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Abstract

The performance of various recently proposed backtesting procedure
for expected shortfall is compared through several Monte Carlo exper-
iments with rolling-window estimates, which mimic the way how these
procedures are used in practice. Also there is an application in precious
metals to show empirical evidence.
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1 Introduction

In recent years, the banking legislation on capital requirements has been harder
and harder to prevent �nancial entities bankruptcies, specially from the eco-
nomical and �nancial crisis of 2008. For that purpose the Basel Committee on
Banking Supervision established rules to calculate risk measures. The Value at
Risk (VaR), which is the maximum possible loss with a certain con�dence level,
was used for a long time to measure risk because it has good properties. Some of
those properties are monotonicity (if a portfolio has systematically lower value
than another the �rst has less risk), translation invariance (if it is added a cash
amount to the portfolio, its risk is reduced in that amount), positive homo-
geneity (if it is increased the size of the portfolio, its risk increase in the same
proportion) or elicitability (the risk measure can be de�ned as the result of min-
imizing a expected scoring function). However, VaR does not accomplish one
of the conditions a risk measure must satisfy and speci�cally, the subadditivity
property (i.e., the portfolio risk must be lower than the sum of the individual
risks of each component, what proves that diversi�cation is bene�cial). For that
reason, together with the impossibility to di¤erentiate between two portfolios
with the same VaR but one with worse losses at the tail, the Expected Shortfall
(ES) has become the new regulation risk measure. Even if it is not elicitable,
the ES veri�es the properties of a coherent risk measure and so, it does solve
the VaR tail problems.
In short, �nancial companies started to implement programs to forecast ES

in addition to VaR to make sure that their calculations were well done. Many
researchers obtained a variety of ES backtests, each based on di¤erent premises.
The main objective of this paper is to compare some of those ES backtests trying
to obtain a kind of ranking between them for small samples.
This paper is structured in di¤erent sections to reach that objective. In

Section 2 we validate the econometric programs and introduce the models and
the risk measures that we are going to use in the paper. Section 3 presents the
di¤erent ES backtests that we will compare in this study. Section 4 includes
the results of Monte Carlo experiments, both in size and in power. Section 5
provides an empirical application of backtesting ES with precious metal prices.
Section 6 concludes. Finally, Sections 7 and 8 are the references and the annex,
respectively.
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2 Model for returns, risk measures and quality
validation

In this study, we calculate the VaR and ES risk measures under the parametric
method. To do it, we estimate the parameters for the mean model, the variance
model and the innovations distribution. To �t the parameters, we will use the
Maximum Likelihood method by using Matlab. To ensure that the econometric
programs created to estimate the parameters are enough powerful with a reduced
sample, we simulate alternative asset return series.

2.1 Model for returns and risk measures

We model the asset return dynamics as in Acereda, León and Mora (2019).
Speci�cally, the conditional variance is driven by the NGARCH(1,1) model. It
is an extension of the popular GARCH (1,1) model that incorporates a new
parameter (c) in order to �t the leverage e¤ect according to the empirical ev-
idence. With respect to the mean, we will use an AR(1) model like most of
the �nancial papers do. Regarding the innovations, we will use three di¤erent
distributions: the standard Normal, the Student t and the Skewed t by Hansen
(1994). The Normal distribution is symmetric and with excess kurtosis of zero
(i.e., kurtosis is three), the Student t is symmetric and exhibits fatter tails than
the Normal (i.e., kurtosis higher than three) and the Skewed t which nests the
Student t since it allows to capture skewness. In short, the asset return model
is given by

Returns : Rt = �t + �tZt

AR(1) : �t = �0 + �1Rt�1

NGARCH(1,1) : �2t = b0 + b1�
2
t�1 + b2(Rt�1 � �t�1 � c�t�1)2

Innovations : Zt � N(mZ = 0; vZ = 1) or

tk(mZ = 0; vZ = 1) or

sktk;s(mZ = 0; vZ = 1)

We de�ne Rt as the asset return at time t, �t is the conditional mean process
and �2t is the conditional variance process and Zt is a random variable (innova-
tion) such that Zt � iid (independent and identically distributed). Note that
Zt follows one of the three distributions presented previously. All these innova-
tions are standardized to have mean (mZ) of zero and variance (vZ) of one. To
standardize, we obtain Zt = (Yt �mY ) =

p
vY where Yt is the random variable

following the typical distribution.
The AR(1) parameter �1 should be in the interval (�1; 1) for mean station-

arity. Respecting the NGARCH(1,1), the parameters b0; b1; b2 must be positive
to ensure a non-negative variance and the inequality of b2(1+ c2)+ b1 < 1 must
hold for variance stationarity. Finally, some restrictions on the parameters im-
plied in the density of Zt (i.e, the k for the case of the Student t and (k; s) for
the Skewed t) will be commented later.
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Let fY (�); V aRY;� (�) and ESY;� (�) be the probability density function
(pdf), the � Value at Risk of Yt and the � Expected Shortfall of Yt. Note
that in this paper we de�ne V aR�(X) = inffx 2 R : P (X < x) � �g
and ES�(X) = E(X j X � V aR�(X));i.e., negative numbers, while other
papers the risk measures are de�ned with positive values. Also note that
Yt = mY +

p
vY
�t

(Rt � �t); as a consequence, the pdf, the � Value at Risk
and the � Expected Shortfall of Rt conditional on past information are:

ft(r j �) =
v
1=2
Y

�t
fY (mY +

v
1=2
Y

�t
(Rt � �t));

V aRt;�(r j �) = �t +
�t

v
1=2
Y

(V aRY (�)�mY ); and

ESt;�(r j �) = �t +
�t

v
1=2
Y

(ESY (�)�mY )

There are some equivalent speci�cations of a skewed Student-t distribution.
Here we use the parameterization of Hansen (1994) but it can be changed to
the Zhu and Galbraith (2010) parameterization changing the parameter s by the
parameter s0 = 1�s

2 : A random variable Y is said to have a skewed Student-t
distribution with parameters s and k if:

Y =

(
(s� 1) jT j if U � 1�s

2

(s+ 1) jT j if U > 1�s
2

where T is a Student t random variable with k degrees of freedom, U is a
uniform (0; 1) random variable, T and U are independent and s is a parameter
in (�1; 1):Then, the cdf and pdf of Y are:

FY (y) =

8><>:
(1� s)Fk

�
y

(1�s)

�
if y � 0

(1 + s)Fk

�
y
1+s

�
� s if y > 0

fY (y) =

8><>:
fk

�
y
1�s

�
if y � 0

fk

�
y
1+s

�
if y > 0

where Fk(�) and fk(�) denote the cdf and the pdf of a Student-t distribution
with k degrees of freedom. It follows from here that if k > 1 then

mY � E(Y ) =
2s
p
k�(k�12 )p
��(k2 )

;

and if k > 2 then

vY = var(Y ) =
4k((1� 1�s

2 )
3 +

�
1�s
2

�3
)

k � 2 �m2
Y

The � VaR of Y is:

V aRY;� =

8><>:
(1� s)F�1k

�
�
1�s

�
if � � 1�s

2

(�1� s)F�1k
�
1��
(1+s)

�
if � > 1�s

2
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Finally, the � Expected Shortfall of Y can be found using its pdf:

ESY;� =

8>>>><>>>>:
� 1
�

k
k�1 (1� s)

2
fk

h
F�1k

�
�
1�s

�i�
1 +

F�1
k ( �

1�s )
2

k

�
if � � 1�s

2

� 4
�

k
k�1

�
(1� 1�s

2 )
2fk

h
F�1k

�
1��
1+s

�i
(1 +

F�1
k ( 1��1+s )

