financial products such as interest rate swaps,

interest rate futures/options and swaptions.17 Banks also use the Libor interest rates

as the base rate when setting the interest rates for loans, savings and mortgages.18 In

such a way, Euribor/Libor rate will be modelled throughout this Thesis by means of

different models that allow negative interest rates until we reach the final approach

Arbitrage-Free SABR. From now on, if we refer to Libor rate, we will actually refer

to any of these interbank rates.

In the following chapter, we will introduce some key mathematical aspects in

order to develop the rest of the Thesis.

16For more information about the group of banks that participate in the formation of the EURI-
BOR/LIBOR rates and more precise details about these rates the interested reader can find it at,
for example, https://es.euribor-rates.eu/que-es-el-euribor.asp

17Some of these instruments will be explained later in Section 2.2.
18See https://www.global-rates.com/interest-rates/libor/libor-information.aspx for

more information.

https://es.euribor-rates.eu/que-es-el-euribor.asp
https://www.global-rates.com/interest-rates/libor/libor-information.aspx


Chapter 2

Preliminaries

In this chapter we present some basic mathematical definitions which are needed to

develop the main argument of this Thesis. To carry it out we have mainly based

on [5] with some support of [6]. We review some basic definitions about different

kind of interest rates, the single-curve and multi-curve approach, the main interest

rate derivatives, stochastic processes focus on change of numeraire and derivatives

valuation under a certain measure and finally some concepts about arbitrage and

the risk neutral probability density function which plays a significant role in the

development of this Thesis.1

2.1 Basic definitions

We will start introducing the first mathematical object that represents a riskless

investment: a bank account or money market account.

• Bank account (Money market account). We define B(t) to be the value

of a bank account at time t ≥ 0 as

B(t) = B(0) exp

(∫ t

0

r(s)ds

)
, (2.1)

which is the solution of the differential equation dB(t) = r(t)B(t)dt and B(0)

is the initial amount invested at time t = 0.

• Numeraire. A numeraire N(t) is an asset on the market having a strictly

positive value and not paying any dividend. For instance, the bank account

N(t) = B(t) is a numeraire. In other words, a numeraire can normalize the

price of any financial product as follows: if P (t) is the price of a financial prod-

uct, then its price expressed in terms of the numeraire is P (t)
N(t)

.

1An experienced reader can skip this chapter and a standard reader should follow (for example)
[7] for some extra details.

9



2.1. Basic definitions 10

The discounted prices P (t)
B(t)

correspond to prices expressed in a particular choice

of numeraire: the bank account. As it is well known, in the Black-Scholes-

Merton framework, under the risk neutral measure Q the discounted prices of

assets are martingales. Measure Q is actually the martingale measure associ-

ated to the numeraire choice B(t). We make special emphasis in this issue,

becuase the choice of a specific numeraire is key to price different interest rate

derivatives in a simple way such as caps, floors or swaptions.2

• Zero-coupon bond. A T -maturity zero-coupon bond (pure discount bond)

is a contract that guarantees its holder the payment of one unit of currency at

time T , with no intermediate payments. The contract value at time t < T is

denoted by P (t, T ). Clearly, P (T, T ) = 1 for all T .

• Stochastic discount factor. The (stochastic) discount factor D(t, T ) between

two time instants t and T is the amount at time t that is equivalent to one unit

of currency payable at time T , and is given by

D(t, T ) =
B(t)

B(T )
= exp

(
−
∫ T

t

r(s)ds

)
. (2.2)

The randomness comes from the stochastic distribution of r(t).3

• Time to maturity. The time τ = T − t is the amount of time (in years)

from the present time to the maturity time T > t. There are several ways

of measuring the remaining time between dates t and T . For this reason, the

following concept comes below.

• Day-count convention. The day-count convention δ(t, T ) is defined as the

measure between t and T . The most common day-count conventions are: Ac-

tual/365, Actual/360 and 30/360. It is understood that the reader is familiar

with this concept but if needed to refresh, the reader could consult, for example,

[8]. However, otherwise speaking, we could say that day-count convention is a

way to count days among two future payments.

• Tenor. We define the tenor of an interest rate derivative as the time to maturity

for the underlying fixed income product. Therefore “maturity” is reserved for

the time to maturity of the derivative.
2We will see this statement in Section 2.3.
3This interest rate is known in the literature as short rate or instantaneous spot rate and it

is important to bare in mind that this is different from the forward rate, which will be under
consideration during the whole thesis and hence an explicit definition of both short and forward rate
will be given later on.
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2.1.1 Simply-compounded forward interest rate

The symply-compounded forward interest rate prevailing at time t for the expiry

T1 > t and maturity T2 > T1 is denoted by F (t;T1, T2) and is defined by4

F (t;T1, T2) :=
1

δ(T1, T2)

(
P (t, T1)

P (t, T2)
− 1

)
. (2.3)

We will see that this rate is closely linked to a FRA, a derivative which will be

explained in Section 2.2.

We will introduce the instantaneous forward interest rate below whose maturity

S is very close to its expiry T , namely F (t, T, T + ∆T ) with ∆T adequately small. In

other words, it will be the interest rate prevailing at time t for a infinitesimal period

[T, T + ∆T ], with T > t.

2.1.2 Instantaneous forward interest rate

The instantaneous forward interest rate prevailing at time t fot the maturity T1 > t

is denoted by F (t, T1) and is defined by

F (t, T1) := lim
T2→T+

1

F (t;T1, T2) = −∂ lnP (t, T1)

∂T1

. (2.4)

The previous definition is obtained as follows:

F (t, T1) := lim
S→T+

F (t;T1, T2)

= lim
T2→T+

1

1

δ(T1, T2)

(
P (t, T1)

P (t, T2)
− 1

)

= − lim
h→0

1

P (t, T1 + h)

P (t, T1 + h)− P (t, T1)

h

= − 1

P (t, T1)

∂P (t, T1)

∂T1

= −∂ lnP (t, T1)

∂T1

.

We reiterate that the instantaneous forward rate is the rate to be modelled

throughout this Thesis and it is important to take into account that this rate is

a theoretical construction (therefore it does not exist in markets) used in literature

which allows us to obtain closed pricing formulae in continuous time or, failing that,

4An interested reader can find how the forward rate is obtained from bond prices in [6].
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analytical expressions5 which will allow us to price different derivatives.

We can observe that the short rate r(t) is a particular case of the instantaneous

forward rate. In fact, as shown in [6], r(t) may be defined as follows:

r(t) := F (t, t) = lim
T1→t−

F (t, T1). (2.5)

Another important concept linked to the instantaneous forward rate is the for-

ward curve which just consists of the graph T 7→ F (t, T ) and it will be mentioned

shortly.

Below, we are going to review two key concepts which are closely linked to interest

rate derivatives pricing and to carry it out we will mainly follow [9].

2.1.3 Single-curve framework

Before the credit crunch in the second half of 2007 the traditional approach to be used

in order to price an interestt rate derivative was the so called single-curve approach.

In the light of the forward’s denition (2.3), the concept of single-curve approach

consists in selecting the most convenient (liquid) plain vanilla interest rate instru-

ments traded on the market to build a single curve to be used both as a discounting

curve and as a forwarding curve. In this case, the single curve is given by the graph

T 7→ P (t, T ) for every maturity T and is used for both discounting the future cash

flows and to build/estimate the forward rate. A common choice in the EUR market

is a combination of short term EUR deposits, medium-term Futures/FRA on Euribor

3M and medium/long term swaps on Euribor 6M.6.

We will not go into detail, but will give the main reasons reasons why a change

of approach was needed. An Overnight Index Swap (OIS) is a common swap in

which a fixed leg (a fixed rate) is exchanged against a floating leg (a variable rate)

whose value is calculated as the geometric mean of a daily overnight rate (Eonia for

EUR). The OIS market is currently liquid and there are OIS swaps with different

maturities and due to its daily tenor (the shortest available in the market) the credit

risk is mitigated. Contracts including the OIS rate (Eonia for EUR) are considered

5As is the case of SABR model where an implied volatility is obtained from asymptotic expansions
in order to be able to work in continuous time. In any case, all these aspects such as SABR models
and implied volatility will be seen in detail in the next chapter.

6FRA and swaps instruments will be defined in Section 2.2
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less risky than those including Euribor/Libor rate for the reason just explained. The

key factor is that the spread (difference or gap) between the OIS rate and the Libor

was negligible (10 bp7) before 2007. This spread is a risk indicator of the money

market becuase if there is a wide spread , then it shows that banks are in panic and

they are afraid of lending money to other banks and if they do it, they will do in

exchange for a high premium, that is, a high rate, as it happened in 2008 when the

spread dramatically climbed up to 365 bp (see Figure 2.1).

Figure 2.1: 3-Month Libor-OIS Spread in the financial crisis. Source: See [10].

To sum up, before 2007 Euribor was used as a risk free rate and only one curve

was needed for generating the future cash flows and for discounting them. After 2008,

this practice does not hold anymore and it became necessary to switch to the con-

struction of a new risk-free discounting curve, denoted in this Thesis as T 7→ P (t, T )

for every maturity T , and in the market, it refers to the OIS curve (the best proxy

for a risk free rate).8

The discounting and forwarding curves are crucial for interest rate derivates pric-

ing. In such a way, in markets, the OIS curve used as a single-curve for discounting

and forwarding is not held anymore since 2008. All interest rate derivatives such as

caps/floors and swaptions are priced under the multi-curve approach and that is why

7Basis points (bp).
8To be precise, as stated in [9], the construction of the discounting curve is currently a constro-

versial issue. There are “two types” of discounting curves that may be encountered in the market:
a) the bootstrapping procedure based on the selection of the most liquid instruments in the market
(deposits, FRAs and swaps) and b) the OIS curve, based on the overnight rate (Eonia for EUR),
considered as the best proxy for a risk free rate available on the market becuase of its 1-day tenor,
justified with collateralized (riskless) counterparties. The specific construction is a technical topic
that goes beyond the scope of this Thesis.



2.1. Basic definitions 14

we decided to follow the multi-curve approach in this Thesis with the aim of achieving

better fits of the parameters of the benchmark SABR model.

Following this line, the multi-curve approach will be reviewed below.

2.1.4 Multi-curve framework

In the single-curve approach, the construction of the discounting curve is based on

the most liquid intruments, regardless of their tenor. It is a fact, that for instance, a

6-month Euribor-based swap is riskier than a 3-month Euribor-based swap. There-

fore, the main change that includes the multi-curve approach is about the selection

of the instruments to construct a forward curve, now depending on the underlying

rate of the interest rate derivative that we want to price. For example, if we want to

price a 6-month Euribor-based swap, we have to construct a specific 6 month Euribor

forward curve by using Euribor-based instruments consistent with that tenor. This

implies that we need as many forward curves as the tenors available in the market

are. That is why the new pricing approach is called “multi-curve approach”.

As stated in [9], the selection of instruments is a complicated task because there

is not an unique financially sound recipe for selecting the bootstrapping instruments

and rules. The procedure includes non trivial algorithms to pruduce smooth curves,

multiple bootstrapping instruments implies multiple sensitivities9 and about technol-

ogy, the pricing libraries, platforms, etc. must be extended, configured, tested and

release to manage multiple and separated yield curves for forwarding and discount-

ing.10

We reiterate that we follow in this Thesis the multi-curve approach and hence,

in practice, we are not going to compute fhe forward rate as in formula (2.3), but as

follows:

F (t;T1, T2) :=
1

δ(T1, T2)

(
P e(t, T1)

P e(t, T2)
− 1

)
, t < T1 < T2, (2.6)

where P e(t, T ) is the estimated discount factor at maturity T in the multi-curve

framework only used to compute the forward curve and P (t, T ) will be the (OIS)

discount factor to compute the cash flow’s present value.

9A sensitivity is a measure that indicates how the derivative price changes while an infinitesimal
change is produced by a parameter (e.g. volatility).

