
BLACK HOLES IN

LOOP QUANTUM GRAVITY

Alejandro Corichi

UNAM-Morelia, Mexico

BH in LQG Workshop, Valencia, March 26th 2009

1



BLACK HOLES AND QUANTUM GRAVITY ?

Black Holes are, as Chandrasekhar used to say:
“... the most perfect objects there are in The Universe: the
only elements in their construction are our concepts of space
and time. Since GR predicts a single family of solutions, they
are the simplest as well.” They are the crown of classical
physics in terms of their simplicity and beauty.

But, Bekenstein and Hawking told us that :

i) Black Holes satisfy some ‘thermodynamic-like laws’.

δM =
κ

8πG
δA ⇒ M ↔ E, κ↔ T , A↔ S
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ii) When one invokes quantum mechanics (~) then
something ‘weird’ happens:

E = M

T =
κ ~
2π

,

and

S =
A

4G~

The black holes appear to have thermodynamic prop-
erties!
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But, what are the underlying degrees of freedom re-
sponsible for entropy?

The standard wisdom is that only with a full mar-
riage of the Quantum and Gravity will we be able to
understand this.

Different approaches:

• String Theory
• Causal Sets
• Entanglement Entropy
• Loop Quantum Gravity: This Workshop!!
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MOTIVATION

• How do we characterize black holes in equilibrium?

• What are quantum horizon states?

• Which states should we count?

• How does the entropy behave?

• Large BH: Bekenstein-Hawking entropy

• What happens when we look at small BH’s?

5



PLAN OF THE TALK

1. Some History

2. Classical Preliminaries

3. Quantum Preliminaries

4. Quantum Horizon Geometry

5. Counting and Entropy

Work of many people, including A. Ashtekar, J. Baez, AC, M. Domagala, J. Lewandowski,

K. Meissner, J. Engle, E. Fernandez-Borja, J. Diaz-Polo, K. Krasnov, R. Kaul, A. Ghosh,

P. Majumdar, P. Mitra, A. Perez, C. Rovelli, H. Sahlmann and more ...
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1. SOME HISTORY

• 96’ Krasnov and Rovelli consider punctures as horizon degrees
of freedom.

• 97’ Isolated Horizon boundary conditions understood.

• 99’ Quantum Horizon Geometry fully understood (ABK).

• 00’ Logarithmic corrections computed

• 02’ Possible relation to QNM proposed (SO(3) vs SU(2))

• 04’ Error in original ABK computation found. A new count-
ing proposed (DLM)

• 05’- Several new countings proposed (GM, Dreyer et al, . . .)

• 06’ Direct counting of small BH states. New structures found.

• 07’- Complete counting in terms of number theory. Relation
with CFT.
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The Beginning

Physically, one is interested in describing black holes in equilib-
rium. That is, equilibrium of the horizon, not the exterior. Can
one capture that notion via boundary conditions?

Yes! Answer: Isolated Horizons

Isolated horizon boundary conditions are imposed on an inner
boundary of the region under consideration.

The interior of the horizon is cut out. In this a physical bound-
ary?
No! but one can ask whether one can make sense of it:

What is then the physical interpretation of the boundary?
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• The boundary ∆, the 3-D isolated horizon, provides an effec-
tive description of the degrees of freedom of the inside region,
that is cut out in the formalism.
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• The boundary conditions are such that they capture the in-
tuitive description of a horizon in equilibrium and allow for a
consistent variational principle.

• The quantum geometry of the horizon has independent de-
grees of freedom that fluctuate ‘in tandem’ with the bulk quan-
tum geometry.

• The quantum boundary degrees of freedom corresponding
to a macrostate (completely characterized by all multipole mo-
ments) are then responsible for the entropy.

• The entropy thus found can be interpreted as the entropy
assigned by an ‘outside observer’ to the (2-dim) horizon S = Σ∩∆.

• Some issues: is this the entropy ‘contained by the horizon’?
Is there a ‘holographic principle’ in action? Can we associate an
entanglement entropy between the interior and the exterior?
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ISOLATED HORIZONS

An isolated horizon is a null, non-expanding horizon ∆ with
some notion of translational symmetry along its generators. Tech-
nically we consider Weakly Isolated Horizons (WIH). We will
also restrict ourselves to Type I, spherically symmetric, horizons
(see Engle’s talk for type II). There are two main consequences
of the boundary conditions:

• The gravitational degrees of freedom induced on the horizon
are captured in a U(1) connection,

Wa = − 1

2
Γia ri
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• The total symplectic structure of the theory (and this is true
even when most matter is present) gets split as,

Ωtot = Ωbulk + Ωhor

with

Ωhor =
a0

8π2Gγ

∮
S

dW ∧ dW ′

• The ‘connection part’ and the ‘triad part’ at the horizon must
satisfy the condition,

Fab = − 2π γ

a0
Ei
ab ri,

which is called the ‘horizon constraint’.
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CONSTRAINTS

The Hamiltonian formalism tells us is a natural way what is
gauge and what not. In particular, with regard to the constraints
we know that:

• The relation between curvature and triad, the horizon con-
straint, is equivalent to Gauss’ law.