2

k )� sfk(0)
�

if � > 1�s
2

The parameters of the model can be estimated by Maximum Likelihood
(ML). When assuming for Yt a skewed Student-t distribution, the log-likelihood
is

logLR(�) =
XT

t=1

1

2
log vY �

1

2
log �2t + log fY (mY +

v
1=2
Y

�t
(Rt � �t));

which is maximized subject to the restrictions speci�ed above. When assuming
for Yt a Student-t distribution or a normal distribution, the same procedure
applies, with obvious changes. With the formulas described above for a skewed
t, we can obtain the formulas of a Student t using s = 0; and for the normal
distribution using s = 0; k =1:

2.2 Quality validation of ML estimates

To test if the econometric programs are good asymptotically with small samples
to do the research, we perform a small Monte Carlo experiment with values of the
parameters similar to those that are typically encountered in applications and
with the distributions described before, generating series with similar descriptive
statistics to most �nancial returns series. In our estimations we use the sample
mean as �0, the sample standard deviation as �0, and �0 as R0. If the estimation
parameters are close to the true ones, then we conclude that the programs are
good. To determine when the parameters are close enough, we are going to make
a hypothesis contrast, taking as null hypothesis that each estimated coe¢ cient
is equal to the true parameter. We take e� = 0:05 as nominal size or probability
to reject null hypothesis, being this true. If the p-value of the contrast is greater
than e� then the estimation approximates the true parameter.
We have done 10000 samples of 5000 observations each and, if the estima-

tions are good enough, we should have that true parameters and the average
of estimated coe¢ cients are similar, doing that only 5% of times we reject the
null hypothesis (because we select e� = 0:05). Also, the standard deviation of
the estimated coe¢ cients and the average of estimated standard errors should
be similar too. The results are in Tables 1 (Normal innovations), 2 (Student�s t
innovations) and 3 (Hansen�s skewed t innovations).
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Table 1: Monte Carlo experiment, AR-NGARCH with
Normal distribution, results with 10000 samples of size 5000

true
coe¢ cients

average of
coe¢ cients

std. deviation
of coe¢ cients

average of
std. errors

prob. rejection
H0 (e� = 0:05)

�0 0:01 0:0093437 0:014351 0:014438 0:0487
�1 0:05 0:049871 0:014365 0:014525 0:0471
b0 0:035 0:035686 0:0049537 0:0050055 0:0469
b1 0:85 0:84837 0:011327 0:011373 0:0492
b2 0:07 0:069498 0:0076648 0:0075375 0:0599
c 0:90 0:91812 0:10597 0:10346 0:0507

Table 2: Monte Carlo experiment, AR-NGARCH with
Student t distribution, results with 10000 samples of size 5000

true
coe¢ cients

average of
coe¢ cients

std. deviation
of coe¢ cients

average of
std. errors

prob. rejection
H0 (e� = 0:05)

�0 0:01 0:010239 0:014415 0:014483 0:0464
�1 0:05 0:049739 0:014324 0:014438 0:0475
b0 0:035 0:036105 0:026808 0:0055215 0:0505
b1 0:85 0:84829 0:015939 0:0128 0:0504
b2 0:07 0:069591 0:0092235 0:0080083 0:0635
c 0:90 0:91623 0:11358 0:11054 0:0507
k 10 10:239 1:4248 1:3857 0:0457

Table 3: Monte Carlo experiment, AR-NGARCH with
Skewed Student t distribution, results with 10000 samples of size 5000

true
coe¢ cients

average of
coe¢ cients

std. deviation
of coe¢ cients

average of
std. errors

prob. rejection
H0 (e� = 0:05)

�0 0:01 0:010512 0:014682 0:014685 0:0512
�1 0:05 0:049561 0:014463 0:014535 0:0484
b0 0:035 0:035879 0:012998 0:0052708 0:0551
b1 0:85 0:84823 0:015517 0:012614 0:0552
b2 0:07 0:069572 0:0083875 0:0080268 0:0586
c 0:90 0:91703 0:11795 0:11427 0:0485
k 10 10:232 1:4276 1:3859 0:0475
s �0:06 �0:0602 0:020298 0:020294 0:0498

As we can see, the results are as we expected. The true coe¢ cients and the
average of coe¢ cients are very close and the same happens with the standard
deviation of coe¢ cients and the average of standard errors. The rejection rates
are similar to 5%, with some di¤erences because of the randomness, although
there are some parameters like b2 that overrejects a little. Therefore, we are
going to use these programs to do our research.
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3 Backtesting studies

In this section we are going to describe the di¤erent backtests of Expected
Shortfall that we will use in the Monte Carlo simulation. The selected backtests
are the proposed by Kratz, Lok & McNeil (2018), the Unconditional test by Du
& Escanciano (2017), the �rst two tests by Acerbi & Székely (2014) and the tail
test by Berkowitz (2001).

3.1 Kratz, Lok & McNeil (2018)

First of all, we are going to backtest the Expected Shortfall using Kratz, Lok
and McNeil�s multinomial tests. Kratz et al. (2018) shows in their paper that it
can be approached the Expected Shortfall indirectly, with a multilevel VaR, i.e.,
as an average of di¤erent VaR levels, and then can be used this property, to-
gether with the binomial distribution of the VaR exceptions, to do a multinomial
backtest.
For that purpose, we must choose how many VaR levels, N , are we going

to use (in our case N = 8), and calculate the VaR values parametrically. Each
VaR coverage level is de�ned by:

�j = �� j � 1
N

�; j = 1; :::; N ; N 2 N

�0 = 1 and �N+1 = 0

1

We consider � = 2:5%; which in this paper equals the 97:5% level that Basel
Committee on Banking Supervision said. If the true returns (Rt) violates in a
temporal moment j estimated V aRt levels, then we denote Xt = j. As a visual
example it can be seen in Graphic 1 the N V aR levels for a normal distribution.

Graphic 1: Di¤erent VaR levels for a normal distribution to make the multinomial tests.

Blue line is the probability density function, red line denotes V aR� and each dashed line is
a V aR�j :

1The �j values have been adapted to re�ect the coverage level. Kratz et al. uses the
con�dence level as Basel, which equivalates �coverage =

�
1� �confidence

�
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We de�ne then, the observed cell counts as the number of times that the
variable Xt takes a determined value j by:

Oj =
nX
t=1

1[Xt=j]; j = 0; 1; :::; N

where 1[Xt=j] is the indicator function that is worth one if Xt takes the value j
and zero if not. Under the unconditional coverage hypothesis

[P (Xt � j) = 1� �j+1 for all t]

and the independence hypothesis

[Xt is independent of Xs for s 6= t]

the random vector (O0; :::; ON ) should follow the multinomial distribution

(O0; :::; ON ) �MN(n; (�0 � �1; :::; �N � �N+1))
where n is the number of trials or experiments that we realize.
With this idea, if the parameters estimated are 1 = �0 < �1 < :: < �N <

�N+1 = 0; and considering the model (O0; :::; ON ) �MN(n; (�0 � �1; :::; �N � �N+1)),
the null and alternative hypothesis to test are:

H0 : �j = �j for j = 1; ::; N

H1 : �j 6= �j in other case

With all of this tools, we can calculate the next 3 statistic test that Kratz
et al. proposed:
Pearson chi-squared test:

SN =

NX
j=0

(Oj � n (�j � �j+1))2

n (�j � �j+1)
d�
H0

�2N

Nass test:

~c = 2E(SN )
var(SN )

; � = ~cE(SN )

E(SN ) = N; var(SN ) = 2N � N2+4N+1
n + 1

n

PN
j=0

1
�j��j+1

~cSN
d�
H0

�2� ;

Likelihood Ratio Test (LRT):

~SN = 2
X

j:0�j�N;Oj 6=0
Oj log

�
Oj

n(�j � �j+1)

