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Introduction

Black hole entropy is a central topic in quantum gravity. It may
be one of the ways to crack open the problem of quantizing general
relativity
Any self-respecting theory of quantum gravity should account in
detail for the microscopic degrees of freedom responsible for black
hole entropy.
Within LQG a lot has been understood about this problem in the last
years.

The Bekenstein-Hawking law is satisfied by the entropy (after
taking a universal value for the Immirzi parameter). This is one of
the pillars of LQG as of today.
It should be reassuring to plot entropy versus area to see this beau-
tiful result, right?
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Some new results on Microscopic black holes

[Corichi, D́ıaz-Polo, Fernández-Borja, CQG 24:243 (2007) ]
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Some new results on Microscopic black holes

Numerical computations of black hole entropy in LQG for small black
holes show an interesting structure in the black hole degeneracy
spectrum or the entropy.

The results are quite robust and extend to the largest values of the
area that it has been possible to explore directly.

Compatibility: the entropy obtained from these microstate countings
can be fitted by a linear function of the area (Bekenstein-Hawking
area law). The value of γ is numerically compatible with the one
given by Meissner.

Questions

Can we understand this phenomenon in fundamental terms?

Is this newly found structure present for macroscopic black holes?

Could this have been expected? Could it have been predicted?
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Entropy in LQG

Definition of entropy (Domagala-Lewandowski)
The entropy S of a quantum horizon of the classical area a according to
Quantum Geometry and the Ashtekar-Baez-Corichi-Krasnov framework is

S = logn(a),

where n(a) is 1 plus the number of all the finite sequences (m1, . . . ,mn) of
non-zero elements of 1

2Z, such that the following equality and inequality
are satisfied:

n∑
i=1

mi = 0,
n∑

i=1

√
|mi |(|mi |+ 1) ≤ a

8πγ`2P

where γ is the Immirzi parameter of Quantum Geometry.
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The standard approach: functional equations

Meissner’s approach to exactly compute black hole entropy.

Let us define the sets (in the following 8πγ`2P = 1, Z∗ := Z \ {0})

N≤(a, p) :={~m ∈ (Z∗/2)n :n ∈ N,
n∑

i=1

√
|mi |(|mi |+ 1) ≤ a,

n∑
i=1

mi =p}

N≤(a) :={~m ∈ (Z∗/2)n :n ∈ N,
n∑

i=1

√
|mi |(|mi |+ 1) ≤ a}

and let N≤(a, p) and N≤(a) be their respective cardinalities.

The entropy is given by eS(a) = 1 + N≤(a, 0)

At times we will consider the entropy “without projection constraint”
S ′ defined by eS ′(a) = 1 + N≤(a) .
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The standard approach: functional equations

A direct argument gives the following functional equation (and a sim-
ilar one for the N≤(a, p), here kmax := b

√
1 + 4a2 − 1c).

N≤(a) =
kmax∑
k=1

N
(k)
≤ (a) = 2b

√
1 + 4a2−1c+2

kmax∑
k=1

N≤(a−
√

k(k + 2)/2) ,

N≤(a) = 2b
√

4a2 + 1− 1cθ(a−
√

3/2) + 2
∞∑

k=1

N≤(a−
√

k(k + 2)/2)

Notice that we can extend the sum to infinity. The θ(a −
√

3/2)
factor is needed in the first term or the r.h.s. to guarantee that it is
zero for arbitrary negative values of a.
This functional equation can be used to obtain a closed form repre-
sentation for N≤(a) (a similar one for N≤(a, p)).
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The standard approach: functional equations

N≤(a) is exponentially bounded and piecewise continuous (Domagala&
Lewandowski) hence its Laplace transform exists and is well defined in a
half-plane {s ∈ C : Re(s) > x0} for some x0 ∈ R. We have then

P≤(s) :=

∫ ∞
0

N≤(a)e−as da

= 2

∫ ∞
√

3
2

b
√

4a2 + 1− 1ce−as da + 2

∫ ∞
√

3
2

∞∑
k=1

N≤(a−
√

k(k + 2)/2)e−as da

=
2

s

∞∑
k=1

e−s
√

k(k+2)/2 + 2
∞∑

k=1

e−s
√

k(k+2)/2

∫ ∞
−
√

k(k+2)/2

N≤(a)e−as da

=
2

s

∞∑
k=1

e−s
√

k(k+2)/2 + 2P≤(s)
∞∑

k=1

e−s
√

k(k+2)/2 .
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The standard approach: functional equations

We have used the fact that N≤(a) = 0 for a ≤ 0 to set the lower
limits in the integrals equal to zero.
We finally get

P≤(s) =
1

s

(
1− 2

∞∑
k=1

e−s
√

k(k+2)/2

)−1

−1

s
=

2
∑∞

k=1 e−s
√

k(k+2)/2

s
(

1− 2
∑∞

k=1 e−s
√

k(k+2)/2
) .