10In [9] the full construction procedure of the forward curve is described and an interested reader
can see it there.
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2.2 Interest rate derivatives

In this section we describe some interest rate derivatives (FRA, swap, cap/floor and

swaption) that will be used along this Thesis.

• Forward rate agreement (FRA). A forward interest rate contract gives to

its holder the possibility to lock an interest rate at present time t for a loan to be

delivered over a future period of time [T1, T2], with t ≤ T1 ≤ T2. Here is the link

between the forward interest rate as we mentioned in the previous page because

the locked interest rate is precisely F (t;T1, T2). Consequently, F (t;T1, T2) is the

value of the fixed rate that makes a FRA for the period [T1, T2] a fair contract

at time t.

• Interest rate swaps (IRS). An IRS can be interpreted as a portfolio includ-

ing several FRAs. More explicitly, it is an agreement between two parties that

exchanges future payments. Generally, one party pays a fixed interest rate and

the other one pays a floating interest rate based on a reference forward rate

(Euribor for EUR).11 The future payments are periodic during the start date of

the swap and the end date of the swap. To clarify notation, a swap with tenor

6 months and maturity 2 years, means that the life of the swap is 2 years and

the floating leg is based on (for example) the 6 months Euribor.

When the fixed leg is paid and the floating leg is received the IRS is termed

Payer IRS (PFS), whereas in the other case we have a Receiver IRS (RFS).

Given a set of n pre-specified payment dates T1, T2, . . . , Tn, let N be the total

notional agreed in the contract, δ(Ti−1, Ti) is the year count fraction between

dates Ti−1 and Ti, K the fixed rate designed by the contract and L(Ti−1, Ti)
12

the floating reference rate resetting at the previous instant Ti−1 for the maturity

11Actually, there are more types of IRS such as floating-floating swaps, based on two different
floating rates or on the same floating rate but different tenor, and fixed-fixed swaps, in which both
counterparties pay a (different) fixed interest rate and thus this sort of swaps just make sense
when the interest is applied in one currency for the principal and the another (or the same applied
before) interest in another currency, also called currency swaps. For further information, in [8] a full
development of this topic is presented.

12It is necessary to clarify the subtle difference between L(Ti−1, Ti) and F (t;Ti−1, Ti). The
notation L(Ti−1, Ti) comes from the Libor rate and it refers to the (deterministic) spot rate prevailing
in the period [Ti−1, Ti]. On the other hand, F (t;Ti−1, Ti) is an estimation at time t of the Libor
rate prevailing in the period [Ti−1, Ti] and so F (t;Ti−1, Ti) just indicates that L(Ti−1, Ti) is random
at time t. In fact, in Section 2.3 will be shown (see for example [5] or [9]) that the forward rate
F (t;Ti−1, Ti) is the expectation of L(Ti−1, Ti) under a suitable probability measure.
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given by the current payment instant Ti. For every fixing date Ti, i = 1, . . . , n,

the fixed left party pays the amount

Nδ(Ti−1, Ti)K,

while the floating leg pays13

Nδ(Ti−1, Ti)L(Ti−1, Ti).

As mentioned in the previous page, from the swap definition a new interest rate

is defined: forward swap rate S(t, T1, Tn), which is the rate in the fixed leg

of the above IRS that makes the IRS a fair contract at the present time t:

S(t, T1, Tn) :=
P (t, T1)− P (t, Tn)
n∑
j=2

δ(Tj−1, Tj)P (t, Tj)

, (2.7)

where the denominator is usually called the annuity. Based on the forward swap

rate a swaption is defined.

• Caplets/floorlets. A caplet for the future period [T1, T2] is a call option on

a floating rate, typically Libor L(T1, T2) with strike K and therefore the payoff

at date T1 is given by

N · δ(T1, T2) · (L(T1, T2)−K)+,

where N is the nominal amount.

Let us to clarify some important concepts about the key dates of a caplet.

The expiry of a caplet is the date when the Libor rate is determined, namely,

at time T1. In other words, T1 accounts for the time where the randomness of

F (t;T1, T2) ends. After T1, F (t;T1, T2) becomes the Libor rate L(T1, T2) to be

applied in the period [T1, T2] and hence the cash flow on this caplet is received

at time T2. This means that there is no uncertainty about the caplet’s cash

flow after the Libor rate is set at time T1. Very often, in financial markets these

dates are known as reset date for T1 and payment date for T2.

Analogously, a floorlet is a put option on the Libor rate. Thus, its payoff

at time T1 is given by

N · δ(T1, T2) · (K − L(T1, T2))+,

and it will be received at the payment date T2.

13For the sake of simplicity, it is considered that the payment dates are the same for both parties.



2.2. Interest rate derivatives 17

• Caps/Floors. A Cap is a portfolio of caplets. Let us consider a set of payment

dates {T1, . . . , Tn} and a set of reset dates {T0, T1, . . . , Tn−1}. With this notation

the cap’s maturity stands for Tn (the last payment date). The cap’s strike K is

the strike of every underlying caplet. In such a way the cap’s discounted payoff

is given by the sum of the caplet’s discounted payoffs as follows:

N ·
n∑
j=2

P (t, Tj) · δ(Tj−1, Tj) · (L(Tj−1, Tj)−K)+. (2.8)

where t < T0 accounts for the valuation date (or today’s date). Note that the

starting index in the previous sum is j = 2, because the Libor rate L(T0, T1)

is already known considering that t = T0, which is a common practice in cap’s

pricing for the sake of simplicity. Therefore, excluding the first caplet from the

cap’s payoff makes sense because an investor is not going to pay for a product

“today” where its first future payment is already known. In any case, we will

go into more detail in Chapter 6.

Similarly, a floor is a set of floorlets. Following the previous notation, its

discounted payoff is given by:

N ·
n∑
j=2

P (t, Tj) · δ(Tj−1, Tj) · (K − L(Tj−1, Tj))
+. (2.9)

• Swaptions. A payer swaption is an option to enter into an IRS at a later

date, paying fixed rate. A receiver swaption is an option to enter into an IRS,

receiving fixed. In other words, a payer (receiver) swaption is a call (put) on

forward swap rate. Following the previous notation for an IRS, {T1, T2, . . . , Tn}
is the set of n payment dates. Then, usually the swaption expiry Tex coincides

with the first date T1 of the underlying IRS. The underlying IRS lenght, i.e.,

from T1 to Tn, is called the tenor of the swaption. For example, a 1Y × 5Y

payer swaption with strike K gives the holder the right to pay a fixed rate K on

a 5 year swap starting in 1 year.14 In this way, the payoff of a payer swaption

of strike K at expiration date Tex is given by:

max(S(Tex, T2, Tn)−K, 0) (2.10)

and the payoff of a receiver swaption of strike K at expiration date is given by:

max(K − S(Tex, T2, Tn), 0). (2.11)

Here, we are considering that the first payment is made at time T2 and then

T1 ≡ Tex.
14This type of swap is usually called a forward starting swap.
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2.3 Mathematical basis

In this section we introduce some fundamental concepts about stochastic processes,

risk-neutral pricing, forward measure, risk neutral probability density function and

arbitrage. This will not only allow us to price any derivative under consideration in

this Thesis but also to have a full comprehension of the main objective of this Thesis,

which is the problem of the forward’s density negativity at expiry.

No-arbitrage pricing. As mentioned in the previous numeraire definition, the

risk-neutral measure Q not only is the martingale measure associated to the numeraire

B(t), but also is an equivalent martingale measure,15 statement that is proved in [11].

In line with the previous definition, if QN is an equivalent martingale measure (fair

and unique), associated to a numeraire N(t), the price V (t) of any contingent claim

(derivative) is obtained by taking an (conditional) expected value under the measure

QN , such that the price V (t) measured in terms of the numeraire is a martingale

under QN , i.e.,
V (t)

N(t)
= EQN

[
V (T )

N(T )
| Ft
]
, (2.12)

with t ≤ T and {Fs}ts=0 is the natural filtration.16

We will see below key particular cases of the formula (2.12).

• Risk-neutral measure (Q). The risk-neutral measure Q has the bank account

B(t) as a numeraire. Under Q, and in the absence of arbitrage, a contingent

claim is valued as

V (t) = B(t)EQ
[
V (T )

B(T )
| Ft
]
. (2.13)

This choice of numeraire guarantees that the discounted value of any asset is a

martingale, and is thus widely used in equity derivatives pricing.

15Recall that if P is a probability measure and Q is another probability measure, they are equiv-
alent probability measures if they have the same null sets. However, if a stochastic process X(t) is a
martingale under P, X(t) is not in general a martingale under Q. Hence, in short, a measure prob-
ability that preserves the martingale property is called an equivalent martingale measure. Several
technicalities have been omitted for the sake of continuity and further details and a formal definition
can be found in [5] or [7].

16The natural filtration for a stochastic process is the family of non-decreasing σ-algebras gen-
erated by the process itself {σ(X(s)), s ∈ [0, t]}, t ≥ 0 and is a formal way to characterize the
history of the process up to time t. All the stochastic processes considered throughout this text
are Ft-measurebles (adapted processes), which means that all the information is known at time t.
These topics are beyond the scope of this thesis and we refer the interested reader to [7] for extra
information.
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• T -forward measure (QT ). The T -forward measure QT has the T -maturity

zero coupon bond P (t, T )17 and the relevant thing here is that P (T, T ) = 1.

This fact eases the valuation as follows:

V (t) = P (t, T )EQT
[
V (T )

P (T, T )
| Ft
]

= P (t, T )EQT [V (T ) | Ft]. (2.14)

Moreover, this measure is particularly interesting in the interest-rates world

since there are several important result related to it:

1. Under the T2-forward measure, any simply-compounded forward rate ac-

counting for a future investment period which ends at T2 is a martingale.

This statement is proved in [5] or [6], and the interested reader is referred

there for extra details. As a consequence, we have that:

EQT2 [F (t;T1, T2) | Fu] = F (u;T1, T2) (2.15)

for every t ≥ 0 such that 0 ≤ u ≤ t ≤ T1 ≤ T2. If we choose suitable dates,

we can get that

F (t;T1, T2) = EQT2 [F (T1;T1, T2) | Ft] = EQT2 [L(T1, T2) | Ft], (2.16)

namely, the forward rate is the expected value of L(T1, T2) under the

T2−forward measure.18

2. The instantaneous forward rate F (t, T ) is equal to the expected value of

the future instantaneous spot rate r(T ) under the T -forward measure:19

F (t, T ) = EQT [r(T ) | Ft]. (2.17)

3. Under the T -forward measure, the volatility of the instantaneous forward

rate, σ(t), is driftless. This feature is explicitly mentioned in the chap-

ter 4 of [12], and makes the T -forward measure a really convenient tool

when dealing with stochastic volatility models, which allow the volatility

to follow its own stochastic process.

The process of changing the numeraire between these particular choices (risk-

neutral and T -forward measure) via Radon-Nikodym is fully reviewed in [13].

17It is called that way because this choice of the numeraire depends on the maturity T .
18It is good to remind the reader that the T2-forward measure is always linked to the payment

date of the derivative. In this case, the maturity T2.
19The proof can be found in [5].
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• Swap measure (QA). As claimed in [14], since the forward swap rate S(t, T1, Tn)

is given by a market tradable asset (P (t, T1) − P (t, Tn)) denominated in the

annuity numeraire, it is a martingale under a measure QA (called the swap

measure) associated with the annuity numeraire which is denoted as

AT1,Tnt =
n∑
j=2

δ(Tj−1, Tj)P (t, Tj), (2.18)

where the dates T1 < T2 < . . . < Tn are the reset dates of a swap. This measure

is crucial in order to value swaptions.

2.3.1 Risk neutral probability density function

We dedicate a subsection to this issue beacause it is the main tool to understand the

key problem of the SABR model mentioned later on in the Subsection 3.4.5 and the

reason why another approach is followed in this Thesis to deal with this problem.

As mentioned in [15], in 1978, Breeden and Litzenberger [16] presented a paper

in which they showed how to compute the risk neutral probability density function

from a set of quoted option prices. To present the result of their paper in a simple

way caplets prices are considered. Therefore the notation is as follows:

• Let Tj−1 and Tj be the reset date and the payment date of a caplet, respectively.