�
d�
H0

�2N

Under the null hypothesis our estimated model of returns satisfy the un-
conditional coverage hypothesis and the independence hypothesis, what means
that our Expected Shortfall is well calculated. However, if the statistic is greater
than the critical value (�2N;(1�e�) for Pearson and LRT or �2v;(1�e�) for Nass) we
must reject the null hypothesis and our ES estimation will not be good enough.
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3.2 Du & Escanciano (2017)

The Du and Escanciano�s Expected Shortfall backtests are very similar to the
usual VaR backtests of Kupiec (1995) and Christo¤ersen (1998) because these
backtests are based on cumulative violations. These cumulative violations are
the integral of the violations over the coverage level in the left tail. For this
study, we are going to focus on calculate their Unconditional ES backtest.
To do this backtest we need to de�ne the hit or �-violation function at time

t as:
ht(�) = 1(Rt�V aRt;�)

where 1(�) is the indicator function that, in this case, shows when there is a
violation of V aRt;�:
This hit function is the same as the Xt in Kratz backtest, but with N =

1: Starting from the idea that the violations follows a Bernoulli distribution
with mean �, and centered violations are a martingale di¤erence sequence, VaR
backtests were made. Du & Escanciano wanted to �nd a similar property to
apply it to ES backtests and, if Expected Shortfall is the integral of VaR, then
they could use the integral of ht(�), the cumulative violation process Ht(�); to
make a backtest.
By Fubini�s theorem, they discovered that Ht(�) has mean �

2 and therefore
Ht(�) � �

2 follows a martingale di¤erence sequence too. We de�ne ut as the
innovations cdf , i.e, ut = F (Zt). Then:

Ht (�) =
1

�

�Z
0

ht(u)du =
1

�

�Z
0

1(ut�u)du

=
1

�
(�� ut) 1(ut��)

Like violations (ht), cumulative violations (Ht) are distribution-free, since
ut is an i.i.d. uniform [0,1] variable. The advantage of cumulative violations are
that contain information about all the tail distribution, while violations only
provide punctual information.
The unconditional backtest for ES is an analogue of Kupiec�s VaR backtest

(1995) and uses a t-test for the hypothesis:

H0 : E [Ht (�)] =
�

2

H1 : E [Ht (�)] 6=
�

2

To calculate the statistic test we need the next result: E
�
H2
t (�)

�
= �

3 ; and
hence, var [Ht (�)] = �

�
1
3 �

�
4

�
: Then, the Unconditional test is de�ned:

UES =

p
n
�
H(�)� �

2

�
q
�
�
1
3 �

�
4

� d�
H0

N (0; 1)

where n is the number of tested observations and H (�) is the sample mean of

estimated cumulative violations
�cHt (�)� :
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H (�) =
1

n

nX
t=1

cHt (�)
So we reject the null hypothesis, and hence the ES forecast, if UES <

N (0; 1) e�
2
or UES > N (0; 1) 1�e�

2
; because this is a two tail contrast, and not

reject if N (0; 1) e�
2
< UES < N (0; 1) 1�e�

2
.

3.3 Acerbi & Székely (2014)

Acerbi and Székely (2014) propose in their paper 3 di¤erent statistical backtests
of Expected Shortfall. In this paper we are going to use the �rst two statistics,
Z1 & Z2 which are centered in estimate the tail distribution. Both tests are
very similar, rejecting only if there are evidence of risk underestimation, but they
have slightly di¤erent assumptions and di¤erent null and alternative hypothesis.
They need the assumption of continuity of the cumulative distribution function
(cdf) and probability density function (pdf) of returns.
The �rst test is inspired by the de�nition of Expected Shortfall and from

that it can be derived:

E

�
Rt
ESt;�

� 1 j Rt < V aRt;�
�
= 0

In this test, it�s supposed that the sample observations are independent and
V aRt;� has been tested already and it has not been rejected. Then the �rst test
of Acerbi et al. concentrates in testing the magnitude of the realized exceptions
against the predicted by the model chosen. Their �rst test statistic is de�ned:

Z1(R) =
nX
t=1

Rtht
NTES�;t

� 1

where ht is the hit function which scores 1 if there are violation and 0 if not

ht (�) = 1(Rt<V aR�;t)

and NT denotes the total number of violations of V aRt;�

NT =
nX
t=1

ht

The null and alternative hypothesis that are contrasted in this test are:

H0 : P�t = F
�
t 8t

H1 : ESFt;� � ESPt;�; for all t and < for some t

V aRFt;� = V aR
P
t;�; for all t

where P represents the predicted distribution model,conditional to previous in-
formation, used to forecast V aR and ES; while F represents the real conditional
distribution model. Then P�t is the estimated tail distribution and F�t is the

11



real tail distribution for R < V aRt;�: This test suppose V aR is well calculated
and rejects only if there are underestimation of risk. Under these conditions:

EH0
[Z1 j NT > 0] = 0

EH1
[Z1 j NT > 0] > 0

If the risk model is correct, then Z1 � 0 but if the statistic is positive
enough, Z1 > 0, there will be evidence to reject null hypothesis and the ES will
be miscalculated.

On the other hand, the second test serves to contrast V aR & ES at the
same time. Based on the fact that ESt;� = E

�
Rtht
�

�
, the statistic Z2 is de�ned:

Z2(R) =
nX
t=1

Rtht
n�ES�;t

� 1

The null and alternative hypothesis in this test are

H0 : P�t = F
�
t 8t

H1 : ESFt;� � ESPt;�; for all t and < for some t

V aRFt;� � V aRPt;�; for all t

This test does not need the independence assumption, and evaluates magni-
tude and frequency of violations at the same time. If, like test 1, the statistic is
positive enough, we will reject null hypothesis and ES model should be corrected
and probably V aR too.

The main problem of these tests are the absence of known asymptotic distri-
bution. Unlike the other backtests presented in this paper, Acerbi & Székely�s
backtests need to simulate the statistic distribution to achieve critical values
and reject or not reject null hypothesis. First of all, a large number (M) of
return series are simulated following the estimated model. Afterwards, for each
return series, statistics Z1 and Z2 are calculated. Finally, critical values are
calculated as the (1� e�) quantile of Z1 and the (1� e�) quantile of Z2, so that
a e� proportion of statistics were rejected.

1) Rit � Pt 8t;8i = 1; :::;M
2) Zij = Zj(R

i
t) j = 1; 2

3) Zcritj;e� = inffzj 2 R : P (Zj < zj) � 1� e�g
Now with the critical values, it is possible to make the contrast. In our case,

we are going to do an approximation of the critical values for the study that
will be commented later.
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3.4 Berkowitz (2001)

Berkowitz (2001) proposed in his paper two tests for density forecast, specially
for cases with small samples. One of the tests is centered in all the distribu-
tion while the other, which will be selected for this paper, is centered only in
the tail distribution, ignoring the rest. Berkowitz tests are based on the idea
that, if the distribution has been well estimated, the distribution of the variable
(ut) obtained from the estimated cumulative distribution function of the inno-
vations should be an i.i.d. uniform distribution U(0; 1): It is di¢ cult to devise
parametric tests when the null hypothesis is that a variable follows an uniform
distribution U(0; 1): For that reason Berkowitz suggested to create the backtest
transforming the variable using the inverse of the standard normal distribution
function of ut:
Thanks to the next two propositions, Berkowitz created his likelihood ratio

tests. The �rst proposition says that if a series ut =
RtR
�1

f(v)dv is distributed

as an i.i.d. U(0; 1) then

zt = �
�1

24 RtZ
�1

f(v)dv

35 is an i.i.d. N(0; 1)

and the second one indicates the next result

log

"
f(Rt)

f̂(Rt)

#
= log

�
g(zt)

�(zt)