The fact that P≤(s) is a proper Laplace transform tells us that we
can write

N≤(a) =
1

2πi
lim

A→a+

∫ x0+i∞

x0−i∞
P≤(s)eAs ds. (1)

for some x0 ∈ R chosen in such a way that the singularities in the
integrand are to the left of the integration contour.

A similar approach can be used for N≤(a, p).
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The standard approach: functional equations

Comments

The expression that we obtain is exact.
The integrand is a rather complicated function because it encodes a
lot of information. Notice that the entropy is a “staircase” function
with discontinuities located at the values of the area spectrum.
It is not very good to compute the entropy numerically.
It may be useful to obtain the asymptotic behavior of the entropy
but this depends on the analytic structure of the integrand which is
rather non-trivial.
In any case it suffices to show that the Bekenstein-Hawking law is
satisfied.
A similar analysis can be carried out when the projection constraint
is also taken into account. [One gets logarithmic corrections].

A different strategy may be useful.
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The standard approach: functional equations
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A new strategy

Let us look at the combinatorial problem of computing the entropy from a
different point of view.

1 STEP 1: For a given value of the area a, consider first the problem
of explicitly finding the sequences (|m1|, . . . , |mn|) such that

n∑
i=1

√
|mi |(|mi |+ 1) = a .

2 STEP 2: Allow for signs and determine how many sequences satisfy
the projection constraint

n∑
i=1

mi = 0

3 STEP 3: Find in this way the black hole degeneracy spectrum from
which the entropy can be obtained by integration (in fact, summing
for all the area eigenvalues smaller or equal than a).
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The spectrum of the area operator (step 1)

Let us consider only |mi | (we will reintroduce the signs later).

Writing N 3 ki := 2|mi | we have
n∑

i=1

√
|mi |(|mi |+ 1) = a⇒

n∑
i=1

√
(ki + 1)2 − 1 =

kmax∑
k=1

nk

√
(k + 1)2 − 1 = 2a .

where nk (possibly 0) tells us the number of times that the label
k ∈ N appears.

(1, . . . , 1︸ ︷︷ ︸
n1

, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . , kmax , . . . , kmax︸ ︷︷ ︸
nkmax

)
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The spectrum of the area operator (step 1)

Notice that we can always write
√

(k + 1)2 − 1 as the product of an
integer times the square root of a square-free positive integer number
pi by using its prime factor decomposition.

This means that a must satisfy 2a =
r∑

i=1

qi
√

pi with qi ∈ N

We have then the following equation

kmax∑
k=1

nk

√
(k + 1)2 − 1 =

r∑
i=1

qi
√

pi .

The previous equation is solved in two steps:

1 First identify the allowed labels k such that
√

(k + 1)2 − 1 is
an integer multiple of the

√
pi corresponding to the given a.

2 Determine then the value of nk that tells us how many times
the allowed label k appears.
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The spectrum of the area operator (step 1)

1

√
(k + 1)2 − 1 = y

√
pi ⇔ x2 − piy

2 = 1, with x := k + 1, x , y ∈ N.

This quadratic diophantine equation is the famous Pell Equation

x2 − piy
2 = 1

It has a fundamental solution (x i
1, y

i
1) with the smallest value of x .

This can be obtained by using continued fractions. An infinite se-
quence of solutions can be derived from it. They are given by

x i
α =

1

2

[
(x i

1 + y i
1

√
pi )

α + (x i
1 − y i

1

√
pi )

α
]

y i
α =

1

2
√

pi

[
(x i

1 + y i
1

√
pi )

α − (x i
1 − y i

1

√
pi )

α
]

We label the solutions as {(k i
α, y

i
α) : α ∈ N}, (i refers to pi ).

For instance, for p1 = 2 we have
{(k1

α, y
1
α) : α ∈ N} = {(2, 2), (16, 12), (98, 70), (576, 408), . . .}
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The spectrum of the area operator (step 1)

2 Once the values of k are known, the nk can be found by solving the
system of r uncoupled, linear, diophantine equations

kmax∑
k=1

nk

√
(k + 1)2 − 1 =

r∑
i=1

∞∑
α=1

nk i
α

y i
α

√
pi =

r∑
i=1

qi
√

pi

so that
∞∑
α=1

y i
αnk i

α
= qi , i = 1, . . . , r .