• Diffeomorphims that leave S invariant are gauge (their vector
field are tangent to S).

• The scalar constraint must have N |hor = 0. Thus, the scalar
constraint leaves the horizon untouched; any gauge and diff-
invariant observable is a Dirac observable!

In the quantum theory of the horizon we have to implement
these facts.
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QUANTUM THEORY: THE BULK

A canonical description:

Ai
a SU(2) connection ; Ea

i triad

with Ai
a = Γia − γ K i

a. Loop Quantum gravity on a manifold with-
out boundary is based on two fundamental observables of the
fundamental variables :

Holonomies, he(A) := P exp(
∫
eA)

and

Electric Fluxes, E(f, S) :=
∫
S dSabEi

ab f
i

The main assumption of Loop Quantum Gravity is that these
quantities become well defined operators. LOST Theorem: There
is a unique represntation on a Hilbert space of these observabes
that is diffeomorphism invariant.
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Hilbert space:

HAL = ⊕graphsHΥ = Span of all Spin Networks |Υ,~j, ~m〉 (1)

A Spin Network |Υ,~j, ~m〉 is a state labelled by a graph Υ, and
some colourings (~j, ~m) associated to edges and vertices.
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The spin networks have a very nice interpretacion. They are the
eigenstates of the quantizad geometry, such as the area operator,

Â[S] · |Υ,~j, ~m〉 = 8π`2
Plγ
∑
edges

√
ji(ji + 2) |Υ,~j, ~m〉 (2)

One sees that the edges of the graph, excite the quantum geom-
etry of the surface S at the intersection points between S and
Υ.
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HORIZON QUANTUM THEORY

Total Hilbert Space is of the form:

H = HV ⊗HS

where HS, the surface Hilbert Space, can be built from U(1)
Chern Simons Hilbert spaces for a sphere with punctures. This
comes about since the symplectic structure of the horizon is that
of CS for W .

The conditions on H that we need to impose are: Invariance
under diffeomorphisms of S and the quantum condition on Ψ:(

Id⊗ F̂ab +
2π γ

a0
Êi
ab ri ⊗ Id

)
· Ψ = 0

For technical reason one considers the exponential of this, which
is object that is well defined in the CS theory.
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Then, the theory we are considering is a quantum theory, with an
isolated horizon of fixed area a0 (and in general, other multiple-

moments).

Physical state will be such that, in the bulk, they satisfy the
ordinary constraints (big assumption!!) and, at the horizon, the
quantum horizon condition is satisfied.

This condition relates the horizon quantum geometry to the bulk
quantum geometry.
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ENTROPY

We are given a black hole of area a0. What entropy can we assign
to it? Let us take the microcanonical viewpoint. We shall count
the number N of microstates compatible with the macrostate,
such that they satisfy:

• The area eigenvalue 〈Â〉 ∈ [a0 − δ, a0 + δ]

• The quantum horizon condition.

The entropy S will be then given by

S = lnN .
The challenge now is to identify those states that satisfy the two
conditions, and count them.
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CHARACTERIZATION OF THE STATES

There is a convenient way of characterizing the states by means
of the spin network basis. If an edge of a spin network with label
ji ends at the horizon S, it creates a puncture, with label ji. The
area of the horizon will be the area that the operator on the bulk
assigns to it: A = 8πγ`2

Pl

∑
i

√
ji(ji + 1).

Is there any other quantum number associated to the punctures
pi? Yes! the eigenstates of Êab that are also half integers mi, such
that −|ji| ≤ mi ≤ |ji|. The quantum horizon condition relates
these eigenstates to those of the horizon Chern-Simons theory.
The requirement that the horizon is a sphere (topological) then
imposes a ‘total projection condition’ on m′s:∑

i

mi = 0
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A ‘configuration’ the quantum horizon is then characterized by
a set of punctures pi and to each one a pair of half integer (ji,mi).

The counting has three steps:

i) Given the classical area a0, find the possible sets {nk} of con-
figurations of j’s compatible with it.

ii) Given such a configuration, {nk}, find the degeneracy R({nk})
associated the possible orderings.

If we are given N punctures and two assignments of labels (ji,mi)
and (j′i,m

′
i). Are they physically distinguishable? or a there some

‘permutations’ of the labels that give indistinguishable states?