�
where ��1(�) is the inverse normal distribution, �(�) is the normal pdf, g(zt) is
the pdf of zt and f(Rt) & f̂(Rt) are the real and estimated pdf of Rt respectively.
With all of this and focusing on tail losses, Berkowitz proposed a Likelihood
Ratio Test based on a censored likelihood which compare the forecasted tail
density with the observed one.
To calculate the statistic, �rst of all we have to obtained the ut series with

our estimation models. Then, we have to transform that possible uniform ut
series to a possible normal series zt = ��1 [ut] : To restrict to the � lower tail
(in our case the coverage level of 2:5%), we have to calculate the cuto¤ point
V aRBerk� = ��1 [�] and de�ne a new variable:

z�t =

(
V aRBerk� if zt � V aRBerk�

zt if zt < V aRBerk�

With this new variable that, if we have estimated the returns correctly,
should follow the tail distribution of a standard normal, we can calculate the
log-likelihood function for joint estimation of �Berk (the mean parameter) and
�Berk (the standard deviation parameter)

L
�
�Berk; �Berk j z�

�
=

X
z�<V aRBerk

�

log

�
1

�Berk
�

�
z� � �Berk
�Berk

��

+
X

z�=V aRBerk
�

log

�
1� �

�
V aRBerk� � �Berk

�Berk

��
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Therefore, the backtest can be based on the likelihood of a censored normal.
The LR test by Berkowitz requires as hypothesis that:

H0 : �Berk = 0 and �Berk = 1

H1 : �Berk 6= 0 and=or �Berk 6= 1

Then Berkowitz shows that we can evaluate a restricted likelihood L (0; 1) and

compare it to the likelihood of the parameters that maximizes it, L
�
�̂Berk; �̂Berk

�
. Berkowitz

tail backtest statistic is:

LRBerktail = �2
h
L (0; 1)� L

�
�̂Berk; �̂Berk

�i
d�
H0

�22

This test rejects the Expected Shortfall if LRBerktail > �22;(1�e�): That means
that there is some mismatch in the �rst 2 moments either because there are
very large losses relative to the forecast or because there are too small.
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4 Monte Carlo experiments results

After explain each of the backtests of the Expected Shortfall, in this section we
are going to compare them. For this purpose we are going to perform Monte
Carlo experiments, creating di¤erent matrix of returns starting from the same
seed. To do this, we simulate 1000 samples of n + T + 200 random numbers
between 0 and 1 and we obtain the necessary innovations (using the same seed).
Applying the AR-NGARCH model (or the AR-GARCH, according to each case)
and discarding the 200 �rst observations to not depend on the initial point (leav-
ing samples of n+ T observations), we obtain our simulated pro�ts and losses.
With our returns, we estimate the parameters of the model with a rolling win-
dow of T = 2500 observations and we are going to estimate new parameters
each 10 observations (2 market weeks in practice) to reduce estimation times
and to be more applicable for banks. That is, we have taken the T = 2500 �rst
observations to estimate the parameters and V aRt;� & ESt;� for the period
2501:2510 and calculated the tools described before (as ut; ht; :::). With obser-
vations 11:2510 we have repeated the operation for the period 2511:2520 and
so on until the last observation. With this method we obtain n = 250 or 500
predictions of mean, variance, V aRt;� and ESt;� and we compare them with
the true returns for each sample.
With all that data, we can calculate each of the backtests for each of the

1000 samples. Considering a coverage level of e� = 0:05; we calculate for each
statistic its p-value. If the p-value is greater than e� = 0:05, then we have not got
evidence to reject null hypothesis and the ESt;� will be well calculated. We will
reach to the same result if we use critical values instead of p-values to compare
the statistic value and to reject or not reject.
In the case of Acerbi & Székely�s tests, to calculate the p-values or critical val-

ues, we will use an approximation. We are going to simulateM = 10000 samples
of returns following the estimated distribution (from the null hypothesis, with
their same sizes both in sample and out of sample), with the parameter values
(�0; �1; b0; b1; b2; c) = (0:01; 0:05; 0:035; 0:85; 0:07; 0:90) [if the null hypothesis is
a GARCH model then c = 0]: In this way, the critical values from each sample
in the size and the power are the same, so the computational cost is reduced
drastically and the results can be compared better. After creating the returns,
we can continue with steps 2) and 3), described in Acerbi & Székely�s backtests,
to estimate the distribution and critical values. There is another approximation
in Annex 1 that shows similar results than this one.
In the next subsections we are going to see the size and the power of each

ES backtest. We will see what proportion of times (of the thousand samples)
we reject null hypothesis H0 (

no of times that it0s rejected H0

1000 ).

4.1 Size

In this subsection we will see how the backtests behave if the assumption of
mean model, variance model and innovations distributions are estimated with
the adequate method, i.e., the real returns are predicted well.
We are going to use AR-NGARCH with the parameters (�0; �1; b0; b1; b2; c) =

(0:01; 0:05; 0:035; 0:85; 0:07; 0:90) ; that are reasonable similar to real �nancial se-
ries, to simulate Pro�ts & Losses. These returns are considered the real ones in
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these experiments. Then we estimate the V aRt;� & ESt;� with the Maximum
Likelihood estimations of the parameters, following the same model, and we will
see how many times we reject or not the forecasted Expected Shortfall with each
backtest. This value is the size of the contrast.
We will do this with innovations following the standard normal distribution,

the Student t with k = 10 degrees of freedom and the Hansen�s Skewed t with
k = 10 and s = �0:06:The results are in Table 4:

Table 4: Size backtest experiments, AR-NGARCH with di¤erent distributions
T = 2500 � = 0:025 N = 8 e� = 0:05

Prob. reject H0 n Pearson Nass LRT Uncond. Z2 Z1 Berk.
Normal 250 0:090 0:050 0:031 0:046 0:044 0:040 0:056

500 0:071 0:053 0:069 0:052 0:060 0:050 0:062
Student t 250 0:091 0:049 0:028 0:054 0:054 0:052 0:053
(k = 10) 500 0:074 0:058 0:068 0:059 0:062 0:056 0:066

Skewed Student t 250 0:114 0:069 0:037 0:052 0:061 0:055 0:054
(k = 10; s = �0:06) 500 0:081 0:064 0:074 0:048 0:088 0:037 0:064

Sizes for AR(1)-NGARCH(1,1) returns with di¤erent innovations. �Pearson�, �Nass�& �LRT�

refers to Kratz et al. backtests, �Uncond.� is Du & Escanciano unconditional test,

�Z1�& �Z2�are the �rst and second Acerbi & Székely�s backtests and �Berk.� refers to the

tail LRT by Berkowitz

As we can see, the results are, as it�s expected, very close to 5%. That means
that the size contrasts are well performed. Also we can observe that there are
some di¤erences between each backtest and between the same backtest but
with di¤erent out of sample sizes (n). If we compare each backtest made with
n = 250 and n = 500 we can see that the size value is more accurate with an
out of sample greater in the Pearson test, as it�s said in Kratz et al. paper,
but in Z2 and Berkowitz test, the size values increase above the 5%. The LRT
by Kratz et al. has small size values which increases with bigger n values.
With the rest of backtests there are no signi�cative variations. Respect the
size comparisons between backtests seems that Pearson test is the worst and
the correction implemented in Nass test works very well. The rest of backtests
performs fairly well, but the most stable backtest around 5% seems to be the
Unconditional test by Du and Escanciano.