• Let Vcaplet(t, Tj−1, Tj, K) be the value of a caplet at time t, with fixing date Tj−1

and payment date Tj.

• (F (Tj−1;Tj−1, Tj)−K)+ is the caplet’s payoff for a given expiry date Tj−1 and

strike K.

• Let us define QFj−1
(x) := QF (Tj−1;Tj−1,Tj)(x) as the risk neutral probability den-

sity function of the random variable F (t;Tj−1, Tj) at its expiration date Tj−1. It

is important to notice that after date Tj−1, F (t;Tj−1, Tj) is not longer random.

According to (2.14), the value of the caplet at time t is given by

Vcaplet(t, Tj−1, Tj, K) = P (t, Tj) · δ(Tj−1, Tj) · EQTj [(L(Tj−1, Tj)−K)+ | Ft]

= P (t, Tj) · δ(Tj−1, Tj) ·
∫ ∞
K

(x−K) ·QFj−1
(x) dx.

(2.19)

Derivating twices respect to the strike K yields

∂2

∂K2
Vcaplet(t, Tj−1, Tj, K) = P (t, Tj) · δ(Tj−1, Tj) ·QFj−1

(K). (2.20)
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Note that we are considering in (2.20) the caplet’s value as a function of K.

Therefore, a numerical computation of QFj−1
(Ki), i = 1, . . . , n, can be done using a

series of caplet prices
Vcaplet(t, Tj−1, Tj, K1),
Vcaplet(t, Tj−1, Tj, K2),

...
Vcaplet(t, Tj−1, Tj, Kn),

(2.21)

corresponding to a set of options with strikes K1, K2, . . . , Kn. This argument will be

followed in Subsection 3.4.5 to show the flaw of the SABR model.

2.3.2 Arbitrage

There is a strong non-arbitrage property that must be fulfilled by the relation (2.20).

Since QFj−1
(K) is a probability density function, by definition, the condition

QF (Tj)(K) =
∂2

∂K2
Vcaplet(t, Tj−1, Tj, K) ≥ 0 (2.22)

must be reached, otherwise, the option value would not be a convex function in strike

and an arbitrage can be found. Specifically, a butterfly arbitrage may be obtained

as it is discussed in [15]. This problem is also dealt in Section 4.1. There is another

condition for being a density function such as it must integrate one.

As we will see in Section 3.4, the above condition (2.22) is not satisfied by the

SABR model. In concrete terms, for some specific conditions such as long run op-

tions with very low strikes (or even negative as today’s environment) the SABR model

presents a significant drawback due to the density function negativity.

We have reviewed the context of negative interest rates in Chapter 1 and main

mathematical tools in this chapter needed to develop the rest of the Thesis and the

basic interest rate models will be checked below.



Chapter 3

Interest Rate Models

In this chapter we introduce different interest rate models that cope with negative

interest rates. The basic models are presented as well as its main strenghts and

drawbacks. Then, we introduce the benchmark SABR model and we discuss its

major disadvantage which is the main reason why the different approach (AF-SABR)

is reviewed in the next chapter. Finally, we comment some modifications of the SABR

model that also have the same problem. We start with the simplest approach to model

negative interest rates.

3.1 Bachelier (Normal) model (1900)

The Bachelier (or normal) model was introduced in 1900 by L. Bachelier [17]. The

model is given by the following stochastic differential equation, under the T -forward

measure, for the instantaneous forward rate F (t):1

dF (t) = σN · dW (t), (3.1)

where W (t) is a Wiener process, σN is the instantaneous forward rate (constant)

volatility under normal specification, namely, the solution of (3.1) is given by

F (t) = f + σN ·W (t), where f = F (0). (3.2)

We can then note that F (t) is normally distributed with mean f and variance σ2
N t.

This means that negative interest rates can be modelled in a natural way. However,

there are some disadvantages which are summarized below:

• The instantaneous forward rate volatility σN is constant which means that,

for instance, options with different strikes for a given maturity have the same

1We defined in (2.4) the instantaneous forward rate with the notation F (t, T ). However, note that
since one only future date is needed, we can simplify the notation as F (t), namely, F (t) := F (t, T ).

22
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volatility and it is well known that this fact does not happen in markets. This

phenomenon is the so-called volatility smile or skew. In other words, implied

volatilities have a strong dependence on their strikes.

• F (t) is normally distributed. This implies that it may take arbitraly negative

values with positive probability. This fact is unusual under typical circum-

stances since rates are not assumed to go far away below the zero-barrier.

Under Bachelier model (3.1), closed formulae for pricing caplets/floorlets can be

obtained. Indeed, if the expiry date of a caplet is T1 and the payment date is T2,

with T1 < T2, under the T2-forward measure the value at time t of a caplet/floorlet

on the Libor rate L(T1, T2) with strike K, today’s value forward f = F (t;T1, T2) and

notional N = 1, is given by:

V Bachelier
caplet (t, T1, T2, K, σN) = δ(T1, T2) · P (t, T2) ·BN

call(T1, K, f, σN), (3.3a)

V Bachelier
floorlet (t, T1, T2, K, σN) = δ(T1, T2) · P (t, T2) ·BN

put(T1, K, f, σN), (3.3b)

where

BN
call(T1, K, f, σN) = (f −K)Φ(d+) + σN

√
δ(t, T1) φ(d+), (3.3c)

BN
put(T1, K, f, σN) = (K − f)Φ(d−) + σN

√
δ(t, T1) φ(d+), (3.3d)

d± = ± f −K
σN
√
δ(t, T1)

, (3.3e)

where Φ and φ are the normal cumulative distrubution function and the probability

density function, respectively.

Now, we consider a cap/floor with maturity Tn, reset dates T0, T1, . . . , Tn−1 and

payment dates T1, T2, . . . , Tn so that the cap is a portfolio of n caplets. The initial

forward for every (expiry, payment date)= (Tj−1, Tj), is f = F (t;Tj−1, Tj).
2 In such

a way, the prices for the cap/floor are given by3

V Bachelier
cap (t, Tn, K, σN) =

n∑
j=2

P (t, Tj) · δ(Tj−1, Tj) ·BN
call(Tj−1, K, f, σN), (3.4a)

2We recall the reader that f = F (t;Tj−1, Tj) is computed under the multi-curve framework and
then the formula (2.6) must be used.

3In these formulae, it is actually σN ≡ σN (K).
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V Bachelier
floor (t, Tn, K, σN) =

n∑
j=2

P (t, Tj) · δ(Tj−1, Tj) ·BN
put(Tj−1, K, f, σN). (3.4b)

If we consider a payer/receiver swaption with expiration date Tex ≡ T1 on under-

lying swap with reset dates T1, T2, . . . , Tn, its value at time t can be computed as:

V payer
swaption(t, T1, Tn, K) = N · AT1,Tnt

[
(S(t, T1, Tn)−K)Φ(d+) + σN

√
δ(t, Tex)φ(d+)

]
,

(3.5a)

V receiver
swaption(t, T1, Tn, K) = N · AT1,Tnt

[
(K − S(t, T1, Tn))Φ(d−) + σN

√
δ(t, Tex)φ(d+)

]
,

(3.5b)

where

d± = ±S(t, T1, Tn)−K
σN
√

(t, T1)
(3.6)

3.2 Black (Lognormal) model (1976)

The Black’s model was presented by Fischer Black [18] in 1976. This model is widely

used for modeling European options on commodities, forwards or futures. It is also

used for pricing interest rate caps and floors. It is truth that in the current negative

interest rates environment its use is not held longer anymore, instead, the Bachelier

model is used, or even the shifted black model, which will be presented in Section 3.7.

However, we will review the Black model because it has been a benchmark model

utilized along many years.

In accordance with the foregoing, the model (under the T -forward measure) for

the instantaneous forward rate F (t) is

dF (t) = σB · F (t) · dW (t), (3.7)

where W (t) is a Wiener process, σB is the instantaneous forward rate (constant)

volatility under lognormal specification, i.e., the solution to this stochastic differential

equation 3.7 is as follows

F (t) = f · eσW (t)− 1
2
σ2
Bt, f = F (0). (3.8)

As we can note, F (t) is lognormally distributed which means that this model can

not cope with negative interest rates.
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As it can be seen in Appendix A of [19], closed formulae for pricing caps/floors

can be found. Hence, the Black formula states that the prices at time t, for a

caplet/floorlet on the Libor rate L(T1, T2) with strike K and notional N = 1 is

given by

V Black
caplet (t, T1, T2, K, σB) = δ(T1, T2) · P (t, T2) ·BBlack

call (T1, K, f, σB), (3.9a)

V Black
floorlet(t, T1, T2, K, σB) = δ(T1, T2) · P (t, T2) ·BBlack

call (T1, K, f, σB), (3.9b)

where

BBlack
call (T1, K, f, σB) = fΦ(d+)−KΦ(d−), (3.10a)

BBlack
put (T1, K, f, σB) = KΦ(−d−)− fΦ(−d+), (3.10b)

and

d± =
log
(
f
K

)
± 1

2
σ2
BT1

σB
√
T1

. (3.10c)

Adding the Black prices of caplets/floorlets we can get caps/floors prices under

de Black model as follows:

V Black
cap (t, Tn, K, σB) =

n∑
j=2

P (t, Tj) · δ(Tj−1, Tj) ·BBlack
call (Tj−1, K, f, σB) (3.11a)

V Black
floor (t, Tn, K, σB) =

n∑
j=2

P (t, Tj) · δ(Tj−1, Tj) ·BBlack
put (Tj−1, K, f, σB) (3.11b)

where f = F (t;Tj−1, Tj) is the estimated initial forward for the period [Tj−1, Tj].

We have reviewed two fundamental pricing models in finance history in the inter-

est rate world. The Bachelier’s model has the volatility smile problem as well as the

Black’s model. In Sections 4.1 and (6.3.2) smile volatilities for caps and swaptions

are shown, respectively.

An important aspect to remark is that both Bachelier and Black formulae have a

one-to-one correspondence between the price of the option and the volatility param-

eter. This means if we introduce the Bachelier/Black implied volatility into formulae

(3.4) and (3.11), we can then get the price of the cap/floor.

To be more precise, the instruments that quote (in volatility terms or basis points
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premium) in markets are caps/floors. Then, the process of extracting the caplet’s

implied volatility from cap’s premium is called stripping. This procedure is going

to be treated in detail in Section 6.1.

If we consider a payer/receiver swaption following the notation already seen, its

value under the black model is given by

V payer
swaption(t, T1, Tn, K) = N · AT1,Tnt [S(t, T1, Tn)Φ(d+)−KΦ(d−)] , (3.12a)

V receiver
swaption(t, T1, Tn, K) = N · AT1,Tnt [KΦ(−d−)− S(t, T1, Tn)Φ(−d+)] , (3.12b)

where,

d± =
log
(
S(t,T1,Tn)

K

)
± 1

2
σ2
BT1

σB
√
T1

. (3.13)

It is important to make a subtle clarification. In a swaption there is only one

decision to be made and, once taken, is valid for all cash flows in the period [T2, Tn].

For this reason it differs from a cap/floor, which requires a decision at each reset

date. In addition, we recall the reader that caplet’s volatilities are not quoted in

markets and it is necessary to make a stripping procedure. In contrast, a swaption is

an option on forward swap rate (also called swap par rate) which is quoted directly in

markets. Hence, this is an important aspect to be taken into account when a swaption

is calibrated using the SABR model

3.3 Local volatility models (1994)

In this section we summarize the main features of these models provided in the pa-

per of Hagan et al. [20]. Local volatility models were firstly introduced by Dupire,

Derman-Kani (see [21] and [22]). Based on work by Black-Scholes (BS) (1973), Dupire

asked himself whether it was possible to find a driftless process (i.e., martingale) such

that the assumptions of the BS model continue to be fulfilled and he concluded that

one way to accomplish that was by making the instantaneous volatility depending on

time and underlying asset.4

In the same vein, the general model for the forward rate F (t) suggested by Dupire

was (under the T -forward measure)

dF (t) = C(F (t), t) · dW (t), (3.14)

4For further details see [21].
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where C(F (t), t) is a deterministic volatility coefficient.5 Hence, the so-called local

volatility models come when we set C(F (t), t) = σloc(F (t), t) · F (t). This model is

able to capture the volatility smile (it was a pioneer in this topic) and therefore it

was widely used over the industry. However, the dynamic evolution for the smile was

opposed (the smile moves in the opposite direction as the underlying) to the one ob-

served within the markets (the smile moves in the same direction as the underlying),

producing unstable hedges. Hagan et al. explain this argument in an extensive way.