We have used the fact that the
√

pi are linearly independent over Q.

Notice that, once the qi are fixed, only a finite number of labels k i
α

come into play in these equations.

It may happen that some of these equations admit no solutions. In
this case

∑r
i=1 qi

√
pi does not belong to the area spectrum.

Step 1 is equivalent to giving a full characterization of the degen-
eracy of the area operator.
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The spectrum of the area operator (step 1)

Up to this point we have found all the possible choices of labels k
(and their multiplicity) compatible with a given value of a,

(1, . . . , 1︸ ︷︷ ︸
n1

, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . , kmax , . . . , kmax︸ ︷︷ ︸
nkmax

)

The number of different sequences obtained from each of these by
reordering is then given by the multinomial coefficient

(
∑kmax

k=1 nk)!∏kmax
k=1 nk !

Now we have to put back the signs and solve the projection constraint.
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The spectrum of the area operator (step 2)

We have to sprinkle signs in the sequences obtained above in such a
way that the projection constraint is satisfied in every case∑

i

mi = 0

( 1 , 2 , 5 , 2 , 2 , 3 , 1 , 4 , . . . )
( + , − , − , + , − , + , − , + , . . . )
( z+1 , z−2 , z−5 , z+2 , z−2 , z+3 , z−1 , z+4 , . . . )

A very efficient way to count the number of ways that the signs can
be introduced so that the projection constraint is satisfied: look for
the coefficient of the constant term in the expansion of∏

(zki + z−ki )nki

This solves the problem with the help of a generating function.
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The black hole degeneracy spectrum (step 3)

The number of states (m-sequences) corresponding to a given value
of the area a is obtained by

1 Finding out the possible values of |mi | and their multiplicity for a
given value of the area a (let us refer to these as configurations).

2 Computing, for each configuration, the number of possible reorder-
ings (multinonial coefficients).

3 Computing, for each reordering, the number of possibilities to intro-
duce signs in such a way that the projection constraint is satisfied.

This procedure provides an efficient algorithm to compute the black
hole degeneracy spectrum [i.e. N(a, p) and, in particular, N(a, 0)]
and check if the entropy “staircase” is really there.

Step 3 After doing all this the black hole entropy can be obtained by
summing the numbers obtained above for each eigenvalue a′ of the
area operator such that a′ ≤ a. How can we do this?

J. Fernando Barbero G. (IEM-CSIC) BH entropy in LQG March 22, 2009 20 / 36



Generating functions

Generating functions efficiently encode all the information about a
given combinatorial problem.

They are specially useful to obtain closed form solutions and facilitate
the analysis of their asymptotic behavior in relevant regimes.

They have been widely used, for example, in statistical mechanics.

A sample problem: count the number of non-negative solutions to
the diophantine equation 2x1 + 3x2 = q in terms of q ∈ N.

A solution in terms of generating functions: multiply the two following
formal series associated to the two terms in the equation

(x2·0 + x2·1 + x2·2 + x2·3 + x2·4 + x2·5 + x2·6 + · · · )
× (x3·0 + x3·1 + x3·2 + x3·3 + x3·4 + x3·5 + x3·6 + · · · ) =
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Generating functions

= x (2·0+3·0)︸ ︷︷ ︸
1

+ x (2·1+3·0)︸ ︷︷ ︸
x2

+ x (2·0+3·1)︸ ︷︷ ︸
x3

+ x (2·2+3·0)︸ ︷︷ ︸
x4

+ x (2·1+3·1)︸ ︷︷ ︸
x5

+

x (2·0+3·2) + x (2·3+3·0)︸ ︷︷ ︸
2x6

+ x (2·2+3·1)︸ ︷︷ ︸
x7

+ x (2·4+3·0) + x (2·1+3·2)︸ ︷︷ ︸
2x8

+ · · ·

The coefficient of the term xq gives the number of solutions to the
diophantine equation 2x1 + 3x2 = q for the chosen value of q.
The formal series given above actually correspond to meromorphic
functions of a complex variable C. In this case

(x2·0 + x2·1 + x2·2 + x2·3 + x2·4 + x2·5 + x2·6 + · · · ) =
1

1− x2

(x3·0 + x3·1 + x3·2 + x3·3 + x3·4 + x3·5 + x3·6 + · · · ) =
1

1− x3
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Generating functions

The solution to our problem is given by the xq coefficient of Taylor
expansion around x = 0 of the function

f (x) =
1

(1− x2)(1− x3)

This can be obtained in closed from from the partial fraction decom-
position of f (x). It is also given by the following contour integral

1

2πi

∮
γ

dz

zq+1

1

(1− z2)(1− z3)

γ
1

This is specially useful to obtain the asymptotic behavior for q →∞.