4.2 Power

The power of a contrast is the probability to reject null hypothesis when the
alternative hypothesis is correct. In this subsection we are going to see how
good are each backtest to reject false models, although the real and estimated
models were very similar. Regarding the contrast powers we are going to realize
di¤erent tables in which we will change some parameters of skewness or kurtosis
one by one in the alternative hypothesis.
For the �rst tables of powers we will compare how well performs each test if

we change the innovations distribution. We will estimate the innovations with
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normal distribution but the real generator process was made with H1 model,
innovations with Student t distribution, which has more kurtosis the lower the
degrees of freedom (k) are. We can see the results in tables 5a & 5b.
H0 : Rt � AR(1)-NGARCH(1; 1) with Normal innovations
H1 : Rt � AR(1)-NGARCH(1; 1) with Student t innovations with k degrees

of freedom

Table 5: Power backtest experiments, changing Student t degrees of freedom
T = 2500 � = 0:025 N = 8 e� = 0:05

Panel a: n = 250
k Pearson Nass LRT Uncond Z2 Z1 Berk
100 0:091 0:051 0:027 0:055 0:048 0:047 0:059
20 0:106 0:071 0:039 0:087 0:073 0:124 0:108
10 0:153 0:098 0:061 0:134 0:093 0:218 0:197
9 0:165 0:103 0:063 0:137 0:104 0:244 0:211
8 0:164 0:116 0:073 0:145 0:115 0:286 0:247
7 0:187 0:124 0:083 0:159 0:123 0:335 0:288
6 0:199 0:140 0:090 0:173 0:134 0:407 0:343
5 0:233 0:163 0:115 0:183 0:148 0:511 0:436

Panel b: n = 500
k Pearson Nass LRT Uncond Z2 Z1 Berk
100 0:069 0:056 0:078 0:059 0:067 0:063 0:069
20 0:110 0:088 0:086 0:088 0:092 0:154 0:131
10 0:145 0:117 0:124 0:160 0:134 0:356 0:298
9 0:167 0:133 0:131 0:173 0:145 0:405 0:350
8 0:200 0:161 0:148 0:189 0:164 0:469 0:400
7 0:223 0:181 0:167 0:202 0:176 0:530 0:487
6 0:257 0:219 0:202 0:224 0:205 0:624 0:559
5 0:296 0:260 0:258 0:246 0:231 0:711 0:650

The case where k ! 1; is the normal distribution case, so with k = 100
we should have results very similar to normal size cases. This happens, as we
can see, both for n = 250 and for n = 500: Also we observe that almost in
all cases the sizes increase as the degrees of freedom descend. That is a good
signal because it means that if there are more kurtosis, i.e., there are more large
losses, the probability to reject the normal case increase. Most of the backtests
do not reach the 30% size level. Only the �rst test by Acerbi & Székely, which
suppose that the VaR backtest was satisfactory, and the tail Likelihood Ratio
Test by Berkowitz have large powers, what means that are more sensible to tail
mismatches.
If we compare the results between powers with an out of sample size of

n = 250 and n = 500, we can see that, in general, the backtests performs better
with n = 500 (larger n):

After comparing changes on degrees of freedom, we are going to keep them
constant and change the Hansen�s skewed parameter (s) in Skewed Student t
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distribution. The alternative hypothesis will generate skewed student t innova-
tions while we estimate it with normal distribution, i.e., we will not capture the
innovations skewness or kurtosis. We can see the results for di¤erent s values
in the interval (�1; 1) in tables 6a & 6b.
H0 : Rt � AR(1)-NGARCH(1; 1) with Normal innovations
H1 : Rt � AR(1)-NGARCH(1; 1) with Skewed Student t innovations with

skewed parameter s and 100 degrees of freedom

Table 6: Power backtest experiments, changing Skewed Student t skewness parameter
T = 2500 � = 0:025 N = 8 e� = 0:05

Panel a: n = 250
s Pearson Nass LRT Uncond Z2 Z1 Berk

�0:80 0:733 0:638 0:495 0:729 0:656 0:662 0:743
�0:60 0:730 0:663 0:499 0:750 0:714 0:563 0:719
�0:40 0:608 0:516 0:346 0:617 0:571 0:339 0:544
�0:20 0:334 0:251 0:155 0:334 0:299 0:137 0:238
0:00 0:091 0:051 0:027 0:055 0:048 0:047 0:059
0:20 0:021 0:011 0:010 0:108 0:001 0:018 0:243
0:40 0:004 0:002 0:002 0:418 0:000 0:010 0:634
0:60 0:000 0:000 0:000 0:868 0:000 0:000 0:957
0:80 0:000 0:000 0:000 1:000 0:000 0:000 1:000

Panel b: n = 500
s Pearson Nass LRT Uncond Z2 Z1 Berk

�0:80 0:897 0:880 0:806 0:927 0:914 0:922 0:947
�0:60 0:901 0:885 0:802 0:941 0:938 0:856 0:946
�0:40 0:783 0:748 0:613 0:863 0:856 0:606 0:814
�0:20 0:446 0:394 0:270 0:512 0:526 0:250 0:428
0:00 0:069 0:056 0:078 0:059 0:067 0:063 0:069
0:20 0:008 0:005 0:261 0:337 0:000 0:017 0:398
0:40 0:002 0:001 0:752 0:888 0:000 0:010 0:907
0:60 0:000 0:000 0:994 1:000 0:000 0:002 1:000
0:80 0:000 0:000 1:000 1:000 0:000 0:000 1:000

The results are so diverse. As we can see, when s = 0:00 we have the
Student t distribution with k = 100; i.e., the same cases as tables 5a and 5b,
very close to normal cases. On the other hand, if we decrease s parameter to
negative values, then we have negative skewness and with normal distribution
estimations, there are more and more violations of V aRt;� & ESt;�: That is
re�ected in fast increases in powers as s goes down. However, we can observe
very di¤erent reactions to positive values of s. Acerby and Székely�s tests tend to
reduce power values to zero, due to their hypothesis contrast that only rejects
if there are an undervaluation of risk measures. Since s > 0 creates positive
skewness and less rejections (because risk measures are overestimated), then
it�s so hard to reject the backtest. As regards the Unconditional test by Du &
Escanciano and the tail Likelihood Ratio test by Berkowitz, the results are pretty
good. These backtests tend to power values of 100% quickly with n = 500 and,
with n = 250; they increase more slowly but even faster than with s < 0: But
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with the tests by Kratz et al. (Pearson, Nass and LRT), the results are more
problematic. With n = 250 the three backtests tend to zero. This happens
because with so few violations, very large samples are required to generate
rejections. We can see it in Annex 2. However, with n = 500; the LRT is the
only one of those tests that begins to show good results.
These experiments encourage �nancial institutions to choose Du & Escan-

ciano and/or Berkowitz backtests, and Basel Committee on Banking Supervi-
sion will prefer Acerbi & Székely tests because the overestimation of risk is not
relevant to them.

Finally, the last power experiment will be changing only the variance model,
varying the asymmetric NGARCH parameter. We will create returns following
an AR-NGARCH model with normal innovations, but the estimations will be
created following an AR-GARCH model instead. We can see the results for
di¤erent c values in the interval [�1; 1] in tables 7a & 7b. Remember that for
the returns to be stationary the parameters must accomplish in this case:

0:07(1 + c2) + 0:85 < 1! 0:07c2 < 0:08! c2 < 1:143

H0 : Rt � AR(1)-GARCH(1; 1) with Normal innovations
H1 : Rt � AR(1)-NGARCH(1; 1) with asymmetric parameter c and Normal

innovations

Table 7: Power backtest experiments, changing asymmetric NGARCH parameter c
T = 2500 � = 0:025 N = 8 e� = 0:05

