# Black hole entropy in Loop Quantum Gravity: Inclusion of distortions and rotation <br> Jonathan Engle <br> Centre de Physique Théorique, Marseille 

with
A. Ashtekar and C. Van Den Broeck

CQG 22, L27-L34
(gr-qc/0412003)

27 March, 2009
"Black Holes and Loop Quantum Gravity" conference
University of Valencia

## Outline

- Background and motivation
- Definition of multipoles
- Phase space we are quantizing; $\mathrm{U}(1)$ connections at the horizon
- Quantization strategy
- Quantum operators $\hat{\zeta}, \hat{\Psi}_{2}$
- Multipole operators
- Ensemble and entropy


## Background and motivation

$\Rightarrow$ Black hole thermodynamics (Bekenstein, Hawking):

$$
\begin{aligned}
& S=\frac{1}{4} A, \quad T=\kappa / 8 \pi G \\
& \mathrm{~d} M=T \mathrm{~d} S+\Omega \mathrm{d} J
\end{aligned}
$$

was argued for globally stationary space-times, using classical GR, and QFT in curved space-time.
$\Rightarrow$ Extended to isolated horizons (Ashtekar, Beetle, Fairhurst, Lewandowski): same thermodynamics with only stationarity of intrinsic horizon geometry required ("isolated horizon boundary conditions").
$\Rightarrow$ Entropy calculation in LQG (Ashtekar, Baez, Corichi, Krasnov): Statistical mechanical derivation of the entropy, assuming intrinsic geometry of horizon is spherically symmetric ("type $I$ isolated horizon")
$\Rightarrow$ Present work: extend to axisymmetric case ("type II isolated horizon").

For entropy calculation, need diffeomorphism-invariant observables to characterize horizon geometry $\left(q_{a b}, D_{a}\right)$. Free initial data: $\left(\tilde{q}_{a b}, \tilde{\omega}_{a}\right)$.

Definition of Multipoles. When $S$ is a cross-section of an axisymmetric ("type II") isolated horizon,

$$
I_{n}+i L_{n}:=-\int_{S} Y_{n, 0}(\zeta) \Psi_{2}^{2} \epsilon
$$

where

- $(\zeta, \phi)$ are the unique coordinates in which

$$
\tilde{q}_{a b}=R^{2}\left(\frac{1}{f(\zeta)} \partial_{a} \zeta \partial_{b} \zeta+f(\zeta) \partial_{a} \phi \partial_{b} \phi\right)
$$

- $\Psi_{2}=\frac{-1}{4} \tilde{\mathcal{R}}+\frac{i}{2} \tilde{\epsilon}^{a b} \tilde{\mathcal{D}}_{a} \tilde{\omega}_{b}$.

They are not just useful for entropy calculation - they are also used in numerical relativity! [5]

## Reconstruction:

- Choose $(\zeta, \phi)$ (diffeo freedom)
- $\Psi_{2}:=\frac{-1}{R^{2}} \sum_{n}\left(I_{n}+i L_{n}\right) Y_{n, 0}(\zeta)$
- $f(\zeta)=4\left[R^{2} \int_{-1}^{\zeta} \mathrm{d} \zeta_{1} \int_{-1}^{\zeta_{1}} \mathrm{~d} \zeta_{2} \operatorname{Re} \Psi_{2}\left(\zeta_{2}\right)\right]+2(\zeta+1)$
- $\tilde{q}_{a b}=R^{2}(\ldots)$
- $\tilde{\mathcal{D}}_{[a} \tilde{\omega}_{b]}=\operatorname{Im} \Psi_{2} \tilde{\epsilon}_{a b}$ and $\tilde{q}^{a b} \tilde{\mathcal{D}}_{a} \tilde{\omega}_{b}=0$ determine $\tilde{\omega}_{a}$.

Phase space we are quantizing

- Basic variables: Ashtekar-Barbero variables $\left({ }^{\gamma} A_{a}^{i},{ }^{\gamma} \Sigma_{a b}^{i}=\epsilon_{a b c}{ }^{\gamma} E^{c i}\right)$.
- Boundary conditions: internal boundary, $S$, is type II isolated horizon with fixed multipoles $\circ_{n}, \circ_{n}$ and fixed area $a_{o}$.