Under these circumstances, Hagan et al. (2002) define the Stochastic Alpha-

Beta-Rho (SABR) model which is a stochastic volatility model that addresses the

previous problem. The SABR model has some important flaws but despite all that,

it has been broadly used by financial industry. This model will be presented below

in the following section.

3.4 The SABR model

3.4.1 Introduction

The SABR model was proposed by Hagan et al. (2002) in [20]. This model arises

to correct the bad prediction of volatility smile of local volatility models. Hagan

introduced a stochastic process for the forward rate and another stochastic process

for the volatility of the forward rate, denoted as σ(t). Then, the SABR model is given

by the following stochastic differential equations:

dF (t) = σ(t) · F (t)β · dW (t), f = F (0),
dσ(t) = ν · σ(t) · dZ(t),

EQT [dW (t) · dZ(t)] = ρdt,
(3.15)

where ν ≥ 0 is the volatility of the forward’s volatility (also called the vol-vol param-

eter), 0 ≤ β ≤ 1 is called the power parameter and −1 < ρ < 1 is the correlation

between the two Wiener processes W (t) and Z(t). The Wiener processes are under

the T -forward measure and hence they depend on the maturity of each forward.6

The model (3.15) is actually an extension of the Constant Elasticity Variance

5At this point, to refresh the reader’s knowledge, notice that since F (t) is a martingale under
the T -forward measure, the Martingale representation theorem states that any martingale can be
re-write as an Itô integral, namely, F (t) must follow the driftless Itô process (3.14), where C(F (t), t)
is an adapted process. This comment has been done in [20] and for technicalities about Martingale
representation theorem the interested reader can see [7].

6To be more pricese should be dW (t)T and dZ(t)T as presented in [12].
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(CEV) models.7 One important aspect is that SABR model does not cope with neg-

ative interest rates and thus in recent years there have been a lot of changes based on

this model (some of them will be seen in the following sections). On the other hand,

the SABR model is not a model to price, but it is a model which fits the implied

volatility given by the markets for any single expiry date reasonably well and it is

used as an input in the Bachelier or Black model to price. Due to that good fit, many

traders choose the SABR model to price and hedge their fixed income plain-vanilla

(single exercise date) derivatives, such as caplets, floorlets and swaptions. Later on,

we will discuss some virtues and drawbacks in a summarised way.

3.4.2 Parameter’s behaviour

Let α = σ(0) be the initial forward volatility. Each of the 4 parameters ν, β, ρ and α

have different effects on the smile/skew for a given maturity. These effect were also

studied by Hagan [20] and in [15] they are described in a nice way. We follow the

latter reference to introduce them here.

• α shows the level of the volatility smile.

• β is the power parameter and it is usually taken between 0 and 1. The reason is

beacuse the SABR model is a martingale only if 0 ≤ β < 1 or as long as ρ ≤ 0

for β = 1.8

• ν is the volatility of the volatility and its effect on the smile is to decrease or

increase its curvature.

• ρ stands for the slope of the smile.

Some of these parameters have second and even third smaller effects on the volatil-

ity curve as studied in detail in [12].

3.4.3 Implied volatilities

Implied Black and normal volatilities obtained by Hagan et al. were the main result

of their paper. As mentioned in [15], Hagan et al. deduced an analytical formula (see

(3.16)), which returns the price of vanilla options (such as caplets, floorlets, swaptions)

7These models are given by the stochastic differential equation

dF (t) = σF (t)βdW (t),

where σ is constant and 0 ≤ β ≤ 1. For more information about these kind of models the reader
can see (for example) [19].

8We refer the interested reader to [23] for more detailed information.
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under the SABR model, in terms of the Bachelier/Black implied volatilities. This is

an excellent feature for traders bacause of the one-to-one relation between prices and

volatilities as it can be seen in formulae (3.4) and (3.11). Due to the negative interest

rate environment, the above-mentioned vanilla options are now (commonly) quoted

in terms of normal volatility units instead of quoting in Black volatility units.

Using asymptotic expansions valid for short maturities and small values of ν,

Hagan obtained approximated analytical solutions for the Black’s implied volatility

that should be introduced in Black’s formula (3.9) to price a caplet/floorlet for a fu-

ture investment period [T1, T2], with T1 the expiry date, T2 the payment date, strike

K, notional amount N = 1 and an initial forward rate f = F (t;T1, T2). This formula

is usually called Hagan’s formula, and in 2008 it was corrected by Obloj because Ha-

gan made a mistake in his deduction.9 Henceforth, the Hagan’s formula is presented

with the Obloj’s correction:

σB(T1, K, f) =
ν · log

(
f
K

)
x(z)

·

[
1 +

(
α2(1− β)2

24(Kf)1−β +
νβρα

4(Kf)
1−β
2

+
2− 3ρ2

24
ν2

)
T1

]

+O((ν2T1)2),
(3.16)

where

z =
ν · (f 1−β −K1−β)

α(1− β)
,

x(z) = log

(√
z2 − 2ρz + 1 + z − ρ

1− ρ

)
.

(3.17)

For at-the-money options (f = K), Hagan’s formula reduces to

σATMB (T1, f, f) ≈ α

f 1−β

[
1 +

(
α2(1− β)2

24 · f 2−2β
+

νβρα

4 · f 1−β +
2− 3ρ2

24
ν2

)
T1

]
. (3.18)

There is also a formula for the Bachelier model to calibrate a normal implied

volatility smile. As demonstrated in [20], the following formula should be introduced

in Bachalier’s formula (3.9) in order to price a caplet/floorlet for a future investment

period [T1, T2], strike K, notional N = 1 and current observed forward rate f =

9See [24] for more detail about the Obloj’s correction.
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F (t;T1, T2) and it is given by10:

σN(T1, K, f) =
α(1− β)(f −K)

f 1−β −K1−β ·
(

z

x(z)

)

·

[
1 +

(
β(β − 2)α2

24(fK)1−β +
αβρν

4(fK)
1−β
2

+
2− 3ρ2

24
ν2

)
T1

]
+O((ν2T1)2),

(3.19)

with

z =
ν

α

(f −K)

(fK)
β
2

,

x(z) = log

(√
z2 − 2ρz + 1 + z − ρ

1− ρ

)
.

Some special cases are presented below. For the normal SABR model (β = 0 in

(3.15))11 the implied normal volatility can be written as:

σN(K) = α

(
z

x(z)

)(
1 +

2− 3ρ2

24
ν2T1

)
, (3.20)

where

z =
ν

α
(f −K).

For the lognormal SABR model (β = 1 in (3.15)), the normal implied volatility is

given by12:

σN(K) = α

(
f −K
log
(
f
K

))( z

x(z)

)[
1 +

(
−α2

24
+
αρν

4
+

2− 3ρ2

24
ν2

)
T1

]
, (3.21)

where

z =
ν

α
log

(
f

K

)
.

Finally, we present the normal implied volatility for the at-the-money case (K =

f)13 below:

σATMN = αfβ
[
1 +

(
β(β − 2)α2

24f 2−2β
+
αβρν

4f 1−β +
2− 3ρ2

24
ν2

)
T1

]
. (3.22)

10These formulae can be found in [20]
11This model is presented in Section 3.5.
12See formula (A.71a) in [20].
13The limit of (3.19) as K → f is computed noting that

lim
K→f

α(1− β)(f −K)

f1−β −K1−β =
0

0

L′Hopital
= lim

K→f

−α(1− β)

−(1− β)K−β
= αfβ .
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We have outlined more in detail the implied normal volatility because those for-

mulae (3.19)-(3.22) will be used for a market’s calibration example and to show the

main SABR’s model flaw in Section 4.1.

The above formulae hold for any value of β ∈ [0, 1]. Moreover, notice, that a

shift is necessary due to the presence of logarithms of the strike and forward in either

Black or normal implied volatility. When β = 0, there is no presence of logarithms for

the normal implied volatility and hence negative strikes or forwards can be modelled

without the need to introduce a shift.

3.4.4 Calibrating the SABR model

The SABR model is calibrated to a set of option prices (volatilities) for a given expi-

ration date. Hence, the calibration is carried out from caplet’s market volatilities. In

this sense, it is very relevant to bare in mind that the SABR model is not calibrated

to a cap’s smile but to a caplet’s smile, as stated in [25] and [15].

There are two methods to carry the calibration out and in both of them the

parameter β may be fixed to 0.5.14 A comprehensive study about this choice is done

in [12].

The two mentioned methods are explained below.

Method 1. Estimating ν, ρ and α directly: The method consists of minimizing

the error between the Bachelier implied volatility (3.19) and market caplet volatilities

{σMKT (Tex, Ki)}ni=1 where Tex is the caplet’s expiration date. Therefore the parame-

ters for that expiry may be obtained with any standard non-linear optimizer so that

the sum of the quadratic error is minimised:

(ν̂, ρ̂, α̂) = arg min
ν,ρ,α

∑
K∈S

(
σMKT
caplet (Tex, K)− σN(Tex, K, f)

)2
, (3.23)

where S is the set of strikes to be employed in the calibration. This method will be

described in detail in Section 6.2. Different weights wi ∈ [0, 1] can be allocated to the

set of the market volatilities according to the analyst criteria.

Method 2. Estimating ρ and ν by implying α from at-the-money volatility:

The aim is to reduce the number of parameters to be calibrated. If market data for

14The two methods can be found in [26].
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ATM implied volatilities are available, we can use equation (3.18) (or its Bachelier

equivalent) to obtain α by inverting that formula and taking into account that this

paramater is the root of the following cubic polynomial which must be numerically

solved(
(1− β)2

24 · f 2−2β
T1

)
α3 +

(
βρν

4 · f 1−β T1

)
α2 +

(
1 +

2− 3ρ2

24
ν2T1

)
α− σATMf 1−β = 0.

(3.24)

The method 1 is commonly faster than method 2. Obviously, the parameters will

have to be recalibrated with a frequency which depends on how fast the smile shape

changes. The previous equation (3.24) has 3 roots and hence in [27] it is recommended

to choose the smallest one. In the minimization algorithm, at every iteration, α is

found in terms of ρ and ν, namely α = α(ρ, ν), by solving (3.24). Then, the equation

(3.23) becomes

(α̂, ρ̂, ν̂) = arg min
α,ρ,ν

∑
K∈S

(
σMarket
K − σ(T1, K, f ;α(ρ, ν), ρ, ν)

)2
. (3.25)

3.4.5 Strong and weak points

Here, we review the main advantages and disadvantages of the SABR model. Some

of them have been mentioned in the previous paragraphs. However, in [15] a compre-

hensive summary is provided and we synthesize them below.

Advantages

• It allows to model the volatility smile.

• There exists an approximated analytical formula for the implied volatility that

can be used for pricing vanilla options such as caplets, floorlets and swaptions.

• The implied volatilities computations are reasonably accurate

Disadvantages

• The forward process (3.15) is driftless and thus it is not mean reverting.

• Every forward rate process is under a T -forward measure which means the

parameters of the process can only be calibrated to a single expiry. Hence,

exotic products depending on more than one forward rate can not be priced.
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• The development of the Bachelier/Black formulae is under the condition that

ν2T � 1, this is, for short-term options. This also means that as it was ex-

plained in advance in Section 2.3.2, the risk-neutral probability density function

around negative strikes and for long expiries, can become negative implying ar-

bitrageable option prices. In Section 4.1, an example of the density function

negativity is shown.