A Question
Can we obtain a generating function for the black hole degeneracy
spectrum?
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Generating functions

YES!

G (z , x1, x2, . . . ) =

(
1−

∞∑
i=1

∞∑
α=1

(zk i
α + z−k i

α)x
y i
α

i

)−1

In the previous formula the variables xi are associated to squarefree
integers pi and z is an extra variable needed to account for the pro-
jection constraint.

The numbers (k i
α, y

i
α) are obtained from the solutions to the Pell

equation associated to the squarefree pi .

The coefficient of the term z0xq1
1 · · · x

qi
i · · · gives the number of se-

quences ~m satisfying the projection constraint and such that 2a =∑
i qi
√

pi

Despite the apparent infinite number of terms, for a given value of a
only finite numbers of variables and terms are needed.
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Generating functions

It is only the fact that the diophantine equations that we need to
solve have an effective number of variables that depends on the area,
that forces us to introduce a formally infinite number of them.

The coefficient of the term z0xq1
1 · · · x

qi
i · · · can be written as a mul-

tiple contour integral that may be conceivably used as the starting
point to study the black hole degeneracy for macroscopic areas.

A concrete numerical example: For an area a = 40
√

2 + 40
√

3 the
total degeneracy is obtained by taking the generating function

G(z,x1,x2)=
1

1−(z2+z−2)x2
1
−(z16+z−16)x12

1
−(z+z−1)x2−(z6+z−6)x4

2
−(z25+z−25)x15

2
.

The value of the black hole degeneracy N(a, 0) is given by the
coefficient of the term z0x40

1 x40
2 in the power series expansion of

G (z , x1, x2). This is 991809938488860909241077458398212.
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Back to Laplace Transforms

One can use these generating functions to obtain N≤(a, 0) from N(a, 0).

The spectrum of the area operator AIH = {an : n ∈ N} (a countable,
ordered, subset of R).

It is possible, in principle, to build the sequence {N(an, p) : n ∈ N}.

For a fixed value of an we can write N≤(an, p) =
n∑

i=1

N(ai , p).

If the N(an, p) are encoded in a generating function gp(x) =∑
n∈N N(an, p)xn this summation can be carried out by taking.

Gp(x) =
gp(x)

1− x
=
∑
n∈N

N≤(an, p)xn.

This is difficult now because one would need to have a practical way
to find the numbers qi corresponding to the nth element of AIH.
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Back to Laplace Transforms

In practice this requires us to solve the following two problems:
1 Given an eigenvalue of the area a ∈ AIH, how many smaller eigen-

values do exist? (we refer to this as the area ordering problem).

2 Given A ∈ R, what are the values of the qi corresponding to the
largest area eigenvalue a ∈ AIH satisfying a ≤ A? (alternatively to
the closest eigenvalue to A).

A way out of this is by using Laplace transforms.

L[
∑
n∈N

βnθ(a− an); s] =
1

s

∑
n∈N

βne−ans

If the positions of the jumps (the area eigenvalues an) and their mag-
nitudes (the black hole degeneracies βn) can be encoded in a function
that can be expanded as

∑
n∈N βne−ans then we can get an integral

representation for the BH entropy as an inverse Laplace transform.
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Back to Laplace Transforms

This can be done by using the BH generating function given above.

It is enough to substitute the xi in G (z ; x1, x2, . . .) by xi = e−s
√

pi/2.

This is so because xq1
1 · · · x

qr
r 7→ e−

s
2
(q1
√

p1+···+qr
√

pr ) = e−as when
2a = q1

√
p1 + · · ·+ qr

√
pr .

By doing this we find (without projection constraint)

P(s) :=
∑
n∈N

N(an)e−ans + 1 = G (1; e−s
√

p1/2, e−s
√

p2/2, . . . )

=
(

1− 2
∞∑
i=1

∞∑
α=1

e−sy i
α
√

pi

)−1
.