Partial gauge-fixing condition ( $r^{i} E_{i}^{a}=$ the normal to $S$ ) reduces $S U(2)$ gauge, at $S$, to $U(1)$. Physical $\mathbf{U ( 1 )}$ connection:

$$
V:=\frac{1}{2}{ }_{\gamma} A^{i} r_{i}=\frac{1}{2}\left(-\Gamma_{a}+\gamma \omega_{a}\right)
$$

Canonical type I geometry and assoc. $U(1)$ connection

$$
\stackrel{\circ}{q}_{a b}=R^{2}\left(\frac{1}{f} \partial_{a} \zeta \partial_{b} \zeta+\stackrel{\circ}{f} \partial_{a} \phi \partial_{b} \phi\right)
$$

where $\stackrel{\circ}{f}:=1-\zeta^{2}$. We also define

$$
V_{a}^{o}:=V_{a}-\frac{1}{4}\left(f^{\prime}-f^{\prime}\right) \partial_{a} \phi-\frac{\gamma}{2} \omega_{a}
$$

Manifestly $U(1)$ and diffeo cov:
imp. for solving Gauss and diffeo constraints
where $\zeta, \phi, f$ are as on last slide.
Horizon boundary condition:

$$
\mathrm{d} V^{o}=-\frac{2 \pi}{a_{o}}\left({ }^{2} \epsilon\right)=-\frac{16 \pi^{2} \gamma}{a_{o}}\left({ }^{\gamma} \sum^{i} r_{i}\right)
$$

## Symplectic structure

Can calculate symplectic current $\omega\left(\delta_{1}, \delta_{2}\right)$ from Lagrangian. On-shell $\mathrm{d} \omega=0$ ("locally conserved"). Usually this is enough for $\int_{\Sigma} \omega$ to be a good definition of symplectic structure that is independent of $\Sigma$. But in present case, symplectic current "escapes" across the horizon:


To fix this, decompose $\int_{\Delta} \omega=\left(\oint_{S_{1}}-\oint_{S_{2}}\right) \lambda$, and define $\Omega_{\Sigma}=\int_{\Sigma} \omega+\oint_{S} \lambda$ so that onshell

$$
\Omega_{\Sigma_{1}}-\Omega_{\Sigma_{2}}=\left(\oint_{\Sigma_{2}}-\oint_{\Sigma_{1}}\right) \omega+\int_{\Delta} \omega=0
$$

Final result:

$$
\Omega\left(\delta_{1}, \delta_{2}\right)=-\int_{M} \operatorname{Tr}\left(\delta_{1}^{\gamma} A \wedge \delta_{2}^{\gamma} \Sigma-\delta_{2}^{\gamma} A \wedge \delta_{1}^{\gamma} \Sigma\right)+\frac{1}{8 \pi G} \frac{a_{o}}{\gamma \pi} \oint_{S} \delta_{1} V^{o} \wedge \delta_{2} V^{o}
$$

Note: Canonically associated type $I$ connection appears in horizon symplectic structure. The type II connection cannot be used.

## Quantization Strategy



Imposing the constraints
Solution to quant. b.c. and Gauss constr.

$$
\begin{aligned}
\mathcal{H}_{\mathrm{kin}}= & \bigoplus_{\mathcal{P}, \vec{m}, \vec{b}} \mathcal{H}_{V}^{\mathcal{P}, \vec{m}} \otimes \mathcal{H}_{S}^{\mathcal{P}, \vec{b}} \\
& 2 \vec{m}=\vec{b} \bmod k
\end{aligned}
$$

$\mathcal{P}$ :punctures
$\vec{m}$ :label quant.excit'ns of ${\underset{i}{i} \underline{\Sigma}^{i}}^{i}$
$\vec{b}$ :label quant.excit'ns of ChernSimons curvature (holonomies)


Diffeo. constr.
Group average over ["divide by"] all diffeos preserving $M$ and $S$.

## Hamiltonian constr.

Is imposed in bulk as usual. Is not imposed on the horizon $\mathrm{b} / \mathrm{c} C(N)$ does not generate gauge unless lapse vanishes at $S$.

- Fix axial foliation $\xi$ - gauge-fixing in the sense of being used to interpret the physics.
For convenience: introduce $\zeta_{0}$ as background coordinate labeling leaves of $\xi$.

- preferred coordinate $\hat{\zeta}$ operator:

$$
\hat{\zeta}\left(\zeta_{0}\right)=-1+\frac{2 \hat{a}_{\zeta<\zeta_{0}}}{\hat{a}_{S}}
$$

(taken over directly from classical theory.) Area e-vals are discrete $\rightarrow \hat{\zeta}$ e-vals are discrete.