A solution to this issue is not about finding an approximated analytical im-

plied volatility, but solving a Partial Differential Equation numerically which

will have as a solution the Risk Neutral Probability Density Function (RNPDF)

studied in the point 2.3.1 with a certain boundary conditions. This way, we can

get option prices by integrating this RNPDF. In any case, this procedure will

be seen in detail in the Chapter 4. This approach is called Arbitrage-Free

SABR (AF-SABR).

• For high values of β, the approximations have an exploding behaviour, returning

too high implied volatility values for high strike options.

In the following sections we will review some modifications of the SABR model to

deal with negative interest rates although some of them still having the problem of

RNPDF’s negativity.

3.5 Normal SABR model (2002)

The normal SABR model is an extension of the Bachelier model (3.1) and it is the

only version of the SABR model, obtained by fixing β = 0 in equation (3.15), which

can capture negative forward rates. It is defined by (under the T -forward measure)

dF (t) = σ(t) · dW (t), f = F (0),
dσ(t) = ν · σ(t)dZ(t),

EQT [dW (t) · dZ(t)] = ρdt.
(3.26)

Given a set of market normal volatilities for a given expiry, the parameters are

calibrated by using equations (3.23) or (3.24).

As mentioned in [28], one advantage is that this model gives a relatively good

approximation to the volatility smile with a few parameters. The normal implied

volatility was presented in formula (3.19).

One flaw of this model is that the dynamics of the forward may not be really

consistent with observable market data.
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3.6 Shifted Black model (2012)

Shifted Black model is an extension of the Black’s model allowing to model negative

forward rates. Namely, it is maintained the lognormal specification and it is added a

term in the drift. Therefore the model for the intstantaneous forward rate obeys the

following process (under the T -forward measure):

dF (t) = σ · (F (t) + s) · dW (t), (3.27)

where s > 0 is a constant displacement parameter, which should be chosen a priori by

the analyst. To sum up, the shifted model allows rates larger than −s to be modelled.

The main drawback is that the process of fixing s should be done accurately. Its value

should be high enough to avoid the magnitudes F (t) + s and K + s going below zero

for any given time, but it should not be extremely high because in this case it may

be obtained arbitrarily negative values for the forward interest rate. This fact is the

main flaw of this model: the choice of the shift s.

3.7 Shifted SABR model (2014)

As mentioned in Section 3.4, the SABR model is defined for positive interest rates.

As discussed in [28], the shifted SABR model is similar to the SABR model except a

shift parameter is introduced in the drift, i.e., the shifted SABR model is defined by:

dF (t) = σ(t) · (F (t) + s)β · dW (t), f = F (0),
dσ(t) = ν · σ(t) · dZ(t),

EQT [dW (t) · dZ(t)] = ρdt.
(3.28)

The same results for the SABR model (3.15) can be applied to this new model,

changing in (3.15) F (t)→ F (t) + s and f → f + s. Also, this model can be seen as

an extension of the shifted Black model, adding dynamic to the forward’s volatility

term σ(t), i.e., it is the shifted black model with stochastic volatility.

One important benefit of this model is that the RNPDF’s negativity problem

is now around −s and not around zero. However, it has the same problem that the

shifted Black: the choice of s and it the interest rates go below s, a recalibration of

the model paramareters is necessary.

3.8 Free boundary SABR model (2015)

Free boundary SABR is another extension of the SABR model to deal with nega-

tive interest rates. It was originally introduced by Antonov et al. [29]. Under this
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model the forward rate follows (under the T -forward measure) the following system

of stochastic equations:

dF (t) = σ(t) · |F (t)|β · dW (t),
dσ(t) = ν · σ(t) · dZ(t),

EQT [(dW (t) · dZ(t)] = ρdt,
(3.29)

with 0 ≤ β ≤ 1
2

so that the solution is stable as stated in [19].

There exists an exact solution for Bachelier’s implied volatility which can be found

in (for instance) [19] or [28].

Some strenghts and weaknesses are described below.15

Advantages

• Negative forward rates are allowed.

• No extra parameter is needed.

• The explicit solution exists in the zero correlation case.

Disadvantages

• The parameter β is restricted to the interval [0, 1
2
].

• As stated in [19], the main flaw is that its RNPDF is negative for a large area

around zero, which in fact is the most relevant area in a low rate environment.

Hence, this model is not commonly used in financial markets.

15See [28] for further details.



Chapter 4

Hagan’s Arbitrage-Free SABR
Approach

In this chapter, the RNPDF’s negativity issue will be reviewed following the Hagan’s

paper (2014) [30]. The purpose here is not to derive the intermediate results, but

rather present them in a comprehensive way with some remarks to achieve a better

understanding to the proposed solution by Hagan.

4.1 Hagan’s formula arbitrage

The normal implied volatility (3.19) is (frequently) used to capture negative rates

(strikes or forward). In Figure 4.1 we can observe how the caplet’s market normal

volatility smile looks like and the implied normal volatilities for different values of β

when the rest of parameters are fixed.

Figure 4.1: Market normal volatility and implied normal volatilities for a caplet on
Euribor 6 months with expiration date Tex = 10 years. The parameters α, ρ and ν
are fixed.

36
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As shown in Figure 4.1, the market’s quotes fit is not accurate when the pa-

rameter β is close to 0. In fact, in Figure 4.2 an actual calibration has been done

for the same quotes.1 The calibration to the market normal volatilities was done via

formula (3.23) adding the parameter β to be estimated. We can notice that we have

obtained a better estimation with the free-paramater β. For this reason, we have

chosen to carry out the calibration using the four parameters: α, β, ρ and ν.

Figure 4.2: Market normal volatility and its fit implied normal volatility for a caplet
on Euribor 6 months with expiration date Tex = 10 years.

As we can see in Figure 4.2, the fit is highly accurate. This is the main rea-

son why most traders (and the overall market) use this model to price interest rate

derivatives. Another reason is because of its strong performance in risk management.2

We can also observe in Figure 4.2 that the beginning of the curve is on the left of

zero. This is becuase the set K of strikes used in calibration is

K = {−0.75,−0.50,−0.25,−0.13, 0, 0.25, 0.50, 1.00, 1.50, 2.00, 3.00, 5.00, 10.00}

measured in percentage. As a consequence, in this calibration the shifted SABR

model was used.

To improve the understanding about why an arbitrage is possible under the SABR

1We recall the reader that market’s caplet volatilities are not quoted. The stripping procedure to
get the caplet’s volatilities will be explained in detail in Section 6.1. Therefore, some technicalities
are now ommitted for the sake of continuity.

2For more detailed information about sensitivites under the SABR model we refer the reader to
[25].
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model, we are going to explain what a butterfly strategy is.

Call butterfly spread strategy

It consists of a specific combination of the same type of calls options with the same

characteristics varying the strike, i.e.,
Vc(t,K1) ≡ V Bachelier

caplet (t, Tex, Tp, K1, σN(K1)),

−2Vc(t,K2) ≡ −2V Bachelier
caplet (t, Tex, Tp, K2, σN(K2)),

Vc(t,K3) ≡ V Bachelier
caplet (t, Tex, Tp, K3, σN(K3)),

(4.1)

with K1 < K2 < K3, where Tex is the expiration date and Tp is the payment date.

That is, buying a call with strike K1, selling 2 calls with strike K2 and buying a call

with strike K3. This strategy has a positive payoff at the expiration date Tex and it

looks like as shown in Figure 4.3.

Figure 4.3: Call’s butterfly spread payoff at expiry.

Hence, to avoid arbitrage opportunities, since the payoff

Vc(Tex, K1)− 2Vc(Tex, K2) + Vc(Tex, K3) ≥ 0 (4.2)

is always positive at expiration date, that strategy should have a cost “today”, this

is, the price of this strategy should be:

Vc(t,K1)− 2Vc(t,K2) + Vc(t,K3) > 0. (4.3)

At this point we recall the formula (2.20) and taking into account the above
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notation, we can now re-write it as3

1

P (t, Tex)δ(Tex, Tp)

∂2

∂K2
Vc(t,K) = QFTex

(K) ≥ 0. (4.4)

This second derivative may be approximated using a central difference scheme as

follows:4

∂2

∂K2
Vc(t,K) ≈ Vc(t,K + ∆K)− 2Vc(t,K) + Vc(t,K −∆K)

(∆K)2
, ∆K → 0. (4.5)

In order to ensure the relation (4.4) is held, must happen that (4.5) is positive.

In other words, the caplet as a function of strike must be convex.

As discussed before in Subsection 3.4.5, the Hagan’s formulae (3.16) and (3.19)

have an approximation error for very low strikes leading to a violation of the condition

(4.4). Therefore, let us suppose that there exists a very low strike K∗ such that

Vc(t,K
∗ + ∆K)− 2Vc(t,K

∗) + Vc(t,K
∗ −∆K) < 05

⇓

Vc(t,K
∗ + ∆K) + Vc(t,K

∗ −∆K) < 2Vc(t,K
∗) (4.6)

This strategy is precisely a call butterfly spread and what we are saying is that

with the sale of 2 calls with strike K∗ we might buy 2 calls with strikes K∗ + ∆K

and K∗ −∆K and get a profit at time t. Since a call butterfly spread has a positive

payoff at expiration date we would be incurring an arbitrage opportunity.

Figure 4.4 shows how the probability density function becomes negative for very

low strikes (near −0.75%) and given parameters. In this case the implied normal

volatility has been used to get the caplet’s prices and then derivating like in formula

(4.5), the RNPDF is obtained.

In the following points we deal the negativity problem and show how it is fixed

by solving numerically a partial differential equation.

3The notation FTex
refers to the underlying forward rate at the expiration date Tex, namely,

FTex
≡ F (Tex;Tex, Tp) = L(Tex, Tp).

4Appendix B provides a quick overview about finite difference schemes.
5This condition implies a negative density function.
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Figure 4.4: PDF at expiry based on the caplet’s prices using the implied normal
volatility. Tex = 34.5Y and initial forward f = 0.04.

4.2 PDE context

Let us consider the SABR model (3.15) changing the expression F (t)β for a general

one C(F (t)):

dF (t) = σ(t) · C(F (t)) · dW (t), f = F (0),
dσ(t) = ν · σ(t) · dZ(t),

EQT [dW (t) · dZ(t)] = ρdt,
(4.7)

Let p(T, F,A; t, f, α) be the joint conditional probability density function of the ran-

dom vector (F (T ), σ(T )), conditioning to F (t) = f and σ(t) = α at time t, namely

p(T, F,A; t, f, α)dFdA = P (F ′ < F (T ) < F ′ + dF, A < σ(T ) < A+ dA | F (t) = f,

σ(t) = α)
(4.8)

Notice that, in (4.8) the joint conditional density function is defined with a prod-

uct of the infinitesimal amounts dF and dA equals to a joint conditional probability

distribution P. The reason of that can be found in Appendix A.1.

In the above definition, it is supposed that the market’s economy is in the state

F (t) = f and σ(t) = α. In such a way, the marginal (conditional) density function is

defined as follows:

Q(T, F ) =

∫ ∞
0

p(T, F,A; t, f, α)dA. (4.9)
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Note that Q(T, F ) is actually the short notation for QF (T, F | t, f, α). One of

the key factors of the development of the PDE is that p(T, F,A; t, f, α) satisfies the

forward Kolmogorov equation (also called Fokker-Planck equation)6. In other words,

as stated in [31], p(T, F,A; t, f, α) is also called the transition density function and

it indicates that if the process starts at a point (t, F (t), σ(t)) what the probability

density function will be of the position (T, F (T ), σ(T )) of the diffusion (4.7). For

this reason, p(T, F,A; t, f, α) is a function of the future state (T, F,A). The transi-

tion density function is the solution of the forward Kolmogorov equation and in the

original Hagan et al. paper (2002) it was solved by constructing explicit asymptotic

solutions in order to obtain implied volatilities (3.16) and (3.19).