Panel a: n = 250
c Pearson Nass LRT Uncond Z2 Z1 Berk

�1:00 0:073 0:042 0:026 0:038 0:033 0:109 0:062
�0:80 0:066 0:036 0:019 0:032 0:035 0:089 0:051
�0:60 0:077 0:041 0:018 0:036 0:042 0:069 0:047
�0:40 0:082 0:045 0:027 0:040 0:047 0:058 0:047
�0:20 0:084 0:047 0:026 0:040 0:055 0:065 0:060
0 0:098 0:061 0:027 0:048 0:057 0:056 0:055
0:20 0:102 0:058 0:028 0:058 0:067 0:056 0:064
0:40 0:110 0:074 0:037 0:067 0:081 0:057 0:068
0:60 0:119 0:081 0:042 0:081 0:091 0:056 0:064
0:80 0:127 0:084 0:043 0:097 0:121 0:073 0:071
1:00 0:162 0:099 0:049 0:119 0:135 0:096 0:102
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Panel b: n = 500
c Pearson Nass LRT Uncond Z2 Z1 Berk

�1:00 0:045 0:032 0:077 0:039 0:025 0:124 0:070
�0:80 0:045 0:033 0:069 0:040 0:034 0:090 0:052
�0:60 0:052 0:042 0:074 0:040 0:041 0:074 0:062
�0:40 0:068 0:050 0:075 0:044 0:040 0:055 0:056
�0:20 0:061 0:041 0:073 0:048 0:051 0:057 0:059
0:00 0:063 0:046 0:062 0:051 0:062 0:055 0:065
0:20 0:076 0:060 0:071 0:058 0:074 0:058 0:059
0:40 0:087 0:063 0:071 0:069 0:082 0:057 0:075
0:60 0:099 0:081 0:077 0:082 0:105 0:056 0:081
0:80 0:123 0:091 0:091 0:109 0:132 0:077 0:092
1:00 0:141 0:115 0:104 0:156 0:173 0:111 0:133

At �rst sight we can say that there are no big di¤erences between powers
changing c parameter. The case where c = 0:00 is the size, close to e� = 0:05;
but the maximum power value, with c = 1:00; does not reach the 20% neither
with sample n = 250 nor n = 500: This result shows us that it is more impor-
tant the skewness from the innovations distribution than the asymmetry from
the variance model. Comparing the results between samples, we see that for
all backtests except Pearson, the results are more powerful with larger n:The
Pearson test is di¤erent because it reacts in a peculiar way to changes to sample
size. For that reason, it is veri�ed that the modi�ed test (Nass) performs better.
We can see that it becomes hard to detect wrong variance models. With

positive c values the power tests increase a little, but with negative ones most
of the tests are not powerful given the previous sample sizes. It is veri�ed
that Z1 performs well, while both Berkowitz and LRT perform slightly. Some
experiments have been implemented with larger sample sizes and we have seen
that the results improve a little with mainly large absolute values of c.

20



5 Empirical work

In this part of the paper we are going to apply the di¤erent backtests studied
before on real returns. In our case, we are going to use data from di¤erent
precious metal prices provided by Datastream, particularly we will use 5500
data from palladium, platinum, gold and silver from 29=01=1998 to 28=02=2019.
All metal prices are in United States Dollars per Troy ounce. Gold and silver
prices are from Handy & Harman source (from New York), palladium prices
are from the London Metal Exchange and platinum prices are from Thomson
Reuters source (from New York too). To get a �rst impression about the data
we plot in Graphic 2 the evolution of these metal prices.

Graphic 2: Evolution of precious metal prices

Starting from the prices (Pt), we calculated the logarithmic returns (in per-
centage) as follows and obtained the next descriptive statistics (Table 8).

Rt = 100 � ln
�
Pt
Pt�1

�

Table 8: Descriptive statistics of precious metal returns

Palladium Platinum Gold Silver
Mean 0:0342 0:0146 0:0268 0:0173
Median 0 0 0 0
Maximum 15:8406 9:5846 7:0060 13:6648
Minimum �17:8590 �12:4017 �9:5962 �12:9970

Std. Deviation 2:1043 1:3847 1:0647 1:8050
Skewness �0:2270 �0:4822 �0:2025 �0:5263
Kurtosis 9:2915 8:5634 9:5150 8:9632
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As we can see, all of these metal returns have a positive but close to zero
mean and they have negative skewness and large kurtosis, which means that
the returns follows a model with asymmetric parameters and/or have skewed
innovations. The volatility clusters that we can see in Graphic 3 (which is ahead)
show us that GARCH models can �t well. For all that reasons, we suspect that
the metal returns can follow an AR(1)-NGARCH(1,1) with Hansen�s skewed t
innovations distribution and an AR(1)-GARCH(1,1) with normal innovations
will be slightly good but insu¢ cient. To make comparisons we are going to
estimate both models.
As we did with the Monte Carlo experiments, we are going to use an in

sample rolling window of T = 2500 observations to estimate the model parame-
ters, and each 10 observations we move the window to reestimate them. The
ES coverage level will be � = 2:5% and we will calculate the backtests for all
the out of sample (n = 3000); for approximately each two years (n = 500; see
Annex 3) and for each year (n = 250).
First we are going to estimate with the AR(1)-NGARCH(1; 1)-sktk;s model.

The average of each estimated parameter for each metal returns are in Table 9:

Table 9: Mean of estimated parameters for AR-NGARCH-skt model

Palladium Platinum Gold Silverc�0 0:0256 0:0451 0:0551 0:0513c�1 0:0373 0:0052 �0:0229 �0:0245bb0 0:0762 0:0230 0:0101 0:0251bb1 0:8892 0:9247 0:9420 0:9504bb2 0:1069 0:0649 0:0403 0:0371bc 0:0484 �0:1028 �0:5010 �0:4597bk 4:2474 5:7485 4:7570 4:0649bs �0:0212 �0:0639 �0:0193 �0:0657

After that, we estimate with the AR(1)-GARCH(1; 1)-normal model. The
average of each estimated parameter are in Table 10:

Table 10: Mean of estimated parameters for AR-GARCH-norm. model

Palladium Platinum Gold Silverc�0 0:0427 0:0371 0:0398 0:0245c�1 0:0425 0:0429 �0:0016 0:0136bb0 0:0723 0:0325 0:0195 0:0427bb1 0:9101 0:9139 0:9262 0:9435bb2 0:0789 0:0709 0:0594 0:0489

With the estimations, we calculate the V aRt;2:5% and ESt;2:5% for each
temporal moment and for each model. We can see the resulting picture in
Graphic 3:

22



Graphic 3: Returns and loss NGARCH risk measures of metal prices

The risk measures adapt quite well to the returns, at �rst sight, even with
the sudden changes at crisis period due to high volatility, but most times, the
Expected Shortfall with asymmetric parameters (with NGARCH and skewed
t) is more conservative than symmetric ES. Due to this, using all the sample,
n = 3000; the quantity of V aR violations at 1:25% (V (0:0125)) and cumulative
violations at 2:5% (CV (0:025)) are less for the �rst case than for the second.
It can be viewed in Table 11:

Table 11: Descriptive analysis of loss violations between models. Sample size n = 3000

Models AR(1)-NGARCH(1; 1)-skt AR(1)-GARCH(1; 1)-norm
V (0:0125) CV (0:025) n � 0:0125 V (0:0125) CV (0:025) n � 0:0125

Palladium 41 39.3956 37.5 59 56.3796 37.5
Platinum 35 37.7645 37.5 58 56.0311 37.5
Gold 45 41.5695 37.5 62 57.7059 37.5
Silver 38 38.8728 37.5 58 56.7262 37.5

To analyze better if we can reject the model hypothesis for the Expected
Shortfall risk measures, on Table 12 there are the p-values of the backtests.
P-values lower than 5% detect rejection of ES estimation and lower than 0.01%
detect strong rejections (transposed to Basel tra¢ c light, �rst case would be
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equivalent to yellow light, which means that there would be penalties, and
second case would be equivalent to red light, which means that there would be
penalties and intervention too)

Table 12: P-values of loss backtesting contrasts for n=3000 (full sample size)