The e−sy i
α
√

pi can be simplified by taking into account that the(k i
α, y

i
α)

are solutions to the Pell equation and hence y i
α
√

pi =
√

k i
α(k i

α + 2) .

J. Fernando Barbero G. (IEM-CSIC) BH entropy in LQG March 22, 2009 28 / 36



Back to Laplace Transforms

This way ge get

P(s) =
(

1− 2
∞∑
i=1

∞∑
α=1

e−s
√

k i
α(k i

α+2)/2
)−1

=
(

1− 2
∞∑

k=1

e−s
√

k(k+2)/2
)−1

,

By dividing by s and performing an inverse Laplace transform we
arrive precisely and the formula found before (without the projection
constraint).

eS(a) =
1

2πi

∫ x0+i∞

x0−i∞
ds

eas

s
(
1− 2

∑∞
k=1 e−s

√
k(k+2)/2

)
This is a non-trivial check of the whole approach.
It allows us to get Meissner’s formula in a completely new way.
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Inverse Laplace Transforms and Asymptotics

eS(a) =
1

2πi

∫ x0+i∞

x0−i∞
ds

eas

s
(
1− 2

∑∞
k=1 e−s

√
k(k+2)/2

)
The integration contour is a line parallel to the imaginary axis chosen
in such a way that all the singularities are to the left.
In some cases this allows us to easily obtain the asymptotic behavior,
for example if we consider

1

2πi

∫ x0+i∞

x0−i∞
ds

eas

s(s − 1)
= θ(a)(ea − 1)

the integrand has poles at s = 1 and s = 0. Their residues respec-
tively give ea and −1. The leading asymptotic behavior (for large
positive a) corresponds to the pole with the largest real part.

s-plane

x0 − i∞

x0 + i∞

s = 0 s = 1
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Inverse Laplace Transforms and Asymptotics

Where are the singularities of
eas

s
(
1− 2

∑∞
k=1 e−s

√
k(k+2)/2

) located?

1 There is an infinite number of poles.

2 They are confined to a band in the complex plane and their real parts
are bounded from above by s = γ̃M ≈ 1.49246359 (the value obtained
by Meissner), i. e. the only real solution to the equation

1− 2
∞∑

k=1

e−s
√

k(k+2)/2 = 0 .

3 There is only a single pole of the integrand with real part equal to γ̃M .

4 The real parts of the poles have an accumulation point precisely for
the value γ̃M (and maybe others).
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Inverse Laplace Transforms and Asymptotics

A plot of the restriction of the absolute value of the function

1/
(
1− 2

∑∞
k=1 e−s

√
k(k+2)/2

)
to the half-line γ̃M + it, t ∈ [0, 200]

0 50 100 150 200

1

2

3

4

5

6

t

f(t)

s-plane

γ̃M

γ̃M + it

Does the accumulation of the real parts change the asymptotic
behavior given by e γ̃Ma?
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Inverse Laplace Transforms and Asymptotics

Maybe
An example

1

2πi

∫ x0+i∞

x0−i∞
ds eas

(
1

1 + s + se−s
+

1

s

)
= θ(a)+

∞∑
k=0

θ(a−k)ek−aLk(a−k)

where Lk denotes the Laguerre polynomial of degree k . Notice that
for a given value of a the previous sum is finite.

The real parts of the (non-real) poles of the integrand are never zero
but have an accumulation point at r = 0, which is the eigenvalue
with the largest real part.

The contribution of the pole at s = 0 is θ(a) (asymptotically 1).

The contribution of the other term for a close enough to the positive
integers is larger than 1. Hence it is not true that the asymptotic
behavior of the integral is controlled by the eigenvalue corresponding
to the largest real part.

J. Fernando Barbero G. (IEM-CSIC) BH entropy in LQG March 22, 2009 33 / 36



Inverse Laplace Transforms and Asymptotics
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Conclusions and perspectives

We have a very detailed picture for BH entropy in LQG. This allows
us to understand the origin of the structure seen in the black hole
degeneracy spectrum.
Our methods are very flexible. They can be easily adapted to study
other proposals such as the Ghosh-Mitra counting and SO(3) models.

They can be used to build efficient algorithms that confirm and
extend previous numerical work.
We have generating functions for all the relevant combinatorial
problems. These allow us to reproduce and confirm previous results
(Meissner) and may be the starting point to obtain the asymptotic
behavior of the entropy.
The accumulation of the real parts of the integrand of the inverse
Laplace transform giving the entropy leaves room to an oscillatory
behavior for macroscopic areas.
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