In this new approach, Q(T, F ) also satisfies the Backward Kolmogorov equation

and in [30] Hagan et al. used singular perturbation methods7 to show that the Q(T, F )

satisfies what they call the effective forward equation. They aimed to solve this

effective forward equation in a finite domain [Fmin, Fmax] and hence some boundary

conditions must be established. They do not consider any models in which paths are

below Fmin and above Fmax. Thus, the reasoning is that the density function Q(T, F )

at F = Fmin must be accumulated around Fmin so that the probability do not scape

from the endpoint Fmin. This concept can be represented by a delta function8 centered

at Fmin. Hence, they define

Q(T, F ) = QL(T )δ(F − Fmin) at F = Fmin. (4.10)

6Very briefly, the forward Kolmogorov equation is one the Kolmgorov’s equations. The an-
other one is called the Backward kolmogorov equation. These are partial differential equations that
characterize difussion processes of the form

dX(t) = µ(X(t))dt+ σ(X(t))dW (t).

The goal is to answer the question how the probability that a stochastic process is in a certain state
changes over time. For more details and a nice derivation of these equations the reader is refered to
[31].

7This theory is often applied in the context of partial diffferential equations and is used to develop
a PDE solution around a small amount ε and allowing Taylor expansions. This topic is beyond the
scope of this Thesis and the interested reader can see (for example) [32] for further information.

8The Dirac delta function δ(x− x0) can be defined as follows:

δ(x− x0) =

{
∞ si x = x0

0 si x 6= x0

x 6= 0

with the property ∫ ∞
−∞

δ(x− x0) dx = 1.

There are many other alternative definitions but this reflects that it may be understood as a density
function since it integrates one. In addition, its whole probability is accumulated at x = x0.
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This way, the flux of probability will not be allowed below Fmin. In the same way,

it is defined

Q(T, F ) = QR(T )δ(F − Fmax) at F = Fmax. (4.11)

We recall that the above two restrictions are because of the necessity of solving a

PDE in a finite domain. In such a way, the conditional density function Q(T, F ) is

actually defined by:

Q(T, F ) =


QL(T )δ(F − Fmin) at F = Fmin

Qc(T, F ) for Fmin < F < Fmax
QR(T )δ(F − Fmax) at F = Fmax

(4.12)

where Qc(T, F ) accounts for the continuous part of the density. The so called effec-

tive forward equation is given by:

∂Qc

∂T
=

1

2
α2 ∂2

∂F 2

[
D2(F )Qc

]
, (4.13)

where
D(F ) =

√
1 + 2ρνz(F ) + ν2z2(F )e

1
2
ρναΓ(F )(T−t)C(F )

z(F ) =
1

α

∫ F

f

df ′

C(f ′)

Γ(F ) =
C(F )− C(f)

F − f

(4.14)

A very important condition that will help us to set the boundary conditions is

that the total probability has to be 1, this is

QL(T ) +

∫ Fmax

Fmin

Qc(T, F )dF +QR(T ) = 1, ∀ T, (4.15)

and this means that its derivative has to be zero:

d

dT

[
QL(T ) +

∫ Fmax

Fmin

Qc(T, F )dF +QR(T )

]
= 0. (4.16)

If we derive (4.16), we have to use the Leibniz formula9 and then substituing (4.13)

for ∂Qc

∂T
, we get:

dQL

dT
+

1

2
α2

∫ Fmax

Fmin

∂Qc

∂T
dF +

dQR

dT
= 0,

9Leibniz formula: Given the function

F (x) =

∫ h(x)

g(x)

f(t, x) dt,

the Leibniz formula to compute the derivative F ′(x) is as follows:

F ′(x) =

∫ h(x)

g(x)

∂f

∂x
dt+ f(h(x), x) · h′(x)− f(g(x), x) · g′(x).
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dQL

dT
+

1

2
α2 ∂

∂F

[
D2(F )Qc

] ∣∣∣∣F=Fmax

F=Fmin

+
dQR

dT
= 0. (4.17)

Thus, conservation of probability requires that

dQL

dT
= lim

F→F+
min

1

2
α2 ∂

∂F
[D2(F )Qc], (4.18a)

dQR

dT
= lim

F→F−
max

−1

2
α2 ∂

∂F
[D2(F )Qc]. (4.18b)

Equations (4.18) will be used later. On the other hand, for that F (T ) to be a

martingale, the expected value has to be constant:

E [F (T ) | F (t) = f, σ(t) = α] =

∫ ∞
−∞

FQ(T, F ) dF

= FminQ
L(T ) +

∫ Fmax

Fmin

FQc(T, F ) dF + FmaxQ
R(T )

= f.
(4.19)

Note that in the first equality of equation (4.19) we are doing an abuse of nota-

tion.10 Derivating the above second equality, we get

Fmin
dQL(T )

dT
+

∫ Fmax

Fmin

F
∂Qc(T, F )

∂T
dF + Fmax

dQR(T )

dT
= 0. (4.20)

Substituing (4.13) for ∂Qc

∂T
, integrating by parts twice and using equations (4.18)

leads to

D2(F )Qc(T, F )

∣∣∣∣Fmax
Fmin

= 0. (4.21)

Hence, the boundary conditions can be summarized as follows:

D2(F )Qc → 0 as F → F+
min, (4.22a)

D2(F )Qc → 0 as F → F−max. (4.22b)

With regard to the initial conditions we have that

Qc(T, F )→ δ(F − f) as T → t, (4.23)

10The abuse of notation comes from denoting the random variable F (T ) as F in the integrand.
We recall the reader that if X is a random variable, its expected value is given by:

E[X] =

∫ ∞
−∞

xf(x) dx,

where f(x) is the density function of X.
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namely, when the expiration date is very close to “today”, we certainly know the

today’s forward. In other words the today’s probability of being at F = f is quite

high and as we mentioned before, the Dirac delta function reflects that all probability

is accumulated, in this case, around f .

On the other hand, as Q(T, F ) must be integrate 1 for all T and (4.23) already

integrates 1, then must be happen that

QL(T )→ 0, QR(T )→ 0 as T → t. (4.24)

To sum up, the PDE to be solved is given by

∂Qc

∂T
=

1

2
α2 ∂2

∂F 2

[
D2(F )Qc

]
, Fmin < F < Fmax, (4.25a)

with probability at the boundaries

dQL

dT
= lim

F→F+
min

1

2
α2 ∂

∂F
[D2(F )Qc], (4.25b)

dQR

dT
= lim

F→F−
max

−1

2
α2 ∂

∂F
[D2(F )Qc], (4.25c)

boundary conditions

D2(F )Qc as F → F+
min, D2(F )Qc → 0 as F → F−max (4.25d)

and the initial conditions are

QL(0) = 0, Qc(T, F )→ δ(F − f), QR(0) = 0, as T → t+. (4.25e)

In the next section we are going to sketch out a Crank-Nicholson scheme in order

to solve (4.25).

4.3 PDE solution scheme

We will start simplifying notation. We define

M(T, F ) =
1

2
α2D2(F ). (4.26)

The scheme to be applied is the Crank-Nicholson scheme and in Appendix B.2 the

reader can find more information about this procedure.

Let N and J be the number of time steps and the number of steps in the for-

ward F , respectively. Let ∆t and h be the temporary increase and h the spatial

increase. In this way, we define
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• ∆t = Tex
N

• tn = n ·∆t, n = 0, 1, . . . , N

• Fj = Fmin +
(
j − 1

2

)
h, j = 0, 1, . . . , J + 1

• The spatial step J satisfies Fmax = Fmin + Jh.

• f = Fmin +
(
j0 − 1

2

)
h, for some j0 ∈ {1, 2, . . . , J}.

Let Qn
j ≡ Qc(tn, Fj) be the density function evaluated at the grid point (tn, Fj).

Moreover, in the case of the SABR model, we set C(F ) = F β and therefore

Mn
j ≡M(tn, Fj) = [1 + 2ρνzj + ν2z2

j ]e
ναΓjtnF 2β

j , (4.27)

where

zj =
F 1−β
j − f 1−β

α(1− β)
, Γj =

F β
j − fβ

Fj − f
.

Hence, if we apply the Crank-Nicholson scheme to (4.25a) we get the following

discretisation:

Qn+1
j −Qn

j

∆t︸ ︷︷ ︸
Forward difference in time

=
1

2h2

Mn+1
j+1 Q

n+1
j+1 − 2Mn+1

j Qn+1
j +Mn+1

j−1 Q
n+1
j−1︸ ︷︷ ︸

Central difference at the (n+1)-th row

+ Mn
j+1Q

n
j+1 − 2Mn

j Q
n
j +Mn

j−1Q
n
j−1︸ ︷︷ ︸

Central difference at the n-th row

 .
We can re-write it as

Qn+1
j − ∆t

2h2

[
Mn+1

j+1 Q
n+1
j+1 − 2Mn+1

j Qn+1
j +Mn+1

j−1 Q
n+1
j−1

]
=

Qn
j +

∆t

2h2

[
Mn

j+1Q
n
j+1 − 2Mn

j Q
n
j +Mn

j−1Q
n
j−1

]
for j = 1, 2, . . . , J.

(4.28)

The points j = 0 and j = J + 1 are used to generate the boundary conditions

(4.25d) as follows:

Mn+1
0 Qn+1

0 = −Mn+1
1 Qn+1

1 at j = 0, (4.29a)

Mn+1
J+1Q

n+1
J+1 = −Mn+1

J Qn+1
J at j = J + 1. (4.29b)
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We can interpret these conditions in the following way: the boundary conditions

(4.25d) mean that as F is very close to F+
min, D2(F )Qc → 0, i.e., speaking in terms

of discretisation this means that the first two terms have to sum 0. In other words,

one term has to be the opposite of the other like in (4.29a). The same argument is

repeated for the case when F → F−max.

If we define

• Qn
L ≡ QL(tn),

• Qn
R ≡ QR(tn),

then the initial conditions are given by

Q0
L = 0, Q0

j =


0 for j 6= j0

1

h
for j = j0

, Q0
R = 0. (4.30)

At each time step, after solving for Qn+1
0 , Qn+1

1 , . . . , Qn+1
J , Qn+1

J+1, applying forward

difference in time, an average of the forward differences of the row (n+ 1)-th and the

row n-th to (4.25b), (4.25c) and taking into account (4.29) we get

Qn+1
L = Qn

L +
∆t

2h

(
2Mn+1

1 Qn+1
1 + 2Mn

1 Q
n
1

)
, (4.31a)

Qn+1
R = Qn

R +
∆t

2h

(
2Mn+1

J Qn+1
J + 2Mn

JQ
n
J

)
. (4.31b)

The next section shows how the equations system looks like.

4.4 Probability density as a solution of a tridiago-

nal system

The coefficients matrix will be defined by equations (4.28) for j = 2, . . . , J − 1. For

the boundary conditions we have that

• For j = 1,

(2 + 3∆tMn+1
1 )Qn+1

1 −∆tMn+1
2 Qn+1

2 = (2− 3∆tMn
1 ) + ∆tMn

2 Q
n
2 .

• For j = J ,

−∆tMn
J−1Q

n
J−1 + (2 + 3∆tMn+1

J )QJ = ∆tMn
J−1Q

n
J−1 + (2− 3∆tMn

J )Qn
J
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In such a way, the equations system is given by:

M̃q = q̃, (4.32)

where

M̃ =



2 + 3∆tMn+1
1 −∆tMn+1

2 0 · · · 0

−∆tMn+1
1 2 + 2∆tMn+1

2 −∆tMn+1
3

. . . . . . . . .

−∆tMn+1
J−2 2 + 2∆tMn+1

J−1 −∆tMn+1
J

0 · · · 0 −∆tMn+1
J−1 (2 + 3∆tMn+1

J )


J×J

(4.33)

the unknown vector q is given by

q =
(
Qn+1

1 Qn+1
2 · · · Qn+1

J

)′
1×J , (4.34a)

and the independant term q̃ is given by

q̃ =



(2− 3∆tMn
1 )Qn

1 + ∆tMn
2 Q

n
2

∆tMn
1 Q

n
1 + (2− 2∆tMn

2 )Qn
2 + ∆tMn

3 Q
n
3

...