Palladium Platinum Gold Silver
Berk 0:7629 0:4208 0:6981 0:8712
Uncond 0:7019 0:9574 0:4113 0:7816

AR Z1 0:9826 0:9988 0:7986 0:8598
NGARCH Z2 0:5261 0:4053 0:1592 0:6009

skt Pearson 0:4612 0:8935 0:2043 0:9962
Nass 0:4588 0:8860 0:2078 0:9953
LRT 0:4803 0:9208 0:3229 0:9956
Berk 0:0000 0:0000 0:0000 0:0000
Uncond 0:0001 0:0002 0:0000 0:0001

AR Z1 0:0000 0:0000 0:0000 0:0000
GARCH Z2 0:0008 0:0008 0:0004 0:0006
normal Pearson 0:0000 0:0005 0:0000 0:0000

Nass 0:0000 0:0006 0:0000 0:0000
LRT 0:0000 0:0077 0:0000 0:0000

As expected, with asymmetric model there are no rejection in any case but
with the symmetric model always is rejected the null hypothesis and, in many
cases, with very small p-values (equivalent to red light).
With this big sample the results are evident, but in real life, the backtests

have to be realized each year or each two years. Now we are going to show the
results for n = 250: The calculations for n = 500 will be shown in Annex 3.
As we divide the sample into parts of 250; we have 12 estimations of each

backtest (one for each "year"). In Graphics 4 and 5 are the times that each
backtest is rejected at e� = 0:05 for each precious metal series. Results without
bar indicate that there are no rejections and ES works well for all the sample.
Besides, if a plot have long bars means that that backtest rejects H0 most times
and the forecast is wrong.
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Graphic 4: Times the loss asymmetric ES is rejected at 5% in each backtest

Graphic 5: Times the loss symmetric ES is rejected at 5% in each backtest
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In Graphic 4 we can see the results for AR-NGARCH-skt model, where there
are few rejections at 5% coverage level, even having no rejections for any silver
test. However, seeing Graphic 5, where there are the results for AR-GARCH-
normal model, the conclusions are very di¤erent. Rejection times go up to 6 or 7
for Berkowitz tests and Acerbi and Székely Z1 tests. Also, the rest of backtests
rejections increase too, so this model is not good enough both for large and
small samples, while the asymmetric model is.

We can do the same study with the short position, i.e., if you sell these
precious metals instead of buying them. The corresponding risk measure is
ESt;97:5% and their evolutions are plotted in Graphic 6:

Graphic 6: Returns and pro�t NGARCH risk measures of metal prices

As well as we did with the long position, we make an analysis of pro�t
violations and calculate the p-values for each backtest with all the sample. The
results are in Table 13 and Table 14 respectively:
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Table 13: Descriptive analysis of pro�t violations between models. Sample size n = 3000

Models AR(1)-NGARCH(1; 1)-skt AR(1)-GARCH(1; 1)-norm
V (0:0125) CV (0:025) n � 0:0125 V (0:0125) CV (0:025) n � 0:0125

Palladium 35 36:3771 37:5 53 47:8667 37:5
Platinum 34 32:8336 37:5 42 39:4417 37:5
Gold 23 30:3320 37:5 48 45:8412 37:5
Silver 39 36:4702 37:5 44 43:1375 37:5

Table 14: P-values of pro�t backtesting contrasts for n=3000 (full sample size)

Palladium Platinum Gold Silver
Berk 0:098 0:369 0:020 0:070
Uncond 0:821 0:346 0:148 0:835

AR Z1 0:992 0:971 0:997 0:993
NGARCH Z2 0:713 0:841 0:894 0:722

skt Pearson 0:101 0:384 0:305 0:101
Nass 0:105 0:384 0:306 0:105
LRT 0:086 0:440 0:241 0:088
Berk 0:000 0:000 0:017 0:001
Uncond 0:036 0:695 0:092 0:255

AR Z1 0:000 0:000 0:026 0:000
GARCH Z2 0:123 0:522 0:054 0:483
normal Pearson 0:072 0:052 0:147 0:055

Nass 0:076 0:055 0:151 0:059
LRT 0:096 0:027 0:190 0:062

We can see that the results vary respect the other tail. With the asymmetric
model is rejected the Gold returns with the test by Berkowitz. Furthermore,
the rest of tests are not as powerful than in long position. With the symmetric
model the opposite happens, increasing the p-values and reaching to not reject
in some cases, although there are more rejections than with asymmetric model.
Doing the same with samples of n = 250 the results are the next:
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Graphic 7: Times the pro�t asymmetric ES is rejected at 5% in each backtest

Graphic 8: Times the pro�t symmetric ES is rejected at 5% in each backtest
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The graphics show that, in the pro�t tail, the number of rejections increase
a few, but not with silver returns. With all of this seems that both models
forecast quite well for Silver (only in short position). Also seems that centering
in tail distributions is a better idea that trying to forecast all the distribution.
The study of the performance of backtesting procedures for ES with extreme
value theory models will be considered for subsequent papers.
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6 Conclusions

Risk management has been changing rapidly and �nancial institutions have
been adapted to it. The Expected Shortfall is the future risk measure and good
estimations are needed to maintain the banking system without collapses and
bankruptcies. To ensure this, ES backtests are required, but in recent years
have appeared many di¤erent papers with alternative backtesting approaches
based in diverse properties. In this paper we have compared some of them.
We conclude that, if there is uncertainty about which type of misspeci�ca-

tion have been produced, the tests by Berkowitz and Du & Escanciano usually
perform better. Acerby and Székely�s tests are relevant too because they bring
good results to supervisors focusing only on risk underestimation (they do not
take into account risk overestimation). We have also seen that Pearson test
needs Nass correction with small samples to perform well.
Furthermore, we have corroborated that models with a GARCH variance

process and normal innovation distribution are a good starting point. Neverthe-
less, they are insu¢ cient to predict the evolution of �nancial series because most
of them have positive excess kurtosis and non zero skewness (principally nega-
tive) which have not been detected by the model. The inclusion of NGARCH
models and, especially, the Hansen�s skewed t innovation distribution help to
�t the returns and, therefore, the risk measures, being more di¢ cult to have
higher loss levels than expected.
In future research, the backtesting analysis can be improved with larger

sample sizes, reestimating the rolling window parameters each day instead of
every 2 weeks or adding another tests such as the Righi and Ceretta approach
(2013) or the Graham and Pál approach (2014). Moreover, the Extreme Value
Theory can be applied to focus on both tails of the distribution instead of
modeling the whole distribution. In this way, it is possible to improve the
results since it has been shown in Section 5 that the behavior in both tails can
be di¤erent.
In short, neither the absence of elicitability property nor a small sample size

can inhibit the Expected Shortfall backtest since there are many tests perform-
ing well which are useful to select between models.
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8 Annex

8.1 Annex 1: Alternative Acerbi & Székely approxima-
tion

In this annex we are going to make another approximation to Acerbi & Székely�s
tests. As we said in Section 4, we made an approximation in the critical values
to save computational time due to the test nature. We did it also to have the
same critical values for all the hypothesis and because the variation is small.
In this part we created the critical values following Acerbi and Székely�s steps,
but changing the estimated distribution, which has di¤erent parameters each
10 observations to the average of estimated distributions, i.e., we calculated the
null hypothesis parameters for each series (25 or 50 parameter sets for each
series) and made the average of parameters for all the series

b� = 1

1000

1000X
r=1

1

n=10

n=10X
i=1

b�r;i
Using this new method to calculate the critical values, the power for the �rst

and second test are indicated in the following tables as Zm1 & Zm2 : Also, there
are the powers obtained with the previous method to compare results. Each
table uses the same hypothesis as in Section 4.
H0 : Rt � AR(1)-NGARCH(1; 1) with Normal innovations
H1 : Rt � AR(1)-NGARCH(1; 1) with Student t innovations with k degrees

of freedom

Table 5 extension:
Power backtest experiment, changing Student t degrees of freedom