That is, what is the statistics of the punctures?

As usual, we should let the theory tell us. One does not postu-

22



late any statistics. If one treats in a careful way the action of
the diffeomorphisms on the punctures one learns that when one
has a pair of punctures with the same labels j and m, then the
punctures are indistinguishable and one should not count them
twice. In all other cases the states are distinguishable.

iii) Given the degeneracy induced by the ‘statistics’, one has to
find the degeneracy associated to the number of horizon states
compatible with the configurations {nk}. This step involves a
choice. Are we going to keep track of both labels ji,mi? or are
we just going to count horizon state, labelled by m’s, that could
come from some j’s. This is the distinction between the DLM
and GM countings (see talks by Lewandowski and Ghosh). Since
this is the step that knows about the horizon thery, it is at this
point that a relation with CFT can be found.

Need to understand the assumptions of different countings.
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THE COUNTING: A SIMPLIFIED CASE

We start with an isolated horizon, with an area a0 and ask how
many states are there compatible with the two conditions, and
taking into account the distinguishability of the states.
First Approach: Count just the different configurations and for-
get about

∑
imi = 0. Thus, given {nk} = {n1/2, n1, n3/2, . . . , nk/2},we

count the number of states:

N =
(
∑

k nk)!

Πj (nj!)
Πj (2j + 1)nj (3)

The first factor is the degenerary R({nk}), and the second comes
from P ({nk}). Taking the large area approximation A >> `Pl, and
using the Stirling approximation. One gets:

S =
A

4`2
Pl

γ0

γ
(4)

with γ0 the solution to
∑

j(2j + 1)e2π γ0

√
ji(ji+1) = 1.
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(and
∑

j 2 e2π γM
√
ji(ji+1) = 1 for DLM).

The introduction of the projection constraint introduces a first
correction to the entropy area relation as

S =
A

4`2
Pl

γ0

γ
− 1

2
ln(A) + . . .

• If we want to make contact with the Bekenstein-Hawking we
have to chose γ = γ0.

• The logarithmic correction is universal.

• The formalism can be generalized to more general situations,
and the result is the same:

– Maxwell, Dilatonic and Yang Mills Couplings.

– Cosmological, Distortion and Rotation (See Engle’s talk).

– Non-minimal Couplings (S 6= A/4).

– Topological ’theta term’ (see Perez’ talk).
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COUNTING BY NUMBERS: ENTROPY QUANTIZATION

A brute force approach is to tell a computer how to count for a
range of area a0 at the Planck scale.

Both the oscillations found with a large value of δ as well as these
structures in the ‘spectrum’ posses the same periodicity

δA0 ≈ 2.41 `2
p

Is there any physical significance to this periodicity?

we chose the interval:

2 δ = ∆A0

With this choice, the plot of the entropy vs area becomes:
26
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WHAT DOES THIS MEAN?

Instead of oscillations, Entropy seems to increase in discrete
steps.

Furthermore, the height of the steps seems to approach a con-
stant value as the area of the horizon grows, thus implementing
in a rather subtle way the conjecture by Bekenstein that entropy
should be equidistant for large black holes.

This result is robust: Independent of the counting!

Is there any way of understanding this? Maybe

While the constant number in which the entropy of large black
holes ‘jumps’ is:

∆S 7→ 2 γ0 ln (3)

(???!!)
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Some recent analytic understanding (See Sahlmann’s talk, also
Agullo, Fernandez-Borja, Diaz-Polo) on the origin of these ’bands’.

The problem of characterizing {nk} has been completely solved
recently. Use of number theory and related tools (generating
functions, asymptotics), has been fundamental (see Barbero’s
talk).

The expectation that BH entropy can be related to CFT given its
importance in relating CS and WZW in SU(2), has been recently
cristalized. Exciting progress and many things to understand
(see Diaz-Polo’s talk).
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CONCLUSIONS

• Isolated Horizons provide a consistent framework to incorpo-
rate black holes.

• One can consistently quantize the theory

• Entropy is finite and the dominant term is linear in Area.

• Any black hole of interest is included

• Unexpected features appear by considering Planck size hori-
zons.

• Contact with Bekenstein’s heuristic model, and Mukhanov-
Bekenstein in a subtle manner

• Recent exciting analytical understanting allows to examine
these issues in detail.
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• Is there more?
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OUTLOOK

• We have not dealt with the singularity

• Ashtekar-Bojowald ‘paradigm’ for an extended quantum space-
time

• Based on expectations about singularity resolution coming
from LQC (?)

• Hawking radiation?

• Information Loss Puzzle (see Varadarajan’s talk)

• Full theory: How to specify quantum black holes from the full
theory?
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