∆tMn
J−2Q

n
J−2 + (2− 2∆tMn

J−1)Qn
J−1 + ∆tMn

JQ
n
J

∆tMn
J−1Q

n
J−1 + (2− 3∆tMn

J )Qn
J


J×1

(4.34b)

In this procedure, we must solve the system (4.32) for every time step n. When

the process ends, we will have a solution matrix Q which is the conditional probability

density function evaluated at each grid point (tn, Fj). Hence, the matrix Q would

look like

Q =



Q0
L Q0

1 Q0
2 · · · Q0

J Q0
R

Q1
L Q1

1 Q1
2 · · · Q1

J Q1
R

...
. . .

...
...

... QN−1
J−1 QN−1

J QN−1
R

QN
L · · · · · · QN

J−1 QN
J QN

R


(4.35)
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We are interested in the last row of Q because we need the conditional density

function at expiration Q(Tex, F ) in order to be able to price plain vanilla options.

Next section shows how call (put) options can be priced based on this probability

density function at expiratation.

4.5 Option pricing

The vanillas option’s value at time t with expiry Tex is given by:

Vcall(t, Tex, K) = P (t, Tex)

∫ ∞
K

(F −K)Q(Tex, F ) dF, (4.36a)

Vput(t, Tex, K) = P (t, Tex)

∫ K

−∞
(K − F )Q(Tex, F ) dF. (4.36b)

The above equations can be approximated by11

Vcall(t, Tex, K) = f −K for K < Fmin (4.37a)

Vcall(t, T ex,K) = 1
2

(Fmin + jkh−K)2QN
jk

+
J∑

j=jk+1

(Fj −K)hQN
j + (Fmax −K)QN

R

For Fmin < K < Fmax
(4.37b)

Vcall(t, Tex, K) = 0 For K < Fmin (4.37c)

For the put prices we have that:

Vput(t, Tex, K) = 0 for K < Fmin (4.38a)

Vput(t, T ex,K) = (K − Fmin)QN
L +

jk−1∑
j=1

(K − Fj)hQN
j +

1

2
(Fmin + jkh−K)2QN

jk

For Fmin < K < Fmax
(4.38b)

Vput(t, Tex, K) = K − f For K < Fmin (4.38c)

where jk ∈ {1, 2, . . . , J} is such that Fmin + (jk − 1)h < K < Fmin + jkh.

In Part 2, we will present and describe the data with which we will work on

this Thesis, as well as determine the probability density function at expiry for caps

and swaptions using the Crank-Nicholson scheme.
11For simplicity we do not take into account the discount factor P (t, Tex).
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Chapter 5

The Data

In this chapter the datasets used on this Thesis are described.

5.1 Discount factors curves

We start with the graph of the discount factor P (t, T ). It is shown in Figure 5.1 and

we can see that due to the context of negative interest rates, short-mid term discount

factors are greater than 1. Data can be found in the Appendix C.

Figure 5.1: Graph T → P (t, T ) where t is 28 May 2019 and T accounts for the
maturities shown on the horizontal axis of the graph.

Below, we present in Figure 5.2 the estimated discount factor curve used for for-

warding. Data can be found in the Appendix C.
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Figure 5.2: Graph T → P e(t, T ) where t is 28 May 2019 and T accounts for the
maturities shown on the horizontal axis of the graph.

5.2 Caps/Floors volatilities

In financial markets the cap/floor quoting is usually done in terms of implied (Black

or normal) volatilities. In our case, normal volatilities are used and an explanation

will be given of how they are quoted.

Some concepts to consider:

• Flat volatility: The flat normal (constant) volatility σ̄N is defined as the im-

plied volatility that matches the cap/floor price given by formulae (3.4), namely,

V Bachelier
cap (t, Tn, K, σ̄N) =

n∑
j=2

P (t, Tj) · δ(Tj−1, Tj) ·BN
call(Tj−1, K, f, σ̄N),

(5.1a)

V Bachelier
floor (t, Tn, K, σ̄N) =

n∑
j=2

P (t, Tj) · δ(Tj−1, Tj) ·BN
put(Tj−1, K, f, σ̄N).

(5.1b)

• Spot start cap/floor: This cap/floor is defined as in formulae introduced in

Section (3.1), i.e., it is the cap’s (floor’s) value for the period from the valuation

date t until the maturity date Tex.

• Forward start cap/floor: This cap/floor is defined as the cap/floor that

starts in a future date. Let us give an example. Suppose we have a cap with

maturity 1 year and another one with maturiry 2 years. Therefore, the forward
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start cap that starts in 1 year and ends in 2 years (from the valuation date t)

is defined by:

V Bachelier
cap (t, 1Y, 2Y,K, σ̄1×2

N ) = V Bachelier
cap (t, 2Y,K, σ̄1×2

N )−V Bachelier
cap (t, 1Y,K, σ̄1×2

N ).

(5.2)

The cap’s flat forward start normal volatility σ̄1×2
N accounts for the constant

volatility for the period [1Y, 2Y ].1 This concept is crucial for the stripping

caplet volatility procedure. The cap volatility σ̄1×2
N is quoted in the market and

is the one that we are going to use in this Thesis.

The cap/floor forward start normal volatility quoted in market at date 28 May

20192 is given by the Table 5.1.

Table 5.1: Cap/Floor normal volatility forward starting on EUR 6M. The coloured
area refers to floor’s volatilities and the white area is for cap’s volatilities. Volatilities
are in basis points.

The forward start normal volatilities in Table 5.1 are introduced in formula (3.23)

in order to calibrate the SABR model. We will return to this point later in Section 6.2.

Other necessary dataset for the stripping procedure is the premium forward start.

Namely, instead of quoting in volatility’s terms they are quoted in premium which is

basis points to be applied to a nominal amount. They are shown in Table 5.2.

The cap premium forward start 1y × 2y with strike (for example) K = −0.25%

is 9 bp, i.e., the price is 9
10000

· N e, where N is a nominal amount in euros. Blank

spaces mean that those premiums are not quoted.

1For more detailed information, these concepts can be found at http://www.smileofthales.

com/financial/cap-floor-pricing-stripping-the-basics/ or [14].
2We have used Bloomberg from the source ICAP.

http://www.smileofthales.com/financial/cap-floor-pricing-stripping-the-basics/
http://www.smileofthales.com/financial/cap-floor-pricing-stripping-the-basics/
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Table 5.2: Cap/Floor premiums. The coloured area refers to floor’s premiums and
the white area is for cap’s premiums. Premiums are in basis points.

5.3 Swaption volatilities

Swaption volatilities can be quoted in terms of the normal or Black volatilities. In

this Thesis we will use normal volatities. The information is collected in Table 5.3.

Swaption normal volatilities are quoted in ATM differences which means that, for

instance, the 1Y ×2Y swaption volatility with strike K = −25bp is 22.77bp−4.55bp =

18.22bp and for strike K = 25bp the volatility is 22.77bp+ 5.45bp = 28.22bp.
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Table 5.3: Swaption normal volatilities. Volatilities and strikes are in basis points.



Chapter 6

Tests

In this chapter we describe the stripping procedure in detail, SABR calibration and

we show some issues and tests about the Crank-Nicholson scheme.

6.1 Stripping caplet volatilities

This procedure arises from the nature of the SABR model. The SABR model is de-

signed to get an implied volatility for the most basic instruments in markets which are

vanilla options. A cap/floor is not a straightforward option, in fact, they are a basket

of vanilla options (caplets/floorlets). In this way, the problem comes when we are

going to look in markets those caplet/floorlet volatilities and it turns out that they

are not quoted, instead cap/floor volatilities are quoted. In light of the foregoing,

a procedure to extract those caplet/floorlet volatilities is needed. That procedure is

the so-called stripping caplet volatilities.

In the previous section we introduced a key concept: the forward start volatiltiy.

The stripping procedure is based on computing the forward start volatilities from

forward start premiums.1 It works as follows:

1. Order the caps in ascending order of maturity: T0 < T1 < · · · < Tn.

2. For a given strike K, compute the sequence of price differences:

V MKT
cap (t, Tj, K, σ

cap
j )− V MKT

cap (t, Tj−1, K, σ
cap
j−1) j = 1, . . . n, (6.1)

with V MKT
cap (t, T0, K, σ

cap
0 ) = 0 and σcapj is the cap’s volatility for the maturity

Tj.

1In literature there are many ways to extract the caplet volatilities from cap volatitilies as
shown in [33]. However, the presented procedure is the most common and simplest. The described
procedure in this Thesis is inspired in (for example) [34] among many other references.

55



6.1. Stripping caplet volatilities 56

3. Every price difference is mapped to the caplets between the maturities Tj−1 and

Tj. For instance, let us suppose a 6 month Euribor cap with maturity 1 year

(1Y), hence the corresponding mapping would be

V MKT
cap (t, 1Y,K, σcap1Y ) = Vcaplet(t, T0, 6M,K, σcaplet0 )+Vcaplet(t, 6M, 1Y,K, σcaplet6M ),

(6.2)

where the value Vcaplet(t, T0, 6M,K, σcaplet0 ) must not be taken into account since

it is the value of a caplet with reset date T0 (T0 = t) and thus its value is already

known and there is not point in that price being part of the cap’s premium.

Hence, it must be

V MKT
cap (t, 1Y,K, σcap1Y ) = Vcaplet(t, 6M, 1Y,K, σcaplet6M ), (6.3)

where σcaplet6M is the caplet’s volatility (to be more precise it is the Libor’s volatil-

ity since the Libor rate is the random variable) between the valuation date

until the reset date (6M) because when the reset date comes the Libor rate

is no longer random. Notice that Vcaplet accounts for the caplet’s value in the

Bachelier model or the Black model. Hence, in this case, the unknown caplet

volatility to be found is σcaplet6M throughout a 1 dimensional root finder like New-

ton Raphson.

In the next step, considering the 6 month Euribor cap with maturity 2 years

and the same strike, the equation would be

V MKT
cap (t, 2Y,K, σcap2Y )− V MKT

cap (t, 1Y,K, σcap1Y )

= Vcaplet(t, 1Y, 18M,K, σcaplet1Y ) + Vcaplet(t, 18M, 2Y,K, σcaplet18M ),

(6.4)

and the crucial hypothesis is that σcaplet1Y = σcaplet18M and then the unknown caplet’s

volatility to be found is σcaplet18M . Notice that the left hand side of (6.4) corresponds

with the forward start cap introduced in Section 5.2. In this case, (6.4) is the

forward start cap that starts within a year with maturity 1 year length (or 2

years from the valuation date t) and following the notation introduced in Section

5.2 it would be

V Bachelier
cap (t, 1Y, 2Y,K, σ̄1Y×2Y ). (6.5)

Thus, forward start caps fully define the caplet volatility structure. In such a

way, we can easly pass from the premium dataset in Table 5.2 to cap’s (floor’s)

volatilities dataset in Table 5.1.
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Some remarks can be taken into account. The Cap/Floor volatilities in Table 5.1

can be understood as caplets volatilities because they are the flat volatilities that we

introduced in formula (3.4) in order to get the cap price.

As commented in [34], the process does not work for the ATM strike. The reason

is by definition in itself, namely, the ATM strike of a cap is different for every ma-

turity. The procedure to find the caplet’s volatility for the ATM strike is a little bit

trickier and the interested reader is referred to [34] for more detailed information.

6.2 Calibration in practice

Once the differences between caplets volatilities and caps volatilities have been ex-

plained in detail, it is easy to understand the calibrating procedure. Although, it was

already explained in Section 3.4.4, we will make some clarifications.