T = 2500 � = 0:025 N = 8 e� = 0:05
Panel a: n = 250

k Z2 Z1 Zm2 Zm1
100 0:048 0:047 0:048 0:047
20 0:073 0:124 0:072 0:123
10 0:093 0:218 0:093 0:218
9 0:104 0:244 0:104 0:241
8 0:115 0:286 0:113 0:286
7 0:123 0:335 0:123 0:335
6 0:134 0:407 0:134 0:407
5 0:148 0:511 0:148 0:509

Panel b: n = 500
k Z2 Z1 Zm2 Zm1
100 0:067 0:063 0:067 0:063
20 0:092 0:154 0:092 0:154
10 0:134 0:356 0:134 0:358
9 0:145 0:405 0:145 0:405
8 0:164 0:469 0:164 0:469
7 0:176 0:530 0:176 0:531
6 0:205 0:624 0:205 0:624
5 0:231 0:711 0:231 0:709
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H0 : Rt � AR(1)-NGARCH(1; 1) with Normal innovations
H1 : Rt � AR(1)-NGARCH(1; 1) with Skewed Student t innovations with

skewed parameter s and 100 degrees of freedom

Table 6 extension:
Power backtest experiment, changing Skewed Student t skewness parameter

T = 2500 � = 0:025 N = 8 e� = 0:05
Panel a: n = 250

s Z2 Z1 Zm2 Zm1
�0:80 0:656 0:662 0:691 0:654
�0:60 0:714 0:563 0:743 0:550
�0:40 0:571 0:339 0:620 0:328
�0:20 0:299 0:137 0:321 0:133
0:00 0:048 0:047 0:048 0:047
0:20 0:001 0:018 0:001 0:017
0:40 0:000 0:010 0:000 0:010
0:60 0:000 0:000 0:000 0:000
0:80 0:000 0:000 0:000 0:000

Panel b: n = 500
s Z2 Z1 Zm2 Zm1

�0:80 0:914 0:922 0:918 0:912
�0:60 0:938 0:856 0:943 0:835
�0:40 0:856 0:606 0:864 0:558
�0:20 0:526 0:250 0:530 0:235
0:00 0:067 0:063 0:067 0:063
0:20 0:000 0:017 0:000 0:018
0:40 0:000 0:010 0:000 0:011
0:60 0:000 0:002 0:000 0:003
0:80 0:000 0:000 0:000 0:000

H0 : Rt � AR(1)-GARCH(1; 1) with Normal innovations
H1 : Rt � AR(1)-NGARCH(1; 1) with asymmetric parameter c and Normal

innovations
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Table 7 extension:
Power backtest experiment, changing asymmetric NGARCH parameter c

T = 2500 � = 0:025 N = 8 e� = 0:05
Panel a: n = 250

c Z2 Z1 Zm2 Zm1
�1:00 0:033 0:109 0:026 0:103
�0:80 0:035 0:089 0:033 0:089
�0:60 0:042 0:069 0:042 0:070
�0:40 0:047 0:058 0:047 0:059
�0:20 0:055 0:065 0:055 0:066
0 0:057 0:056 0:057 0:056
0:20 0:067 0:056 0:067 0:055
0:40 0:081 0:057 0:081 0:057
0:60 0:091 0:056 0:091 0:055
0:80 0:121 0:073 0:118 0:068
1:00 0:135 0:096 0:128 0:084

Panel b: n = 500
c Z2 Z1 Zm2 Zm1

�1:00 0:025 0:124 0:022 0:117
�0:80 0:034 0:090 0:034 0:093
�0:60 0:041 0:074 0:041 0:077
�0:40 0:040 0:055 0:040 0:057
�0:20 0:051 0:057 0:051 0:057
0 0:062 0:055 0:062 0:055
0:20 0:074 0:058 0:074 0:058
0:40 0:082 0:057 0:082 0:057
0:60 0:105 0:056 0:104 0:056
0:80 0:132 0:077 0:130 0:077
1:00 0:173 0:111 0:169 0:097

As we can see, these results are very similar to the results calculated previ-
ously, with small di¤erences. So both approximations can be useful.
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8.2 Annex 2: Examples of insu¢ cient size to obtain good
power results

In this examples, we will show why the size samples of n = 250; 500 could be
insu¢ cient to reject models with positive skewness. Let us assume that the
distribution is so asymmetric that there are no violations to any VaR level (in
this case we use N = 8 VaR levels and e� = 0:05); then, the results for Pearson,
Nass and LRT backtests of ES are:

For n = 250

ŜPearson;250 =
(250� 250(1� 0:025))2

250(1� 0:025) + 8 � (0� 250 � 0:003125)
2

250 � 0:003125 =

= 6:410 < �28;(1�0:05) = 15:507

~c250 =
2 � 8

2 � 8� 82+4�8+1
250 + 1

250 � (
1

0:975 + 8 �
1

0:003125 )
= 0:619

�250 = 0:619 � 8 = 4:950
ŜNass;250 = 0:619 � 6:410 =

= 3:967 < �24:950;(1�0:05) = 10:994

ŜLRT;250 = 2 �
�
250 log

�
250

250(1� 0:025)

��
=

= 12:659 < �28;(1�0:05) = 15:507

Therefore, in this case H0 is not rejected with any of these three statistics.

For n = 500

ŜPearson;500 =
NX
j=0

(500� 500(1� 0:025))2

500(1� 0:025) + 8 � (0� 500 � 0:003125)
2

500 � 0:003125 =

= 12:821 < �28;(1�0:05) = 15:507

~c500 =
2 � 8

2 � 8� 82+4�8+1
500 + 1

500 � (
1

0:975 + 8 �
1

0:003125 )
= 0:765

�500 = 0:765 � 8 = 6:116
ŜNass;500 = 0:765 � 12:821 =

= 9:801 < �26:116;(1�0:05) = 12:765
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ŜLRT;500 = 2 �
�
500 log

�
500

500(1� 0:025)

��
=

= 25:318 > �28;(1�0:05) = 15:507

In this case H0 is not rejected by Pearson or Nass but the LRT detects the
risk overestimation and rejects H0:

As we saw before in Table 6b, the LRT with 500 of sample size already
detects bad estimations. If we change the sample size n (as we have done) or
the contrast coverage level (e�); then the results would change.
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8.3 Annex 3: Results of metal returns study with n = 500

In this annex we show another results of backtesting Expected Shortfall on the
precious metal returns. In the main work we estimate the tests with 250 and
3000 sample sizes, but, as we did with the size and power experiments, we are
going to estimate it with n = 500 too (2 years). We expect that the results have
greater rejection rates than with 250 for the symmetric ES and less rejection
rates for the asymmetric, showing preference to this last model.

Graphic 9: Times the loss asymmetric ES is rejected at 5% in each backtest
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Graphic 10: Times the loss symmetric ES is rejected at 5% in each backtest

Looking to Graphics 9 and 10 we can corroborate our speculations. As with
the other samples, to include asymmetry is a good idea and the few times that
with AR-NGARCH-skt the risk measure is rejected, the p-values are not lower
enough to do the banking supervisors an intervention (0:01% < rejection p-
values < 5%):For short position the results with n = 500 are in Graphics 11
and 12:
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Graphic 11: Times the pro�t asymmetric ES is rejected at 5% in each backtest

Graphic 12: Times the pro�t symmetric ES is rejected at 5% in each backtest

Similar results as long position, except for silver returns that with a GARCH-
normal model there are few violations, but they are in the LR test by Berkowitz
and in Z1.
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