- $\stackrel{\circ}{\Psi}_{2}(x)=-\frac{1}{R_{0}^{2}} \sum_{n}\left(\stackrel{\circ}{I}_{n}+i \check{L}_{n}\right) Y_{n, 0}(x), \quad\left(\stackrel{\circ}{\Psi}_{2}:[-1,1] \rightarrow \mathbb{C}\right)$

$$
\hat{\Psi}_{2}(p):=\stackrel{\circ}{\Psi}_{2}(\hat{\zeta}(p))
$$



## Multipole operators.

Classically: $\quad I_{n}+i L_{n}=-\oint \Psi_{2} Y_{n, 0}(\zeta)^{2} \epsilon=-\frac{a_{S}}{2} \int_{-1}^{1} \Psi_{2} Y_{n, 0}(\zeta) \mathrm{d} \zeta$ Motivates: $\quad$ " $\hat{I}_{n}+i \hat{L}_{n}=-\frac{\hat{a}_{S}}{2} \int_{-1}^{1} \hat{\Psi}_{2} Y_{n, 0}(\hat{\zeta}) \mathrm{d} \hat{\zeta} "$ regularize: set $\zeta=\lim _{i \rightarrow \infty} \zeta_{i}, \quad \zeta_{i}$ smooth.

$$
\begin{equation*}
\hat{I}_{n}+i \hat{L}_{n}=-\lim _{i \rightarrow \infty} \frac{\hat{a}_{S}}{2} \int_{-1}^{1} \stackrel{\circ}{\Psi}_{2}\left(\hat{\zeta}_{i}\right) Y_{n, 0}\left(\hat{\zeta}_{i}\right) \mathrm{d} \hat{\zeta}_{i}=\frac{\hat{a}_{S}}{a_{o}}\left(\stackrel{\circ}{I}_{n}+i \circ_{n}\right) \tag{1}
\end{equation*}
$$

Def'n of ensemble.

$$
a_{o}-\delta<a_{S}<a_{o}+\delta
$$

From eq'n (1):

$$
\frac{\Delta \hat{a}_{S}}{a_{o}}=\frac{\Delta \hat{I}_{n}}{\stackrel{\circ}{I}_{n}}=\frac{\Delta \hat{L}_{n}}{\stackrel{\circ}{L}_{n}}
$$

Answer for entropy: Same as in type (I) case!

$$
S=\frac{1}{4} \frac{\gamma_{0}}{\gamma} a_{o}, \quad \gamma_{0}=0.2375329579 \ldots
$$

## Synopsis

- Type II case reduces to type I case :
- Surface symplectic str. is Chern-Simons with $V_{a}^{o}$
- Relation $\mathrm{b} / \mathrm{w} V_{a}^{o}$ and bulk is again given by

$$
\mathrm{d} V^{o}=-\frac{16 \pi^{2} \gamma}{a_{o}}\left({ }^{\gamma} \underset{\rightleftarrows}{\sum} \cdot r\right)
$$

Do same quantization as before and get same entropy.

- However, physical interp. of $V_{a}^{o}$ in type II case is different: concentrations of $\mathrm{d} V^{o}$ at punctures are no longer simply deficit angles. $\hat{\zeta}, \hat{\Psi}_{2}, \hat{I}_{n}, \hat{L}_{n}$ introduced to recover physical interp. in type II case.
- Note: Takes us far beyond Kerr Isolated Horizons. Kerr is a 2-parameter family, whereas the multipoles are an infinite set of parameters.


## References

[1] A. Ashtekar, J.E., C. Van Den Broeck 2005 Quantum horizons and black-hole entropy: inclusion of distortion and rotation, Class. Quantum Gravity 22, L27-L34
[2] A. Ashtekar, J.E., T. Pawlowski and C. Van Den Broeck 2004 Multipole moments of isolated horizons, Class. Quantum Gravity 21, 2549-2570
[3] A. Ashtekar, J. Baez, K. Krasnov 2000 Quantum geometry of isolated horizons and black hole entropy, Adv. Theor. Math. Phys. 1, 1-94
[4] A. Ashtekar, A. Corichi, and K. Krasnov 2000 Isolated horizons: the classical phase space, Adv. Theor. Math. Phys. 3, 419-478
[5] E. Schnetter, B. Krishnan and F. Beyer 2006 Introduction to dynamical horizons in numerical relativity, Preprint: gr-qc/0604015