As discussed in Section 4.1, we allowed the paramater β to be calibrated. In addi-

tion, according to the notation introduced in Section 5.2 for forward start volatilities,

the calibration formula (3.23) can be rewrite as

(ν̂, ρ̂, α̂, β̂) = arg min
ν,ρ,α,β

∑
K∈S

(
σTStart×TMat
caplet (Tex, K)− σN(Tex, K, f)

)2
, (6.6)

where Tstart is the beginning and TMat is the maturity of the corresponding cap. Tex

stands for the expiration date of an underlying caplet between dates TStart and TMat.

For example, for the caplet volatility smile calibrated in Section 4.1 (Figure 4.2), the

crucial dates are TStart = 10Y , TMat = 15Y and we have chosen Tex = 10Y .2

6.3 Crank-Nicholson testing

6.3.1 Caps

In Section 4.1 a market caplet volatility smile with expiration date Tex = 10 years

and initial forward f = 0.01291 was fitted with the implied normal volatility and the

calibrated paramaters were

α̂ = 0.0063, β̂ = 0.0384, ρ̂ = 0.4118, ν̂ = 0.1819. (6.7)

2All underlying caplets between dates 10Y and 15Y , have the same volatility (by hypothesis)
and then we could have chosen any expiration date from the set {10Y, 10.5Y, 11Y, . . . , 14.5Y } with
its corresponding initial forward. In our case, the initial forward f was computed for the caplet’s
prevailing period [10Y, 10.5Y ].
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In view of the above, we solve the PDE throughout the equations system (4.32)

using the calibrated parameters (6.7) in order to check how the probability density

function looks like (see Figure 6.1).

Figure 6.1: Probability density function of the forward rate F (Tex), based on the
calibrated parameters (6.7).

As we can see in Figure 6.1, the density function draw a smooth curve even for

negative strikes. This makes sense because if the density function was negative we

would have found in the market an arbitrage opportunity as explained in Section 4.1.

The formula (6.7) has been used in this Thesis.3

6.3.2 Swaptions

In this section swaption’s market volatilities 1×5 are calibrated to market data. The

swaption volatility smile is shown in Figure 6.2.

In order to calibrate normal swaption volatilities, the implied normal volatility is

used. In Figure 6.3 we can observe the probability density function obtained through-

out Crank-Nicholson with the calibrated parameters:

β̂ = 0.1536, α̂ = 0.0055, ρ̂ = 0.3880, ν̂ = 1. (6.8)

In the following point we introduce some important disadvantages of using the

Crank-Nicholson scheme to solve the PDE (4.25).

3For all calculations Python 3.7 has been used, and for the optimization of (6.6) the dual anneal-
ing optimization has been used. For more details about this procedure, the reader can find further
information in [35].
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Figure 6.2: Market swaption normal volatilities 1Y × 5Y and its fit implied normal
volatility.

Figure 6.3: Probability density function of the forward swap rate S1Y,5Y
1Y with the

calibrated parameters (6.8).

6.3.3 Grid discretisation problem

As indicated in [30], Hagan et al. recommend to use 200 to 500 points for the grid

space and 30 to 100 timesteps. It is well known that the Crank-Nicholson approach

is not always a good choice to solve the PDE (4.25) as commented in [36].

In the literature, most partial differential equations are approximated with nu-

merical methods which present different kinds of stability.4 In line with this point,

4The concept of stability accounts for a good approximation to the exact solution.
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the Crank-Nicholson is not always stable.5 The paper [36] examines how this insta-

bility affects the arbitrage-free approach introduced by Hagan et al. (2014) [30].

Below, we present the instability for a specific grid discretisation. The chosen

parameters which cause this instability are shown in Table 6.1.

Fmin Fmax Tex f α ρ β ν J
0.001 0.1 0.5 0.05 0.01 -0.8 0 0.1 500

Table 6.1: Input paramters for Crank-Nicholson solution shown in Figure 6.4.

Figure 6.4: Crank-Nicholson instability with the input parameters shown in Table
6.1.

As we can observe in Figure 6.4, the problem arises just around the initial for-

ward. Moreover, as N (time step) decreases the instability is more evident until the

probability density function becomes negative (N = 43). Hence, it seems to be that

Crank-Nicholson instability also affects the AF-SABR approach and this happens

when ∆t
h2

is enough large as can be seen in Figure 6.4. This means that when N de-

creases, the Crank-Nicholson scheme also has problems with arbitrage opportunities.

This problem is well known in the literature and there have been numerous efforts

to overcome this problem. For example, in [36] 8 different finite difference schemes

are mentioned to address the problem of Crank-Nicholson instability. As concluded

5More specifically, the Crank-Nicholson is A-stable and not L-stable as discussed in [36]. These
concepts are very technical and they are beyond the scope of this Thesis.
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in [36], the Lawson-Swayne scheme seems to be one of the most efficient schemes,

even when the timestep decreases and for long maturities.



Conclusion

All concepts related to the SABR model and its predecessors models have been re-

viewed in depth throughout this Thesis. Specifically, the problem of the SABR model

for the valuation of caps, floors and swaptions in negative interest rate environments

has been studied in detail.

The context of negative rates seems to be maintained throughout 2019 and as

mentioned in this Thesis, given this context, the revision of the so-called SABR

model has been necessary to perform a correct valuation of interest rate derivatives.

The density function negativity problem in an environment of near zero or even

negative rates is a crucial aspect in the valuation of caps, floors and swaptions under

the SABR model. One of the solutions proposed in the literature is that of Hagan

et al. (2014), which consists in the resolution of a partial differential equation by

means of Crank-Nicholson’s finite difference scheme, this is the Arbitrage-Free SABR

(AF-SABR) model. This approach has been tested in this Thesis with market data

from caps and swaptions.

The instability of Crank-Nicholson for specific grid values has also been tested

and a possible solution has been discussed and is shown mainly in [36].

As a possible future line of research there are many relevant points to deal with.

For instance, a portfolio of swaptions or caps could be valued under the AF-SABR

model and compare it with the valuation under the SABR model. In the same way,

we can perform an analytical study of the scheme proposed by [36], and perform the

valuation to compare the information obtained with the two previous approaches: the

SABR model and the AF-SABR (Crank-Nicholson). In addition, we can also numeri-

cally test sensitivities with market data. Finally, finding a real arbitrage opportunity

in the market, showing the negativiy problem and its corresponding correction by

means of the AF-SABR approach is a turning point of the extensions just described.
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Appendix A

PDE Remarks

A.1 Joint conditional density function

In this section we adress the issue about how a conditional density function can be

approximated as a conditional distribution probability function for a special case.

We will follow [38] where this topic is explained in general (a simpler case) and

then we are going to apply to our case. In this way, we start with a simple case to

ease the comprehension.

Let fX|Y (x|y) be the conditional density of X given Y . Let f(x, y) and f(y)

be the joint density of the random vector (X, Y ) and the marginal density function of

Y , respectively. We will prove as it was done in [38] that the conditional distribution

probability P(x < X < x + dx | Y = y), where dx > 0 is small enough, can be

approximated as follows

P(x < X < x+ dx | Y = y) ≈ dx · fX|Y (x|y). (A.1)

Conditioning on the event {Y = y} is almost the same as conditioning on the

event {y ≤ Y ≤ y + dy} for a small dy > 0. Therefore, for f(y) > 0 we then have

P(x < X < x+ dx | Y = y) ≈ P(x < X < x+ dx | y ≤ Y ≤ y + dy)

=
P(x < X < x+ dx, y ≤ Y ≤ y + dy)

P(y ≤ Y ≤ y + dy)

=

∫ x+dx

x

∫ y+dy

y
f(x, y) dy dx∫ y+dy

y
f(y) dy
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≈ dx · dy · f(x, y)

dy · f(y)

= dx · fX|Y (x|y),

(A.2)

as we wanted to prove. We are now going to apply the argument done in (A.2) to

the conditional (joint) probability density p(T, F,A; t, f, α) as defined in (4.8). For

the sake of clarity, the conditional probability density is exactly given by

p(T, F,A; t, f, α) ≡ p(F (T ), σ(T ) | F (t) = f, σ(t) = α). (A.3)

Notice the dependence of the temporary indexes T and t on the left hand side

definition in (A.3). In such a way, if we denote G = {F ′ < F (T ) < F ′ + dF} ∩ {A <

σ(T ) < A+ dA}, then replicating the previous argument for a small ε > 0 and δ > 0,

we then obtain that

P(G | F (t) = f, σ(t) = α) ≈ P(G | f < F (t) < f + ε, α < σ(t) < α + δ)

=
P(G, f < F (t) < f + ε, α < σ(t) < α + δ)

P(f < F (t) < f + ε, α < σ(t) < α + δ)

≈ dF · dA · ε · δ · h(G, f < F (t) < f + ε, α < σ(t) < α + δ)

ε · δ · g(f < F (t) < f + ε, α < σ(t) < α + δ)

≈ dF · dA · p(G | F (t) = f σ(t) = α)

= dF · dA · p(T, F,A; t, f, α),

(A.4)

where the h( · , · , · , · ) and g( · , · ) accounts for the joint density function of

(F (T ), σ(T ), F (t), σ(t)) and (F (t), σ(t)), respectively. In short, we have the relation

p(T, F,A; t, f, α) dF dA ≈ P(F < F (T ) < F+dF, A < σ(T ) < A+dA | F (t) = f, σ(t) = α)

(A.5)

as it is defined in [30]. However, note that the authors of [30] define the relation (A.5)

with an equality and it is actually an approximation.



Appendix B

Finite Difference Schemes

We can find this theory in any numerical methods book. However, we will include in

this appendix a brief look about the main finite difference derivatives approximations

and the Crank-Nicholson scheme to solve a partial differential equation in order to

ease the reading of this project.

B.1 Finite difference derivatives approximations

Let f(x) be a smooth enough function. Then, by the Taylor’s theorem

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) + · · · (B.1)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f (3)(x) + · · · (B.2)

By substracting (B.1) minus (B.2), dividing by 2h and neglecting the terms of

order h3, we obtain the central difference approximation for the first derivative:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(B.3)

Neglecting terms of order h2 in (B.1) and (B.2), we obtain the forward difference

approximation:

f ′(x) ≈ f(x+ h)− f(x)

h
(B.4)

and the backward difference approximation:

f ′(x) ≈ f(x)− f(x− h)

h
(B.5)

Adding (B.1) and (B.2), we get the central difference approximation for the

second derivative:

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
(B.6)
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B.2 Crank-Nicholson

Let f(t, x) be a smooth function. There are two ways of solving the PDE

ft = fxx. (B.7)

One way is approximating ft throughout forward difference approximation (B.4)

and fxx with the central difference approximation (B.3). This way of solving (B.7)

is called classical scheme. Another way, is to approximate fxx by the average of the

central differences of the row j-th and the row j + 1-th and ft via forward difference

approximation, namely,

fn+1,j − fn,j
∆t

=
1

2

(
fn+1,j+1 − 2fn+1,j + fn+1,j−1

h2
+
fn,j+1 − 2fn,j + fn,j−1

h2

)
, (B.8)

where fn,j ≡ (tn, xj) is the approximation of f evaluated at the grid point (tn, xj),

∆t is the time step, h is the space step, with tn = n∆t, n = 0, 1 . . . , N and xj = jh,

j = 0, . . . , J . This way of approximating is called the Crank-Nicholson scheme

and in Figure B.1 we can see the generated grid.

Figure B.1: Crank-Nicholson grid.

For every n time step a linear equation system must be solved. The coefficient’s

matrix of the linear system is a tridiagonal matrix and thus it can be easily solved.

The main advantage is that this scheme is stable1 for any ∆t
h2

> 0 as opposed

to the classical scheme. Despite this, it is convenient that ∆t and h are small. The

main disadvantage is that at every time step a linear equations system must be solved.

1The concept “stable” refers to a good approximation to the exact solution for any value of
∆t
h2 > 0.



Appendix C

Discount factors data

We present in this appendix the discount factors data associated with the graphs

shown in Figures 5.1 and 5.2.

Table C.1: Discount curve data at date 28 May 2019.

71



C. Discount factors data 72

Table C.2: Estimated discount curve at date 28 May 2019.
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